Discrete Structures for Computer Science

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University
LSSU CSci 341
(1) Proofs, Sets and Structures

- A Proof Primer
- Sets
- Ordered Structures

Subsection 1

A Proof Primer

Statements and Negation

- A proposition or sentence is a statement that is either true or false.
- Example: The following are propositions:
- The number 3 is odd.
- It is now 3:00pm ET.
"Painting x is beautiful" is not a proposition.
- Given a proposition S, the negation of S, denoted $\neg S$ and read "not $S "$, is a proposition whose truth value is the opposite of that of S.
- Thus, the truth value of $\neg S$ is given in terms of the truth value of S by the following truth table:

S	$\neg S$
T	F
F	T

- The negation of " x is odd" is "not (x is odd)", which we write more naturally in English as " x is not odd".

Conjunction and Disjunction

- Let A and B be propositions.
- The conjunction of A and B, denoted $A \wedge B$ and read " A and B ", is a proposition which is true when A and B are both true.
- Thus, the truth value of $A \wedge B$ in terms of those of A and B is given by the truth table on the left:

$$
\begin{array}{cc|ccc|c}
A & B & A \wedge B & & A & B \\
A \vee B \\
\hline T & T & T & & A & T \\
T & F & F & & T & F \\
F & T & F & & T \\
F & F & F & & F & F \\
& F & T
\end{array}
$$

- The disjunction of A and B, denoted $A \vee B$ and read " A or B ", is a proposition which is true when at least one of A or B is true.
- Thus, the truth value of $A \vee B$ in terms of those of A and B is given by the truth table on the right.

De Morgan's Laws

- Two propositions A and B are equivalent, written $A \equiv B$, if their truth tables are identical.
- Examples:

A	B	$A \wedge B$	$A \vee B$	$\neg A$	$\neg B$	$\neg(A \wedge B)$	$\neg A \vee \neg B$	$\neg(A \vee B)$	$\neg A \wedge \neg B$
T	T	T	T	F	F	F	F	F	F
T	F	F	T	F	T	T	T	F	F
F	T	F	T	T	F	T	T	F	F
F	F	F	F	T	T	T	T	T	T

- We showed:
- $\neg(A \wedge B) \equiv \neg A \vee \neg B$

The negation of a conjunction is a disjunction of negations.

- $\neg(A \vee B) \equiv \neg A \wedge \neg B$

The negation of a disjunction is a conjunction of negations.

- Example: "It is not the case that x is odd or y is odd" is equivalent to " x is not odd and y is not odd".

Conditional

- Let A and B be propositions.
- The conditional, written $A \rightarrow B$ and read "If A then B " or " A implies B ", is a proposition that is true unless A is true and B is false.
- Thus, the truth value of $A \rightarrow B$ in terms of those of A and B is given by the truth table

A	B	$A \rightarrow B$
T	T	T
T	F	F
F	T	T
F	F	T

- In $A \rightarrow B$, the proposition
- A is called the hypothesis or the antecedent of the conditional.
- B is called the conclusion or consequent of the conditional.
- "If A then B " can also be read as:
- " A is sufficient for B ";
- " B is necessary for A ".

More on the Conditional

- Example: Evaluate the following conditionals:
(a) "If Peru is in North America then $1=2$ " True
(b) "If $7=7$ then Chile is in Europe" False
(c) "If $1=2$ then $39=12$ " True
(d) "If $1=2$ then $2+2=4$ " True
- We say a conditional is vacuously true if its hypothesis is false.

The conditionals (a), (c) and (d) above are vacuously true.

- We say that a conditional is trivially true if its conclusion is true.

The conditional (d) above is trivially true.

Converse

- Let A and B be propositions.
- The conditional $B \rightarrow A$ is called the converse of the conditional $A \rightarrow B$.
- The following truth table shows that $(A \rightarrow B) \not \equiv(B \rightarrow A)$:

A	B	$A \rightarrow B$	$B \rightarrow A$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

- Consider the following conditionals, which are converses of each other:
- "If x and y are odd then $x+y$ is even"
- "If $x+y$ is even then x and y are odd"

The first is true in general, but the second is not.

Contrapositive

- Let A and B be propositions.
- The conditional $\neg B \rightarrow \neg A$ is called the contrapositive of the conditional $A \rightarrow B$.
- The following truth table shows that $(A \rightarrow B) \equiv(\neg B \rightarrow \neg A)$:

A	B	$A \rightarrow B$	$\neg B$	$\neg A$	$\neg B \rightarrow \neg A$
T	T	T	F	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

- Example: Consider the two contrapositive statements:
- "If x and y are odd then $x+y$ is even";
- "If $x+y$ is not even then not both x and y are odd".

These are both true statements.

Biconditional

- Let A and B be propositions.
- The biconditional, written $A \leftrightarrow B$ and read " A if and only if B " (abbreviated " A iff B "), is a proposition that is true when A and B assume the same truth value.
- Thus, the truth value of $A \leftrightarrow B$ in terms of those of A and B is given by the truth table

A	B	$A \leftrightarrow B$
T	T	T
T	F	F
F	T	F
F	F	T

- Sometimes " A iff B " is read " A is necessary and sufficient for B ".
- Example: Consider the statement " x is even iff $x+2$ is even".

This is a true statement.

