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Proofs, Sets and Structures A Proof Primer

Statements and Negation

A proposition or sentence is a statement that is either true or false.
Example: The following are propositions:

The number 3 is odd.
It is now 3:00pm ET.

“Painting x is beautiful” is not a proposition.

Given a proposition S , the negation of S , denoted ¬S and read “not
S”, is a proposition whose truth value is the opposite of that of S .

Thus, the truth value of ¬S is given in terms of the truth value of S
by the following truth table:

S ¬S
T F

F T

The negation of “x is odd” is “not (x is odd)”, which we write more
naturally in English as “x is not odd”.
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Proofs, Sets and Structures A Proof Primer

Conjunction and Disjunction

Let A and B be propositions.

The conjunction of A and B , denoted A ∧ B and read “A and B”, is
a proposition which is true when A and B are both true.

Thus, the truth value of A ∧ B in terms of those of A and B is given
by the truth table on the left:

A B A ∧ B

T T T

T F F

F T F

F F F

A B A ∨ B

T T T

T F T

F T T

F F F

The disjunction of A and B , denoted A ∨ B and read “A or B”, is a
proposition which is true when at least one of A or B is true.

Thus, the truth value of A ∨ B in terms of those of A and B is given
by the truth table on the right.
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Proofs, Sets and Structures A Proof Primer

De Morgan’s Laws

Two propositions A and B are equivalent, written A ≡ B , if their
truth tables are identical.

Examples:

A B A ∧ B A ∨ B ¬A ¬B ¬(A ∧ B) ¬A ∨ ¬B ¬(A ∨ B) ¬A ∧ ¬B
T T T T F F F F F F

T F F T F T T T F F

F T F T T F T T F F

F F F F T T T T T T

We showed:
¬(A ∧ B) ≡ ¬A ∨ ¬B
The negation of a conjunction is a disjunction of negations.
¬(A ∨ B) ≡ ¬A ∧ ¬B
The negation of a disjunction is a conjunction of negations.

Example: “It is not the case that x is odd or y is odd” is equivalent
to “x is not odd and y is not odd”.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 6 / 77



Proofs, Sets and Structures A Proof Primer

Conditional

Let A and B be propositions.

The conditional, written A → B and read “If A then B” or “A
implies B”, is a proposition that is true unless A is true and B is false.

Thus, the truth value of A → B in terms of those of A and B is given
by the truth table

A B A → B

T T T

T F F

F T T

F F T
In A → B , the proposition

A is called the hypothesis or the antecedent of the conditional.
B is called the conclusion or consequent of the conditional.

“If A then B” can also be read as:
“A is sufficient for B”;
“B is necessary for A”.
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Proofs, Sets and Structures A Proof Primer

More on the Conditional

Example: Evaluate the following conditionals:

(a) “If Peru is in North America then 1 = 2” True
(b) “If 7 = 7 then Chile is in Europe” False
(c) “If 1 = 2 then 39 = 12” True
(d) “If 1 = 2 then 2 + 2 = 4” True

We say a conditional is vacuously true if its hypothesis is false.

The conditionals (a), (c) and (d) above are vacuously true.

We say that a conditional is trivially true if its conclusion is true.

The conditional (d) above is trivially true.
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Proofs, Sets and Structures A Proof Primer

Converse

Let A and B be propositions.

The conditional B → A is called the converse of the conditional
A → B .

The following truth table shows that (A → B) 6≡ (B → A):

A B A → B B → A

T T T T

T F F T

F T T F

F F T T

Consider the following conditionals, which are converses of each
other:

“If x and y are odd then x + y is even”
“If x + y is even then x and y are odd”

The first is true in general, but the second is not.
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Proofs, Sets and Structures A Proof Primer

Contrapositive

Let A and B be propositions.

The conditional ¬B → ¬A is called the contrapositive of the
conditional A → B .

The following truth table shows that (A → B) ≡ (¬B → ¬A):

A B A → B ¬B ¬A ¬B → ¬A
T T T F F T

T F F T F F

F T T F T T

F F T T T T

Example: Consider the two contrapositive statements:

“If x and y are odd then x + y is even”;
“If x + y is not even then not both x and y are odd”.

These are both true statements.
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Proofs, Sets and Structures A Proof Primer

Biconditional

Let A and B be propositions.

The biconditional, written A ↔ B and read “A if and only if B”
(abbreviated “A iff B”), is a proposition that is true when A and B

assume the same truth value.

Thus, the truth value of A ↔ B in terms of those of A and B is given
by the truth table

A B A ↔ B

T T T

T F F

F T F

F F T

Sometimes “A iff B” is read “A is necessary and sufficient for B”.

Example: Consider the statement “x is even iff x + 2 is even”.

This is a true statement.
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Proofs, Sets and Structures A Proof Primer

Integers and Divisibility

The integers are the numbers

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

For integers m and n, we say that m divides n, denoted m | n, if
m 6= 0 and n = m · k , for some integer k .

The proposition “m divides n” can also be expressed by saying that
“m is a divisor of n” or “n is divisible by m”.

Example: The number 9 has six divisors: ±1,±3 and ±9.

If m does not divide n, we write m ∤ n.

