Discrete Structures for Computer Science

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU CSci 341

Regular Languages and Finite Automata

- Regular Languages
- Finite Automata
- Regular Languages and Finite Automata
- Regular Grammars
- Properties of Regular Languages

Subsection 1

Regular Languages

Regular Languages

- Let A be a finite alphabet.
- Recall that a **language** *L* over *A* is a subset of *A*^{*}, i.e., a language is a set of strings.
- Recall also the following operations on languages:

$$L \cup M = \{w \in A^* : w \in L \text{ or } w \in M\};$$

$$LM = \{uv \in A^* : u \in L \text{ and } v \in M\}$$

$$L^* = \{\Lambda\} \cup L \cup L^2 \cup L^3 \cup \cdots.$$

• The collection of **regular languages** over *A* is defined inductively as follows:

Basis: \emptyset , { Λ } and {a}, $a \in A$, are regular languages;

Induction: If L and M are regular languages, then the following languages are also regular:

$$L\cup M, LM, L^*.$$

• Let $A = \{a, b\}$ be an alphabet. Show that the following languages are regular: (a) $\{\Lambda, b\};$ (b) $\{a, ab\};$ (c) { Λ , *b*, *bb*, ..., *bⁿ*, ...}; (d) $\{a, ab, abb, \dots, ab^n, \dots\};$ (e) $\{\Lambda, a, b, aa, bb, \dots, a^n, b^n, \dots\}$. (a) By the basis $\{\Lambda\}, \{b\}$ are regular. By the induction $\{\Lambda, b\} = \{\Lambda\} \cup \{b\}$ is regular. (b) By the basis and (a), $\{a\}$ and $\{\Lambda, b\}$ are regular. By the induction $\{a\}\{\Lambda, b\} = \{a, ab\}$ is regular. (c) By the basis $\{b\}$ is regular. By the induction $\{b\}^* = \{\Lambda, b, b^2, \ldots\}$ is regular. (d) By the basis and (c), $\{a\}$ and $\{\Lambda, b, b^2, \ldots\}$ are regular. By the induction $\{a\}\{\Lambda, b, b^2, \ldots\} = \{a, ab, ab^2, \ldots\}$ is regular. (e) By (c), $\{\Lambda, a, a^2, \ldots\}$ and $\{\Lambda, b, b^2, \ldots\}$ are regular. So $\{\Lambda, a, a^2, ...\} \cup \{\Lambda, b, b^2, ...\} = \{\Lambda, a, b, a^2, b^2, ...\}$ is regular.

Regular Expressions

• The set of **regular expressions** over an alphabet *A* is defined inductively as follows:

Basis: Λ , \emptyset and a, $a \in A$, are regular expressions;

Induction: If R and S are regular expressions, then the following expressions are also regular:

 $(R), R+S, R\cdot S, R^*.$

• Example: A sample of the infinitely many regular expressions over the alphabet $A = \{a, b\}$ are:

$$egin{array}{cccc} \Lambda, & \emptyset, & a, & b, & \Lambda+b, \ b^*, & a+(b\cdot a), & (a+b)\cdot a, & a\cdot b^*, & a^*+b^*. \end{array}$$

Regular Expressions: Notational Conventions

• To avoid using too many parentheses, we assume that the operations are assigned priorities (from first to last):

• Example: The regular expression $a + b \cdot a^*$ can be written in fully parenthesized form as

$$(a+(b\cdot(a^*))).$$

- \bullet We often use juxtaposition instead of \cdot whenever no confusion arises.
- Example: We can write the preceding expression as

$$a + ba^*$$
.

The Language of a Regular Expression

• To each regular expression E we associate a regular language L(E) as follows, where A is an alphabet and R and S are regular expressions:

$$L(\emptyset) = \emptyset;
L(\Lambda) = \{\Lambda\};
L(a) = \{a\}, a \in A;
L(R + S) = L(R) \cup L(S);
L(R \cdot S) = L(R)L(S);
L(R^*) = L(R)^*.$$

- It is clear that through this association:
 - Each regular expression represents a regular language;
 - Each regular language is represented by a regular expression.

Find the language of the regular expression a + bc*.
 We can evaluate the expression L(a + bc*) as follows:

$$L(a + bc^*) = L(a) \cup L(bc^*) = L(a) \cup (L(b)L(c^*)) = L(a) \cup (L(b)L(c)^*) = \{a\} \cup (\{b\}\{c\}^*) = \{a\} \cup (\{b\}\{\Lambda, c, c^2, \dots, c^n, \dots\}) = \{a\} \cup \{b, bc, bc^2, \dots, bc^n, \dots\} = \{a, b, bc, bc^2, \dots, bc^n, \dots\}.$$

- Find regular expressions for the following languages:
 - (a) $\{a, aa, aaa, ..., a^n, ...\};$
 - (b) $\{\Lambda, a, b, ab, abb, abbb, \dots, ab^n, \dots\}$.
- (a) We have

$$\{a, aa, aaa, \dots, a^n, \dots\} = \{a\}\{\Lambda, a, a^2, \dots\} \\ = \{a\}\{a\}^* = L(a) \cdot L(a)^* \\ = L(a) \cdot L(a^*) = L(a \cdot a^*).$$

So the regular expression is $a \cdot a^*$.