Integers and Divisibility

- The integers are the numbers

$$
\ldots,-3,-2,-1,0,1,2,3, \ldots
$$

- For integers m and n, we say that m divides n, denoted $m \mid n$, if $m \neq 0$ and $n=m \cdot k$, for some integer k.
- The proposition " m divides n " can also be expressed by saying that " m is a divisor of n " or " n is divisible by m ".
- Example: The number 9 has six divisors: $\pm 1, \pm 3$ and ± 9.
- If m does not divide n, we write $m \nmid n$.
- Example: We have the following:

$$
3|12, \quad 6| 12, \quad 5 \nmid 12 .
$$

Properties of Divisibility and Proofs

- The following two basic properties of divisibility hold:
(a) If $d \mid m$ and $m \mid n$, then $d \mid n$.
(b) If $d \mid m$ and $d \mid n$, then $d \mid(a m+b n)$, for all integers a and b.
- Examples:
(a) $3 \mid 12$ and $12 \mid 72$. Therefore $3 \mid 72$.
(b) $7 \mid 14$ and $7 \mid 21$. Therefore $7 \mid(2 \cdot 14+3 \cdot 21)=91$.
- We may prove (a) and (b) relatively easily:
(a) Assume $d \mid m$ and $m \mid n$. Then, there exist integers k and ℓ, such that $m=d k$ and $n=m \ell$. So, we have $n=m \ell=(d k) \ell=d(k \ell)$. This shows that $d \mid n$.
(b) Assume that $d \mid m$ and $d \mid n$. Then, there exist integers k and ℓ, such that $m=d k$ and $n=d \ell$. So we have

$$
a m+b n=a(d k)+b(d \ell)=d(a k+b \ell)
$$

Therefore, we get $d \mid(a m+b n)$.

Prime Numbers

- Any positive integer $n>1$ has at least two positive divisors: 1 and n.
- A positive integer p is said to be prime if $p>1$ and its only positive divisors are 1 and p.
- Example:
- 2 is prime.
- 9 is not prime.
- The first eight prime numbers are:

$$
2,3,5,7,11,13,17,19 .
$$

Decomposition into Product of Primes

- Every integer greater than 1 is a product of primes.
- This is proven by induction.
- Basis of the Induction: 2 is a prime.
- Induction Hypothesis: Suppose that every integer k, with $1<k<n$ is a product of primes.
- Induction Step: We must prove that $n>1$ is a product of primes.
- If n is prime, then n is a product of primes $n=n$.
- If n is not prime, there exist $1<k, \ell<n$, such that $n=k \ell$. By the Induction Hypothesis, each of k, ℓ is a product of primes, say

$$
k=p_{1} \cdots p_{i} \quad \text { and } \quad \ell=q_{1} \ldots q_{j}
$$

But then

$$
n=k \ell=p_{1} \cdots p_{i} q_{1} \cdots q_{j}
$$

is also a product of primes.

Infinity of Primes

- There are infinitely many prime numbers.
- This is Euclid's famous proof by contradiction:

Suppose there exist only finitely many primes, say $p_{1}, p_{2}, \ldots, p_{n}$.
Consider the number

$$
k=p_{1} p_{2} \cdots p_{n}+1
$$

Since it is larger than all of p_{1}, \ldots, p_{n}, it cannot be a prime. By the Decomposition into Primes, it is a product of primes, say $k=p_{i_{1}} \cdots p_{i_{\ell}}$. Now we have

$$
p_{1} p_{2} \cdots p_{n}+1=p_{i_{1}} \cdots p_{i_{\ell}}
$$

This gives $1=p_{i_{1}} \cdots p_{i_{\ell}}-p_{1} p_{2} \cdots p_{n}$. But the right hand side is divisible by $p_{i_{1}}$ (since it is a prime and, therefore, among the p_{1}, \ldots, p_{n}). Thus, $p_{i_{1}} \mid 1$, a contradiction.

Proof by Example and by Counterexample

- A Proof by Example can be used to show the claimed existence of a certain object.
- Example: "There exists a prime number between 80 and 88 " is true. The number 83 is a prime.
- A Proof by Counterexample can be used to disprove (show the falsity) of a given statement.
- Example: "Every prime number is odd" is false. 2 is a prime number and it is even.

Proof by Exhaustive Checking

- Proof by Exhaustive Checking is checking of all possibilities, showing that each satisfies the claimed conclusion.
- Example: Show that the sum of any two of the numbers 1,3 and 5 is an even number.

All sums

$$
1+1,1+3,1+5,3+3,3+5,5+5
$$

are even numbers.

- Exhaustive checking cannot be done if there are infinitely many things to check.
- Exhaustive checking is also impracticable even in the finite case, if the number of things that need to be checked is large.

Proof Using Variables

- Using variables is a convenient way to overcome the difficulty of having to check an infinite number of cases.
- Example: Show that the sum of any two odd integers is even. Let m and n be two odd integers.
Then, there exist integers k and ℓ, such that

$$
m=2 k+1 \quad \text { and } \quad n=2 \ell+1
$$

Therefore, we get

$$
m+n=(2 k+1)+(2 \ell+1)=2 k+2 \ell+2=2(k+\ell+1) .
$$

Thus, $m+n$ is even.

Direct Proofs

- A Direct Proof of a statement of the form $A \rightarrow B$ (If A then B) starts with A and inserts intermediate steps in a sequence of valid logical implications that lead from A to B :

$$
A \rightarrow C_{1} \rightarrow C_{2} \rightarrow \cdots \rightarrow B
$$

- Sometimes, it is useful to work at both sides and close the chain in the middle:

$$
A \rightarrow C_{1} \rightarrow C_{2} \rightarrow \cdots \rightarrow C_{n-2} \rightarrow C_{n-1} \rightarrow B
$$

- Example: Prove that if x is odd and y is even, then $x^{2}+3 y$ is odd. Suppose that x is odd and y is even.
Then there exist integers k and ℓ, such that $x=2 k+1$ and $y=2 \ell$. Then, we have

$$
\begin{aligned}
x^{2}+3 y & =(2 k+1)^{2}+3(2 \ell)=4 k^{2}+4 k+1+6 \ell \\
& =2\left(2 k^{2}+2 k+3 \ell\right)+1
\end{aligned}
$$

This shows that $x^{2}+3 y$ is odd.

Indirect Proofs: Proof by Contraposition

- We saw that $A \rightarrow B$ and $\neg B \rightarrow \neg A$ are equivalent propositions.
- A Proof by Contraposition of $A \rightarrow B$ is a direct proof of $\neg B \rightarrow \neg A$:

$$
\neg B \rightarrow C_{1} \rightarrow C_{2} \rightarrow \cdots \rightarrow \neg A
$$

- Example: Let x be an an integer.