Example: We have the following:

3 | 12, 6 | 12, 5 ∤ 12.
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Proofs, Sets and Structures A Proof Primer

Properties of Divisibility and Proofs

The following two basic properties of divisibility hold:

(a) If d | m and m | n, then d | n.
(b) If d | m and d | n, then d | (am + bn), for all integers a and b.

Examples:

(a) 3 | 12 and 12 | 72. Therefore 3 | 72.
(b) 7 | 14 and 7 | 21. Therefore 7 | (2 · 14 + 3 · 21) = 91.

We may prove (a) and (b) relatively easily:

(a) Assume d | m and m | n. Then, there exist integers k and ℓ, such that
m = dk and n = mℓ. So, we have n = mℓ = (dk)ℓ = d(kℓ). This
shows that d | n.

(b) Assume that d | m and d | n. Then, there exist integers k and ℓ, such
that m = dk and n = dℓ. So we have

am + bn = a(dk) + b(dℓ) = d(ak + bℓ).

Therefore, we get d | (am + bn).
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Proofs, Sets and Structures A Proof Primer

Prime Numbers

Any positive integer n > 1 has at least two positive divisors: 1 and n.

A positive integer p is said to be prime if p > 1 and its only positive
divisors are 1 and p.

Example:

2 is prime.
9 is not prime.
The first eight prime numbers are:

2, 3, 5, 7, 11, 13, 17, 19.
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Proofs, Sets and Structures A Proof Primer

Decomposition into Product of Primes

Every integer greater than 1 is a product of primes.

This is proven by induction.

Basis of the Induction: 2 is a prime.
Induction Hypothesis: Suppose that every integer k , with 1 < k < n

is a product of primes.
Induction Step: We must prove that n > 1 is a product of primes.

If n is prime, then n is a product of primes n = n.

If n is not prime, there exist 1 < k , ℓ < n, such that n = kℓ. By the

Induction Hypothesis, each of k , ℓ is a product of primes, say

k = p1 · · · pi and ℓ = q1 . . . qj .

But then

n = kℓ = p1 · · · piq1 · · · qj

is also a product of primes.
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Proofs, Sets and Structures A Proof Primer

Infinity of Primes

There are infinitely many prime numbers.

This is Euclid’s famous proof by contradiction:

Suppose there exist only finitely many primes, say p1, p2, . . . , pn.
Consider the number

k = p1p2 · · · pn + 1.

Since it is larger than all of p1, . . . , pn, it cannot be a prime.

By the Decomposition into Primes, it is a product of primes, say
k = pi1 · · · piℓ . Now we have

p1p2 · · · pn + 1 = pi1 · · · piℓ .

This gives 1 = pi1 · · · piℓ − p1p2 · · · pn. But the right hand side is
divisible by pi1 (since it is a prime and, therefore, among the
p1, . . . , pn). Thus, pi1 | 1, a contradiction.
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Proofs, Sets and Structures A Proof Primer

Proof by Example and by Counterexample

A Proof by Example can be used to show the claimed existence of a
certain object.

Example: “There exists a prime number between 80 and 88” is true.

The number 83 is a prime.

A Proof by Counterexample can be used to disprove (show the falsity)
of a given statement.

Example: “Every prime number is odd” is false.

2 is a prime number and it is even.
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Proofs, Sets and Structures A Proof Primer

Proof by Exhaustive Checking

Proof by Exhaustive Checking is checking of all possibilities, showing
that each satisfies the claimed conclusion.

Example: Show that the sum of any two of the numbers 1, 3 and 5 is
an even number.

All sums
1 + 1, 1 + 3, 1 + 5, 3 + 3, 3 + 5, 5 + 5,

are even numbers.

Exhaustive checking cannot be done if there are infinitely many things
to check.

Exhaustive checking is also impracticable even in the finite case, if the
number of things that need to be checked is large.
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Proofs, Sets and Structures A Proof Primer

Proof Using Variables

Using variables is a convenient way to overcome the difficulty of
having to check an infinite number of cases.

Example: Show that the sum of any two odd integers is even.

Let m and n be two odd integers.

Then, there exist integers k and ℓ, such that

m = 2k + 1 and n = 2ℓ+ 1.

Therefore, we get

m + n = (2k + 1) + (2ℓ+ 1) = 2k + 2ℓ+ 2 = 2(k + ℓ+ 1).

Thus, m + n is even.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 19 / 77



Proofs, Sets and Structures A Proof Primer

Direct Proofs

A Direct Proof of a statement of the form A → B (If A then B)
starts with A and inserts intermediate steps in a sequence of valid
logical implications that lead from A to B :

A → C1 → C2 → · · · → B .

Sometimes, it is useful to work at both sides and close the chain in
the middle:

A → C1 → C2 → · · · → Cn−2 → Cn−1 → B .

Example: Prove that if x is odd and y is even, then x2 + 3y is odd.

Suppose that x is odd and y is even.
Then there exist integers k and ℓ, such that x = 2k + 1 and y = 2ℓ.

Then, we have

x2 + 3y = (2k + 1)2 + 3(2ℓ) = 4k2 + 4k + 1 + 6ℓ
= 2(2k2 + 2k + 3ℓ) + 1.

This shows that x2 + 3y is odd.
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Proofs, Sets and Structures A Proof Primer

Indirect Proofs: Proof by Contraposition

We saw that A → B and ¬B → ¬A are equivalent propositions.

