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Regular Languages and Finite Automata Regular Languages

Regular Languages

Let A be a finite alphabet.

Recall that a language L over A is a subset of A∗, i.e., a language is
a set of strings.

Recall also the following operations on languages:

L ∪M = {w ∈ A∗ : w ∈ L or w ∈ M};
LM = {uv ∈ A∗ : u ∈ L and v ∈ M}
L∗ = {Λ} ∪ L ∪ L2 ∪ L3 ∪ · · · .

The collection of regular languages over A is defined inductively as
follows:

Basis: ∅, {Λ} and {a}, a ∈ A, are regular languages;
Induction: If L and M are regular languages, then the following languages are also

regular:
L ∪M , LM , L∗.
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Regular Languages and Finite Automata Regular Languages

Example

Let A = {a, b} be an alphabet.
Show that the following languages are regular:
(a) {Λ, b};
(b) {a, ab};
(c) {Λ, b, bb, . . . , bn, . . .};
(d) {a, ab, abb, . . . , abn, . . .};
(e) {Λ, a, b, aa, bb, . . . , an, bn, . . .}.

(a) By the basis {Λ}, {b} are regular.
By the induction {Λ, b} = {Λ} ∪ {b} is regular.

(b) By the basis and (a), {a} and {Λ, b} are regular.
By the induction {a}{Λ, b} = {a, ab} is regular.

(c) By the basis {b} is regular.
By the induction {b}∗ = {Λ, b, b2, . . .} is regular.

(d) By the basis and (c), {a} and {Λ, b, b2, . . .} are regular.
By the induction {a}{Λ, b, b2, . . .} = {a, ab, ab2, . . .} is regular.

(e) By (c), {Λ, a, a2, . . .} and {Λ, b, b2, . . .} are regular.
So {Λ, a, a2, . . .} ∪ {Λ, b, b2, . . .} = {Λ, a, b, a2, b2, . . .} is regular.
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Regular Languages and Finite Automata Regular Languages

Regular Expressions

The set of regular expressions over an alphabet A is defined
inductively as follows:

Basis: Λ, ∅ and a, a ∈ A, are regular expressions;
Induction: If R and S are regular expressions, then the following expressions are

also regular:
(R), R + S , R · S , R∗.

Example: A sample of the infinitely many regular expressions over the
alphabet A = {a, b} are:

Λ, ∅, a, b, Λ + b,

b∗, a + (b · a), (a + b) · a, a · b∗, a∗ + b∗.
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Regular Languages and Finite Automata Regular Languages

Regular Expressions: Notational Conventions

To avoid using too many parentheses, we assume that the operations
are assigned priorities (from first to last):

∗ · +

Example: The regular expression a+ b · a∗ can be written in fully
parenthesized form as

(a + (b · (a∗))).

We often use juxtaposition instead of · whenever no confusion arises.

Example: We can write the preceding expression as

a + ba∗.
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The Language of a Regular Expression

To each regular expression E we associate a regular language L(E ) as
follows, where A is an alphabet and R and S are regular expressions:

L(∅) = ∅;
L(Λ) = {Λ};
L(a) = {a}, a ∈ A;

L(R + S) = L(R) ∪ L(S);
L(R · S) = L(R)L(S);
L(R∗) = L(R)∗.

It is clear that through this association:

Each regular expression represents a regular language;
Each regular language is represented by a regular expression.
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Example

Find the language of the regular expression a + bc∗.

We can evaluate the expression L(a + bc∗) as follows:

L(a + bc∗) = L(a) ∪ L(bc∗)
= L(a) ∪ (L(b)L(c∗))
= L(a) ∪ (L(b)L(c)∗)
= {a} ∪ ({b}{c}∗)
= {a} ∪ ({b}{Λ, c , c2, . . . , cn, . . .})
= {a} ∪ {b, bc , bc2, . . . , bcn, . . .}
= {a, b, bc , bc2, . . . , bcn, . . .}.
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Regular Languages and Finite Automata Regular Languages

Example

Find regular expressions for the following languages:
(a) {a, aa, aaa, . . . , an, . . .};
(b) {Λ, a, b, ab, abb, abbb, . . . , abn, . . .}.

(a) We have

{a, aa, aaa, . . . , an, . . .} = {a}{Λ, a, a2, . . .}
= {a}{a}∗ = L(a) · L(a)∗

= L(a) · L(a∗) = L(a · a∗).

