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Graphs Fundamentals of Graph Theory

Subsection 1

Fundamentals of Graph Theory
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Graphs Fundamentals of Graph Theory

Map Coloring I

Imagine a map with several countries.

To show the different countries clearly, we fill their regions with
various colors.

For simplicity, we use as few colors as possible.

However, neighboring countries should not receive the same color so
that they be distinguishable.

What is the smallest number of colors we need to color he map?
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Graphs Fundamentals of Graph Theory

Map Coloring II

In the general version, we do require that some restrictions hold:

We do not allow countries that are disconnected.
Regions that touch at just one point need not receive different colors.

The map in the figure is colored with just four colors.

Several related questions can be asked:

Can this map be colored with fewer than four colors?
Is there another map that can be colored with fewer than four colors?
Is there a map that requires more than four colors?

The third question is known as the four color map problem.

It was first posed in 1852 by Francis Guthrie.
Only in the mid 1970s, did Appel and Haken prove that every map can
be colored using at most four colors.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 5 / 103



Graphs Fundamentals of Graph Theory

Examination Scheduling

At a university, there is an examination period at the end of a term in
which each course has a 3-hour final exam. On any given day, the
university can schedule two final exams. To avoid conflicts, the
university wishes to devise a final examination schedule with the
condition that if a student is enrolled in two courses, these courses
must get different examination periods.

A simple solution to this problem is to hold only one examination
during any time slot. This would needlessly prolong the examination
period! The solution the university prefers is to have the smallest
possible number of examination slots.
Even though this scheduling problem seems unrelated to map
coloring, these problems are essentially the same!

In map coloring, we seek the least number of colors, subject to a
special condition.
In exam scheduling, we seek the least number of time slots subject to a
special condition.
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Graphs Fundamentals of Graph Theory

Utilities and Printed Circuits

We want to run connections from three utility (gas, water, electricity)
plants to three homes, i.e., three electric wires, three water pipes, and
three gas lines.

We may place the houses and the utility
plants anywhere, but no two
wires/pipes/lines are allowed to cross!

A failed attempt to construct a suitable
layout: No solution is possible.

A printed circuit board is a flat piece of plastic on which various
electronic devices (resistors, capacitors, integrated circuits, etc.) are
mounted. Connections between devices are made by printing bare
metal wires onto the surface of the board. No two of these wires may
cross to avoid short circuits. Can we print the various connecting
wires onto the board in such a way that there are no crossings?
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Graphs Fundamentals of Graph Theory

Seven Bridges I

In the 1700 city of Königsberg (now Kaliningrad), there are seven
bridges:

A count, who enjoyed a walk through the city wondered whether
there was a tour he could take so that he could cross every bridge
exactly once.

No such tour is possible.

Euler created a diagram in which each line represents a bridge.

The problem of walking the seven bridges is now replaced by the
problem of drawing the abstract figure without lifting the pencil from
the paper and without redrawing a line. Can this figure be so drawn?
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Graphs Fundamentals of Graph Theory

Seven Bridges II

There are four places where lines come together; at each of these
places, the number of lines is odd.

Claim: A point where an odd number of lines meet must be either the
starting point or the finishing point of a “proper” drawing.

Since there are four points with the property, not every point in the
diagram can be either the first or the last point in the drawing. It is
impossible to tour the city of Königsberg and cross each of the seven
bridges exactly once.

Suppose a small city can afford only one garbage truck for garbage
collection. Can we set the route the garbage truck is to follow? It
needs to collect along every street in the city, while it would be
wasteful to traverse the same street more than once. Is there a route
for the garbage truck so that it travels only once down every street?

If the city has more than two intersections where an odd number of
roads meet, then such a tour is not possible.
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Graphs Fundamentals of Graph Theory

Graphs

Definition (Graph)

A graph is a pair G = (V ,E ), where V is a finite set and E is a set of
two-element subsets of V .

Example: Let G = ({1, 2, 3, 4, 5, 6, 7}, {{1, 2}, {1, 3}, {2, 3}, {3, 4},
{5, 6}}). Here V is the finite set {1, 2, 3, 4, 5, 6, 7} and E is a set
containing 5 two-element subsets of V : {1, 2}, {1, 3}, {2, 3}, {3, 4}
and {5, 6}. Therefore G = (V ,E ) is a graph.

The elements of V are called the vertices (singular: vertex) of the
graph; the elements of E are called the edges of the graph.

The graph of the example has seven vertices and five edges.
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Graphs Fundamentals of Graph Theory

Drawings of Graphs

There is a nice way to draw pictures of graphs, which make graphs
easier to understand.

Keep in mind, however, that a picture of a graph is not the same
thing as the graph itself!

We draw a dot for each vertex in V and each edge e = {u, v} ∈ E is
drawn as a curve joining the dot for u to the dot for v .

Example: The following three pictures all depict the graph from the
previous example:

Conversely, we can “read” the pictures and determine the vertices and
edges of the graph.
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Graphs Fundamentals of Graph Theory

Adjacency and Incidence

Definition (Adjacent)

Let G = (V ,E ) be a graph and let u, v ∈ V . We say that u is adjacent to
v provided {u, v} ∈ E . The notation u ∼ v means that u is adjacent to v .

If {u, v} is an edge of G , we call u and v the endpoints of the edge.

For convenience, we avoid writing the curly braces for an edge {u, v}
and write uv in place of {u, v}.

If v is a vertex and an endpoint of the edge e, we may write v ∈ e,
since e is a two-element set, one of whose elements is v . We also say
that v is incident on (or incident with) e.
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Graphs Fundamentals of Graph Theory

Properties of Adjacency

Which of the various properties of relations does “is-adjacent-to”
exhibit?

Is ∼ reflexive? No.
Is ∼ irreflexive? Yes!
Is ∼ symmetric? Yes!
If u ∼ v in G , then {u, v} is an edge of G . Of course, {u, v} is the
exact same thing as {v , u}, so v ∼ u. Therefore, ∼ is symmetric.
Is ∼ antisymmetric? No (in general).
But there are graphs with antisymmetric adjacency relations.
Is ∼ transitive? No (in general).
But there are graphs with transitive adjacency relations.
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Graphs Fundamentals of Graph Theory

(Simple) Graphs versus Multigraphs

Note that it is never the case that {u, u} is an edge of a graph. Thus
a vertex is never adjacent to itself and therefore ∼ is irreflexive.

According to our definition, an edge of a graph is a two-element
subset of V .

Some mathematicians use the word graph in a different way and allow
the possibility that a vertex could be adjacent to itself; an edge
joining a vertex to itself is called a loop.
For us, graphs are not allowed to have loops.

Some authors also allow more than one edge with the same
endpoints; such edges are called parallel edges.
For us, graphs may not have parallel edges.

When we want to be perfectly clear, we use the term simple graph.

If we wish to discuss a “graph” that may have loops and multiple
edges, we use the word multigraph.
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Graphs Fundamentals of Graph Theory

Degrees

Let G = (V ,E ) be a graph and suppose u and v are vertices of G . If
u and v are adjacent, we also say that u and v are neighbors. The
set of all neighbors of a vertex v is called the neighborhood of v and
is denoted N(v), i.e., N(v) = {u ∈ V : u ∼ v}.

Example: For the graph

N(1) = {2, 3}, N(5) = {6}, N(2) = {1, 3},
N(6) = {5}, N(3) = {1, 2, 4}, N(7) = ∅.

Definition (Degree)

Let G = (V ,E ) be a graph and let v ∈ V . The degree of v is the number
of edges with which v is incident. The degree of v is denoted dG (v) or, if
there is no risk of confusion, simply d(v).

Example: In the previous graph, we have d(1) = 2, d(2) = 2, d(3) =
3, d(4) = 1, d(5) = 1, d(6) = 1, d(7) = 0.
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Graphs Fundamentals of Graph Theory

Some Remarks on the Example

Note that
∑

v∈V d(v) = d(1) + d(2) + d(3) + d(4) + d(5) +
d(6) + d(7) = 2 + 2 + 3 + 1 + 1 + 1 + 0 = 10
and this is twice the number of edges in G .

The following matrix is the adjacency matrix of G , i.e. has entry 1 in
row i and column j if vi ∼ vj and 0, otherwise.





















0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0





















Notice that for every edge of G there
are exactly two 1’s in the chart. So,
the number of 1’s in the matrix is
exactly 2|E |.

Notice also that the number of 1’s in
each row is exactly the degree of that
vertex. Therefore, the total number
of 1’s is the sum of all degrees.
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Graphs Fundamentals of Graph Theory

A Theorem on the Sum of Degrees

Theorem

Let G = (V ,E ) be a graph. The sum of the degrees of the vertices in G is
twice the number of edges, i.e.,

∑

v∈V d(v) = 2|E |.