A Proof by Contraposition of A → B is a direct proof of ¬B → ¬A:

¬B → C1 → C2 → · · · → ¬A.

Example: Let x be an an integer.

Show that if x2 is even, then x is even.

We prove the contrapositive: “If x is odd, then x2 is odd.”

Suppose x is odd.

Then, there exists an integer k , such that x = 2k + 1.

Thus, x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

So x2 is odd.
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Proofs, Sets and Structures A Proof Primer

Indirect Proofs: Proof by Contradiction

A Proof by Contradiction of A assumes ¬A and shows that it leads to
a contradiction (an obviously false statement).

Example: Show that there are no integers a and b, such that
4a + 6b = 1.

We proceed by contradiction.

Assume that there exist integers a and b, such that

4a + 6b = 1.

Then, we get that 2a + 3b = 1
2 .

This is a contradiction, since 2a + 3b is an integer, but 1
2 is not an

integer.

So there cannot exist integers a and b, such that 4a + 6b = 1.
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Proofs, Sets and Structures A Proof Primer

Indirect Proofs: Proof by Contradiction (Cont’d)

A Proof by Contradiction of A → B assumes ¬(A → B) ≡ (A ∧ ¬B)
and shows that it leads to a contradiction (an obviously false
statement).

Example: Show that if n3 + 5 is odd, then n is even.

We prove the statement by contradiction.

Assume n3 + 5 is odd and n is odd.

Then, there exist integers k and ℓ such that n3 + 5 = 2k + 1 and
n = 2ℓ+ 1.

Thus, we get

5 = 2k + 1− n3 = 2k + 1− (2ℓ+ 1)3

= 2k + 1− (8ℓ3 + 12ℓ2 + 6ℓ+ 1)
= 2(k − 4ℓ3 − 6ℓ2 − 3ℓ).

This is a contradiction, since the right-hand side is an even integer.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 23 / 77



Proofs, Sets and Structures A Proof Primer

“If and only if” Proofs

To prove A ↔ B , we must show:

A → B and
B → A.

Example: Show that x is even if and only if x2 is even.

We first show “if x is even, then x2 is even using a direct proof.
Suppose x is even.
Then, there exists integer k , such that x = 2k .
Thus, we get x2 = (2k)2 = 4k2 = 2(2k2).
Therefore x2 is even.
Next we show “If x2 is even, then x is even” by contraposition.
That is, we show “If x is odd, then x2 is odd”.
Suppose that x is odd.
Then, there exists an integer k , such that x = 2k + 1.
Thus, we get x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.
Therefore x2 is odd.
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Proofs, Sets and Structures Sets

Subsection 2

Sets
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Proofs, Sets and Structures Sets

Sets and Membership

A set is a collection of things, called its elements or members.

A set is also called a collection or a family.

A set contains its elements.

An element belongs to, is a member of or is in the set.

If an element x is in a set S , we write

x ∈ S .

If x is not an element of a set S , we write x 6∈ S .

The notation x , y ∈ S , means x ∈ S and y ∈ S .
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Proofs, Sets and Structures Sets

Notation for Sets

One way to define a set is by explicitly listing its elements (note how
braces and commas are used, and learn the notation!).

Example: The set S whose elements are the letters x , y and z is
denoted by

S = {x , y , z}.
Example: The set S = {x , {x , y}} has two elements:

The letter x ;
The set {x , y}, with elements the letters x , y .

Sometimes ellipsis, . . ., are used to informally denote a sequence of
elements.

Example: The set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} may be denoted
by {1, 2, 3, . . . , 12} or by {1, 2, 3, . . . , 11, 12}.
Use this notation with caution, only when the meaning of the ellipses
is clear!
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Proofs, Sets and Structures Sets

Empty Set and Singleton Sets

The set with no elements in it is called the empty set or the null set.

The empty set is denoted most commonly by ∅ or, more rarely, by {}.
A set with one element is called a singleton.

Example: The following sets are singletons:

{a}, {z}, {{x , y}}, {∅}.

{a} contains only the letter a;
{z} contains only the letter z ;
{{x , y}} contains only one element, the set {x , y};
{∅} contain only one element, the empty set.
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Proofs, Sets and Structures Sets

Equality of Sets

Two sets A and B are equal, written A = B , if:

Each element of A is an element of B; and
Each element of B is an element of A.

We can use equality to demonstrate two important properties of sets:
There is no particular order or arrangement of the elements.
There are no redundant elements (repetitions do not count).

Example: The set whose elements are g , h and u can be represented
in many ways, e.g.,

{u, g , h} = {h, u, g} = {h, u, g , h} = {u, g , h, u, g}.

So there are many ways to represent the same set.

If the sets A and B are not equal, we write A 6= B .

Example: {a, b, c} 6= {a, b} because c ∈ {a, b, c}, but c 6∈ {a, b}.
Example: {a} 6= ∅ because the empty set does not contain a.
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Proofs, Sets and Structures Sets

Finite versus Infinite Sets

Suppose we start counting the elements of a set S .

If S = ∅, then we don’t need to start, because there are no elements
to count.