Show that if x^{2} is even, then x is even.
We prove the contrapositive: "If x is odd, then x^{2} is odd." Suppose x is odd.
Then, there exists an integer k, such that $x=2 k+1$. Thus, $x^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$. So x^{2} is odd.

Indirect Proofs: Proof by Contradiction

- A Proof by Contradiction of A assumes $\neg A$ and shows that it leads to a contradiction (an obviously false statement).
- Example: Show that there are no integers a and b, such that $4 a+6 b=1$.

We proceed by contradiction.
Assume that there exist integers a and b, such that

$$
4 a+6 b=1
$$

Then, we get that $2 a+3 b=\frac{1}{2}$.
This is a contradiction, since $2 a+3 b$ is an integer, but $\frac{1}{2}$ is not an integer.
So there cannot exist integers a and b, such that $4 a+6 b=1$.

Indirect Proofs: Proof by Contradiction (Cont'd)

- A Proof by Contradiction of $A \rightarrow B$ assumes $\neg(A \rightarrow B) \equiv(A \wedge \neg B)$ and shows that it leads to a contradiction (an obviously false statement).
- Example: Show that if $n^{3}+5$ is odd, then n is even.

We prove the statement by contradiction.
Assume $n^{3}+5$ is odd and n is odd.
Then, there exist integers k and ℓ such that $n^{3}+5=2 k+1$ and $n=2 \ell+1$.
Thus, we get

$$
\begin{aligned}
5 & =2 k+1-n^{3}=2 k+1-(2 \ell+1)^{3} \\
& =2 k+1-\left(8 \ell^{3}+12 \ell^{2}+6 \ell+1\right) \\
& =2\left(k-4 \ell^{3}-6 \ell^{2}-3 \ell\right)
\end{aligned}
$$

This is a contradiction, since the right-hand side is an even integer.

"If and only if" Proofs

- To prove $A \leftrightarrow B$, we must show:
- $A \rightarrow B$ and
- $B \rightarrow A$.
- Example: Show that x is even if and only if x^{2} is even.
- We first show "if x is even, then x^{2} is even using a direct proof. Suppose x is even.
Then, there exists integer k, such that $x=2 k$.
Thus, we get $x^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
Therefore x^{2} is even.
- Next we show "If x^{2} is even, then x is even" by contraposition. That is, we show "If x is odd, then x^{2} is odd". Suppose that x is odd.
Then, there exists an integer k, such that $x=2 k+1$.
Thus, we get $x^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$. Therefore x^{2} is odd.

Subsection 2

Sets

Sets and Membership

- A set is a collection of things, called its elements or members.
- A set is also called a collection or a family.
- A set contains its elements.
- An element belongs to, is a member of or is in the set.
- If an element x is in a set S, we write

$$
x \in S
$$

- If x is not an element of a set S, we write $x \notin S$.
- The notation $x, y \in S$, means $x \in S$ and $y \in S$.

Notation for Sets

- One way to define a set is by explicitly listing its elements (note how braces and commas are used, and learn the notation!).
- Example: The set S whose elements are the letters x, y and z is denoted by

$$
S=\{x, y, z\} .
$$

- Example: The set $S=\{x,\{x, y\}\}$ has two elements:
- The letter x;
- The set $\{x, y\}$, with elements the letters x, y.
- Sometimes ellipsis, ..., are used to informally denote a sequence of elements.
- Example: The set $\{1,2,3,4,5,6,7,8,9,10,11,12\}$ may be denoted by $\{1,2,3, \ldots, 12\}$ or by $\{1,2,3, \ldots, 11,12\}$.
- Use this notation with caution, only when the meaning of the ellipses is clear!

Empty Set and Singleton Sets

- The set with no elements in it is called the empty set or the null set.
- The empty set is denoted most commonly by \emptyset or, more rarely, by $\}$.
- A set with one element is called a singleton.
- Example: The following sets are singletons:

$$
\{a\}, \quad\{z\}, \quad\{\{x, y\}\}, \quad\{\emptyset\} .
$$

- $\{a\}$ contains only the letter a;
- $\{z\}$ contains only the letter z;
- $\{\{x, y\}\}$ contains only one element, the set $\{x, y\}$;
- $\{\emptyset\}$ contain only one element, the empty set.

Equality of Sets

- Two sets A and B are equal, written $A=B$, if:
- Each element of A is an element of B; and
- Each element of B is an element of A.
- We can use equality to demonstrate two important properties of sets:
- There is no particular order or arrangement of the elements.
- There are no redundant elements (repetitions do not count).
- Example: The set whose elements are g, h and u can be represented in many ways, e.g.,

$$
\{u, g, h\}=\{h, u, g\}=\{h, u, g, h\}=\{u, g, h, u, g\} .
$$

So there are many ways to represent the same set.

- If the sets A and B are not equal, we write $A \neq B$.
- Example: $\{a, b, c\} \neq\{a, b\}$ because $c \in\{a, b, c\}$, but $c \notin\{a, b\}$.
- Example: $\{a\} \neq \emptyset$ because the empty set does not contain a.

Finite versus Infinite Sets

- Suppose we start counting the elements of a set S.
- If $S=\emptyset$, then we don't need to start, because there are no elements to count.
- If $S \neq \emptyset$, and the counting stops at a finite positive natural number when all elements of S have been counted, then we say that S is a finite set.
- If the counting never stops, then S is an infinite set.

Familiar Sets of Numbers and Notation

- Set of natural numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

- Set of integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Set of rational numbers:

$$
\begin{aligned}
\mathbb{Q}= & \left\{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\right\} \\
= & \{x \in \mathbb{R}: x \text { has a terminating } \\
& \text { or repeating decimal representation }\} ;
\end{aligned}
$$

- Set of real numbers: \mathbb{R}.

Sets Defined by Properties

- Ay set can be defined by stating a property that the elements of the set must satisfy.
- If P is some property, then there is a set S (with elements in a universe U) whose elements have property P, and we write

$$
S=\{x \in U: x \text { has property } P\}
$$

read as " S is the set of all $x \in U$, such that x has property P ".