So the regular expression is a · a∗.
(b) We have

{Λ, a, b, ab, abb, abbb, . . . , abn, . . .}
= {Λ} ∪ {b} ∪ {a, ab, abb, abbb, . . .}
= {Λ} ∪ {b} ∪ {a}{Λ, b, bb, bbb, . . .}
= {Λ} ∪ {b} ∪ {a}{b}∗ = L(Λ) ∪ L(b) ∪ L(a)L(b)∗

= L(Λ) ∪ L(b) ∪ L(ab∗) = L(Λ + b + ab∗).

So the regular expression is Λ + b + ab∗.
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Regular Languages and Finite Automata Regular Languages

Equality of Regular Expressions

We say that two regular expressions R and S are equal, written
R = S , if they represent the same languages, i.e.,

R = S if and only if L(R) = L(S).

Example: We have a + b = b + a.

This follows from the equality

L(a + b) = L(a) ∪ L(b) = {a} ∪ {b} = {a, b}
= {b} ∪ {a} = L(b) ∪ L(a) = L(b + a).

Example: We have ab 6= ba.

This follows from

L(ab) = L(a)L(b) = {a}{b} = {ab};
L(ba) = L(b)L(a) = {b}{a} = {ba}.
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Regular Languages and Finite Automata Regular Languages

Properties of Regular Expressions

Properties of Regular Expressions

(+) R + T = T + R ;
R + ∅ = ∅+ R = R ;
R + R = R ;
(R + S) + T = R + (S + T ).

(·) R∅ = ∅R = ∅;
RΛ = ΛR = R ;
(RS)T = R(ST ).

(Dist) R(S + T ) = RS + RT ;
(S + T )R = SR + TR .
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Regular Languages and Finite Automata Regular Languages

Properties of Regular Expressions (Cont’d)

Properties Involving Closure

∅∗ = Λ∗ = Λ;
R∗ = R∗R∗ = (R∗)∗ = R + R∗;
R∗ = Λ+ R∗ = (Λ + R)∗ = (Λ + R)R∗ = Λ+ RR∗;
R∗ = (R + · · ·+ Rk)∗, k ≥ 1;
R∗ = Λ+ R + · · ·+ Rk−1 + RkR∗, k ≥ 1;
R∗R = RR∗;
(R + S)∗ = (R∗ + S∗)∗ = (R∗S∗)∗ = (R∗S)∗R∗ = R∗(SR∗)∗;
R(SR)∗ = (RS)∗R ;
(R∗S)∗ = Λ + (R + S)∗S ;
(RS∗)∗ = Λ+ R(R + S)∗.
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Regular Languages and Finite Automata Regular Languages

Selected Proofs

Show the following:
(a) R + R = R ;
(b) R(S + T ) = RS + RT ;
(c) R∗ = R∗R∗.

(a) L(R + R) = L(R) ∪ L(R) = L(R);

(b) We have L(R(S + T ))

= L(R)L(S + T ) = L(R)(L(S) ∪ L(T ))
= L(R)L(S) ∪ L(R)L(T ) = L(RS) ∪ L(RT ) = L(RS + RT ).

(c) We show L(R∗) ⊆ L(R∗R∗) and L(R∗R∗) ⊆ L(R∗).
Suppose x ∈ L(R∗) = L(R)∗. Then x = xΛ ∈ L(R)∗L(R)∗ = L(R∗R∗).
Thus L(R∗) ⊆ L(R∗R∗).
Suppose, conversely, that x ∈ L(R∗R∗) = L(R)∗L(R)∗. Thus, x = yz ,
with y ∈ L(R)∗ and z ∈ L(R)∗. But then x = yz , with y ∈ L(R)m and
z ∈ L(R)n, for some m, n ∈ N. So x = yz ∈ L(R)m+n ⊆ L(R)∗. This
shows that L(R∗R∗) ⊆ L(R∗).
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Regular Languages and Finite Automata Regular Languages

Proving Equality of Regular Expressions

Prove the following equality:

ba∗(baa∗)∗ = b(a + ba)∗.

Since both expressions start with the letter b, it suffices to show the
simpler equality obtained by canceling b from both sides:

a∗(baa∗)∗ = (a + ba)∗.

By the properties, we know that (R + S)∗ = R∗(SR∗)∗, for any
regular expressions R and S .

In particular, for R = a and S = ba, we get

(a + ba)∗ = a∗(baa∗)∗.

Therefore the given equation is true.
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Regular Languages and Finite Automata Regular Languages

Example

Show (∅+ a + b)∗ = a∗(ba∗)∗.