If S 6= ∅, and the counting stops at a finite positive natural number
when all elements of S have been counted, then we say that S is a
finite set.

If the counting never stops, then S is an infinite set.
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Proofs, Sets and Structures Sets

Familiar Sets of Numbers and Notation

Set of natural numbers:

N = {0, 1, 2, 3, . . .};

Set of integers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .};

Set of rational numbers:

Q = {m
n
: m, n ∈ Z, n 6= 0}

= {x ∈ R : x has a terminating
or repeating decimal representation};

Set of real numbers: R.
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Proofs, Sets and Structures Sets

Sets Defined by Properties

Ay set can be defined by stating a property that the elements of the
set must satisfy.

If P is some property, then there is a set S (with elements in a
universe U) whose elements have property P , and we write

S = {x ∈ U : x has property P},
read as “S is the set of all x ∈ U, such that x has property P”.

Example: Odd = {. . . ,−5,−3,−1, 1, 3, 5, . . .} of odd integers can be
defined by

Odd = {x ∈ Z : x = 2k + 1 for some k ∈ Z}.

Example: Similarly, the set {1, 2, . . . , 12} can be defined by writing

{x ∈ N : 1 ≤ x ≤ 12}.
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Proofs, Sets and Structures Sets

Subsets

A set A is called a subset of a set B , written A ⊆ B , if every element
of A is also an element of B .

Example: {a, b} ⊆ {a, b, c}, {0, 1, 2} ⊆ N, and N ⊆ Z.

Every set A is a subset of itself: A ⊆ A.

The empty set is a subset of any set A: ∅ ⊆ A.

A set A is called a proper subset of B , written A ⊂ B , if:

A ⊆ B; and
There is some element in B that does not belong to A.

Example: {a, b} ⊂ {a, b, c}.
Example: N ⊂ Z ⊂ Q ⊂ R.

If A is not a subset of B , we sometimes write A * B .

Example: {a, b} * {a, c} and {−1,−2} * N.
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Proofs, Sets and Structures Sets

Membership versus Subsets

Consider the set A = {a, b, c}.
We have

{a} ⊆ A;
a ∈ A;
{a} 6∈ A;
a * A.

Consider A = {a, {b}}.
We have:

a ∈ A;
{b} ∈ A;
{a} ⊆ A;
{{b}} ⊆ A;
b 6∈ A;
{b} * A.
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Proofs, Sets and Structures Sets

Power Sets

The power set of a set S , denoted by P(S) or power(S), is the
collection of all subsets of S .

Example:

P(∅) = {∅};
P({a}) = {∅, {a}};
P({a, b}) = {∅, {a}, {b}, {a, b}};
P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
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Proofs, Sets and Structures Sets

Venn Diagrams

A Venn diagram consists of one or more closed curves in which the
interior of each curve represents a set.

Example: The Venn diagram below reflects the facts that:

A is a proper subset of B;
x is an element of B that does not occur in A.
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Proofs, Sets and Structures Sets

Proof Techniques

Recall that two sets A and B are equal if:

Every element of A belongs to B;
Every element of B belongs to A.

Rephrasing the definition, we get that

A = B iff (A ⊆ B and B ⊆ A).

In dealing with sets we use the following proof techniques:
To prove that A ⊆ B:

Let x ∈ A. Show that x ∈ B.

To prove that A * B:

Find an element x ∈ A such that x 6∈ B.

To show that A = B:

First show that A ⊆ B;

Then show that B ⊆ A.
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Proofs, Sets and Structures Sets

Example

Let
A = {x ∈ N : x is prime and 42 ≤ x ≤ 51};
B = {x : x = 4k + 3 and k ∈ N}.

Show that A ⊆ B .

Let x ∈ A.

Then x = 43 or x = 47.

If x = 43, then x = 4 · 10 + 3. So x ∈ B.
If x = 47, then x = 4 · 11 + 3. So x ∈ B.

So in either case, x ∈ B .

We conclude that A ⊆ B .
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Proofs, Sets and Structures Sets

Example

Suppose that

A = {3k + 1 : k ∈ N} and B = {4k + 1 : k ∈ N}.

Show that A * B and B * A.

By listing a few elements from each set we can write A and B as
follows:

A = {1, 4, 7, 10, 13, . . .};
B = {1, 5, 9, 13, 17, . . .}.

A * B: 4 ∈ A, but 4 6∈ B.
B * A: 5 ∈ B, but 5 6∈ A.
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Proofs, Sets and Structures Sets

Example

Consider the sets

A = {x ∈ N : x is prime and 12 ≤ x ≤ 18};
B = {x ∈ N : x = 4k + 1 and k ∈ {3, 4}}.

Show that A = B .

We must show that A ⊆ B and B ⊆ A.

A ⊆ B: Let x ∈ A. Then x = 13 or x = 17. We have 13 = 4 · 3 + 1 and
17 = 4 · 4 + 1. It follows that x ∈ B. We conclude that A ⊆ B.

B ⊆ A: Let x ∈ B. Then x = 4 · 3 + 1 = 13 or x = 4 · 4 + 1 = 17. Thus, in
either case, x is a prime number between 12 and 18. It follows that
x ∈ A. We conclude that B ⊆ A.
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Proofs, Sets and Structures Sets

Union of Sets

If A and B are sets, then the union of A and B , writen A ∪ B , is the
set of all elements that either are in A or in B or in both A and B .