(b) We have

$$\{\Lambda, a, b, ab, abb, abbb, \dots, ab^n, \dots\}$$

=
$$\{\Lambda\} \cup \{b\} \cup \{a, ab, abb, abbb, \dots\}$$

=
$$\{\Lambda\} \cup \{b\} \cup \{a\}\{\Lambda, b, bb, bbb, \dots\}$$

=
$$\{\Lambda\} \cup \{b\} \cup \{a\}\{b\}^* = L(\Lambda) \cup L(b) \cup L(a)L(b)^*$$

=
$$L(\Lambda) \cup L(b) \cup L(ab^*) = L(\Lambda + b + ab^*).$$

So the regular expression is $\Lambda + b + ab^*$.

Equality of Regular Expressions

• We say that two regular expressions R and S are **equal**, written R = S, if they represent the same languages, i.e.,

$$R = S$$
 if and only if $L(R) = L(S)$.

Example: We have a + b = b + a.
 This follows from the equality

$$\begin{array}{rcl} L(a+b) &=& L(a) \cup L(b) = \{a\} \cup \{b\} = \{a,b\} \\ &=& \{b\} \cup \{a\} = L(b) \cup L(a) = L(b+a). \end{array}$$

 Example: We have ab ≠ ba. This follows from

$$\begin{array}{rcl} L(ab) &=& L(a)L(b) = \{a\}\{b\} = \{ab\};\\ L(ba) &=& L(b)L(a) = \{b\}\{a\} = \{ba\}. \end{array}$$

Properties of Regular Expressions

• Properties of Regular Expressions

(+)
$$R + T = T + R;$$

 $R + \emptyset = \emptyset + R = R;$
 $R + R = R;$
 $(R + S) + T = R + (S + T).$
(·) $R\emptyset = \emptyset R = \emptyset;$
 $R\Lambda = \Lambda R = R;$
 $(RS)T = R(ST).$
(Dist) $R(S + T) = RS + RT;$
 $(S + T)R = SR + TR.$

Properties of Regular Expressions (Cont'd)

Properties Involving Closure

$$\begin{split} \emptyset^* &= \Lambda^* = \Lambda; \\ R^* &= R^* R^* = (R^*)^* = R + R^*; \\ R^* &= \Lambda + R^* = (\Lambda + R)^* = (\Lambda + R)R^* = \Lambda + RR^*; \\ R^* &= (R + \dots + R^k)^*, \ k \geq 1; \\ R^* &= \Lambda + R + \dots + R^{k-1} + R^k R^*, \ k \geq 1; \\ R^* R &= RR^*; \\ (R + S)^* &= (R^* + S^*)^* = (R^*S^*)^* = (R^*S)^* R^* = R^*(SR^*)^*; \\ R(SR)^* &= (RS)^* R; \\ (R^*S)^* &= \Lambda + (R + S)^* S; \\ (RS^*)^* &= \Lambda + R(R + S)^*. \end{split}$$

Selected Proofs

- Show the following:
 - (a) R + R = R; (b) R(S + T) = RS + RT;
 - (c) $R^* = R^* R^*$.
- (a) $L(R+R) = L(R) \cup L(R) = L(R);$
- (b) We have L(R(S + T))

$$= L(R)L(S + T) = L(R)(L(S) \cup L(T)) = L(R)L(S) \cup L(R)L(T) = L(RS) \cup L(RT) = L(RS + RT).$$

(c) We show $L(R^*) \subseteq L(R^*R^*)$ and $L(R^*R^*) \subseteq L(R^*)$.

- Suppose $x \in L(R^*) = L(R)^*$. Then $x = x\Lambda \in L(R)^*L(R)^* = L(R^*R^*)$. Thus $L(R^*) \subseteq L(R^*R^*)$.
- Suppose, conversely, that x ∈ L(R*R*) = L(R)*L(R)*. Thus, x = yz, with y ∈ L(R)* and z ∈ L(R)*. But then x = yz, with y ∈ L(R)^m and z ∈ L(R)ⁿ, for some m, n ∈ N. So x = yz ∈ L(R)^{m+n} ⊆ L(R)*. This shows that L(R*R*) ⊆ L(R*).

Proving Equality of Regular Expressions

• Prove the following equality:

$$ba^*(baa^*)^* = b(a+ba)^*.$$

Since both expressions start with the letter b, it suffices to show the simpler equality obtained by canceling b from both sides:

$$a^*(baa^*)^* = (a + ba)^*.$$

By the properties, we know that $(R + S)^* = R^*(SR^*)^*$, for any regular expressions R and S.

In particular, for R = a and S = ba, we get

$$(a + ba)^* = a^*(baa^*)^*.$$

Therefore the given equation is true.