We start with the left side as follows:

(∅+ a + b)∗ = (a + b)∗ (∅+ R = R)
= a∗(ba∗)∗ ((R + S)∗ = R∗(SR∗)∗)
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Example

Show that b∗(abb∗ + aabb∗ + aaabb∗)∗ = (b + ab + aab + aaab)∗.

We have

b∗(abb∗ + aabb∗ + aaabb∗)∗

= b∗((ab + aab + aaab)b∗)∗ ((S + T )R = SR + TR)
= (b + ab + aab + aaab)∗ (R∗(SR∗)∗ = (R + S)∗)
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Regular Languages and Finite Automata Regular Languages

Example

Show R + RS∗S = a∗bS∗, where R = b + aa∗b and S is any regular
expression.

We have:

R + RS∗S = RΛ + RS∗S (R = RΛ)
= R(Λ + S∗S) (R(S + T ) = RS + RT )
= R(Λ + SS∗) (R∗R = RR∗)
= RS∗ (R∗ = Λ + RR∗)
= (b + aa∗b)S∗ (R = b + aa∗b)
= (Λb + aa∗b)S∗ (ΛR = R)
= (Λ + aa∗)bS∗ ((S + T )R = SR + TR)
= a∗bS∗ (R∗ = Λ + RR∗)
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Subsection 2

Finite Automata
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Regular Languages and Finite Automata Finite Automata

Deterministic Finite Automata

A deterministic finite automaton (DFA) is quintuple
M = 〈A,S , s0,F , δ〉, consisting of:

A set A,called the input alphabet;
A set S , called the set of states;
s0 ∈ S , called the start or initial state;
F ⊆ S , called the set of final states;
A function δ : S × A → S , called the (state) transition function.

Example: Let M = 〈A,S , s0,F , δ〉, where

A = {a, b};

S = {0, 1, 2, 3};

s0 = 0;

F = {3};

δ(0, a) = 1, δ(0, b) = 2, δ(1, a) = 3, δ(1, b) = 1, δ(2, a) = 2,
δ(2, b) = 3, δ(3, a) = 3, δ(3, b) = 3.
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Regular Languages and Finite Automata Finite Automata

Language Accepted by a DFA

Let M be a DFA with input alphabet A.

The DFA M accepts a string w in A∗ if there is a path from the start
state to some final state such that w is the concatenation of the
labels on the edges of the path.

Otherwise, the DFA rejects w .

The set of all strings accepted by a DFA M is called the language of

M and is denoted by L(M).
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Regular Languages and Finite Automata Finite Automata

Example

Consider again the DFA M shown in the figure:

This DFA:

accepts the string aba;
accepts the string baaabab;
accepts infinitely many strings because we can traverse the loop out of
and into states 1, 2 or 3 any numbers of times;
rejects infinitely many strings, e.g., any string of the form abn.
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Regular Languages and Finite Automata Finite Automata

Example

Give a DFA that recognizes the language (a + b)∗.

Provide both pictorial and formal descriptions.

The DFA recognizing (a + b)∗ = {a, b}∗ (all strings over {a, b}) is

Its formal description is M = 〈A,S , s0,F , δ〉, with
A = {a, b};
S = {0};
s0 = 0;
F = {0};
δ(0, a) = δ(0, b) = 0.
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Regular Languages and Finite Automata Finite Automata

Example

Give a DFA that recognizes the language a(a+ b)∗.

Provide both pictorial and formal descriptions.

The DFA recognizing a(a + b)∗ = {a} · {a, b}∗ (all strings over {a, b}
starting with a) is

state s letter ℓ δ(s, ℓ)

0 a 1
0 b 2
1 a 1
1 b 1
2 a 2
2 b 2

It is M = 〈A,S , s0,F , δ〉, with A = {a, b}, S = {0, 1, 2}, s0 = 0,
F = {1}, and δ(0, a) = 1, δ(0, b) = 2, δ(1, a) = δ(1, b) = 1,
δ(2, a) = δ(2, b) = 2.
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Regular Languages and Finite Automata Finite Automata

Example

Build a DFA to recognize the regular language represented by the
regular expression (a + b)∗abb over the alphabet A = {a, b}.

The language is the set of strings that begin with anything but must
end with the string abb.

A DFA that recognizes it is
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Regular Languages and Finite Automata Finite Automata

Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is quintuple
N = 〈A,S , s0,F , δ〉, consisting of:

A set A,called the input alphabet;
A set S , called the set of states;
s0 ∈ S , called the start or initial state;
F ⊆ S , called the set of final states;
A function δ : S × A ∪ {Λ} → P(S), called the transition function.