Formally (recall the connective “or”, ∨)
A ∪ B = {x : x ∈ A ∨ x ∈ B}.

The union of two sets A and B is represented by the shaded regions
of the following Venn diagram:

Example: If A = {a, b, c} and B = {c , d}, then A ∪ B = {a, b, c , d}.
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Proofs, Sets and Structures Sets

Properties of Union

The union operation satisfies the following properties:

A ∪ ∅ = A (identity element)
A ∪ B = B ∪ A (commutativity)
A ∪ (B ∪ C ) = (A ∪ B) ∪ C (associativity)
A ∪ A = A (idempotency)
A ⊆ B iff A ∪ B = B (order)

We prove the last property:
Suppose, first, that A ⊆ B. We must show A ∪ B = B.

A ∪ B ⊆ B: Let x ∈ A ∪ B. Then x ∈ A or x ∈ B. If x ∈ A, since A ⊆ B, we get

x ∈ B. Thus, in either case, x ∈ B. We conclude A ∪ B ⊆ B.

B ⊆ A ∪ B: Suppose x ∈ B. Then x ∈ A or x ∈ B. Thus, x ∈ A ∪ B. We conclude

that B ⊆ A ∪ B.

Suppose, conversely, that A ∪ B = B. We must show that A ⊆ B.
Suppose x ∈ A. Then x ∈ A or x ∈ B. Thus, x ∈ A ∪ B. Since
A ∪ B = B, we get x ∈ B. We conclude A ⊆ B.
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Intersection of Sets

If A and B are sets, then the intersection of A and B , writen A ∩ B ,
is the set of all elements that are in both A and B .

Formally (recall the connective “and”, ∧)
A ∩ B = {x : x ∈ A ∧ x ∈ B}.

The intersection of two sets A and B is represented by the shaded
regions of the following Venn diagram:

Example: If A = {a, b, c} and B = {c , d}, then A ∩ B = {c}.
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Properties of Intersection

The intersection operation satisfies the following properties:

A ∩ ∅ = ∅ (absorption element)
A ∩ B = B ∩ A (commutativity)
A ∩ (B ∩ C ) = (A ∩ B) ∩ C (associativity)
A ∩ A = A (idempotency)
A ⊆ B iff A ∩ B = A (order)
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Distributive Laws

The Distributive Laws relate Union and Intersection:

(a) A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) (∩ distributes over ∪);
(b) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ) (∪ distributes over ∩).
We prove part (b).

⊆: Suppose x ∈ A ∪ (B ∩ C ). Then x ∈ A or x ∈ B ∩ C . Thus, x ∈ A or
(x ∈ B and x ∈ C ). So (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C ). We
get x ∈ A ∪ B and x ∈ A ∪ C . So x ∈ (A ∪ B) ∩ (A ∪ C ). This shows
that A ∪ (B ∩ C ) ⊆ (A ∪ B) ∩ (A ∪ C ).

⊇: Suppose x ∈ (A ∪ B) ∩ (A ∪ C ). Then x ∈ A ∪ B and x ∈ A ∪ C . This
implies that (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C ). So x ∈ A or
(x ∈ B and x ∈ C ). Therefore, x ∈ A ∪ (B ∩ C ). This proves that
(A ∪ B) ∩ (A ∪ C ) ⊆ A ∪ (B ∩ C ).
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Difference or Relative Complement

If A and B are sets, then the difference A minus B , or the relative
complement of B in A, denoted by A− B or A\B , is the set of
elements in A that are not in B .

In formal notation

A− B = {x : x ∈ A ∧ x 6∈ B}.
The Venn diagram depicting A− B is:

Example: If A = {a, b, c} and B = {c , d}, then A− B = {a, b}.
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Intersection and Difference

Let A and B be sets.

Show that A ∩ B = A− (A− B).

⊆: Suppose x ∈ A ∩ B . Then x ∈ A and x ∈ B . This implies that x ∈ A

and x 6∈ A− B . So x ∈ A− (A− B). We conclude that
A ∩ B ⊆ A− (A − B).

⊇: Suppose x ∈ A− (A−B). Then x ∈ A and x 6∈ A− B . So x ∈ A and
it is not the case that (x ∈ A and x 6∈ B). Therefore, x ∈ A and
(x 6∈ A or x ∈ B). So x ∈ A and x ∈ B . This shows that x ∈ A ∩ B .
We conclude that A− (A− B) ⊆ A ∩ B .
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Symmetric Difference

The symmetric difference of sets A and B , denoted A⊕ B , is the
union of A− B with B − A.

The symmetric difference is defined by using the “exclusive or” as
follows:

A⊕ B = {x : x ∈ A or x ∈ B but not both}.
The set A⊕ B is represented by the shaded regions of the following
Venn diagram:
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Symmetric Difference, Union and Intersection

Let A and B be sets.

Show that A⊕ B = (A ∪ B)− (A ∩ B).

⊆: Suppose x ∈ A⊕ B .

Then x ∈ A or x ∈ B , but x is not in both A and B .

Thus, x ∈ A ∪ B , but x 6∈ A ∩ B .

So x ∈ (A ∪ B)− (A ∩ B).