George Voutsadakis (LSSU)

• Show
$$(\emptyset + a + b)^* = a^*(ba^*)^*$$
.
We start with the left side as follows:

$$egin{array}{rcl} (\emptyset+a+b)^*&=&(a+b)^*&(\emptyset+R=R)\ &=&a^*(ba^*)^*&((R+S)^*=R^*(SR^*)^*) \end{array}$$

Show that b*(abb* + aabb* + aaabb*)* = (b + ab + aab + aaab)*.
 We have

• Show $R + RS^*S = a^*bS^*$, where $R = b + aa^*b$ and S is any regular expression.

We have:

$$R + RS^*S = R\Lambda + RS^*S \qquad (R = R\Lambda)$$

$$= R(\Lambda + S^*S) \qquad (R(S + T) = RS + RT)$$

$$= R(\Lambda + SS^*) \qquad (R^*R = RR^*)$$

$$= RS^* \qquad (R^* = \Lambda + RR^*)$$

$$= (b + aa^*b)S^* \qquad (R = b + aa^*b)$$

$$= (\Lambda b + aa^*b)S^* \qquad (\Lambda R = R)$$

$$= (\Lambda + aa^*)bS^* \qquad ((S + T)R = SR + TR)$$

$$= a^*bS^* \qquad (R^* = \Lambda + RR^*)$$

Subsection 2

Finite Automata

Deterministic Finite Automata

- A deterministic finite automaton (DFA) is quintuple $M = \langle A, S, s_0, F, \delta \rangle$, consisting of:
 - A set A, called the input alphabet;
 - A set S, called the set of states;
 - $s_0 \in S$, called the **start** or **initial state**;
 - $F \subseteq S$, called the **set of final states**;
 - A function $\delta : S \times A \rightarrow S$, called the (state) transition function.
- Example: Let $M = \langle A, S, s_0, F, \delta \rangle$, where

• $\delta(0, a) = 1$, $\delta(0, b) = 2$, $\delta(1, a) = 3$, $\delta(1, b) = 1$, $\delta(2, a) = 2$, $\delta(2, b) = 3$, $\delta(3, a) = 3$, $\delta(3, b) = 3$.

Language Accepted by a DFA

- Let *M* be a DFA with input alphabet *A*.
- The DFA *M* accepts a string *w* in *A*^{*} if there is a path from the start state to some final state such that *w* is the concatenation of the labels on the edges of the path.
- Otherwise, the DFA rejects w.
- The set of all strings accepted by a DFA *M* is called the **language of** *M* and is denoted by *L*(*M*).

• Consider again the DFA *M* shown in the figure:

• This DFA:

- accepts the string *aba*;
- accepts the string baaabab;
- accepts infinitely many strings because we can traverse the loop out of and into states 1, 2 or 3 any numbers of times;
- rejects infinitely many strings, e.g., any string of the form ab^n .

- Give a DFA that recognizes the language $(a + b)^*$. Provide both pictorial and formal descriptions.
- The DFA recognizing $(a + b)^* = \{a, b\}^*$ (all strings over $\{a, b\}$) is

Its formal description is $M = \langle A, S, s_0, F, \delta \rangle$, with

• $A = \{a, b\};$

•
$$F = \{0\};$$

• $\delta(0, a) = \delta(0, b) = 0.$

Give a DFA that recognizes the language a(a + b)*.
 Provide both pictorial and formal descriptions.
 The DFA recognizing a(a + b)* = {a} · {a, b}* (all strings over {a, b} starting with a) is

It is $M = \langle A, S, s_0, F, \delta \rangle$, with $A = \{a, b\}$, $S = \{0, 1, 2\}$, $s_0 = 0$, $F = \{1\}$, and $\delta(0, a) = 1$, $\delta(0, b) = 2$, $\delta(1, a) = \delta(1, b) = 1$, $\delta(2, a) = \delta(2, b) = 2$.

• Build a DFA to recognize the regular language represented by the regular expression $(a + b)^*abb$ over the alphabet $A = \{a, b\}$.

The language is the set of strings that begin with anything but must end with the string *abb*.

A DFA that recognizes it is

Nondeterministic Finite Automata

• A nondeterministic finite automaton (NFA) is quintuple

- $N = \langle A, S, s_0, F, \delta \rangle$, consisting of:
 - A set A, called the input alphabet;
 - A set S, called the set of states;
 - $s_0 \in S$, called the **start** or **initial state**;
 - $F \subseteq S$, called the **set of final states**;
 - A function $\delta : S \times A \cup \{\Lambda\} \rightarrow \mathcal{P}(S)$, called the **transition function**.
- Example: Let $M = \langle A, S, s_0, F, \delta \rangle$, where
 - $A = \{a, b\};$
 - $S = \{0, 1, 2, 3\};$
 - *s*₀ = 0;
 - *F* = {3};

• $\delta(0, a) = \{1\}, \ \delta(0, b) = \emptyset, \ \delta(0, \Lambda) = \{2\}, \ \delta(1, a) = \emptyset, \ \delta(1, b) = \{3\}, \\ \delta(1, \Lambda) = \emptyset, \ \delta(2, a) = \{2, 3\}, \ \delta(2, b) = \emptyset, \ \delta(2, \Lambda) = \emptyset, \ \delta(3, a) = \emptyset, \\ \delta(3, b) = \emptyset, \ \delta(3, \Lambda) = \emptyset.$

Language Accepted by an NFA

- Let A be an alphabet and N be an NFA with input alphabet A.
- The NFA *N* accepts a string *w* in *A*^{*} if there exists a path from the start state to some final state such that *w* is the concatenation of the labels on the edges of the path.
- Otherwise, the NFA rejects w.
- The **language** of the NFA N is the set of strings that it accepts, denoted by L(N).