Suppose the vertex set is V = {v1, v2, . . . , vn}. Consider the
adjacency matrix of the graph. How many 1’s are in this matrix?

For every edge of G there are exactly two 1’s in the matrix. Thus, the
total number of 1’s in this matrix is exactly 2|E |.
Consider a given row corresponding to some vertex vi . There is a 1 in
this row exactly for those vertices adjacent to vi . Thus, the number of
1’s in this row is exactly the degree d(vi ) of the vertex vi . The total
number of 1’s in the matrix is the sum of the row subtotals, i.e., equals
the sum of the degrees of the vertices of the graph.

These two answers are both correct counts of the number of 1’s in
the matrix. Thus, the sum of the degrees of the vertices of G equals
twice the number of edges of G .
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Graphs Fundamentals of Graph Theory

Additional Notation and Terminology

Some additional graph theoretic terminology:

The maximum degree of a vertex in G is denoted ∆(G). The
minimum degree of a vertex in G is denoted δ(G).
If all vertices in G have the same degree, we call G regular. If a graph
is regular and all vertices have degree r , G is called r -regular.
Let G = (V ,E ) be a graph. To show explicitly that V and E are the
vertex and edge sets of G , respectively, we sometimes write V = V (G)
and E = E (G).
Let G = (V ,E ) be a graph. The order of G is the number of vertices
in G , i.e., |V (G)|. The size of G is the number of edges, i.e., |E (G)|.
Sometimes we use ν(G) = |V (G)| and ǫ(G) = |E (G)|.
Let G be a graph. If all pairs of distinct vertices are adjacent in G , we
call G complete. A complete graph on n vertices is denoted Kn. The
opposite extreme is a graph with no edges. We call such graphs
edgeless. A graph with no vertices (and hence no edges) is called an
empty graph.
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Graphs Subgraphs

Subsection 2

Subgraphs
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Graphs Subgraphs

Subgraphs

Definition (Subgraph)

Let G and H be graphs. We call G a subgraph of H provided
V (G ) ⊆ V (H) and E (G ) ⊆ E (H).

Example: Let G and H be the following graphs:
V (G ) = {1, 2, 3, 4, 6, 7, 8}, E (G ) = {{1, 2}, {2, 3}, {2, 6}, {3, 6},
{4, 7}, {6, 8}, {7, 8}}, and V (H) = {1, 2, 3, 4, 5, 6, 7, 8, 9}, E (H) =
{{1, 2}, {1, 4}, {2, 3}, {2, 5}, {2, 6}, {3, 6}, {3, 9}, {4, 7}, {5, 6}, {5, 7},
{6, 8}, {6, 9}, {7, 8}, {8, 9}}. Notice that V (G ) ⊆ V (H) and
E (G ) ⊆ E (H), and so G is a subgraph of H.

Naturally, if G is a sub-
graph of H, we call H a
supergraph of G .
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Graphs Subgraphs

Spanning Subgraphs

We form a subgraph G from a graph H by deleting some parts of H:
If e is an edge of H , then removing e from H results in a new graph
that we denote H − e.

Definition (Spanning Subgraph)

Let G and H be graphs. We call G a spanning subgraph of H provided
G is a subgraph of H, and V (G ) = V (H).

Example: Let H be the graph of the previous slide and let G be the
graph with V (G ) = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and E (G ) = {{1, 2},
{2, 3}, {2, 5}, {2, 6}, {3, 6}, {3, 9}, {5, 7}, {6, 8}, {7, 8}, {8, 9}}.

G and H have the same
vertex set, whence G is a
spanning subgraph of H.
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Graphs Subgraphs

Induced Subgraphs

Deleting vertices from a graph is more subtle: When we delete a
vertex v from H, we must delete all edges that are incident with v .
So the graph H − v is defined by V (H − v) = V (H)− {v},
E (H − v) = {e ∈ E (H) : v 6∈ e}.

Definition (Induced Subgraph)

Let H be a graph and let A be a subset of the vertices of H. The
subgraph of H induced on A is the graph H[A] defined by V (H[A]) = A,
and E (H[A]) = {xy ∈ E (H) : x ∈ A and y ∈ A}.

G is an induced subgraph of H, if G = H[A] for some A ⊆ V (H).

The graph H − v is an induced subgraph of H.
If A = V (H)− {v}, then H − v = H[A].

George Voutsadakis (LSSU) Discrete Mathematics March 2014 22 / 103



Graphs Subgraphs

Induced Subgraphs: An Example

Again, consider the graph H of the previous slide. Let G be the graph
with V (G ) = {1, 2, 3, 5, 6, 7, 8}, and E (G ) = {{1, 2}, {2, 3}, {2, 5},
{2, 6}, {3, 6}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}.

Note that G is a subgraph of H. From H we deleted vertices 4 and 9.
We have included in G every edge of H except those edges incident
with vertices 4 or 9. Thus G is an induced subgraph of H and
G = H[A] where A = {1, 2, 3, 5, 6, 7, 8}. We can also write
G = (H − 4)− 9 = (H − 9)− 4.
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Graphs Subgraphs

Clique and Clique Number

Definition (Clique and Clique Number)

Let G be a graph. A subset of vertices S ⊆ V (G ) is called a clique

provided any two distinct vertices in S are adjacent. The clique number

of G is the size of a largest clique and is denoted ω(G ).

Note that S ⊆ V (G ) is a clique provided G [S ] is a complete graph.

Example: Let H be the graph of the previous slide.

Some of his cliques are {1, 4}, {2, 5, 6},
{9}, {2, 3, 6}, {6, 8, 9}, {4}, ∅. The
largest size of a clique in H is 3, so
ω(H) = 3. The clique {1, 4} contains
two vertices, so it does not have the
largest possible size for a clique in H.

However, it cannot be extended. It is a maximal clique that does not
have maximum size. Maximal means “cannot be extended”.
Maximum means “largest”.
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Graphs Subgraphs

Independent Set and Independence Number

Definition (Independent Set, Independence Number)

Let G be a graph. A subset S ⊆ V (G ) is called an independent set

provided no two vertices in S are adjacent. The independence number

of G is the size of a largest independent set and is denoted α(G ).

A set S ⊆ V (G ) is independent provided G [S ] is an edgeless graph.

Example: Let H be the same graph as before.

Some of his independent sets are {1, 3, 5},
{1, 7, 9}, {4}, {1, 3, 5, 8}, {4, 6}, {1, 3, 7},
∅. The largest size of an independent set
in H is 4, so α(H) = 4.

The independent set {4, 6} is not a largest independent set, but it is a
maximal independent set.
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Graphs Subgraphs

Complements, Cliques and Independent Sets

Definition (Complement)

Let G be a graph. The complement of G is the graph, denoted G ,
defined by V (G) = V (G ), and
E (G ) = {xy : x , y ∈ V (G ), x 6= y , xy 6∈ E (G )}.

Example: The two graphs in the figure are complements of one
another.

Proposition (Cliques and Independent Sets)

Let G be a graph. A subset of V (G ) is a clique of G if and only if it is an
independent set of G . Furthermore, ω(G ) = α(G ) and α(G ) = ω(G ).
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Graphs Subgraphs

A Taste of Ramsey Theory

Proposition (Taste of Ramsey Theory)

Let G be a graph with at least six vertices. Then ω(G ) ≥ 3 or ω(G) ≥ 3.

Equivalently, ω(G ) ≥ 3 or α(G ) ≥ 3.

Let v be any vertex of G . We consider two possibilities: either
d(v) ≥ 3 or d(v) < 3.

If d(v) ≥ 3, v has at least three neighbors x , y , z .

If one (or more) of xy , yz , or xz is an edge of G ,
then G contains a clique of size 3. So ω(G) ≥ 3.

If none of xy , yz , or xz is in G, then all three are
edges of G . So ω(G) ≥ 3.

If d(v) ≤ 2, there are three vertices x , y , z not adjacent to v .

If all of xy , yz , xz are edges of G , then clearly G has
a clique of size 3. So ω(G) ≥ 3.

If one (or more) of xy , yz , or xz is not in G , then we
have a clique of size 3 in G . So ω(G) ≥ 3.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 27 / 103



Graphs Connectedness

Subsection 3

Connectedness
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Graphs Connectedness

Walks

Definition (Walk)

Let G = (V ,E ) be a graph. A walk in G is a sequence (or list) of vertices,
with each vertex adjacent to the next, i.e., W = (v0, v1, . . . , vℓ) with
v0 ∼ v1 ∼ v2 ∼ · · · ∼ vℓ. The length of this walk is ℓ. There are ℓ+ 1
vertices and ℓ edges on the walk.