- Example: Odd $=\{\ldots,-5,-3,-1,1,3,5, \ldots\}$ of odd integers can be defined by

$$
\text { Odd }=\{x \in \mathbb{Z}: x=2 k+1 \text { for some } k \in \mathbb{Z}\} .
$$

- Example: Similarly, the set $\{1,2, \ldots, 12\}$ can be defined by writing

$$
\{x \in \mathbb{N}: 1 \leq x \leq 12\}
$$

Subsets

- A set A is called a subset of a set B, written $A \subseteq B$, if every element of A is also an element of B.
- Example: $\{a, b\} \subseteq\{a, b, c\},\{0,1,2\} \subseteq \mathbb{N}$, and $\mathbb{N} \subseteq \mathbb{Z}$.
- Every set A is a subset of itself: $A \subseteq A$.
- The empty set is a subset of any set $A: \emptyset \subseteq A$.
- A set A is called a proper subset of B, written $A \subset B$, if:
- $A \subseteq B$; and
- There is some element in B that does not belong to A.
- Example: $\{a, b\} \subset\{a, b, c\}$.
- Example: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.
- If A is not a subset of B, we sometimes write $A \nsubseteq B$.
- Example: $\{a, b\} \nsubseteq\{a, c\}$ and $\{-1,-2\} \nsubseteq \mathbb{N}$.

Membership versus Subsets

- Consider the set $A=\{a, b, c\}$.

We have

- $\{a\} \subseteq A$;
- $a \in A$;
- $\{a\} \notin A$;
- a $\nsubseteq A$.
- Consider $A=\{a,\{b\}\}$.

We have:

- $a \in A$;
- $\{b\} \in A$;
- $\{a\} \subseteq A$;
- $\{\{b\}\} \subseteq A$;
- $b \notin A$;
- $\{b\} \nsubseteq A$.

Power Sets

- The power set of a set S, denoted by $\mathcal{P}(S)$ or $\operatorname{power}(S)$, is the collection of all subsets of S.
- Example:
- $\mathcal{P}(\emptyset)=\{\emptyset\} ;$
- $\mathcal{P}(\{a\})=\{\emptyset,\{a\}\} ;$
- $\mathcal{P}(\{a, b\})=\{\emptyset,\{a\},\{b\},\{a, b\}\} ;$
- $\mathcal{P}(\{a, b, c\})=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$.

Venn Diagrams

- A Venn diagram consists of one or more closed curves in which the interior of each curve represents a set.
- Example: The Venn diagram below reflects the facts that:
- A is a proper subset of B;
- x is an element of B that does not occur in A.

Proof Techniques

- Recall that two sets A and B are equal if:
- Every element of A belongs to B;
- Every element of B belongs to A.
- Rephrasing the definition, we get that

$$
A=B \quad \text { iff } \quad(A \subseteq B \quad \text { and } \quad B \subseteq A)
$$

- In dealing with sets we use the following proof techniques:
- To prove that $A \subseteq B$:

Let $x \in A$. Show that $x \in B$.

- To prove that $A \nsubseteq B$:

Find an element $x \in A$ such that $x \notin B$.

- To show that $A=B$:
- First show that $A \subseteq B$;
- Then show that $B \subseteq A$.

Example

- Let

$$
\begin{aligned}
& A=\{x \in \mathbb{N}: x \text { is prime and } 42 \leq x \leq 51\} \\
& B=\{x: x=4 k+3 \text { and } k \in \mathbb{N}\} .
\end{aligned}
$$

Show that $A \subseteq B$.
Let $x \in A$.
Then $x=43$ or $x=47$.

- If $x=43$, then $x=4 \cdot 10+3$. So $x \in B$.
- If $x=47$, then $x=4 \cdot 11+3$. So $x \in B$.

So in either case, $x \in B$.
We conclude that $A \subseteq B$.

Example

- Suppose that

$$
A=\{3 k+1: k \in \mathbb{N}\} \quad \text { and } \quad B=\{4 k+1: k \in \mathbb{N}\} .
$$

Show that $A \nsubseteq B$ and $B \nsubseteq A$.
By listing a few elements from each set we can write A and B as follows:

$$
\begin{aligned}
& A=\{1,4,7,10,13, \ldots\} \\
& B=\{1,5,9,13,17, \ldots\}
\end{aligned}
$$

- $A \nsubseteq B: 4 \in A$, but $4 \notin B$.
- $B \nsubseteq A: 5 \in B$, but $5 \notin A$.

Example

- Consider the sets

$$
\begin{aligned}
& A=\{x \in \mathbb{N}: x \text { is prime and } 12 \leq x \leq 18\} \\
& B=\{x \in \mathbb{N}: x=4 k+1 \text { and } k \in\{3,4\}\} .
\end{aligned}
$$

Show that $A=B$.
We must show that $A \subseteq B$ and $B \subseteq A$.
$A \subseteq B$: Let $x \in A$. Then $x=13$ or $x=17$. We have $13=4 \cdot 3+1$ and $17=4 \cdot 4+1$. It follows that $x \in B$. We conclude that $A \subseteq B$.
$B \subseteq A$: Let $x \in B$. Then $x=4 \cdot 3+1=13$ or $x=4 \cdot 4+1=17$. Thus, in either case, x is a prime number between 12 and 18. It follows that $x \in A$. We conclude that $B \subseteq A$.

Union of Sets

- If A and B are sets, then the union of A and B, writen $A \cup B$, is the set of all elements that either are in A or in B or in both A and B.
- Formally (recall the connective "or", \vee)

$$
A \cup B=\{x: x \in A \vee x \in B\}
$$

- The union of two sets A and B is represented by the shaded regions of the following Venn diagram:

- Example: If $A=\{a, b, c\}$ and $B=\{c, d\}$, then $A \cup B=\{a, b, c, d\}$.