NFAs versus DFAs

- Note that the only difference in the definitions of an NFA versus that of a DFA lies in the transition function:
 - For a DFA $\delta : S \times A \rightarrow S$;
 - For an NFA $\delta' : S \times A \cup \{\Lambda\} \to \mathcal{P}(S)$.
- Therefore, any DFA with transition function δ : S × A → S can be viewed as an NFA by defining δ' : S × A ∪ {Λ} → P(S) by:

$$\begin{array}{lll} \delta'(s,a) &=& \{\delta(s,a)\}, \text{ for all } s \in S, a \in A; \\ \delta'(s,\Lambda) &=& \emptyset, \text{ for all } s \in S. \end{array}$$

 Build an NFA that recognizes the language a*a over the alphabet A = {a}.

Give both a pictorial and a formal description.

The language is $L(a^*a) = \{a\}^* \cdot \{a\} = \{a, aa, aaa, ...\}.$

The key is to ensure that a string is accepted if and only if it contains at least one *a*.

An NFA that does the job is	state <i>s</i>	letter ℓ	$\delta(s,\ell)$
\bigcap^{a}	0	а	$\{0, 1\}$
	0	Λ	Ø
Start a (1)	1	а	Ø
	1	Λ	Ø

We let $N = \langle A, S, s_0, F, \delta \rangle$, where $A = \{a\}$, $S = \{0, 1\}$, $s_0 = 0$, $F = \{1\}$ and $\delta(0, a) = \{0, 1\}$, $\delta(\Lambda) = \emptyset$, $\delta(1, a) = \delta(1, \Lambda) = \emptyset$.

Build an NFA that recognizes the language ab + a*a over the alphabet A = {a, b}.
Give both a pictorial and a formal description.
The language is
L(ab + a*a) = {ab} ∪ ({a}* · {a}) = {ab, a, aa, aaa, ...}.
An NFA that does the job is

We let $N = \langle A, S, s_0, F, \delta \rangle$, where $A = \{a, b\}$, $S = \{0, 1, 2, 3\}$, $s_0 = 0$, $F = \{2, 3\}$ and $\delta(0, a) = \{1, 3\}$, $\delta(0, b) = \emptyset$, $\delta(0, \Lambda) = \emptyset$, $\delta(1, a) = \emptyset$, $\delta(1, b) = \{2\}$, $\delta(1, \Lambda) = \emptyset$, $\delta(2, a) = \emptyset$, $\delta(2, b) = \emptyset$, $\delta(2, \Lambda) = \emptyset$, $\delta(3, a) = \{3\}$, $\delta(3, b) = \emptyset$, $\delta(3, \Lambda) = \emptyset$.

Subsection 3

Regular Languages and Finite Automata

From a Regular Expression to an NFA (Top-Down)

• Given a regular expression over the alphabet A.

- Construct the following machine:
- Transform this machine into an NFA by applying the following rules until all edges are labeled with either a letter in A or Λ:
 - If an edge is labeled by \emptyset , erase the edge;
 - Transform any diagram as on the left to one as on the right:

• Construct an NFA for the regular expression $a^* + ab$.

From a Regular Expression to an NFA (Bottom-Up)

- Apply the following rules inductively to any regular expression, where the letters *s* and *f* represent the start state and the final state:
 - 1. Construct an NFA of the following form:
 - left, for each occurrence of the symbol \emptyset in the regular expression;
 - center, for each occurrence of the symbol Λ in the regular expression;
 - right, for each occurrence of a letter x in the regular expression.

2. Let *M* and *N* be NFAs for the regular expressions *R* and *S*, respectively. We construct NFAs for the regular expressions R + S, *RS* and R^* :

• Use the bottom-up algorithm to construct an NFA for the regular expression $a^* + ab$.

Transforming an NFA to a Regular Expression

• Given a DFA or an NFA.