Example: Consider the graph

The sequence 1 ∼ 2 ∼ 3 ∼ 4 is a walk of
length three. It starts at vertex 1 and ends at
vertex 4, and so we call it a (1, 4)-walk.

In general, a (u, v)-walk is a walk in a graph whose first vertex is u
and whose last vertex is v .
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Graphs Connectedness

Reversals and Closed Walks

1 ∼ 2 ∼ 3 ∼ 6 ∼ 2 ∼ 1 ∼ 5 is a walk of
length six. There are seven vertices on
this walk. We are permitted to visit a
vertex more than once on a walk.

5 ∼ 1 ∼ 2 ∼ 6 ∼ 3 ∼ 2 ∼ 1 is also a
walk of length six. Notice that this
sequence is exactly the reverse of that
of the previous example.

If W = v0 ∼ v1 ∼ · · · ∼ vℓ−1 ∼ vℓ, then its reversal is also a walk
(because ∼ is symmetric). The reversal of W is
w−1 = vℓ ∼ vℓ−1 ∼ · · · ∼ v1 ∼ v0.

9 is a walk of length zero.

1 ∼ 5 ∼ 1 ∼ 5 ∼ 1 is a walk of length four. This walk is called closed

because it begins and ends at the same vertex.

Neither (1, 1, 2, 3, 4) nor (1, 6, 7, 9) is a walk (1 ≁ 1 and 1 ≁ 6).
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Graphs Connectedness

Concatenation

Definition (Concatenation)

Let G be a graph. Suppose W1 and W2 are the following walks:

W1 = v0 ∼ v1 ∼ · · · ∼ vℓ
W2 = w0 ∼ w1 ∼ · · · ∼ wk

and suppose vℓ = w0. Their concatenation, denoted W1 +W2, is the
walk

v0 ∼ v1 ∼ · · · ∼ (vℓ = w0) ∼ w1 ∼ · · · ∼ wk .

Example: The concatenation of the
walks 1 ∼ 2 ∼ 3 ∼ 4 and 4 ∼ 7 ∼ 3 ∼ 2
is the walk 1 ∼ 2 ∼ 3 ∼ 4 ∼ 7 ∼ 3 ∼ 2.
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Graphs Connectedness

Paths

Definition (Path)

A path in a graph is a walk in which no vertex is repeated.

Example: The walk
1 ∼ 2 ∼ 6 ∼ 7 ∼ 3 ∼ 4 is a path. It is
also called a (1, 4)-path because it begins
at vertex 1 and ends at vertex 4.

In general, a (u, v)-path is a path whose first vertex is u and whose
last vertex is v .

If a walk (or path) is of the form · · · ∼ u ∼ v ∼ · · ·, then we say that
the walk (or path) used or traversed the edge uv .
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Graphs Connectedness

A Proposition

Proposition

Let P be a path in a graph G . Then P does not traverse any edge of G
more than once.

Suppose, for the sake of contradiction, that some path P in a graph
G traverses the edge e = uv more than once. Without loss of
generality, we have P = · · · ∼ u ∼ v · · · ∼ u ∼ v ∼ . . . or
P = · · · ∼ u ∼ v ∼ · · · ∼ v ∼ u ∼ · · ·. In the first case, we have
repeated both u and v , and in the second, we have repeated u,
contradicting the fact that P is a path.

Definition (Path Graph)

A path is a graph with vertex set V = {v1, v2, . . . , vn} and edge set
E = {vivi+1 : 1 ≤ i < n}. A path with n vertices is denoted Pn.

Given a sequence of vertices in G constituting a path, we can also
view that sequence as a subgraph of G .
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Graphs Connectedness

From Walks to Paths

Lemma

Let G be a graph and let x , y ∈ V (G ). If there is an (x , y)-walk in G ,
then there is an (x , y)-path in G .

Suppose there is an (x , y)-walk in a graph G . The length of an
(x , y)-walk is a natural number. Thus, by the Well-Ordering
Principle, there is a shortest (x , y)-walk P .

Claim: P is an (x , y)-path.
Suppose, for the sake of contradiction, that P is not an (x , y)-path.
Then there must be some vertex u that is repeated on the path. In
other words, P = x ∼ · · · ∼? ∼ u ∼ · · · ∼ u ∼?? ∼ · · · y . We do not
rule out the possibility that u = x and/or u = y . Form a new walk P ′

by deleting u ∼ · · · ∼ u. The result in a new walk in which ? and ??
are both adjacent to u. So the shortened sequence P ′ is still an
(x , y)-walk. This contradicts the fact that P is a shortest (x , y)-walk.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 34 / 103



Graphs Connectedness

Connection

Definition (Connected to)

Let G be a graph and let u, v ∈ V (G ). We say that u is connected to v

provided there is a (u, v)-path in G , i.e., a path whose first vertex is u and
whose last vertex is v .

The relation “is-connected-to” is reflexive, but not (in general)
irreflexive or antisymmetric.

The “is-connected-to” is a symmetric relation. Suppose, in a graph
G , vertex u is connected to vertex v . Thus, there is a (u, v)-path P

in G . Its reversal P−1 is a (v , u)-path, and so v is connected to u.

The “is-connected-to” relation is transitive. Suppose, in a graph G , x
is connected to y and y is connected to z . Thus, there exist an
(x , y)-path P and a (y , z)-path Q. The concatenation P + Q is an
(x , z)-walk, but nor necessarily an (x , z)-path. However, the existence
of an (x , y)-walk implies the existence of an (x , y)-path! Therefore x

is connected to z .
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Graphs Connectedness

The Relation “is-connected-to” is an Equivalence

Theorem

Let G be a graph. The “is-connected-to” relation is an equivalence
relation on V (G ).

“is-connected-to” is reflexive, symmetric, and transitive.

Since “is-connected to” is an equivalence relation, its equivalence
classes form a partition of the vertex set. Let u and v be vertices of a
graph G .

If u, v ∈ V (G) are in the same equivalence class, then there is a path
joining them.
On the other hand, if u and v are in different equivalence classes, there
is no path joining u to v , or vice versa.

Example:

The equivalence classes of the
“is-connected-to” relation on this graph are
{1, 2, 3, 4}, {5, 6}, and {7}.
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Graphs Connectedness

Components and Connectedness

Definition (Components)

A component of G is a subgraph of G induced on an equivalence class of
the “is-connected-to” relation on V (G ).

The graph on the left has three components:
G [{1, 2, 3, 4}], G [{5, 6}], and G [{7}]. The first
has four vertices and four edges, the second has
two vertices and one edge and the third
component has just one vertex and no edges.

If a graph is edgeless, then each vertex forms a component.

If there is only one component, we call the graph connected.

Definition (Connected)

A graph is called connected provided each pair of vertices in the graph
are connected by a path, i.e., for all x , y ∈ V (G ), there is an (x , y)-path.
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Graphs Connectedness

Cut Vertex and Cut Edge

Definition (Cut Vertex, Cut Edge)

Let G be a graph. A vertex v ∈ V (G ) is called a cut vertex of G
provided G − v has more components than G .
Similarly, an edge e ∈ E (G ) is called a cut edge of G provided G − e has
more components than G .

If G is a connected graph, a cut vertex v is a vertex such that G − v

is disconnected. Likewise e is a cut edge if G − e is disconnected.

Example:
The graph in the figure has two cut
edges (blue) and four cut vertices
(red).
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Graphs Connectedness

A Theorem

Theorem

Let G be a connected graph and suppose e ∈ E (G ) is a cut edge of G .
Then G − e has exactly two components.

Let G be a connected graph and let e ∈ E (G ) be a cut edge.
Because G is connected, it has exactly one component. Because e is
a cut edge, G − e has more components than G . Suppose G − e has
three or more components. Let a, b and c be three vertices of G − e,
each in a separate component in G − e, i.e., there is no path in G − e

joining any pair of them. Let P be an (a, b)-path in G . Because there
is no (a, b)-path in G − e, we know P must traverse the edge e.
Suppose x and y are the endpoints of the edge e, and the path P

traverses e in the order x , then y , i.e.,
P = a ∼ · · · ∼ x ∼ y ∼ · · · ∼ b.
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Graphs Connectedness

Proof of the Theorem (Cont’d)

Similarly, since G is connected, there is a path Q from c to a that
must use the edge e = xy . Which vertex, x or y , appears first on Q
as we travel from c to a?

If x appears before y on the (c , a)-path Q, then we
have, in G − e, a walk from c to a: Use the (c , x)-
portion of Q, concatenated with the (x , a)-portion of
P−1. This yields a (c , a)-walk in G − e and, hence, a
(c , a)-path in G − e, which is a contradiction.