Properties of Union

- The union operation satisfies the following properties:
- $A \cup \emptyset=A \quad$ (identity element)
- $A \cup B=B \cup A$ (commutativity)
- $A \cup(B \cup C)=(A \cup B) \cup C \quad$ (associativity)
- $A \cup A=A$ (idempotency)
- $A \subseteq B$ iff $A \cup B=B \quad$ (order)
- We prove the last property:
- Suppose, first, that $A \subseteq B$. We must show $A \cup B=B$.
$A \cup B \subseteq B$: Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$, since $A \subseteq B$, we get $x \in B$. Thus, in either case, $x \in B$. We conclude $A \cup B \subseteq B$.
$B \subseteq A \cup B$: Suppose $x \in B$. Then $x \in A$ or $x \in B$. Thus, $x \in A \cup B$. We conclude that $B \subseteq A \cup B$.
- Suppose, conversely, that $A \cup B=B$. We must show that $A \subseteq B$. Suppose $x \in A$. Then $x \in A$ or $x \in B$. Thus, $x \in A \cup B$. Since $A \cup B=B$, we get $x \in B$. We conclude $A \subseteq B$.

Intersection of Sets

- If A and B are sets, then the intersection of A and B, writen $A \cap B$, is the set of all elements that are in both A and B.
- Formally (recall the connective "and", \wedge)

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

- The intersection of two sets A and B is represented by the shaded regions of the following Venn diagram:

- Example: If $A=\{a, b, c\}$ and $B=\{c, d\}$, then $A \cap B=\{c\}$.

Properties of Intersection

- The intersection operation satisfies the following properties:
- $A \cap \emptyset=\emptyset \quad$ (absorption element)
- $A \cap B=B \cap A \quad$ (commutativity)
- $A \cap(B \cap C)=(A \cap B) \cap C \quad$ (associativity)
- $A \cap A=A$ (idempotency)
- $A \subseteq B$ iff $A \cap B=A \quad$ (order)

Distributive Laws

- The Distributive Laws relate Union and Intersection:
(a) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \quad(\cap$ distributes over $\cup)$;
(b) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \quad(\cup$ distributes over $\cap)$.
- We prove part (b).
\subseteq : Suppose $x \in A \cup(B \cap C)$. Then $x \in A$ or $x \in B \cap C$. Thus, $x \in A$ or $(x \in B$ and $x \in C)$. So $(x \in A$ or $x \in B)$ and $(x \in A$ or $x \in C)$. We get $x \in A \cup B$ and $x \in A \cup C$. So $x \in(A \cup B) \cap(A \cup C)$. This shows that $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$.
2: Suppose $x \in(A \cup B) \cap(A \cup C)$. Then $x \in A \cup B$ and $x \in A \cup C$. This implies that $(x \in A$ or $x \in B)$ and ($x \in A$ or $x \in C$). So $x \in A$ or $(x \in B$ and $x \in C)$. Therefore, $x \in A \cup(B \cap C)$. This proves that $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$.

Difference or Relative Complement

- If A and B are sets, then the difference A minus B, or the relative complement of B in A, denoted by $A-B$ or $A \backslash B$, is the set of elements in A that are not in B.
- In formal notation

$$
A-B=\{x: x \in A \wedge x \notin B\} .
$$

- The Venn diagram depicting $A-B$ is:

- Example: If $A=\{a, b, c\}$ and $B=\{c, d\}$, then $A-B=\{a, b\}$.

Intersection and Difference

- Let A and B be sets. Show that $A \cap B=A-(A-B)$.
\subseteq : Suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$. This implies that $x \in A$ and $x \notin A-B$. So $x \in A-(A-B)$. We conclude that $A \cap B \subseteq A-(A-B)$.
२: Suppose $x \in A-(A-B)$. Then $x \in A$ and $x \notin A-B$. So $x \in A$ and it is not the case that $(x \in A$ and $x \notin B)$. Therefore, $x \in A$ and $(x \notin A$ or $x \in B)$. So $x \in A$ and $x \in B$. This shows that $x \in A \cap B$. We conclude that $A-(A-B) \subseteq A \cap B$.

Symmetric Difference

- The symmetric difference of sets A and B, denoted $A \oplus B$, is the union of $A-B$ with $B-A$.
- The symmetric difference is defined by using the "exclusive or" as follows:

$$
A \oplus B=\{x: x \in A \text { or } x \in B \text { but not both }\} .
$$

- The set $A \oplus B$ is represented by the shaded regions of the following Venn diagram:

Symmetric Difference, Union and Intersection

- Let A and B be sets.

Show that $A \oplus B=(A \cup B)-(A \cap B)$.
\subseteq : Suppose $x \in A \oplus B$.
Then $x \in A$ or $x \in B$, but x is not in both A and B.
Thus, $x \in A \cup B$, but $x \notin A \cap B$.
So $x \in(A \cup B)-(A \cap B)$.
We conclude $A \oplus B \subseteq(A \cup B)-(A \cap B)$.
२: Suppose $x \in(A \cup B)-(A \cap B)$.
The $x \in A \cup B$ and $x \notin A \cap B$.
So $x \in A$ or $x \in B$, but x is not in both A and B.
We conclude $x \in A \oplus B$.
So $(A \cup B)-(A \cap B) \subseteq A \oplus B$.

Universe and Complements

- Suppose the discussion always refers to sets that are subsets of a particular set U, called the universe of discourse.
- The difference $U-A$ is called the complement of A, denoted by A^{\prime}.
- The Venn diagram pictures the universe U as a rectangle (encompassing "everything under discussion"), and the region corresponding to A^{\prime} is shaded.

Properties of Complement

- The following are properties of complement:
- $\left(A^{\prime}\right)^{\prime}=A$;
- $\emptyset^{\prime}=U$ and $U^{\prime}=\emptyset$;
- $A \cap A^{\prime}=\emptyset$ and $A \cup A^{\prime}=U$;
- $A \subseteq B$ if and only if $B^{\prime} \subseteq A^{\prime}$;
- $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ and $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
(De Morgan's Laws).
- We prove the first De Morgan Law

$$
(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}
$$

\subseteq : Suppose $x \in(A \cup B)^{\prime}$. Then $x \notin A \cup B$. So $x \notin A$ and $x \notin B$. Thus, $x \in A^{\prime}$ and $x \in B^{\prime}$. So $x \in A^{\prime} \cap B^{\prime}$. We conclude $(A \cup B)^{\prime} \subseteq A^{\prime} \cap B^{\prime}$.
?: Suppose $x \in A^{\prime} \cap B^{\prime}$. Then $x \in A^{\prime}$ and $x \in B^{\prime}$. So $x \notin A$ and $x \notin B$. Thus $x \notin A \cup B$. Therefore $x \in(A \cup B)^{\prime}$. We conclude that $A^{\prime} \cap B^{\prime} \subseteq(A \cup B)^{\prime}$.