- 1. Create a new start state *s*, and draw a new edge labeled with Λ from *s* to the original start state.
- 2. Create a new final state f, and draw new edges labeled with Λ from all the original final states to f.
- 3. For each pair of states *i* and *j* that have more than one edge from *i* to *j*, replace all the edges from *i* to *j* by a single edge labeled with the regular expression formed by the sum of the labels on each of the edges from *i* to *j*.
- Construct a sequence of new machines by eliminating one state at a time until the only states remaining are s and f.
 As each state is eliminated, a new machine is constructed from the previous machine following the process described in the next slide.
NFA to a Regular Expression: Eliminating a State

• Eliminate State k:

- Let old(i, j) denote the label on edge (i, j) of the current machine.
 If there is no edge (i, j), then set old(i, j) = Ø.
- For each pair of edges (i, k) and (k, j), where $i \neq k$ and $j \neq k$, calculate a new edge label, new(i, j), as follows:

 $\mathsf{new}(i,j) = \mathsf{old}(i,j) + \mathsf{old}(i,k)\mathsf{old}(k,k)^*\mathsf{old}(k,j).$

- For all other edges (i,j), $i \neq k$ and $j \neq k$, set new(i,j) = old(i,j).
- The states of the new machine are those of the current machine with state *k* eliminated.
- The edges of the new machine are those edges (i,j) for which label new(i,j) has been calculated.
- At the end *s* and *f* are the two remaining states:
 - If there is an edge (s, f), then the regular expression new(s, f) represents the language of the original automaton.
 - If there is no edge (s, f), then the language of the original automaton is empty, which is signified by the regular expression Ø.

• Find a regular expression for the language accepted by the DFA given below:

• In the first step we transform the DFA by adding a new start state and a new final state.

• We have the NFA

• We eliminate state 2.

There are no paths passing through state 2 between states that are adjacent to state 2. So new(i,j) = old(i,j) for each pair of states (i,j), where $i \neq 2$ and $j \neq 2$.

• We have the NFA

• We eliminate state 0.

We add a new edge (s, 1), labeled with the regular expression

$$\begin{array}{rcl} \mathsf{new}(s,1) &=& \mathsf{old}(s,1) + \mathsf{old}(s,0)\mathsf{old}(0,0)^*\mathsf{old}(0,1) \\ &=& \emptyset + \Lambda \emptyset^* a = a. \end{array}$$

• We have the NFA

• We eliminate state 1.

We add a new edge $\langle s, f \rangle$, labeled with the regular expression

$$\begin{array}{rcl} \mathsf{new}(s,f) &=& \mathsf{old}(s,f) + \mathsf{old}(s,1)\mathsf{old}(1,1)^*\mathsf{old}(1,f) \\ &=& \emptyset + a(a+b)^*\Lambda = a(a+b)^*. \end{array}$$

• Find a regular expression for the language accepted by the DFA

• In the first step we transform the DFA by adding a new start state *s* and a new final state *f*.

• We have the NFA

• We eliminate state 0. We have the following:

$$\begin{array}{lll} \mathsf{new}(s,1) &=& \emptyset + \Lambda b^* a = b^* a;\\ \mathsf{new}(3,1) &=& a + b b^* a = (\Lambda + b b^*) a = b^* a \end{array}$$

• We have the NFA

• We eliminate state 3. We have the following:

$$\begin{array}{lll} \mathsf{new}(2,f) &=& \emptyset + b\emptyset^*\Lambda = b;\\ \mathsf{new}(2,1) &=& a + b\emptyset^*b^*a = a + bb^*a = (\Lambda + bb^*)a = b^*a. \end{array}$$

• We have the NFA

• We eliminate state 2. We have the following:

$$\begin{array}{lll} \mathsf{new}(1,f) &=& \emptyset + b \emptyset^* b = bb;\\ \mathsf{new}(1,1) &=& a + b \emptyset^* b^* a = a + b b^* a = (\Lambda + b b^*) a = b^* a. \end{array}$$

• We have the NFA

• We eliminate state 1. We have the following:

 $new(s, f) = \emptyset + b^* a(b^* a)^* bb = b^* (ab^*)^* abb \quad (R(SR)^* = (RS)^* R) \\ = b^* (ab^*)^* abb = (a + b)^* abb. \quad ((R + S)^* = R^* (SR^*)^*)$

Lambda Closure of a State in an NFA

- Let *N* be an NFA and *s* be one of its states.
- The lambda closure of s, denoted λ(s), is the set of states that can be reached from s by traversing zero or more λ edges.
- We define $\lambda(s)$ inductively as follows for any state s in N:

Basis: $s \in \lambda(s)$;

Induction: If $p \in \lambda(s)$ and there is a Λ edge from p to q, then $q \in \lambda(s)$.