If y appears before x on the (c , a)-path Q, then we
have, in G − e, a walk from c to b: Concatenate the
(c , y)-section of Q with the (y , b)-section of P . This
walk does not use the edge e. Therefore there is a
(c , b)-walk in G − e and hence a (c , b)-path in G − e,
which is a contradiction.

Therefore, G − e has at most two components.
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Subsection 4

Trees
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Graphs Trees

Cycles

Definition (Cycle)

A cycle is a walk of length at least three in which the first and last vertex
are the same, but no other vertices are repeated. The term cycle also
refers to a (sub)graph consisting of the vertices and edges of such a walk.
In other words, a cycle is a graph of the form G = (V ,E ) where
V = {v1, v2, . . . , vn}, and E = {v1v2, v2v3, . . . , vn−1vn, vnv1}. A cycle
(graph) on n vertices is denoted Cn.

Example:

The left figure depicts a cycle of length six as a walk in a graph. The
right figure shows the graph C6.
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Forests and Trees

Definition (Forest)

Let G be a graph. If G contains no cycles, then we call G acyclic.
Alternatively, we call G a forest.

A forest is (as in real life) a collection of trees.

Definition (Tree)

A tree is a connected, acyclic graph.

Example: The forest in the figure
contains four connected components.
Each component of a forest is a tree.
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K1,K2,P3,P4 and Star

Note that a single isolated vertex, e.g., the graph K1, is a tree.

There is only one possible structure for a tree on two vertices: there
must be an edge joining the two vertices. Any tree on two vertices
must be a K2.

There is also only one possible structure for a tree on three vertices.
Since the graph is connected, there certainly must be at least one
edge, say joining vertices a and b. However, if there were only one
edge, then the third vertex, c , would not be connected to either a or
b, and so the graph would not be connected. Thus, there must be at
least one more edge, say that it is the edge from b to c . So far we
have a ∼ b ∼ c , but ac 6∈ E . Might we also add the edge ac? If we
do, the graph is connected, but it is no longer acyclic, as we would
have the cycle a ∼ b ∼ c ∼ a. Any tree on three vertices is a P3.

However, on four vertices, we can have two different sorts of trees.
We can have the path P4 and we can have a star: a graph of the
form G = (V ,E ), where V = {a, x , y , z} and E = {ax , ay , az}.
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Graphs Trees

Uniqueness of (a, b)-Paths in Trees

Theorem

Let T be a tree. For any two vertices a and b in V (T ), there is a unique
(a, b)-path. Conversely, if G is a graph with the property that, for any two
vertices u, v , there is exactly one (u, v)-path, then G must be a tree.

(⇒) Suppose T is a tree and let a, b ∈ V (T ).
Existence: There exists an (a, b)-path because trees are connected.
Uniqueness: Suppose, for the sake of contradiction, there were two
different (a, b)-paths P and Q in T . Since P and Q are different paths,
at some point one of them traverses a different edge than the other.

Let us say that from a to x the paths
are the same, but then they traverse
different edges, i.e., P : a ∼ · · · ∼
x ∼ y ∼ · · · ∼ b and Q : a ∼ · · · ∼
x ∼ z ∼ · · · ∼ b.

Now consider the graph T − xy .
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Uniqueness of Paths in Trees (Cont’d)

We are proving (⇒):
We finish uniqueness:

Claim: There is an (x , y)-path R in T − xy .
Notice that there is an (x , y)-walk in T − xy : Start at x , follow P−1

from x to a, follow Q from a to b, and then follow P−1 from b to y .
Thus, there is an (x , y)-path in T − xy .

The path R must contain at least one vertex in addition to x and y

because R does not use the edge xy . If we add the edge xy to the path
R , we have a cycle, which is a contradiction.

(⇐) Let G be a graph with the property that between any two
vertices there is exactly one path. We must prove that G is a tree,
i.e., connected and acyclic. Both are relatively easy to see.
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An Alternative Characterization

Theorem

Let G be a connected graph. Then G is a tree if and only if every edge of
G is a cut edge.

Let G be a connected graph.

(⇒) Suppose G is a tree. Let e = xy be any edge of G . We must

prove that G − e is disconnected. In G there is an (x , y)-path x
e
∼ y .

Since there is no other (x , y)-path, if we delete e from G , there can be
no (x , y)-paths. Therefore e is a cut edge.
(⇐) Suppose every edge of G is a cut edge. Since, by assumption, G is
connected, we must show that G is acyclic. Suppose that G contains a
cycle C . Let e = xy be an edge of this cycle. The vertices and other
edges of C form an (x , y)-path P . Since e is a cut edge of G , G − e is
disconnected. Thus, there exist vertices a, b for which there is no
(a, b)-path in G − e. However, in G , there is an (a, b)-path Q. Hence
Q must traverse the edge e.
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Proof of the Alternative Characterization (Cont’d)

We were showing that, if every edge of G is a cut edge, then G is
acyclic.

We had created the following setting:

We argued that in G , there is an (a, b)-path Q that must traverse the
edge e.
Without loss of generality, we traverse e from x to y as we step along
Q: Q = a ∼ · · · ∼ x ∼ y ∼ · · · ∼ b. In G − e there is an (a, b)-walk.
We traverse Q from a to x , then P from x to y , and then Q from y to
b. This implies that in G − e there is an (a, b)-path, contradicting the
fact that there is no such path.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 48 / 103



Graphs Trees

Leaves

Definition (Leaf)

A leaf of a graph is a vertex of degree 1.

Leaves are also called end vertices or pendant vertices.

Example: The tree in the figure
has four leaves.

The empty graph and the graph K1 are trees, and they have no
vertices of degree 1.

Other than those two, every tree has a leaf.
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Graphs Trees

Existence of Leaves

Theorem (Existence of Leaves)

Every tree with at least two vertices has a leaf.

Let T be a tree with at least two vertices. Let P be a longest path in
T , i.e., P is a path in T and there are no paths in T that are longer.
Since T is connected and contains at least two vertices, P has two or
more vertices. Suppose P = v0 ∼ v1 ∼ · · · ∼ vℓ, where ℓ ≥ 1.

Claim: The first and last vertices of P (v0 and vℓ) are leaves of T .
Suppose, for the sake of contradiction, that v0 is not a leaf. Thus
d(v0) ≥ 2 and v0 has at least one neighbor other than v1. Let x be
another neighbor of v0, i.e., x 6= v1. Note that x is not a vertex on P ,
for otherwise we would have a cycle v0 ∼ v1 ∼ · · · ∼ x ∼ v0. Now
Q = x ∼ v0 ∼ v1 ∼ · · · ∼ vℓ is a path in T that is longer than P ,
which is a contradiction. Therefore v0 is a leaf. Likewise vℓ is a leaf.
Therefore T has at least two leaves.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 50 / 103



Graphs Trees

Deleting a Leaf does not Spoil a Tree

Proposition

Let T be a tree and let v be a leaf of T . Then T − v is a tree.

We need to prove that T − v is a tree.

T − v is acyclic, since, if T − v contained a cycle, that cycle would
also exist in T .
We must show that T − v is connected.
Let a, b ∈ V (T − v). We must show there is an (a, b)-path in T − v .
Since T is connected, there is an (a, b)-path P in T .
Claim: P does not include the vertex v .
Otherwise, we would have P = a ∼ · · · ∼ v ∼ · · · ∼ b. Since v is
neither the first nor the last vertex on this path, it has two distinct
neighbors on the path. This contradicts the fact that d(v) = 1.

Therefore P is an (a, b)-path in T − v , and so T − v is connected and
a tree.
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Graphs Trees

Number of Edges in a Tree with n Vertices

Theorem (Number of Edges in a Tree)

Let T be a tree with n ≥ 1 vertices. Then T has n− 1 edges.

We use induction on the number of vertices in T .

Basis Case: The theorem is true for all trees on n = 1 vertices.
If T has only n = 1 vertex, then clearly it has 0 = n − 1 edges.
Induction Hypothesis: Suppose the theorem is true for all trees on
n = k vertices.
Induction Step: Let T be a tree on n = k + 1 vertices. We need to
prove that T has n − 1 = k edges. Let v be a leaf of T and let
T ′ = T − v . Note that T ′ is a tree with k vertices. By induction, T ′

satisfies the theorem, i.e., T ′ has k − 1 edges. Since v is a leaf of T ,
we have d(v) = 1. Hence, when we deleted v from T , we deleted
exactly one edge. Therefore T has one more edge than T ′, i.e., T has
(k − 1) + 1 = k edges.

This concludes the induction.
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Graphs Trees

Spanning Trees

Definition (Spanning Tree)

Let G be a graph. A spanning tree of G is a spanning subgraph of G
that is a tree. (A spanning subgraph of G is a subgraph that has the same
vertices as G .)