Example: Let M = 〈A,S , s0,F , δ〉, where

A = {a, b};

S = {0, 1, 2, 3};

s0 = 0;

F = {3};

δ(0, a) = {1}, δ(0, b) = ∅, δ(0,Λ) = {2}, δ(1, a) = ∅, δ(1, b) = {3},
δ(1,Λ) = ∅, δ(2, a) = {2, 3}, δ(2, b) = ∅, δ(2,Λ) = ∅, δ(3, a) = ∅,
δ(3, b) = ∅, δ(3,Λ) = ∅.
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Regular Languages and Finite Automata Finite Automata

Language Accepted by an NFA

Let A be an alphabet and N be an NFA with input alphabet A.

The NFA N accepts a string w in A∗ if there exists a path from the
start state to some final state such that w is the concatenation of the
labels on the edges of the path.

Otherwise, the NFA rejects w .

The language of the NFA N is the set of strings that it accepts,
denoted by L(N).
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Regular Languages and Finite Automata Finite Automata

NFAs versus DFAs

Note that the only difference in the definitions of an NFA versus that
of a DFA lies in the transition function:

For a DFA δ : S × A → S ;
For an NFA δ′ : S × A ∪ {Λ} → P(S).

Therefore, any DFA with transition function δ : S × A → S can be
viewed as an NFA by defining δ′ : S × A ∪ {Λ} → P(S) by:

δ′(s, a) = {δ(s, a)}, for all s ∈ S , a ∈ A;
δ′(s,Λ) = ∅, for all s ∈ S .
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Regular Languages and Finite Automata Finite Automata

Example

Build an NFA that recognizes the language a∗a over the alphabet
A = {a}.

Give both a pictorial and a formal description.

The language is L(a∗a) = {a}∗ · {a} = {a, aa, aaa, . . .}.

The key is to ensure that a string is accepted if and only if it contains
at least one a.

An NFA that does the job is state s letter ℓ δ(s, ℓ)

0 a {0, 1}
0 Λ ∅
1 a ∅
1 Λ ∅

We let N = 〈A,S , s0,F , δ〉, where A = {a}, S = {0, 1}, s0 = 0,
F = {1} and δ(0, a) = {0, 1}, δ(Λ) = ∅, δ(1, a) = δ(1,Λ) = ∅.
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Regular Languages and Finite Automata Finite Automata

Example

Build an NFA that recognizes the language ab + a∗a over the
alphabet A = {a, b}.

Give both a pictorial and a formal description.

The language is
L(ab + a∗a) = {ab} ∪ ({a}∗ · {a}) = {ab, a, aa, aaa, . . .}.

An NFA that does the job is

We let N = 〈A,S , s0,F , δ〉, where A = {a, b}, S = {0, 1, 2, 3},
s0 = 0, F = {2, 3} and δ(0, a) = {1, 3}, δ(0, b) = ∅, δ(0,Λ) = ∅,
δ(1, a) = ∅, δ(1, b) = {2}, δ(1,Λ) = ∅, δ(2, a) = ∅, δ(2, b) = ∅,
δ(2,Λ) = ∅, δ(3, a) = {3}, δ(3, b) = ∅, δ(3,Λ) = ∅.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 30 / 74



Regular Languages and Finite Automata Regular Languages and Finite Automata

Subsection 3

Regular Languages and Finite Automata
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Regular Languages and Finite Automata Regular Languages and Finite Automata

From a Regular Expression to an NFA (Top-Down)

Given a regular expression over the alphabet A.

Construct the following machine:
Transform this machine into an NFA by applying the following rules
until all edges are labeled with either a letter in A or Λ:

If an edge is labeled by ∅, erase the edge;
Transform any diagram as on the left to one as on the right:
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Example

Construct an NFA for the regular expression a∗ + ab.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 33 / 74



Regular Languages and Finite Automata Regular Languages and Finite Automata

From a Regular Expression to an NFA (Bottom-Up)

Apply the following rules inductively to any regular expression, where
the letters s and f represent the start state and the final state:
1. Construct an NFA of the following form:

left, for each occurrence of the symbol ∅ in the regular expression;

center, for each occurrence of the symbol Λ in the regular expression;

right, for each occurrence of a letter x in the regular expression.