• Consider the following NFA $N = \langle A, S, s_0, F, \delta \rangle$, which is described both in graphical form and formally:

δ	а	Ь	٨
0	Ø	Ø	{1}
1	{2,3}	Ø	Ø
2	Ø	{3}	$\{1\}$
3	{4}	Ø	{2,4}
4	Ø	Ø	Ø

The lambda closures for the five states of the NFA are as follows:

$$egin{array}{rcl} \lambda(0) &=& \{0,1\}; \ \lambda(1) &=& \{1\}; \ \lambda(2) &=& \{1,2\}; \ \lambda(3) &=& \{1,2,3,4\} \ \lambda(4) &=& \{4\}. \end{array}$$

Lambda Closure of a Set of States in an NFA

- Let N be an NFA and S be a set of states.
- The lambda closure of S, denoted λ(S), is the set of states that can be reached from states in S by traversing zero or more Λ edges.
- If C and D are any sets of states, then we have

$$\lambda(C \cup D) = \lambda(C) \cup \lambda(D).$$

- More generally, the lambda closure of a union of sets is the union of the lambda closures of the sets.
- This property allows computing the lambda closure of a set by calculating the union of the lambda closures of the individual elements in the set:

$$\lambda({s_1, s_2, \ldots, s_n}) = \lambda(s_1) \cup \lambda(s_2) \cup \cdots \cup \lambda(s_n).$$

• Consider again the NFA $N = \langle A, S, s_0, F, \delta \rangle$, shown below:

We computed

$$\begin{array}{rcl} \lambda(0) &=& \{0,1\};\\ \lambda(1) &=& \{1\};\\ \lambda(2) &=& \{1,2\};\\ \lambda(3) &=& \{1,2,3,4\};\\ \lambda(4) &=& \{4\}. \end{array}$$

Therefore

 $\lambda(\{0,2,4\}) = \lambda(0) \cup \lambda(2) \cup \lambda(4) = \{0,1\} \cup \{1,2\} \cup \{4\} = \{0,1,2,4\}.$

Transforming an NFA to a DFA

- Given an NFA over alphabet A with transition function δ .
- We construct a DFA over A with transition function δ' that accepts the same language as the NFA.
- The states of the DFA are represented as certain subsets of NFA states.
 - 1. The DFA start state is $\lambda(s)$, where s is the NFA start state. Perform Step 2 for this DFA start state.
 - 2. If $\{s_1, \ldots, s_n\}$ is a DFA state and $a \in A$, then construct the following DFA state and part of the transition function δ' in either of two ways:

$$\begin{array}{lll} \delta'(\{s_1,\ldots,s_n\},a) &=& \lambda(\delta(s_1,a)\cup\cdots\cup\delta(s_n,a))\\ &=& \lambda(\delta(s_1,a))\cup\cdots\cup\lambda(\delta(s_n,a)). \end{array}$$

Repeat Step 2 for each new DFA state constructed in this way.

3. A DFA state is final if one of its elements is an NFA final state.

• Use the preceding algorithm with input the NFA pictured below to obtain a DFA accepting the same language.

We construct step-by-step the transition table for the DFA:

• We came up with the DFA having transition table:

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|}\hline & \delta' & a & b \\\hline Start & \{0,1\} & \{1,2,3,4\} & \emptyset \\\hline Final & \{1,2,3,4\} & \{1,2,3,4\} & \{1,2,3,4\} \\& \emptyset & \emptyset & \emptyset \end{array}$$

• We rename states for elegance:

Replace: $\{0,1\}$ by 0, $\{1,2,3,4\}$ by 1, \emptyset by 2.

• Then the table becomes as on the left yielding the DFA pictured.

$$\begin{array}{c|ccc} & \delta' & a & b \\ \hline Start & 0 & 1 & 2 \\ Final & 1 & 1 & 1 \\ & 2 & 2 & 2 \end{array}$$

Fundamental Theorems on Finite Automata

- Given a regular language, we can construct a regular expression whose language is the given language.
 Conversely, given a regular expression, its language is a regular language.
- DFAs are special cases of NFAs.

Given an NFA, we may construct a DFA whose language is the same as that of the given NFA.

• Given an NFA we may construct a regular expression whose language is that accepted by the given NFA.

Conversely, given a regular expression, we can construct an NFA that accepts the language of the original regular expression.

- In Summary:
 - Regular expressions represent regular languages;
 - (Kleene) DFAs recognize the regular languages;
 - (Rabin and Scott) NFAs recognize the regular languages.

Subsection 4

Regular Grammars

Regular Grammars

• A grammar is called a **regular grammar** if each production takes one of the following forms, where the capital letters are nonterminals and *w* is a string of terminals:

$$egin{array}{cccc} S &
ightarrow & \Lambda; \ S &
ightarrow & w; \ S &
ightarrow & T; \ S &
ightarrow & wT \end{array}$$

- So only one nonterminal can appear on the right side of a production, and it must appear at the right end of the right side.
- Example:
 - The productions $A \rightarrow aBc$ and $S \rightarrow TU$ are not part of a regular grammar.
 - The production $A \rightarrow abcA$ is admissible.

Regular Expressions and Regular Grammars

• Each line of the following list describes a regular language in terms of a regular expression and a regular grammar:

Regular Expression a*	Regular Gramma $S \rightarrow \Lambda aS$
$(a + b)^*$	$S ightarrow \Lambda aS bS$
$a^* + b^*$	$S ightarrow \Lambda A B$
	A ightarrow a a A
	B ightarrow b bB
a*b	S ightarrow b aS
ba*	S ightarrow bA
	$A ightarrow \Lambda aA$
(<i>ab</i>)*	$S ightarrow \Lambda abS$

Grammars for Products of Languages

- Most problems occur in trying to construct a regular grammar for a language that is the product of languages.
- Example: Construct a regular grammar for the language of the regular expression a^*bc^* .