We conclude A⊕ B ⊆ (A ∪ B)− (A ∩ B).

⊇: Suppose x ∈ (A ∪ B)− (A ∩ B).

The x ∈ A ∪ B and x 6∈ A ∩ B .

So x ∈ A or x ∈ B , but x is not in both A and B .

We conclude x ∈ A⊕ B .

So (A ∪ B)− (A ∩ B) ⊆ A⊕ B .
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Universe and Complements

Suppose the discussion always refers to sets that are subsets of a
particular set U, called the universe of discourse.

The difference U − A is called the complement of A, denoted by A′.

The Venn diagram pictures the universe U as a rectangle
(encompassing “everything under discussion”), and the region
corresponding to A′ is shaded.
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Properties of Complement

The following are properties of complement:

(A′)′ = A;
∅′ = U and U ′ = ∅;
A ∩ A′ = ∅ and A ∪ A′ = U ;
A ⊆ B if and only if B ′ ⊆ A′;
(A ∪ B)′ = A′ ∩ B ′ and (A ∩ B)′ = A′ ∪ B ′ (De Morgan’s Laws).

We prove the first De Morgan Law

(A ∪ B)′ = A′ ∩ B ′.

⊆: Suppose x ∈ (A ∪ B)′. Then x 6∈ A ∪ B. So x 6∈ A and x 6∈ B. Thus,
x ∈ A′ and x ∈ B ′. So x ∈ A′ ∩ B ′. We conclude (A ∪ B)′ ⊆ A′ ∩ B ′.

⊇: Suppose x ∈ A′ ∩ B ′. Then x ∈ A′ and x ∈ B ′. So x 6∈ A and x 6∈ B.
Thus x 6∈ A ∪ B. Therefore x ∈ (A ∪ B)′. We conclude that
A′ ∩ B ′ ⊆ (A ∪ B)′.
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Subsection 3

Ordered Structures
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Tuples

A tuple is a collection of things, called its elements, characterized by
the properties:

There is an order or arrangement of the elements;
There may be multiple occurrences of each element.

The elements of a tuple are also called members, objects or
components.

We denote a tuple by writing down its elements, separated by
commas, and surrounding everything with parentheses ( and ).

Example: The tuple (12,R , 9) has three elements:

The first element is 12;
The second element is the letter R ;
The third element is 9.
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Length of a Tuple

If a tuple has n elements, we say that its length is n, and we call it
an n-tuple.

Example:

The tuple (8, k , hello) is a 3-tuple;
(x1, . . . , x8) is an 8-tuple.

The 0-tuple is denoted by (), and we call it the empty tuple.

For n = 2, 3, 4, 5, we often use the terms (ordered) pair, triple,
quadruple, quintuple, respectively.

Other words used for “tuple” are vector and sequence.
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Equality of Tuples

Two n-tuples (x1, . . . , xn) and (y1, . . . , yn) are said to be equal,
written

(x1, . . . , xn) = (y1, . . . , yn),

if xi = yi , for 1 ≤ i ≤ n.

Example: (3, 7) 6= (7, 3).

Since in tuples order matters and repetitions are allowed, they are
different from sets.

Example:

Sets: {h, u, g , h} = {h, u, g} = {u, g , h}.
Tuples: (h, u, g , h) 6= (h, h, g , u), (h, u, g) 6= (u, g , h).
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Cartesian Product of Sets

Let A and B be sets.

The (Cartesian) product of A and B , denoted A×B , is the set of all
pairs with first components from A and second components from B .

Formally we have

A× B = {(a, b) : a ∈ A and b ∈ B}.

Example: If A = {x , y} and B = {0, 1}, then we have

A× B = {(x , 0), (x , 1), (y , 0), (y , 1)}.

If A = ∅ or B = ∅, then A× B = ∅.
Example: If A = {x , y} and B = ∅, then A× B = ∅.
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Cartesian Product of Sets Generalized

The product of n sets A1, . . . ,An, written A1 × A2 × · · · × An, is
defined by

A1 × A2 × · · · × An = {(x1, x2, . . . , xn) : xi ∈ Ai , i = 1, 2, . . . , n}.
If all the sets Ai in a product are the same set A, then we use the
abbreviated notation An = A× · · · × A.

With this notation we have the following definitions for the sets A1

and A0:
A1 = {(a) : a ∈ A};
A0 = {()}.

Example: Let A = {a, b, c}. Then we have:

A0 = {()};
A1 = {(a), (b), (c)};
A2 = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c),

(c , a), (c , b), (c , c)}.
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Representations

The components of an n-tuple can be indexed in several different
ways depending on context.

Example: If t ∈ A× B × C , then we might represent t in any of the
following ways:

(t1, t2, t3);
(t(1), t(2), t(3));
(t[1], t[2], t[3]);
(t(A), t(B), t(C ));
(A(t),B(t),C (t)).
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Arrays, Matrices and Records

A 1-dimensional array of size n with elements in the set A can be
represented by an n-tuple in the product An.

If x = (x1, . . . , xn), then the component xi is usually denoted in
programming languages by x [i ].

A 2-dimensional array also called a matrix can be thought of as a
table of objects that are indexed by rows and columns.