2. Let M and N be NFAs for the regular expressions R and S , respectively.
We construct NFAs for the regular expressions R + S , RS and R∗:
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Example

Use the bottom-up algorithm to construct an NFA for the regular
expression a∗ + ab.
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Transforming an NFA to a Regular Expression

Given a DFA or an NFA.

1. Create a new start state s, and draw a new edge labeled with Λ from s

to the original start state.
2. Create a new final state f , and draw new edges labeled with Λ from all

the original final states to f .
3. For each pair of states i and j that have more than one edge from i to

j , replace all the edges from i to j by a single edge labeled with the
regular expression formed by the sum of the labels on each of the edges
from i to j .

4. Construct a sequence of new machines by eliminating one state at a
time until the only states remaining are s and f .
As each state is eliminated, a new machine is constructed from the
previous machine following the process described in the next slide.
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NFA to a Regular Expression: Eliminating a State

Eliminate State k :
Let old(i , j) denote the label on edge (i , j) of the current machine.
If there is no edge (i , j), then set old(i , j) = ∅.
For each pair of edges (i , k) and (k , j), where i 6= k and j 6= k ,
calculate a new edge label, new(i , j), as follows:

new(i , j) = old(i , j) + old(i , k)old(k , k)∗old(k , j).

For all other edges (i , j), i 6= k and j 6= k , set new(i , j) = old(i , j).
The states of the new machine are those of the current machine with
state k eliminated.
The edges of the new machine are those edges (i , j) for which label
new(i , j) has been calculated.

At the end s and f are the two remaining states:
If there is an edge (s, f ), then the regular expression new(s, f )
represents the language of the original automaton.
If there is no edge (s, f ), then the language of the original automaton
is empty, which is signified by the regular expression ∅.
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Example

Find a regular expression for the language accepted by the DFA given
below:

In the first step we transform the DFA by adding a new start state
and a new final state.
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Example (Cont’d)

We have the NFA

We eliminate state 2.

There are no paths passing through state 2 between states that are
adjacent to state 2. So new(i , j) = old(i , j) for each pair of states
(i , j), where i 6= 2 and j 6= 2.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 39 / 74



Regular Languages and Finite Automata Regular Languages and Finite Automata

Example (Cont’d)

We have the NFA

We eliminate state 0.

We add a new edge (s, 1), labeled with the regular expression

new(s, 1) = old(s, 1) + old(s, 0)old(0, 0)∗old(0, 1)
= ∅+ Λ∅∗a = a.
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Example (Cont’d)

We have the NFA

We eliminate state 1.

We add a new edge 〈s, f 〉, labeled with the regular expression

new(s, f ) = old(s, f ) + old(s, 1)old(1, 1)∗old(1, f )
= ∅+ a(a + b)∗Λ = a(a + b)∗.
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Example

Find a regular expression for the language accepted by the DFA

In the first step we transform the DFA by adding a new start state s

and a new final state f .
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Example (Cont’d)

We have the NFA

We eliminate state 0.

We have the following:

new(s, 1) = ∅+ Λb∗a = b∗a;
new(3, 1) = a + bb∗a = (Λ + bb∗)a = b∗a.
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Example (Cont’d)

We have the NFA

We eliminate state 3.

We have the following:

new(2, f ) = ∅+ b∅∗Λ = b;
new(2, 1) = a + b∅∗b∗a = a + bb∗a = (Λ + bb∗)a = b∗a.
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Example (Cont’d)

We have the NFA

We eliminate state 2.

We have the following:

new(1, f ) = ∅+ b∅∗b = bb;
new(1, 1) = a + b∅∗b∗a = a + bb∗a = (Λ + bb∗)a = b∗a.
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Example (Cont’d)

We have the NFA

We eliminate state 1.

We have the following:

new(s, f ) = ∅+ b∗a(b∗a)∗bb = b∗(ab∗)∗abb (R(SR)∗ = (RS)∗R)
= b∗(ab∗)∗abb = (a + b)∗abb. ((R + S)∗ = R∗(SR∗)∗)

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 46 / 74



Regular Languages and Finite Automata Regular Languages and Finite Automata

Lambda Closure of a State in an NFA

Let N be an NFA and s be one of its states.

The lambda closure of s, denoted λ(s), is the set of states that can
be reached from s by traversing zero or more λ edges.