Observe that the strings of a^*bc^* start with either *a* or *b*.

We can represent this property by writing down the following two productions, where S is the start symbol: $S \rightarrow aS|bC$.

Now we need a definition for C to derive the language of c^* .

The following two productions do the job:

$$C \rightarrow \Lambda | cC.$$

Therefore a regular grammar for a^*bc^* can be written as follows:

$$\begin{array}{rcl} S & \to & aS|bC\\ C & \to & \Lambda|cC. \end{array}$$

- We consider some regular languages, all of which consist of strings of *a*'s followed by strings of *b*'s.
- The largest language of this form is the language $\{a^m b^n : m, n \in \mathbb{N}\}$, which is represented by the regular expression a^*b^* .
- A regular grammar for this language can be written as follows:

$$egin{array}{rcl} S &
ightarrow & \Lambda|aS|B\ B &
ightarrow & b|bB \end{array}$$

• We look at four sublanguages of $\{a^m b^n : m, n \in \mathbb{N}\}$:

Language $\{a^mb^n: m \ge 0, n > 0\}$	Expression a*bb*	$egin{array}{c} { m Grammar} \ { m S} ightarrow { m aS} { m B} \ { m B} ightarrow { m b} { m bB} \end{array}$
$\{a^mb^n: m>0, n\ge 0\}$	aa*b*	$egin{array}{llllllllllllllllllllllllllllllllllll$
${a^m b^n : m > 0, n > 0}$	aa*bb*	$egin{array}{llllllllllllllllllllllllllllllllllll$
${a^m b^n : m > 0 \text{ or } n > 0}$	aa*b* + a*bb*	S ightarrow aA bB $A ightarrow \Lambda aA B$ $B ightarrow \Lambda bB$

Transforming an NFA to a Regular Grammar

Given an NFA.

- Perform the following steps to construct a regular grammar that generates the language of a given NFA:
 - 1. Rename the states to a set of capital letters;
 - 2. The start symbol is the NFA's start state;
 - 3. For each transition from *I* to *J* labeled with *a*, create the production $I \rightarrow aJ$;
 - 4. For each state transition from I to J labeled with Λ , create the production $I \rightarrow J$;
 - 5. For each final state K, create the production $K \to \Lambda$.

Consider the NFA shown below:

Construct a regular grammar whose language is the same as that accepted by the NFA.

The regular grammar has start symbol S.

It consists of the following productions:

$$egin{array}{ccc} S &
ightarrow & al |J \ I &
ightarrow & bK \ J &
ightarrow & aJ |aK \ K &
ightarrow & \Lambda \end{array}$$

Regular Grammar: Standard Form

- Suppose *G* is a regular grammar.
- It is said to be in **standard form** if all its productions have one of two forms

$$S \to x$$
 $S \to xT$,

where x is either Λ or a single letter.

- Any regular grammar can be converted into one in standard form.
- Example: If we have a production like

$$A \rightarrow bcB$$

we replace it by the following two productions, where C is a new (not already occurring in the grammar) nonterminal:

$$A \rightarrow bC$$
 and $C \rightarrow cB$.

Transforming a Regular Grammar to an NFA

- Given a regular grammar.
- Perform the following steps to construct an NFA that accepts the language of the given regular grammar:
 - 1. If necessary, transform the grammar to standard form;
 - 2. The start state of the NFA is the grammar's start symbol;
 - 3. For each production $I \rightarrow aJ$, construct a state transition from I to J labeled with the letter a;
 - 4. For each production $I \rightarrow J$, construct a state transition from I to J labeled with Λ ;
 - If there are productions of the form *I* → *a* for some letter *a*, then create a single new state symbol *F*.
 For each production *I* → *a*, construct a state transition from *I* to *F* labeled with *a*.
 - 6. The final states of the NFA are F together with all I for which there is a production $I \rightarrow \Lambda$.

• Transform the following regular grammar into an NFA that accepts the language of the grammar:

$$egin{array}{ccc} S & o & aS|bl\ I & o & a|aI \end{array}$$

Since there is a production $I \rightarrow a$, we introduce a new state F. The NFA is shown below:

Subsection 5

Properties of Regular Languages

The Pumping Lemma for Regular Languages

• The Pumping Lemma for Regular Languages:

Let *L* be an infinite regular language over the alphabet *A*. Then there exists an integer m > 0 (the number of states in a DFA recognizing *L*), such that for every string $s \in L$, with $|s| \ge m$, there exist strings $x, y, z \in A^*$, such that $s = xyz, y \ne \Lambda$, $|xy| \le m$ and $xy^k z \in L$, for all $k \ge 0$.

Since *L* is regular, it is recognized by a DFA. Suppose the DFA has *m* states. Consider a string *s*, with $|s| \ge m$. To accept *s*, the DFA must enter some state twice.