Subsection 3

Ordered Structures

Tuples

- A tuple is a collection of things, called its elements, characterized by the properties:
- There is an order or arrangement of the elements;
- There may be multiple occurrences of each element.
- The elements of a tuple are also called members, objects or components.
- We denote a tuple by writing down its elements, separated by commas, and surrounding everything with parentheses (and).
- Example: The tuple $(12, R, 9)$ has three elements:
- The first element is 12 ;
- The second element is the letter R;
- The third element is 9 .

Length of a Tuple

- If a tuple has n elements, we say that its length is n, and we call it an n-tuple.
- Example:
- The tuple ($8, k$, hello) is a 3 -tuple;
- $\left(x_{1}, \ldots, x_{8}\right)$ is an 8 -tuple.
- The 0-tuple is denoted by (), and we call it the empty tuple.
- For $n=2,3,4,5$, we often use the terms (ordered) pair, triple, quadruple, quintuple, respectively.
- Other words used for "tuple" are vector and sequence.

Equality of Tuples

- Two n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ are said to be equal, written

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)
$$

if $x_{i}=y_{i}$, for $1 \leq i \leq n$.

- Example: $(3,7) \neq(7,3)$.
- Since in tuples order matters and repetitions are allowed, they are different from sets.
- Example:

Sets: $\quad\{h, u, g, h\}=\{h, u, g\}=\{u, g, h\}$.
Tuples: $\quad(h, u, g, h) \neq(h, h, g, u), \quad(h, u, g) \neq(u, g, h)$.

Cartesian Product of Sets

- Let A and B be sets.
- The (Cartesian) product of A and B, denoted $A \times B$, is the set of all pairs with first components from A and second components from B.
- Formally we have

$$
A \times B=\{(a, b): a \in A \text { and } b \in B\}
$$

- Example: If $A=\{x, y\}$ and $B=\{0,1\}$, then we have

$$
A \times B=\{(x, 0),(x, 1),(y, 0),(y, 1)\}
$$

- If $A=\emptyset$ or $B=\emptyset$, then $A \times B=\emptyset$.
- Example: If $A=\{x, y\}$ and $B=\emptyset$, then $A \times B=\emptyset$.

Cartesian Product of Sets Generalized

- The product of n sets A_{1}, \ldots, A_{n}, written $A_{1} \times A_{2} \times \cdots \times A_{n}$, is defined by

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in A_{i}, i=1,2, \ldots, n\right\} .
$$

- If all the sets A_{i} in a product are the same set A, then we use the abbreviated notation $A^{n}=A \times \cdots \times A$.
- With this notation we have the following definitions for the sets A^{1} and A^{0} :

$$
\begin{aligned}
& A^{1}=\{(a): a \in A\} \\
& A^{0}=\{()\} .
\end{aligned}
$$

- Example: Let $A=\{a, b, c\}$. Then we have:

$$
\begin{aligned}
A^{0}= & \{()\} ; \\
A^{1}= & \{(a),(b),(c)\} ; \\
A^{2}= & \{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c), \\
& (c, a),(c, b),(c, c)\} .
\end{aligned}
$$

Representations

- The components of an n-tuple can be indexed in several different ways depending on context.
- Example: If $t \in A \times B \times C$, then we might represent t in any of the following ways:
- $\left(t_{1}, t_{2}, t_{3}\right)$;
- ($t(1), t(2), t(3))$;
- ($t[1], t[2], t[3])$;
- $(t(A), t(B), t(C))$;
- $(A(t), B(t), C(t))$.

Arrays, Matrices and Records

- A 1-dimensional array of size n with elements in the set A can be represented by an n-tuple in the product A^{n}.
If $x=\left(x_{1}, \ldots, x_{n}\right)$, then the component x_{i} is usually denoted in programming languages by $x[i]$.
- A 2-dimensional array also called a matrix can be thought of as a table of objects that are indexed by rows and columns.
If x is a matrix with m rows and n columns, we say that x is an $m \times n$ matrix, read " m by n matrix".
- Example: If x is a 3×4 matrix, then x can be represented by the following diagram:

$$
x=\left[\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24} \\
x_{31} & x_{32} & x_{33} & x_{34}
\end{array}\right]
$$

Arrays, Matrices and Records (Cont'd)

- We can also represent x as a 3-tuple whose components are 4-tuples as follows:

$$
x=\left(\left(x_{11}, x_{12}, x_{13}, x_{14}\right),\left(x_{21}, x_{22}, x_{23}, x_{24}\right),\left(x_{31}, x_{32}, x_{33}, x_{34}\right)\right) .
$$

- In programming, the component $x_{i j}$ is usually denoted by $x[i, j]$.
- We can also think of the product $A \times B$ as the set of all records, or structures, having two fields A and B.
- For a particular record $r=(a, b) \in A \times B$ the components a and b are normally denoted by $r . A$ and $r . B$:
- The A-component of the record r;
- The B-component of the record r.
- A list is a finite sequence of zero or more elements that is ordered and where repetitions are allowed.
- To denote lists we use \langle and \rangle, with elements separated by commas.
- The empty list is \rangle.
- The number of elements in a list is called its length.
- The difference between tuples and lists is the following:
- In tuples we can randomly access any component.
- In the case of lists we can randomly access only two things:
- The first component of a list, which is called its head;
- The list made up of everything except the first component, which is called its tail.
- An important property of lists is the ability to easily construct a new list from an element and another list.