We define λ(s) inductively as follows for any state s in N:

Basis: s ∈ λ(s);
Induction: If p ∈ λ(s) and there is a Λ edge from p to q, then q ∈ λ(s).
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Example

Consider the following NFA N = 〈A,S ,
s0,F , δ〉, which is described both in
graphical form and formally:

δ a b Λ

0 ∅ ∅ {1}
1 {2, 3} ∅ ∅
2 ∅ {3} {1}
3 {4} ∅ {2, 4}
4 ∅ ∅ ∅

The lambda closures for the five states of the NFA are as follows:

λ(0) = {0, 1};
λ(1) = {1};
λ(2) = {1, 2};
λ(3) = {1, 2, 3, 4};
λ(4) = {4}.
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Lambda Closure of a Set of States in an NFA

Let N be an NFA and S be a set of states.

The lambda closure of S , denoted λ(S), is the set of states that can
be reached from states in S by traversing zero or more Λ edges.

If C and D are any sets of states, then we have

λ(C ∪ D) = λ(C ) ∪ λ(D).

More generally, the lambda closure of a union of sets is the union of
the lambda closures of the sets.

This property allows computing the lambda closure of a set by
calculating the union of the lambda closures of the individual
elements in the set:

λ({s1, s2, . . . , sn}) = λ(s1) ∪ λ(s2) ∪ · · · ∪ λ(sn).
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Example

Consider again the NFA N = 〈A,S , s0,F , δ〉, shown below:

We computed
λ(0) = {0, 1};
λ(1) = {1};
λ(2) = {1, 2};
λ(3) = {1, 2, 3, 4};
λ(4) = {4}.

Therefore

λ({0, 2, 4}) = λ(0)∪λ(2)∪λ(4) = {0, 1}∪{1, 2}∪{4} = {0, 1, 2, 4}.
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Transforming an NFA to a DFA

Given an NFA over alphabet A with transition function δ.

We construct a DFA over A with transition function δ′ that accepts
the same language as the NFA.

The states of the DFA are represented as certain subsets of NFA
states.

1. The DFA start state is λ(s), where s is the NFA start state.
Perform Step 2 for this DFA start state.

2. If {s1, . . . , sn} is a DFA state and a ∈ A, then construct the following
DFA state and part of the transition function δ′ in either of two ways:

δ′({s1, . . . , sn}, a) = λ(δ(s1, a) ∪ · · · ∪ δ(sn, a))
= λ(δ(s1, a)) ∪ · · · ∪ λ(δ(sn, a)).

Repeat Step 2 for each new DFA state constructed in this way.
3. A DFA state is final if one of its elements is an NFA final state.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 51 / 74



Regular Languages and Finite Automata Regular Languages and Finite Automata

Example

Use the preceding algorithm with input the NFA pictured below to
obtain a DFA accepting the same language.

We construct step-by-step the transition table for the DFA:
δ′ a b

Start {0, 1} {1, 2, 3, 4} ∅
Final {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}

∅ ∅ ∅

δ′({0, 1}, a) = λ(δ(0, a) ∪ δ(1, a)) = λ(∅ ∪ {2, 3})
= λ({2, 3}) = λ(2) ∪ λ(3)
= {1, 2} ∪ {1, 2, 3, 4} = {1, 2, 3, 4}.
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Example (Cont’d)

We came up with the DFA having transition table:

δ′ a b

Start {0, 1} {1, 2, 3, 4} ∅
Final {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}

∅ ∅ ∅

We rename states for elegance:

Replace: {0, 1} by 0, {1, 2, 3, 4} by 1, ∅ by 2.

Then the table becomes as on the left yielding the DFA pictured.

δ′ a b

Start 0 1 2
Final 1 1 1

2 2 2
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Fundamental Theorems on Finite Automata

Given a regular language, we can construct a regular expression whose
language is the given language.

Conversely, given a regular expression, its language is a regular
language.

DFAs are special cases of NFAs.

Given an NFA, we may construct a DFA whose language is the same
as that of the given NFA.

Given an NFA we may construct a regular expression whose language
is that accepted by the given NFA.

Conversely, given a regular expression, we can construct an NFA that
accepts the language of the original regular expression.
In Summary:

Regular expressions represent regular languages;
(Kleene) DFAs recognize the regular languages;
(Rabin and Scott) NFAs recognize the regular languages.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 54 / 74



Regular Languages and Finite Automata Regular Grammars

Subsection 4

Regular Grammars
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Regular Grammars

A grammar is called a regular grammar if each production takes one
of the following forms, where the capital letters are nonterminals and
w is a string of terminals:

S → Λ;
S → w ;
S → T ;
S → wT .

So only one nonterminal can appear on the right side of a production,
and it must appear at the right end of the right side.