So the DFA must follow a walk that contains a cycle as in the figure, where:

- s = xyz;
- each arrow represents a path that may contain other states of the DFA, with x, y, and z the strings of letters along each path;
- y is the string on a single (the first) traversal of the cycle.

The Pumping Lemma for Regular Languages (Cont'd)

• We reasoned that the DFA accepting *L*, on input *s* follows a walk as shown on the right.

We have the following properties:

- Since |s| = m, the walk must traverse the cycle at least once. So $y \neq \Lambda$.
- Since the walks for x and y consist of distinct states (remember that y is the string on just one traversal of the cycle), it follows that |xy| ≤ m.
- Since the walk through the cycle may be traversed any number of times, it follows that the DFA must accept all strings of the form xy^kz for all k ≥ 0.

This property is called the **pumping property** because the string y can be pumped up to y^k by traveling through the same cycle k times.

Use the Pumping Lemma to show that L = {aⁿbⁿ : n ≥ 0} is not a regular language.

Assume, by way of contradiction, that L is regular.

Consider the integer m > 0 of the Pumping Lemma.

Take
$$s = a^m b^m \in L$$
, with $|s| = 2m > m$.

By the Pumping Lemma, there exist strings x, y, z, such that

$$s = a^m b^m = xyz$$

with $y \neq \Lambda$, $|xy| \leq m$ and $xy^k z \in L$, for all $k \geq 0$.

- Since $|xy| \le m$, x and y consist only of a's. So $y = a^n$, from some n > 0.
- Since $xy^k z \in L$, for all $k \ge 0$, we have

$$a^{m+n}b^m = xy^2z \in L, \ n > 0.$$

But this is a contradiction!

George Voutsadakis (LSSU) Discrete Structures

• Show that the language P of palindromes over the alphabet $\{a, b\}$ is not regular.

We assume that P is regular and try for a contradiction.

Then there is a DFA with m states to recognize P.

Choose a palindrome of the form $s = a^m b a^m$.

Apply the Pumping Lemma to get strings x, y, z such that $y \neq \Lambda$, $|xy| \leq m$ and $xyz = s = a^m ba^m$.

Since $|xy| \le m$, x and y are both strings of a's.

Thus $y = a^n$, for some n > 0.

Since $xy^k z \in L$, for all $k \ge 0$,

$$a^{m+n}ba^m = xy^2z \in L, \ n > 0.$$

This is a contradiction, since $a^{m+n}ba^m$ is not a palindrome!

Closure Properties of Regular Languages

• Closure Properties of Regular Languages:

- 1. The union of two regular languages is regular;
- 2. The language product of two regular languages is regular;
- 3. The closure of a regular language is regular;
- 4. The complement of a regular language is regular;
- 5. The intersection of two regular languages is regular.
- 4. Let L be a regular language.

Then L is the language accepted by a DFA D.

Construct a new DFA, say D' from D by making all the final states nonfinal and by making all the nonfinal states final.

If we let A be the alphabet for L, it follows that D' recognizes the complement $A^* - L$.

Thus the complement of L is recognized by a DFA and is therefore regular.

• Suppose *L* is the language over the alphabet {*a*, *b*} consisting of all strings with an equal number of *a*'s and *b*'s.

Show that L is not regular.

Suppose to the contrary that L is regular.

Let *M* be the language of the regular expression a^*b^* .

Then $L \cap M = \{a^n b^n : n \ge 0\}.$

We know that M is regular because it is the language of the regular expression a^*b^* .

Therefore $L \cap M$ must be regular.

In other words, $\{a^n b^n : n \ge 0\}$ must be regular.

But we know that $\{a^n b^n : n \ge 0\}$ is NOT regular.

Therefore, L is not regular.
Closure Under Morphisms of Regular Languages

- Let A be an alphabet and let $f : A^* \to A^*$ be a function.
- f is called a language morphism if the following conditions hold:
 1. f(Λ) = Λ;
 - 2. f(uv) = f(u)f(v), for all strings u and v.
- Let $f : A^* \to A^*$ be a language morphism.

Let L be a language over A.

- (a) If L is regular, then f(L) is regular.
- (b) If L is regular, then $f^{-1}(L)$ is regular.
- (a) Suppose *L* is regular.

Then it has a regular grammar.

We create a regular grammar for f(L) as follows:

Transform productions like $S \to w$ and $S \to wT$ into new productions of the form $S \to f(w)$ and $S \to f(w)T$.

The new grammar is regular, and any string in f(L) is derived by this new grammar.

Example

• Use Closure Under Language Morphisms to show that the language $L = \{a^n b c^n : n \in \mathbb{N}\}$ is not regular.

We can define a morphism $f: \{a, b, c\}^* \rightarrow \{a, b, c\}^*$ by

$$f(a) = a$$
, $f(b) = \Lambda$, $f(c) = b$.

Then
$$f(L) = \{a^n b^n : n \ge 0\}.$$

If L is regular, then we must also conclude by Closure Under Language Morphisms that f(L) is regular.

But we know that f(L) is NOT regular.

Therefore L is not regular.