Example: For the graph in the figure, we have colored in red one of
its many spanning trees.
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Existence of Spanning Trees

Theorem (Existence of Spanning Trees)

A graph has a spanning tree if and only if it is connected.

(⇒) Suppose G is connected. Let T be a spanning connected
subgraph of G with the least number of edges.

Claim: T is a tree.
By construction, T is connected. We claim that every edge of T is a
cut edge. Otherwise, if e ∈ E (T ) were not a cut edge of T , then
T − e would be a smaller spanning connected subgraph of G , which
is a contradiction. Therefore, every edge of T is a cut edge.
By a previous theorem, T is a tree. So G has a spanning tree.

(⇐) Suppose G has a spanning tree T . We must show that G is
connected. Let u, v ∈ V (G ). Since T is spanning, we have
V (T ) = V (G ), whence u, v ∈ V (T ). Since T is connected, there is a
(u, v)-path P in T . Since T is a subgraph of G , P is a (u, v)-path in
G . Therefore G is connected.
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Characterizing Trees Among Connected Graphs

Theorem

Let G be a connected graph on n ≥ 1 vertices. Then G is a tree if and
only if G has exactly n − 1 edges.

(⇒) This implication has already been proved.

(⇐) Suppose G is a connected graph with n vertices and n− 1 edges.
We have shown that G has a spanning tree T . Thus, T is a tree,
V (T ) = V (G ), and E (T ) ⊆ E (G ). Note, however, that

|E (T )| = |V (T )| − 1 = |V (G )| − 1 = |E (G )|.

So we actually have E (T ) = E (G ). Therefore, G = T , i.e., G is a
tree.
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Subsection 5

Eulerian Graphs
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Graphs Eulerian Graphs

Eulerian Trails and Tours

Consider the two figures shown below.

The figure on the left has four corners
where an odd number of lines meet.
Therefore, it is impossible to draw this
figure without lifting the pencil or re-
drawing a line.

The figure on the right has only two corners with an odd number of
lines. These points must be the first/last points in a drawing. The
figure can be drawn without lifting the pencil or retracing a line.

Definition (Eulerian Trail, Tour)

Let G be a graph. A walk in G that traverses every edge exactly once is
called an Eulerian trail. If, in addition, the trail begins and ends at the
same vertex, we call the walk an Eulerian tour. Finally, if G has an
Eulerian tour, we call G Eulerian.
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Necessary Conditions

A component of a graph is trivial if it contains only one vertex.
Otherwise we call the component nontrivial.

Lemma

If G is Eulerian, then G has at most one nontrivial component.

If the graph has two (or more) nontrivial components, it is impossible
for the trail to visit more than one component, so there is no way we
can traverse all the edges of the graph.

Lemma

If G has an Eulerian trail, then it has at most two vertices of odd degree.

Suppose v is a vertex of a graph G in which there is an Eulerian trail
W . If v is neither the first nor the last vertex on this trail, then v

must have even degree: Every edge of the graph is traversed exactly
once, and for every edge entering v there is another edge exiting v .
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Additional Remarks

Lemma

If G has an Eulerian trail that begins at a vertex a and ends at a vertex b

(with a 6= b), then vertices a and b have odd degree.

There is one edge traversed from a when the trail begins. Then, every
other time we visit a, an entering edge is paired with an exiting edge.
Therefore, d(a) is odd. The same is true for d(b).

Lemma

If G has an Eulerian tour, i.e., if G is Eulerian, then all vertices in G have
even degree.

If the trail begins and ends at a, then d(a) must be even.
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A Final Remark

Lemma

If G is a connected Eulerian graph, then G has an Euler tour that
begins/ends at any vertex.

Suppose we have an Eulerian tour in a connected graph that begins
and ends at a vertex a. Suppose b is the second vertex on this tour

W = a ∼ b ∼ · · · ∼ a.

We can, instead, begin the tour at b, follow the original tour until we
get to the last visit to a, and finish at b:

W ′ = b ∼ · · · ∼ a ∼ b.

If we shift the tour repeatedly, we can begin an Eulerian tour at any
vertex we choose.
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Graphs Eulerian Graphs

Lemma I Supporting the Twin Theorems

Lemma

Let G be a graph all of whose vertices have even degree. Then no edge of
G is a cut edge.

Suppose e = xy is a cut edge. Notice that G − e has exactly two
components and each of these components contains exactly one
vertex of odd degree. This is a contradiction to having an even
number of odd degree vertices.
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Lemma II Supporting the Twin Theorems

Lemma

Let G be a connected graph with exactly two vertices of odd degree. Let a
be a vertex of odd degree and suppose d(a) 6= 1. Then at least one of the
edges incident with a is not a cut edge.

Suppose that all edges incident at a are cut edges.

Let b be the other vertex of odd degree in G .
Since G is connected, there is an (a, b)-path
P in G . Exactly one edge incident at a is tra-
versed by P . Let e be any other edge incident
at a. Consider the graph G ′ = G − e.

It has exactly two components. Since the path P does not use the
edge e, vertices a and b are in the same component. In G ′, vertex a

has even degree, and all other vertices in its component have not
changed degree. Thus, in G ′, the component containing vertex a has
exactly one vertex of odd degree, a contradiction.
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Twin Theorems

Theorem

Let G be a connected graph all of whose vertices have even degree. For
every vertex v ∈ V (G ), there is an Eulerian tour that begins and ends at v .

Theorem

Let G be a connected graph with exactly two vertices a and b of odd
degree. Then G has an Eulerian trail that begins at a and ends at b.

We give a single proof by induction on the number of edges in the
graph.

Basis Case: Suppose G has 0 edges. Then G consists of just 1 isolated
vertex v . The walk (v) is an Eulerian trail of G .
Another Basis Case: Suppose G has one edge. Since G is connected,
the graph must consist of just two vertices, a and b, and a single edge
joining them. Now G has exactly two vertices of odd degree, and a ∼ b

is an Eulerian trail starting at one and ending at the other.
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Proof of Twin Theorems I

We continue the proof:
Induction Hypothesis: Suppose a connected graph has m edges.

If all of its vertices have even degree, then there is an Eulerian tour
beginning/ending at any vertex.
If exactly two of its vertices have odd degree, then there is an Eulerian
trail that begins at one of these vertices and ends at the other.

Induction Step: Let G be a connected graph with m+ 1 edges.

Case 1: All of G ’s vertices have even degree. Let v be an arbitrary
vertex of G . Let w be any neighbor of v . Consider the graph
G ′ = G − vw . Now G ′ has exactly two vertices of odd degree and is
still connected. Thus, by induction, G ′ has an Eulerian trail W that
begins at w and ends at v . If we add the edge vw to the beginning of
W , the result is an Eulerian tour of G that begins/ends at v !
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Proof of Twin Theorems II

We continue the proof:
We are working on the Induction Step:

Case 2: Exactly two of G ’s vertices, a and b, have odd degree.
Subcase 2a: Suppose d(a) = 1. In this case, a has exactly one
neighbor x . It is possible that x = b or x 6= b. Let G ′ = G − a. Then
d(x) drops by 1, while all other vertices have the same degree as
before, G ′ has m edges and is connected.
If x = b, then all vertices in G ′ have even degree. Therefore, by
induction, G ′ has an Eulerian tour W that begins and ends at vertex b.
If we insert the edge ab at the beginning of W , we have constructed an
Eulerian trail that begins at a and ends at b.
If x 6= b, then G ′ has exactly two vertices x and b of odd degree.
Therefore, by induction, there is an Eulerian trail W that begins at x
and ends at b. If we prepend the edge ax to W , we have an Eulerian
trail in G that begins at a and ends at b.
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Proof of Twin Theorems III

We continue the proof:
We are working on the Induction Step:

Case 2: Exactly two of G ’s vertices, a and b, have odd degree.
Subcase 2b: Suppose d(a) > 1. Since d(a) is odd, we have d(a) ≥ 3.
In this case, at least one of the edges ax incident with a is not a cut
edge. Let G ′ = G − ax . We might have x = b or x 6= b.
If x = b, then all vertices of G ′ have even degree. We can form, by
induction, an Eulerian tour in G ′ that begins/ends at b. We, then,
prepend the edge ab to form an Eulerian trail in G that begins at a and
ends at b.
If x 6= b, then we have exactly two vertices of odd degree in G ′,
namely, x and b. By induction, we form, in G ′, an Eulerian trail that
starts at x and ends at b. We prepend the edge ax to yield the
requisite Euler trail in G .

In all cases in the Induction Step, we constructed the required Eulerian
trail/tour in G .
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Fleury’s Algorithm

Fleury’s Algorithm

Let G be a graph all of whose vertices have even degrees or exactly two of
whose vertices have odd degrees.