Example:

The productions A → aBc and S → TU are not part of a regular
grammar.
The production A → abcA is admissible.
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Regular Expressions and Regular Grammars

Each line of the following list describes a regular language in terms of
a regular expression and a regular grammar:

Regular Expression Regular Grammar
a∗ S → Λ|aS

(a + b)∗ S → Λ|aS |bS

a∗ + b∗ S → Λ|A|B
A → a|aA
B → b|bB

a∗b S → b|aS

ba∗ S → bA

A → Λ|aA

(ab)∗ S → Λ|abS
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Grammars for Products of Languages

Most problems occur in trying to construct a regular grammar for a
language that is the product of languages.

Example: Construct a regular grammar for the language of the regular
expression a∗bc∗.

Observe that the strings of a∗bc∗ start with either a or b.

We can represent this property by writing down the following two
productions, where S is the start symbol: S → aS |bC .

Now we need a definition for C to derive the language of c∗.

The following two productions do the job:

C → Λ|cC .

Therefore a regular grammar for a∗bc∗ can be written as follows:

S → aS |bC
C → Λ|cC .
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Example

We consider some regular languages, all of which consist of strings of
a’s followed by strings of b’s.

The largest language of this form is the language {ambn : m, n ∈ N},
which is represented by the regular expression a∗b∗.

A regular grammar for this language can be written as follows:

S → Λ|aS |B
B → b|bB
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Example (Cont’d)

We look at four sublanguages of {ambn : m, n ∈ N}:

Language Expression Grammar
{ambn : m ≥ 0, n > 0} a∗bb∗ S → aS |B

B → b|bB

{ambn : m > 0, n ≥ 0} aa∗b∗ S → aA

A → aA|B
B → Λ|bB

{ambn : m > 0, n > 0} aa∗bb∗ S → aA

A → aA|B
B → b|bB

{ambn : m > 0 or n > 0} aa∗b∗ + a∗bb∗ S → aA|bB
A → Λ|aA|B
B → Λ|bB
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Transforming an NFA to a Regular Grammar

Given an NFA.

Perform the following steps to construct a regular grammar that
generates the language of a given NFA:

1. Rename the states to a set of capital letters;
2. The start symbol is the NFA’s start state;
3. For each transition from I to J labeled with a, create the production

I → aJ;
4. For each state transition from I to J labeled with Λ, create the

production I → J;
5. For each final state K , create the production K → Λ.
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Example

Consider the NFA shown below:

Construct a regular grammar whose language is the same as that
accepted by the NFA.

The regular grammar has start symbol S .

It consists of the following productions:

S → aI |J
I → bK

J → aJ|aK
K → Λ
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Regular Grammar: Standard Form

Suppose G is a regular grammar.

It is said to be in standard form if all its productions have one of two
forms

S → x S → xT ,

where x is either Λ or a single letter.

Any regular grammar can be converted into one in standard form.

Example: If we have a production like

A → bcB

we replace it by the following two productions, where C is a new (not
already occurring in the grammar) nonterminal:

A → bC and C → cB .
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Transforming a Regular Grammar to an NFA

Given a regular grammar.

Perform the following steps to construct an NFA that accepts the
language of the given regular grammar:

1. If necessary, transform the grammar to standard form;
2. The start state of the NFA is the grammar’s start symbol;
3. For each production I → aJ, construct a state transition from I to J

labeled with the letter a;
4. For each production I → J, construct a state transition from I to J

labeled with Λ;
5. If there are productions of the form I → a for some letter a, then

create a single new state symbol F .
For each production I → a, construct a state transition from I to F

labeled with a.
6. The final states of the NFA are F together with all I for which there is

a production I → Λ.
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Example

Transform the following regular grammar into an NFA that accepts
the language of the grammar:

S → aS |bI
I → a|aI

Since there is a production I → a, we introduce a new state F .

The NFA is shown below:
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Subsection 5

Properties of Regular Languages
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The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages:
Let L be an infinite regular language over the alphabet A.
Then there exists an integer m > 0 (the number of states in a DFA
recognizing L), such that for every string s ∈ L, with |s| ≥ m, there
exist strings x , y , z ∈ A∗, such that s = xyz , y 6= Λ, |xy | ≤ m and
xykz ∈ L, for all k ≥ 0.

