
Discrete Structures for Computer Science

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU CSci 341

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 1 / 46

Outline

1 Context-Free Languages and Pushdown Automata
Context-Free Languages
Pushdown Automata
Context-Free Languages and Pushdown Automata
Chomsky Normal Form
Properties of Context-Free Languages

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 2 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages

Subsection 1

Context-Free Languages

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 3 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages

Context-Free Grammars

A context-free grammar is a grammar whose productions are of the
form

S → w ,

where S is a nonterminal and w is any string over the alphabet of
terminals and nonterminals.

Example: The grammar
S → Λ|aSb

is context-free.

Any regular grammar is context-free.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 4 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages

Context-Free Languages

A language is context-free if it is generated by a context-free
grammar.

Example: The language {anbn : n ≥ 0} is a context-free language
since it is generated by the context-free grammar S → Λ|aSb.

Regular languages are context-free.

The language {anbn : n ≥ 0} is context-free but not regular.

Therefore the set of all regular languages is a proper subset of the set
of all context-free languages.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 5 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages

Terminology

The term “context-free” comes from the requirement that all
productions contain a single nonterminal on the left.

When this is the case, any production S → w can be used in a
derivation without regard to the “context” in which S appears.

Example: We can use the rule S → w to make the following
derivation step: aS ⇒ aw .

A grammar that is not context-free must have some production whose
left side is a string of two or more symbols.

Example: The production Sc → w cannot be part of a context-free
grammar.

Any derivation that uses this production can replace the nonterminal
S only in a “context” that has c on the right.

Example: We can use the rule Sc → w to make the following
derivation step: aSc ⇒ aw .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 6 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages

Combining Context-Free Languages

Suppose M and N are context-free languages whose grammars have
disjoint sets of nonterminals (rename them if necessary).

Suppose also that the start symbols for the grammars of M and N are
A and B , respectively.

Then we have the following new languages and grammars:

1. The language M ∪ N is context-free, and its grammar starts with the
two productions S → A|B.

2. The language MN is context-free, and its grammar starts with the
production S → AB.

3. The language M∗ is context-free, and its grammar starts with the
production S → Λ|AS .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 7 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Subsection 2

Pushdown Automata

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 8 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Pushdown Automata

A pushdown automaton (PDA) is formally defined as a 7-tuple:
M = 〈A, Γ,Z ,S , q0,F , δ〉, where

A is a finite set, called the input alphabet;
Γ is a finite set, called the stack alphabet;
Z ∈ Γ is the initial stack symbol;
S is a finite set of states;
q0 ∈ S is the start state;
F ⊆ S is the set of final states;
δ ⊆ S × (A ∪ {Λ})× Γ× {pop, push× (Γ− {Z}), nop} × S is the
transition function.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 9 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Graphical Representation

We look at the meaning of some operations:

(a) The first operation is (i , b,C , pop, j).

The meaning is at state i , with input b
and C on top of the stack, pop C and
transition to state j .

(b) The second operation is (i , b,C , nop, j).

The meaning is at state i , with input b
and C on top of the stack, neither pop nor
push any symbol from the stack and
transition to state j .

(c) The third operation is (i , b,C , push(D), j).
The meaning is at state i , with input b and C on top of the stack,
push D on the stack and transition to state j .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 10 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Nondeterminism

In a PDA there are two types of nondeterminism that may occur:

A state i may emit two or more edges labeled with the same input
symbol b and the same stack symbol C .
In other words, there are at least two 5-tuples with first three
components i , b,C .
Example: The following represents nondeterminism:

(i , b,C , pop, j), (i , b,C , push(D), k).

A state i may emit two edges labeled with the same stack symbol C ,
where one input symbol is Λ and the other input symbol is not.
Then the machine has the option of consuming the input letter or
leaving it alone.
Example: The following represents nondeterminism:

(i ,Λ,C , pop, j), (i , b,C , push(D), k).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 11 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

The Language of a Pushdown Automaton

Let P be a PDA with input alphabet A.