STEP 1: Choose any vertex v of G in the all-even case, or one of the
two vertices with an odd degree in the other case.
Set CurrentVertex = v and CurrentTrail = ∅.

Repeat

STEP 2: Select any edge e = xy incident with the current vertex x but
choosing a cut edge only if there is no alternative.
STEP 3: Add e to CurrentTrail and set CurrentVertex = y .
STEP 4: Delete e from the graph. together with any isolated vertices.

Until all edges have been deleted from G

Return CurrentTrail.
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Running Fleury’s Algorithm

Consider the graph

In obtaining the trail ABCDBEFGEHGKIJKLIDA some of the
intermediate steps are shown below:

George Voutsadakis (LSSU) Discrete Mathematics March 2014 68 / 103



Graphs Coloring

Subsection 6

Coloring
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Graph Coloring

Let G be a graph. To each vertex of G , we wish to assign a color.
The restriction is that adjacent vertices must receive different colors.
The objective is to use as few colors as possible.

Example: Coloring a map can be converted to a graph-coloring
problem by representing each country as a vertex of a graph.

Two vertices in this graph are adjacent exactly
when the countries they represent share a common
border. Thus coloring the countries on the map
corresponds exactly to coloring the vertices of the
graph.

Definition (Graph Coloring)

Let G be a graph and k a positive integer. A k-coloring of G is a
function f : V (G ) → {1, 2, . . . , k}. We call this coloring proper provided
∀xy ∈ E (G ), f (x) 6= f (y). If a graph has a proper k-coloring, we call it
k-colorable.
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Graphs Coloring

Chromatic Number

The central idea in the definition is the function f .
To each vertex v ∈ V (G), the function f associates a value f (v). The
value f (v) is the color of v . The palette of colors we use is the set
{1, 2, . . . , k}.
The condition ∀xy ∈ E (G), f (x) 6= f (y) means that, if vertices x and y

are adjacent in G , then f (x) 6= f (y), i.e., they receive different colors.

The definition does not require that all the colors be used, i.e., it does
not require f to be onto.
The number k refers to the size of the palette of colors available - it
is not a demand that all k colors be used.

If, say, a graph is five-colorable, then it is also six-colorable.

The goal in graph coloring is to use as few colors as possible.

Definition (Chromatic Number)

Let G be a graph. The smallest positive integer k for which G is
k-colorable is called the chromatic number of G and is denoted χ(G ).
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Coloring Complete Graphs and Subgraphs

Example: Consider the complete graph Kn. We can properly color Kn

with n colors by giving every vertex a different color. Can we do
better? No! Since every vertex is adjacent to every other vertex in
Kn, no two vertices may receive the same color, and so n colors are
required. Therefore, χ(Kn) = n.

For any graph G with n vertices, we have χ(G ) ≤ n because we can
always give each vertex a separate color.

Proposition

Let G be a subgraph of H. Then χ(G ) ≤ χ(H).

Given a proper coloring of H, we can simply copy those colors to the
vertices of G to achieve a proper coloring of G . So, if we used only
χ(H) colors to color the vertices of H, we have used at most χ(H)
colors in a proper coloring of G .
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Coloring and Maximum Degree

Proposition

Let G be a graph with maximum degree ∆. Then χ(G ) ≤ ∆+ 1.

Suppose the vertices of G are {v1, v2, . . . , vn} and we have a palette
of ∆ + 1 colors. We color the vertices of G as follows:

Assign any color from the palette to vertex v1.
Next, to color vertex v2, take any color from the palette, as long as the
coloring is proper. In other words, if v1 ∼ v2 is an edge, we may not
assign the same color to v2 that we gave to v1.
We continue in exactly this fashion through all the vertices. When we
come to vertex vj , we assign to vertex vj any color from the palette,
just making certain that the color on vertex vj is not the same as any
of its already colored neighbors.

Are there sufficiently many colors so as not to get stuck? Every
vertex has at most ∆ neighbors and there are ∆ + 1 colors in the
palette, so we can never get stuck. Since this procedure produces a
proper (∆ + 1)-coloring of the graph, χ(G ) ≤ ∆+ 1.
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Coloring Cycles on n Vertices

What is the chromatic number of the cycle Cn?
If n is even, then we can alternate colors (black, white, black, white,
etc.) around the cycle. When n is even, this yields a valid coloring.
However, if n is odd, then vertex 1 and vertex n would both be black if
we alternated colors around the cycle.

Thus, for n odd, Cn is not 2-colorable.
It is, however, 3-colorable. We can alternately
color vertices 1 through n−1 with black and white
and then color vertex n with, say, blue.
This gives a proper three-coloring of Cn.

Thus
χ(Cn) =

{

2, if n is even
3, if n is odd

Note that the chromatic number of C9 is 3, but C9 does not contain
K3 as a subgraph.
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Bipartite Graphs

Proposition

A graph G is one-colorable if and only if it is edgeless.

Definition (Bipartite Graphs)

A graph G is called bipartite provided it is 2-colorable.

There is another useful way to describe bipartite graphs.
Let G = (V ,E ) be a bipartite graph and select a proper two-coloring.
Let X be the set of all vertices that receive one of the two colors, and
Y the set of all vertices that receive the other. Notice that {X ,Y }
forms a partition of the vertex set V . Furthermore, if e is any edge of
G, then e has one of its endpoints in X and its other endpoint in Y .

The partition of V into the sets X and Y such that every edge of G
has one end in X and one end in Y is called a bipartition of the
bipartite graph.

We know that even cycles are bipartite, but odd cycles are not.
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Coloring Trees

Proposition

Trees are bipartite.

The proof is by induction on the number of vertices in the tree.

Basis Case: Clearly a tree with only one vertex is bipartite. Indeed,
χ(K1) = 1 ≤ 2.
Induction Hypothesis: Every tree with n vertices is bipartite.
Induction Step: Let T be a tree with n + 1 vertices. Let v be a leaf of
T and let T ′ = T − v . Since T is a tree with n vertices, by induction
T ′ is bipartite. Properly color T ′ using the two colors black and white.
Now consider v ’s neighbor w . Whatever color w has, we can give v

the other color. Since v has only one neighbor, this gives a proper
two-coloring of T .

George Voutsadakis (LSSU) Discrete Mathematics March 2014 76 / 103



Graphs Coloring

Complete Bipartite Graphs

Definition (Complete Bipartite Graphs)

Let n,m be positive integers. The complete bipartite graph Kn,m is a
graph whose vertices can be partitioned V = X ∪ Y such that:

|X | = n, |Y | = m,

for all x ∈ X and for all y ∈ Y , xy is an edge, and

no edge has both its endpoints in X or both its endpoints in Y .

The graph in the figure is K4,3:
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Distance

Definition (Distance)

Let G be a graph and let x , y be vertices of G . The distance from x to y

in G is the length of a shortest (x , y)-path. In cases where there is no
such path, we say that the distance is undefined or ∞. The distance from
x to y is denoted d(x , y).

Example: Consider the following graph:

There are several (x , y)-paths. The shortest among them have length
2. Thus, d(x , y) = 2.
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Characterization of Bipartite Graphs

Theorem (Characterization of Bipartite Graphs)

A graph is bipartite if and only if it does not contain an odd cycle.

(⇒) Let G be a bipartite graph. Suppose that G contains an odd
cycle C as a subgraph. Then 3 = χ(C ) ≤ χ(G ) ≤ 2, a contradiction.
Therefore G does not contain an odd cycle.

(⇐) We show that if G does not contain an odd cycle, then G is
bipartite. We begin by proving a special case: if G is connected and
does not contain an odd cycle, then G is bipartite.
Suppose G is connected and does not contain an odd cycle. Let u be
any vertex in V (G ). Define two subsets of V (G ) as follows:

X = {x ∈ V (G) : d(u, x) is odd};
Y = {y ∈ V (G) : d(u, y) is even}.

Clearly, u ∈ Y because d(u, u) = 0. Also, V (G ) = X ∪ Y and
X ∩ Y = ∅. We color the vertices in X black and the vertices in Y

white.
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An Auxiliary Claim

Claim: This gives a proper two-coloring of G .
We must show that there are no two vertices in X that are adjacent
and no two vertices in Y that are adjacent. Suppose x1, x2 ∈ X with
x1 ∼ x2, and let P1 be a shortest path from u to x1. Because x1 ∈ X ,
we know that d(u, x1) is odd, so the length of P1 is odd. Likewise, if
P2 is a shortest (u, x2)-path its length is also odd. Let u′ denote the
last vertex that P1 and P2 have in common.

If we traverse P1 from u′ to x1, then traverse the edge x1x2, and
finally return to u′ along P−1

2 , we have a cycle.
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An Auxiliary Sub-Claim

Sub-Claim: The cycle u′ ∼
P1
· · · ∼ x1 ∼ x2 ∼

P−1
2
· · · ∼ u′ is an odd cycle.