Destructors and Constructors for Lists

- Given a list, two operators, called destructors, deconstruct the list:
- head takes a list and produces its head;
- tail takes a list and produces its tail.
- Example:
- head $(\langle x, y, z\rangle)=x$;
- $\operatorname{tail}(\langle x, y, z\rangle)=\langle y, z\rangle$.
- A constructor cons constructs a list, given its parts.
- Example: Given the element x and the list $\langle y, z\rangle$, we can apply cons:

$$
\operatorname{cons}(x,\langle y, z\rangle)=\langle x, y, z\rangle
$$

- For every list L, we have

$$
\operatorname{cons}(\operatorname{head}(L), \operatorname{tail}(L))=L . .
$$

Lists over a Set

- A list over the set A is a list whose components are in A.
- We denote the collection of all lists over A by Lists $[A]$.
- Example: If $A=\{a, b, c\}$, then three of the lists in Lists $[A]$ are

$$
\rangle, \quad\langle a, a, b\rangle, \quad\langle b, c, a, b, c\rangle .
$$

List with Lists as Elements

- There is no restriction on the kind of object that a list can contain.
- It is often useful to represent information in the form of lists whose elements may be lists, and the elements of those lists may be lists, and so on.
- Example: The following list contain lists as components:

List L	head (L)	$\operatorname{tail}(L)$
$\langle a,\langle b\rangle\rangle$	a	$\langle\langle b\rangle\rangle$
$\langle\langle a\rangle,\langle b, a\rangle\rangle$	$\langle a\rangle$	$\langle\langle b, a\rangle\rangle$
$\langle\langle\rangle, a,\langle \rangle\rangle, b,\langle \rangle\rangle$	$\langle\rangle, a\langle \rangle\rangle$	$\langle b,\langle \rangle\rangle$

Strings

- An alphabet A is a set of symbols.
- A string over the alphabet A is a finite sequence of zero or more symbols from A that are placed next to each other in juxtaposition.
- Example: Consider the alphabet $\{a, b, c\}$. $a a c a b b$ is a string over the alphabet $\{a, b, c\}$.
- The string with no elements is called the empty string, and we denote it by (the Greek capital letter lambda) \wedge.
- The number of elements that occur in a string is called the length of the string.
- We denote the length of a string s by $|s|$.
- Example: Over the alphabet $\{a, b, c\}$, the string $a a c a b b$ has length $|a a c a b b|=6$.

Concatenation of Strings

- The operation of placing two strings s and t next to each other to form a new string st is called concatenation, denoted by cat.
- Example: If $a a b$ and ba are two strings over the alphabet $\{a, b\}$, then

$$
\operatorname{cat}(a a b, b a)=a a b b a
$$

- If the empty string occurs as part of another string, then it does not contribute anything new to the string:

$$
\begin{aligned}
& s \Lambda=\Lambda s=s \\
& \operatorname{cat}(s, \Lambda)=s
\end{aligned}
$$

Languages over an Alphabet

- If A is an alphabet, then the set of all strings over A is denoted by A^{*}.
- Example: If $A=\{a\}$, then we have

$$
A^{*}=\{\Lambda, a, a a, a a a, \ldots\} .
$$

- A language L over A is a set of strings over A, i.e., $L \subseteq A^{*}$.
- Example:
- For any alphabet A, four languages over A are $\emptyset,\{\Lambda\}, A$ and A^{*}.
- If $A=\{a\}$, then, the corresponding languages are $\emptyset,\{\Lambda\},\{a\}$ and $\{\Lambda, a$, aa, aaa, $\ldots\}$.
- For a natural number n and a string s, s^{n} denotes the string of n s's:
- $s^{0}=\Lambda$;
- $s^{1}=s$;
- $s^{2}=s$.
- Example: If $A=\{a\}$, then we can write $A^{*}=\left\{a^{n}: n \in \mathbb{N}\right\}$.

Example

- Suppose $A=\{a, b\}$.
- Then A^{*} can be described by writing down a few strings of small length followed by an ellipsis:

$$
\begin{aligned}
A^{*}= & \{\Lambda, a, b, a a, a b, b a, b b, \\
& a a a, a a b, a b a, b a a, b a a, b a b, b b a, b b b, \ldots\} .
\end{aligned}
$$

- Some languages over A can be represented concisely by using exponents:
- $\left\{a b^{n}: n \in \mathbb{N}\right\}=\{a, a b, a b b, a b b b, \ldots\} ;$
- $\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}=\{\Lambda, a b, a a b b, a a a b b b, \ldots\} ;$
- $\left\{(a b)^{n}: n \in \mathbb{N}\right\}=\{\Lambda, a b, a b a b, a b a b a b, \ldots\}$.

Example: Numerals

- A numeral is a nonempty string of symbols that represents a number.
- We are familiar with the following three numeral systems:
- The Roman numerals represent the nonnegative integers by using the alphabet $\{\mathrm{I}, \mathrm{V}, \mathrm{X}, \mathrm{L}, \mathrm{C}, \mathrm{D}, \mathrm{M}\}$.
- The decimal numerals represent the natural numbers by using the alphabet $\{0,1,2,3,4,5,6,7,8,9\}$.
- The binary numerals represent the natural numbers by using the alphabet $\{0,1\}$.
- Example: The following numerals all represent the same number:
- The Roman numeral MDCLXVI;
- The decimal numeral 1666;
- The binary numeral 11010000010 .

Products of Languages

- Let L and M be languages.
- The product of L and M, denoted $L M$ is the set of all concatenations of strings in L with strings in M :

$$
L M=\{s t: s \in L \text { and } t \in M\} .
$$

- Example: Let $A=\{a, b, c\}$ and consider the languages $L=\{a b, a c\}$ and $M=\{a, b c, a b c\}$ over A.
Then we have

$$
\begin{aligned}
L M & =\{a b a, a b b c, a b a b c, a c a, a c b c, a c a b c\} ; \\
M L & =\{a a b, a a c, b c a b, b c a c, a b c a b, a b c a c\} .
\end{aligned}
$$

- Simple properties of the product:
- $L\{\Lambda\}=\{\Lambda\} L=L$;
- $L \emptyset=\emptyset L=\emptyset$;
- $L(M N)=L(M N)$.