If x is a matrix with m rows and n columns, we say that x is an m× n

matrix, read “m by n matrix”.

Example: If x is a 3× 4 matrix, then x can be represented by the
following diagram:

x =





x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34



 .
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Arrays, Matrices and Records (Cont’d)

We can also represent x as a 3-tuple whose components are 4-tuples
as follows:

x = ((x11, x12, x13, x14), (x21, x22, x23, x24), (x31, x32, x33, x34)).

In programming, the component xij is usually denoted by x [i , j].

We can also think of the product A× B as the set of all records, or
structures, having two fields A and B .

For a particular record r = (a, b) ∈ A× B the components a and b
are normally denoted by r .A and r .B:

The A-component of the record r ;
The B-component of the record r .
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Lists

A list is a finite sequence of zero or more elements that is ordered
and where repetitions are allowed.

To denote lists we use 〈 and 〉, with elements separated by commas.

The empty list is 〈〉.
The number of elements in a list is called its length.

The difference between tuples and lists is the following:

In tuples we can randomly access any component.
In the case of lists we can randomly access only two things:

The first component of a list, which is called its head;
The list made up of everything except the first component, which is

called its tail.

An important property of lists is the ability to easily construct a new
list from an element and another list.
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Destructors and Constructors for Lists

Given a list, two operators, called destructors, deconstruct the list:
head takes a list and produces its head;
tail takes a list and produces its tail.

Example:
head(〈x , y , z〉) = x ;
tail(〈x , y , z〉) = 〈y , z〉.

A constructor cons constructs a list, given its parts.

Example: Given the element x and the list 〈y , z〉, we can apply cons:

cons(x , 〈y , z〉) = 〈x , y , z〉.

For every list L, we have

cons(head(L), tail(L)) = L..
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Lists over a Set

A list over the set A is a list whose components are in A.

We denote the collection of all lists over A by Lists[A].

Example: If A = {a, b, c}, then three of the lists in Lists[A] are

〈〉, 〈a, a, b〉, 〈b, c , a, b, c〉.
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List with Lists as Elements

There is no restriction on the kind of object that a list can contain.

It is often useful to represent information in the form of lists whose
elements may be lists, and the elements of those lists may be lists,
and so on.

Example: The following list contain lists as components:

List L head(L) tail(L)

〈a, 〈b〉〉 a 〈〈b〉〉
〈〈a〉, 〈b, a〉〉 〈a〉 〈〈b, a〉〉

〈〈〈〉, a, 〈〉〉, b, 〈〉〉 〈〈〉, a〈〉〉 〈b, 〈〉〉
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Strings

An alphabet A is a set of symbols.

A string over the alphabet A is a finite sequence of zero or more
symbols from A that are placed next to each other in juxtaposition.

Example: Consider the alphabet {a, b, c}.
aacabb is a string over the alphabet {a, b, c}.
The string with no elements is called the empty string, and we
denote it by (the Greek capital letter lambda) Λ.

The number of elements that occur in a string is called the length of
the string.

We denote the length of a string s by |s|.
Example: Over the alphabet {a, b, c}, the string aacabb has length
|aacabb| = 6.
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Concatenation of Strings

The operation of placing two strings s and t next to each other to
form a new string st is called concatenation, denoted by cat.

Example: If aab and ba are two strings over the alphabet {a, b}, then

cat(aab, ba) = aabba.

If the empty string occurs as part of another string, then it does not
contribute anything new to the string:

sΛ = Λs = s

cat(s,Λ) = s
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Languages over an Alphabet

If A is an alphabet, then the set of all strings over A is denoted by A∗.

Example: If A = {a}, then we have

A∗ = {Λ, a, aa, aaa, . . .}.

A language L over A is a set of strings over A, i.e., L ⊆ A∗.

Example:

For any alphabet A, four languages over A are ∅, {Λ}, A and A∗.
If A = {a}, then, the corresponding languages are ∅, {Λ}, {a} and
{Λ, a, aa, aaa, . . .}.

For a natural number n and a string s, sn denotes the string of n s’s:

s0 = Λ;
s1 = s;
s2 = ss.

Example: If A = {a}, then we can write A∗ = {an : n ∈ N}.
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Example

Suppose A = {a, b}.
Then A∗ can be described by writing down a few strings of small
length followed by an ellipsis:

A∗ = {Λ, a, b, aa, ab, ba, bb,
aaa, aab, aba, baa, baa, bab, bba, bbb, . . .}.

Some languages over A can be represented concisely by using
exponents:

{abn : n ∈ N} = {a, ab, abb, abbb, . . .};
{anbn : n ∈ N} = {Λ, ab, aabb, aaabbb, . . .};
{(ab)n : n ∈ N} = {Λ, ab, abab, ababab, . . .}.
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Example: Numerals

A numeral is a nonempty string of symbols that represents a number.

We are familiar with the following three numeral systems:

The Roman numerals represent the nonnegative integers by using the
alphabet {I, V, X, L, C, D, M}.
The decimal numerals represent the natural numbers by using the
alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
The binary numerals represent the natural numbers by using the
alphabet {0, 1}.

Example: The following numerals all represent the same number:

The Roman numeral MDCLXVI;
The decimal numeral 1666;
The binary numeral 11010000010.
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Products of Languages

Let L and M be languages.