The section of P1 from u to u′ is as short as possible. Otherwise, if
there were a shorter path Q from u to u′, we could concatenate Q

with the (u′, x1)-section of P1 and achieve a (u, x1)-walk that is
shorter than P1, from which we could construct a (u, x1)-path that is
shorter than P1, a contradiction. Likewise the (u, u′)-section of P2 is
as short as possible. Hence the (u, u′)-sections of P1 and P2 must
have the same length.
Now consider the (u, x1)- and (u, x2)-sections of P1 and P2. We know
that P1 and P2 both have odd length. From them we delete the same
length: their (u, u′)-sections. Thus the two sections that remain have
the same parity.
We now conclude that the cycle C is an odd cycle, since it consists of
the edge x1x2 and the two sections from u′ of P1 and P2 having the
same parity.
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Gradual Ascend Back to the Theorem

We showed that C is an odd cycle.

But by hypothesis, G has no odd cycles. Therefore, there is no edge
in G both of whose endpoints are in X . Similarly, there is no edge
with both ends in Y . Therefore, the claim that we do have a proper
two-coloring of G holds.

Thus, G is bipartite. This establishes the (⇐) part of the theorem,
under the extra hypothesis that G is connected.

We finally need to consider the case when G is disconnected.
Suppose G is a disconnected graph that contains no odd cycles. Let
H1, H2, . . . , Hc be its connected components. Note that since G

does not contain an odd cycle, neither do any of its components.
Hence, by the argument above, they are bipartite. Let Xi ∪ Yi be a
bipartition of V (Hi ) (with 1 ≤ i ≤ c). Finally, let
X = X1 ∪ X2 ∪ · · · ∪ Xc and Y = Y1 ∪ Y2 ∪ · · · ∪ Yc .
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Final Coup de Grâce

Claim: X ∪ Y is a bipartition of V (G ).
X and Y are pairwise disjoint and their union is V (G ).

There can be no edge between two vertices in Xi because Xi ∪ Yi is a
bipartition.
There can be no edge between vertices of Xi and Xj (with i 6= j)
because these vertices are in separate components of G .

Therefore no edge has both ends in X .
Similarly, no edge has both ends in Y .
Therefore X ∪ Y is a bipartition of V (G ), and so G is bipartite.
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Deciding 2- and 3-Colorability

The preceding theorem gives us a method for determining whether or
not a graph is bipartite:

Backtraching Algorithm

1 Assign White to an arbitrarily chosen initial vertex (putting into set X ).

2 Color all its neighbors with Black (putting them into set Y ).

3 Color all neighbor’s neighbors with White (putting into set X ).

4 In this way, assign color to all vertices until either X ∪ Y = V (G) or a
neighbor is found colored with same color as current vertex.

In the first case G is bipartite with bipartition X ∪ Y .
In the latter, the graph is not bipartite.

Determining whether or not a graph is three-colorable is NP-complete:
Intuitively, this means that it is difficult to color a graph properly with
three colors or to show that no such coloring exists.
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Subsection 7

Planar Graphs

George Voutsadakis (LSSU) Discrete Mathematics March 2014 85 / 103



Graphs Planar Graphs

Curves

In this section, we study not only graphs, but their drawings as well.

Intuitively, a curve is a “line” that may have corners and straight
sections. We stipulate that a curve must be all in one piece.

A simple curve is a curve that joins two distinct points in the plane
and does not cross itself.

Example: The left curve in the figure is simple; the other two are not.

If a curve returns to its starting point, we call the curve closed.

If the first/last point of the curve is the only point on the curve that
is repeated, then we call the curve a simple closed curve.

Example: The middle curve in the diagram is a simple closed curve.
The third curve is neither simple nor closed.
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Jordan Curve Theorem and Embeddings

Theorem (Jordan Curve)

A simple closed curve in the plane divides the plane into two regions: the
inside of the curve and the outside of the curve.

An embedding of a graph is a collection of points and curves in a
plane that satisfies the following conditions:

Each vertex is assigned a point in the plane; distinct vertices receive
distinct points.
Each edge is assigned a curve in the plane. If the edge is e = xy , then
the endpoints of the curve for e are exactly the points assigned to x

and y . Furthermore, no other vertex point is on this curve.

If all the curves are simple (do not cross themselves) and if the curves
corresponding to two edges do not intersect (except at an endpoint, if
they both are incident with the same vertex), then we call the
embedding crossing-free.
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Planar Graphs

Example: The figure shows two embeddings of the graph K4.

The drawing on the right represents a crossing-free embedding on K4.

Not all graphs have crossing-free embeddings in the plane.

Definition (Planar Graph)

A planar graph is a graph that has a crossing-free embedding in the plane.

Example: The graph K4 is planar. The graph K5 is not planar. The
way to show this is to study properties of planar graphs and use that
knowledge to prove that K5 is not planar.

We start this study with a classic result of Euler.
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Euler’s Formula

Example: Let G be a planar graph and consider a crossing-free
embedding of G :

The drawing has five faces, four bounded and one unbounded. The
graph has n = 9 vertices, m = 12 edges, and f = 5 faces.

Theorem (Euler’s Formula)

Let G be a connected planar graph with n vertices and m edges. Choose a
crossing-free embedding for G , and let f be the number of faces in the
embedding. Then n−m + f = 2.

The proof is by induction on the number of edges in the connected
planar graph G .
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Euler’s Formula: The Proof

Suppose G has n vertices. The basis case is when the number of
edges is n − 1, since the graph is connected.

Basis Case: Since G is connected and has m = n − 1 edges, we know
that G is a tree. In a drawing of a tree, there is only one face because
there are no cycles to enclose additional faces. Thus f = 1. We
therefore have n −m+ f = n− (n − 1) + 1 = 2, as required.
Induction Hypothesis: Suppose all connected planar graphs with n

vertices and m edges satisfy Euler’s formula.
Induction Step: Let G be a planar graph with n vertices and m + 1
edges. Choose a crossing-free embedding of G and let f be the number
of faces in this embedding. Let e be an edge of G that is not a cut
edge (exists since G is not a tree). Therefore G − e is connected. If we
erase e from the drawing of G , we have a crossing-free embedding of
G − e, and so G − e is planar. Notice that G − e has n vertices and
(m + 1)− 1 = m edges. The drawing, we claim, has f − 1 faces. The
edge we deleted causes the two faces on either side of it to merge into
a single face, so G − e’s drawing has one less face than G ’s. Now, by
induction, we have n−m + (f − 1) = 2, so n − (m + 1) + f = 2.
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Consequences of Euler’s Formula

Let G be a connected planar graph with n vertices and m edges. We
can solve the equation n−m+ f = 2 for f and we get f = 2−n+m.

The number of vertices and edges are quantities that depend only on
the graph G , not on how it is drawn in the plane.
On the other hand, the quantity f is the number of faces in a particular
crossing-free drawing of G .

The implication of Euler’s formula is that regardless of how we draw
the graph, the number of faces is always the same.

Example: For example, consider the two drawings:

In both cases, the graph has f =
2 − n + m = 2 − 9 + 12 = 5 faces.
The number inside each face indi-
cates the number of edges that are
on the boundary of that face.

It is called the degree of the face. Note the face with degree equal to
7; Why does it have degree equal to 7?
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Sum of the Degrees of the Faces

Proposition

Let G be a planar graph. The sum of the degrees of the faces in a
crossing-free embedding of G in the plane equals 2|E (G )|.

Since every edge has two sides, it contributes a total value of 2 to the
degrees of the faces it touches.

If an edge only touches one face, then it counts twice toward that
face’s degree.
If it touches two faces, it counts once toward each of the two faces’
degrees.

Therefore, if we add the degrees of all the faces in the embedding, we
get twice the number of edges in the graph.

If the graph is K1, then the only face has degree equal to 0.

If the graph has just one edge, then the only face has degree 2.

As soon as a planar graph has two (or more) edges, then all faces
have degree 3 or greater.
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A Corollary of Euler’s Formula

Corollary

Let G be a planar graph with at least two edges. Then
|E (G )| ≤ 3|V (G )| − 6. Furthermore, if G does not contain K3 as a
subgraph, then |E (G )| ≤ 2|V (G )| − 4.

Without loss of generality, G is connected. So, let G be a connected
planar graph with at least two edges. Pick a crossing-free embedding
of G , with f = 2− |V (G )|+ |E (G )| faces. We calculate the sum of
the degrees of the faces in this embedding.

On the one hand the sum of the face degrees is 2|E (G)|.
On the other hand, every face has degree at least 3, so the sum of the
face degrees is at least 3f .