Since L is regular, it is recognized by a DFA. Suppose the DFA has m
states. Consider a string s, with |s| ≥ m. To accept s, the DFA must
enter some state twice.
So the DFA must follow a walk that
contains a cycle as in the figure,
where:

s = xyz ;
each arrow represents a path that may contain other states of the DFA,
with x , y , and z the strings of letters along each path;
y is the string on a single (the first) traversal of the cycle.
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The Pumping Lemma for Regular Languages (Cont’d)

We reasoned that the DFA accepting
L, on input s follows a walk as shown
on the right.

We have the following properties:

Since |s| = m, the walk must traverse the cycle at least once.
So y 6= Λ.
Since the walks for x and y consist of distinct states (remember that y
is the string on just one traversal of the cycle), it follows that |xy | ≤ m.
Since the walk through the cycle may be traversed any number of
times, it follows that the DFA must accept all strings of the form xykz

for all k ≥ 0.

This property is called the pumping property because the string y

can be pumped up to yk by traveling through the same cycle k times.
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Example

Use the Pumping Lemma to show that L = {anbn : n ≥ 0} is not a
regular language.

Assume, by way of contradiction, that L is regular.

Consider the integer m > 0 of the Pumping Lemma.

Take s = ambm ∈ L, with |s| = 2m > m.

By the Pumping Lemma, there exist strings x , y , z , such that

s = ambm = xyz ,

with y 6= Λ, |xy | ≤ m and xykz ∈ L, for all k ≥ 0.
Since |xy | ≤ m, x and y consist only of a’s.
So y = an, from some n > 0.
Since xykz ∈ L, for all k ≥ 0, we have

am+nbm = xy2z ∈ L, n > 0.

But this is a contradiction!
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Example

Show that the language P of palindromes over the alphabet {a, b} is
not regular.

We assume that P is regular and try for a contradiction.

Then there is a DFA with m states to recognize P .

Choose a palindrome of the form s = ambam.

Apply the Pumping Lemma to get strings x , y , z such that y 6= Λ,
|xy | ≤ m and xyz = s = ambam.

Since |xy | ≤ m, x and y are both strings of a’s.

Thus y = an, for some n > 0.

Since xykz ∈ L, for all k ≥ 0,

am+nbam = xy2z ∈ L, n > 0.

This is a contradiction, since am+nbam is not a palindrome!
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Closure Properties of Regular Languages

Closure Properties of Regular Languages:

1. The union of two regular languages is regular;
2. The language product of two regular languages is regular;
3. The closure of a regular language is regular;
4. The complement of a regular language is regular;
5. The intersection of two regular languages is regular.

4. Let L be a regular language.

Then L is the language accepted by a DFA D.

Construct a new DFA, say D ′ from D by making all the final states
nonfinal and by making all the nonfinal states final.

If we let A be the alphabet for L, it follows that D ′ recognizes the
complement A∗ − L.

Thus the complement of L is recognized by a DFA and is therefore
regular.
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Example

Suppose L is the language over the alphabet {a, b} consisting of all
strings with an equal number of a’s and b’s.

Show that L is not regular.

Suppose to the contrary that L is regular.

Let M be the language of the regular expression a∗b∗.

Then L ∩M = {anbn : n ≥ 0}.

We know that M is regular because it is the language of the regular
expression a∗b∗.

Therefore L ∩M must be regular.

In other words, {anbn : n ≥ 0} must be regular.

But we know that {anbn : n ≥ 0} is NOT regular.

Therefore, L is not regular.
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Closure Under Morphisms of Regular Languages

Let A be an alphabet and let f : A∗ → A∗ be a function.

f is called a language morphism if the following conditions hold:
1. f (Λ) = Λ;
2. f (uv) = f (u)f (v), for all strings u and v .

Let f : A∗ → A∗ be a language morphism.

Let L be a language over A.
(a) If L is regular, then f (L) is regular.
(b) If L is regular, then f −1(L) is regular.

(a) Suppose L is regular.

Then it has a regular grammar.

We create a regular grammar for f (L) as follows:
Transform productions like S → w and S → wT into new productions
of the form S → f (w) and S → f (w)T .

The new grammar is regular, and any string in f (L) is derived by this
new grammar.
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Example

Use Closure Under Language Morphisms to show that the language
L = {anbcn : n ∈ N} is not regular.

We can define a morphism f : {a, b, c}∗ → {a, b, c}∗ by

f (a) = a, f (b) = Λ, f (c) = b.

Then f (L) = {anbn : n ≥ 0}.

If L is regular, then we must also conclude by Closure Under
Language Morphisms that f (L) is regular.

But we know that f (L) is NOT regular.

Therefore L is not regular.
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