The product of L and M, denoted LM is the set of all concatenations
of strings in L with strings in M:

LM = {st : s ∈ L and t ∈ M}.

Example: Let A = {a, b, c} and consider the languages L = {ab, ac}
and M = {a, bc , abc} over A.

Then we have

LM = {aba, abbc , ababc , aca, acbc , acabc};
ML = {aab, aac , bcab, bcac , abcab, abcac}.

Simple properties of the product:
L{Λ} = {Λ}L = L;
L∅ = ∅L = ∅;
L(MN) = L(MN).
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Product of a Language with Itself

For any natural number n, the product of a language L with itself n
times is denoted by Ln:

Ln = {s1s2 · · · sn : sk ∈ L, k = 1, . . . , n}.

The special case when n = 0 has the following definition.

L0 = {Λ}.

Example: If L = {a, bb}, then we have the following four products.

L0 = {Λ};
L1 = L = {a, bb};
L2 = LL = {aa, abb, bba, bbbb};
L3 = LL2 = {aaa, aabb, abba, abbbb,

bbaa, bbabb, bbbba, bbbbbb}.
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Closure

If L is a language, then the closure of L, denoted by L∗, is the set of
all possible concatenations of (zero or more) strings from L:

L∗ = L0 ∪ L1 ∪ L2 ∪ · · · ∪ Ln ∪ · · · .
We have x ∈ L∗ if and only if x ∈ Ln for some n.

It follows that

x ∈ L∗ if and only if either x = Λ or x = ℓ1ℓ2 · · · ℓn,
for some n ≥ 1, where ℓk ∈ L, for k = 1, . . . , n.

If L is a language, then the positive closure of L, which is denoted
by L+, is defined by

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .
It follows from the definition that L∗ = L+ ∪ {Λ}.
It is not necessarily true that L+ = L∗ − {Λ}.
Example, if L = {Λ, a}, then L+ = L∗.
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Properties of Closure

Let A be an alphabet.

Then A∗ has two meanings:

A∗ is the set of all strings over A;
A∗ is the closure of the language A.

Fortunately, the two meanings coincide!

The following are properties of the closure of languages:

(a) {Λ}∗ = ∅∗ = {Λ};
(b) Λ ∈ L if and only if L+ = L∗;
(c) L∗ = L∗L∗ = (L∗)∗;
(d) (L∗M∗)∗ = (L∗ ∪M∗)∗ = (L ∪M)∗;
(e) L(ML)∗ = (LM)∗L.
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Proof of Property (e)

We first show L(ML)∗ ⊆ (LM)∗L.

Suppose x ∈ L(ML)∗.

Then x = ℓy , ℓ ∈ L, y ∈ (ML)∗.

So x = ℓy , ℓ ∈ L, y ∈ (ML)n, for some n ≥ 0.

If n = 0, x = ℓΛ = ℓ = Λℓ ∈ (LM)∗L;
If n > 0, x = ℓw1 . . .wn, ℓ ∈ L, wi ∈ ML.
So x = ℓm1ℓ1 · · ·mnℓn, ℓ ∈ L, mi ∈ M , ℓi ∈ L.
But, then

x = (ℓm1)(ℓ1m2) · · · (ℓn−1mn)ℓn ∈ (LM)∗L.

The reverse inclusion (LM)∗L ⊆ L(ML)∗ can be proved similarly.
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Relations

An n-ary relation R over the product set A1 × · · · × An is just a
subset of A1 × · · · × An.

The smallest n-ary relation over over A1 × · · · × An is ∅.
The largest n-ary relation over A1 × · · · × An is A1 × · · · × An itself,
called the universal relation.

If R is a binary relation over A× B , we sometimes say “R is a binary
relation from A to B”.

If R is an n-ary relation over A× · · · × A, i.e., a subset of the product
An, then R is called an n-ary relation on A.

If R is a binary relation and (x , y) ∈ R , we often denote this fact by
writing:

the prefix expression R(a, b); or
the infix expression x R y .
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Examples

The “less than” relation is a binary relation on N, defined as follows:

< = {(x , y) ∈ N×N : x < y}.

We have (1, 2) ∈ <. We write this as 1 < 2.

Moreover (5, 2) 6∈ <. We write this as 5 ≮ 2.

A ternary relation P on R is defined as follows:

P = {(x , y , z) ∈ R3 : x2 + y2 = z2}.

We have:

(3, 4, 5) ∈ P ;
(6, 8, 10) ∈ P ;
(2, 1,

√
5) ∈ P ;

(1, 2, 5) 6∈ P .
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More on Relations

The equality relation on a set A is the binary relation on A defined
as follows:

= := {(a, a) : a ∈ A} of A2.

Example: If A = {a, b, c}, then the equality relation on A is the set
{(a, a), (b, b), (c , c)}.
In this case we normally write a = a instead of =(a, a).

A unary relation is similar to a test for membership in a set:

Suppose R is a unary relation over the set A.

Then R can be viewed as a subset of A:

{x ∈ A : R(x)}.

Example: Suppose A = {1, 2, . . . , 9}.
Consider the unary relation R on A: R = {(2), (3), (5), (7)}.
Then {x ∈ A : R(x)} = {2, 3, 5, 7}.
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