Therefore we have 2|E (G )| ≥ 3f , which yields f ≤ 2
3 |E (G )|.

Substituting into Euler’s formula, we get 2− |V (G )|+ |E (G )| = f ≤
2
3 |E (G )|, which rearranges to 2− |V (G )|+ 1

3 |E (G )| ≤ 0, which yields
|E (G )| ≤ 3|V (G )| − 6. The proof of the second inequality is similar.
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Another Consequence of Euler’s Formula

Corollary

Let G be a planar graph with minimum degree δ. Then δ ≤ 5.

Let G be a planar graph. If G has fewer than two edges, clearly δ ≤ 5.
So we may assume that G has at least two edges. Then, by the
previous corollary, we have |E (G )| ≤ 3|V (G )| − 6. The minimum
degree δ cannot be greater than the average degree d̄ , i.e., δ ≤ d̄ .
We now calculate

δ ≤ d̄ =

∑

v∈V d(v)

|V (G )|
=

2|E (G )|

|V (G )|

≤
2(3|V (G )| − 6)

|V (G )|
= 6−

12

|V (G )|
< 6.

But since δ is an integer, we have δ ≤ 5.
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Non-Planarity of K5

A graph that is not planar is called nonplanar.

Proposition (Non-Planarity of K5)

The graph K5 is nonplanar.

Suppose that K5 were planar. By a previous corollary, we would have
10 = |E (K5)| ≤ 3|V (K5)| − 6 = 3 · 5− 6 = 9, a contradiction.

Example: Consider the graph:

It has 7 vertices and 12 edges. It satisfies |E (G )| ≤
3|V (G )|−6, since 12 ≤ 15 = 3·7−6. But it is non-
planar: If it were planar, it would have a crossing-
free embedding.

Given such an embedding, by ignoring the two vertices of degree 2,
we would obtain a crossing-free planar embedding of K5. However,
since K5 has no such embedding, neither does this graph.

The graph in the figure is an example of a subdivision of K5.
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Subdivisions and Non-Planarity of K3,3

A subdivision of G is formed from G by replacing edges with paths.

Clearly, if a graph is planar, so are its subdivisions.

The converse of this statement is also true: If a graph is nonplanar,
then all of its subdivisions are also nonplanar.

Therefore, any subdivision of K5 is nonplanar. Moreover, any graph
that contains a subdivision of K5 as a subgraph is also nonplanar.

Proposition (Non-Planarity of K3,3)

The graph K3,3 is nonplanar.

Suppose that K3,3 were planar. Since it does not contain K3 as a
subgraph, we would have 9 = |E (K3,3)| ≤ 2|V (K3,3)| − 4 =
2 · 6− 4 = 8, which is a contradiction.

Not only is K3,3 nonplanar, but so is any subdivision graph we can
form from K3,3. Furthermore, any graph that contains a subdivision
of K3,3 as a subgraph must be nonplanar as well.
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Kuratowski’s Theorem

Theorem (Kuratowski)

A graph is planar if and only if it does not contain a subdivision of K5 or
K3,3 as a subgraph.

We have shown that, if G contains a subdivision of K5 or K3,3 as a
subgraph, then G cannot be planar.

The more difficult part is to prove that, if a graph does not contain a
subdivision of K5 or K3,3 as a subgraph, then the graph is planar.
This proof is a relatively advanced one in graph theory and is not
presented here.

Kuratowski ’s Theorem is a marvelous characterization of planarity

To see that a graph is planar, we can present a crossing-free drawing.
To see that a graph is nonplanar, we find a subgraph which is a
subdivision of K5 or K3,3.
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The Four-Color Theorem

Graphs that arise from maps must be planar.
We begin with a map.
We locate one vertex for each country at the capital city.
From that capital city, we draw curves out to its various borders. These
curves fan out in a starlike pattern and do not cross each other. We
connect capitals of neighbors through midpoints of borders. Thus, we
construct a planar embedding of the graph.

Thus, the map-coloring problem is equivalent to determining whether
every planar graph is four-colorable.

Four-Color Theorem (Appel and Haken)

If G is a planar graph, then χ(G ) ≤ 4.

This theorem is best possible, since K4 is planar, and χ(K4) = 4.

The proof of the Four Color Theorem is long and complicated.

We show, next, that every planar graph is six-colorable.

Afterwards, we show that every planar graph is five-colorable.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 98 / 103



Graphs Planar Graphs

Six-Color Theorem

Theorem (Six-Color Theorem)

If G is a planar graph, then χ(G ) ≤ 6.

The proof is by induction on the number of vertices in the graph.

Basis Case: The theorem is obviously true for all graphs on six or fewer
vertices, because we can give each vertex a separate color.
Induction Hypothesis: Suppose the theorem is true for all graphs on n
vertices (all planar graphs with n vertices are six-colorable).
Induction Step: Let G be a planar graph with n + 1 vertices. By a
preceding corollary, G contains a vertex v , with d(v) ≤ 5. Let
G ′ = G − v . Notice that G ′ is planar and has n vertices. By induction,
G ′ is six-colorable. Properly color the vertices of G ′ using just six
colors. We can extend this coloring to G by giving v a color. Notice
that v has at most five neighbors, and so there is some other color that
we can assign to v that is different from the colors of its neighbors.
This yields a proper six-coloring of G.
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Five-Color Theorem

Theorem (Five-Color Theorem)

If G is a planar graph, then χ(G ) ≤ 5.

The proof is by induction on the number of vertices in the graph.
Basis Case: The theorem is obviously true for all graphs on five or
fewer vertices, because we can give each vertex a separate color.
Induction Hypothesis: Suppose the theorem is true for all graphs on n
vertices (all planar graphs with n vertices are five-colorable).
Induction Step: Let G be a planar graph with n + 1 vertices. By a
previous corollary, G contains a vertex v , with d(v) ≤ 5. Let
G ′ = G − v . G ′ is planar and has n vertices. By induction, G ′ is
five-colorable. Properly color the vertices of G ′ using just five colors.
To extend this coloring to G , consider the neighbors of v . If among the
neighbors of v there are only four different colors, then we can assign
to v the left-over color. This yields a proper five-coloring of G .
The problem has been reduced to the case where d(v) = 5 and all five
of its neighbors are different colors. To extend the coloring to vertex v ,
we need to recolor some vertices.
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Recoloring in the Induction Step I

Since G is planar, choose a crossing-free embedding of G . Every
vertex of G , except v , has been colored using one of {1, 2, 3, 4, 5}.
Let u1, u2, . . . , u5 be the five neighbors of v in clockwise order, and,
without loss of generality, let us assume that ui has color i (for
i = 1, 2, . . . , 5).

Basic Idea: Change the color of one of v ’s neighbors.

Let H1,3 be the subgraph of G induced by all vertices
with color 1 or 3. If in one component of H1,3, we
exchange colors 1 and 3, then we still have a proper
coloring of G ′.

We therefore exchange colors 1 and 3 in the component of H1,3 that
contains vertex u1. This color exchange results in a proper coloring of
G ′ in which vertex u1 has color 3. We are all set to color vertex v

with color 1. What if u3 is in the same component of H1,3 as vertex
u1? Then, v still has all five colors present on its neighbors.
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Recoloring in the Induction Step II

It remains to consider the case where u1 and u3 are in the same
component of H1,3 (i.e., there is a path P in H1,3 from u1 to u3).

We argue as before, but now we attempt to recolor
vertex u2 with color 4. Let H2,4 denote the sub-
graph of G induced on the vertices of color 2 or
color 4.

If u2 and u4 are in separate components of H2,4, then we can recolor
u2’s component, exchanging colors 2 and 4. The resulting modified
coloring is a proper five-coloring of G ′ in which no neighbor of v has
color 2. In this case, we can simply give vertex v color 2 and have a
proper five-coloring of G .
The problem, as before, is that perhaps u2 and u4 are in the same
component of H2,4.

Claim: This cannot happen.
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Proving the Final Claim

Claim: Vertices u2 and u4 cannot be in the same component of H2,4.

Suppose there is a path Q, from u2 to u4. The
vertices along Q are colored with colors 2 and 4,
and the vertices on P are colored with colors 1 and
3. Thus P and Q have no vertices in common.

Furthermore, path P , together with vertex v , forms a cycle. This
cycle becomes a simple closed curve in the plane. Notice that vertices
u2 and u4 are on different sides of this curve! Therefore the path Q

from u2 to u4 must pass from the inside of this simple closed curve to
the outside, and where it does, there is an edge crossing. However, by
construction, this embedding has no edge crossings! Therefore
vertices u2 and u4 must be in separate components of H2,4.
Thus, this recoloring technique of u2 with color 4 may be used. So,
we color vertex v with color 2, giving a proper five-coloring of G .
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