Product of a Language with Itself

- For any natural number n, the product of a language L with itself n times is denoted by L^{n} :

$$
L^{n}=\left\{s_{1} s_{2} \cdots s_{n}: s_{k} \in L, k=1, \ldots, n\right\} .
$$

- The special case when $n=0$ has the following definition.

$$
L^{0}=\{\Lambda\} .
$$

- Example: If $L=\{a, b b\}$, then we have the following four products.

$$
\begin{aligned}
& L^{0}=\{\Lambda\} ; \\
& L^{1}=L=\{a, b b\} ; \\
& L^{2}= L L=\{a a, a b b, b b a, b b b b\} ; \\
& L^{3}= L L^{2}=\{a a a, a a b b, a b b a, a b b b b, \\
& \\
&\quad b b a a, b b a b b, b b b b a, b b b b b b\} .
\end{aligned}
$$

Closure

- If L is a language, then the closure of L, denoted by L^{*}, is the set of all possible concatenations of (zero or more) strings from L :

$$
L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots \cup L^{n} \cup \cdots .
$$

- We have $x \in L^{*}$ if and only if $x \in L^{n}$ for some n.

It follows that

$$
x \in L^{*} \text { if and only if either } x=\Lambda \text { or } x=\ell_{1} \ell_{2} \cdots \ell_{n}
$$

for some $n \geq 1$, where $\ell_{k} \in L$, for $k=1, \ldots, n$.

- If L is a language, then the positive closure of L, which is denoted by L^{+}, is defined by

$$
L^{+}=L^{1} \cup L^{2} \cup L^{3} \cup \cdots
$$

- It follows from the definition that $L^{*}=L^{+} \cup\{\Lambda\}$.
- It is not necessarily true that $L^{+}=L^{*}-\{\Lambda\}$.
- Example, if $L=\{\Lambda, a\}$, then $L^{+}=L^{*}$.

Properties of Closure

- Let A be an alphabet.

Then A^{*} has two meanings:

- A^{*} is the set of all strings over A;
- A^{*} is the closure of the language A.

Fortunately, the two meanings coincide!

- The following are properties of the closure of languages:
(a) $\{\Lambda\}^{*}=\emptyset^{*}=\{\Lambda\}$;
(b) $\Lambda \in L$ if and only if $L^{+}=L^{*}$;
(c) $L^{*}=L^{*} L^{*}=\left(L^{*}\right)^{*}$;
(d) $\left(L^{*} M^{*}\right)^{*}=\left(L^{*} \cup M^{*}\right)^{*}=(L \cup M)^{*}$;
(e) $L(M L)^{*}=(L M)^{*} L$.

Proof of Property (e)

- We first show $L(M L)^{*} \subseteq(L M)^{*} L$.

Suppose $x \in L(M L)^{*}$.
Then $x=\ell y, \ell \in L, y \in(M L)^{*}$.
So $x=\ell y, \ell \in L, y \in(M L)^{n}$, for some $n \geq 0$.

- If $n=0, x=\ell \Lambda=\ell=\Lambda \ell \in(L M)^{*} L$;
- If $n>0, x=\ell w_{1} \ldots w_{n}, \ell \in L, w_{i} \in M L$. So $x=\ell m_{1} \ell_{1} \cdots m_{n} \ell_{n}, \ell \in L, m_{i} \in M, \ell_{i} \in L$. But, then

$$
x=\left(\ell m_{1}\right)\left(\ell_{1} m_{2}\right) \cdots\left(\ell_{n-1} m_{n}\right) \ell_{n} \in(L M)^{*} L .
$$

The reverse inclusion $(L M)^{*} L \subseteq L(M L)^{*}$ can be proved similarly.

Relations

- An n-ary relation R over the product set $A_{1} \times \cdots \times A_{n}$ is just a subset of $A_{1} \times \cdots \times A_{n}$.
- The smallest n-ary relation over over $A_{1} \times \cdots \times A_{n}$ is \emptyset.
- The largest n-ary relation over $A_{1} \times \cdots \times A_{n}$ is $A_{1} \times \cdots \times A_{n}$ itself, called the universal relation.
- If R is a binary relation over $A \times B$, we sometimes say " R is a binary relation from A to $B^{\prime \prime}$.
- If R is an n-ary relation over $A \times \cdots \times A$, i.e., a subset of the product A^{n}, then R is called an n-ary relation on A.
- If R is a binary relation and $(x, y) \in R$, we often denote this fact by writing:
- the prefix expression $R(a, b)$; or
- the infix expression $x R y$.

Examples

- The "less than" relation is a binary relation on \mathbb{N}, defined as follows:

$$
<=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x<y\}
$$

We have $(1,2) \in<$. We write this as $1<2$.
Moreover $(5,2) \notin<$. We write this as $5 \nless 2$.

- A ternary relation P on \mathbb{R} is defined as follows:

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}\right\} .
$$

We have:

- $(3,4,5) \in P$;
- $(6,8,10) \in P$;
- $(2,1, \sqrt{5}) \in P$;
- $(1,2,5) \notin P$.

More on Relations

- The equality relation on a set A is the binary relation on A defined as follows:

$$
=:=\{(a, a): a \in A\} \text { of } A^{2}
$$

- Example: If $A=\{a, b, c\}$, then the equality relation on A is the set $\{(a, a),(b, b),(c, c)\}$.
In this case we normally write $a=a$ instead of $=(a, a)$.
- A unary relation is similar to a test for membership in a set:

Suppose R is a unary relation over the set A.
Then R can be viewed as a subset of A :

$$
\{x \in A: R(x)\} .
$$

- Example: Suppose $A=\{1,2, \ldots, 9\}$.

Consider the unary relation R on $A: R=\{(2),(3),(5),(7)\}$.
Then $\{x \in A: R(x)\}=\{2,3,5,7\}$.