A string is accepted by the PDA if there is some computation
(sequence of moves) from the start state that ends up in a final state
with all letters of the string consumed.

Otherwise, the string is rejected by the PDA.

The language of the PDA P , denoted L(P), is the set of strings
that it accepts.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 12 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Representing a Computation of a Pushdown Automaton

Let P be a PDA.

A triple of the form

(current state, unconsumed input, stack contents)

is called an instantaneous description or an ID.

We represent a computation as a sequence of IDs.

Example: The ID
(i , abc ,XYZW)

means that:

The PDA is in state i ;
It is currently reading the letter a of the unconsumed input abc ;
X is at the top of the stack whose contents are XYZW .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 13 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Example

The language {anbn : n ≥ 0} can be accepted by a PDA.

The PDA works as follows:
It keeps track of the number of a’s in an input string by pushing the
symbol Y onto the stack for each a.
Then it changes state and starts to pop the stack for each b

encountered.

The following PDA will do the job, where X is the initial symbol on
the stack:

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 14 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Example (Cont’d)

We give a formal representation.

The components are P = 〈A, Γ,Z ,S , q0,F , δ〉, where:

A = {a, b};

Γ = {X ,Y };

Z = X ;

S = {0, 1, 2};

q0 = 0;

F = {2};
δ = {(0,Λ,X , nop, 2), (0, a,X , push(Y), 0), (0, a,Y , push(Y), 0),
(0, b,Y , pop, 1), (1, b,Y , pop, 1), (1,Λ,X , nop, 2)}

An accepting computation on aabb is as follows:

(0, aabb,X) → (0, abb,YX) → (0, bb,YYX)
→ (1, b,YX) → (1,Λ,X) → (2,Λ,X).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 15 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Equivalent Forms of Acceptance

There are two types of acceptance in PDAs:

Final-state acceptance:
A string is accepted if it has been consumed and the PDA is in a final
state.
Empty stack acceptance:
This requires that the input string be consumed and the stack be
empty, with no requirement that the machine be in any particular state.

We show that these definitions of acceptance are equivalent:

The class of languages accepted by PDAs that use empty stack
acceptance is the same as the class of languages accepted by PDAs
that use final-state acceptance.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 16 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Example

The language {anbn : n ≥ 0} can be
accepted by a PDA that accepts by
empty stack.
The following PDA will do the job,
where X is the initial symbol on the
stack:

The formal description of δ is:
δ = {(0, a,X , push(X), 0), (0,Λ,X , pop, 1), (1, b,X , pop, 1)};

An accepting computation on aabb is:

(0, aabb,X) → (0, abb,XX) → (0, bb,XXX)
→ (1, bb,XX) → (1, b,X) → (1,Λ,Λ).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 17 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

From a Final State PDA to an Empty Stack PDA

Given a PDA that uses final state acceptance, with X the initial stack
symbol.

1. Create a new start state s, a new “empty stack” state e, and a new
stack symbol Y that is at the top of the stack when the new PDA
starts its execution.

2. Connect the new start state to the old start state by an edge labeled
Λ,Y

push(X)
.

3. Connect each final state to the new “empty stack” state e with one
edge for each stack symbol.
Label the edges with the expressions of the following form, where Z

denotes any stack symbol, including Y :
Λ,Z

pop
.

4. Add new edges from e to e labeled with the same expressions as in
Step 3.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 18 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Example

A PDA accepting the language {Λ, a} by final state, with initial stack
symbol X , is shown on the left:

Following the algorithm we transform it into a PDA accepting by
empty stack, with initial stack symbol Y .

This is shown on the right.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 19 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

From an Empty Stack PDA to a Final State PDA

The idea is to create a new final state that can be entered when an
empty stack occurs in the given PDA.

We create a new start state with a new stack symbol Y .
Then add a Λ edge from the new start state to the old start state that
pushes the old initial stack symbol X onto the stack.
An empty stack of the given PDA is detected whenever Y appears at
the top of the stack.

The algorithm to construct a final-state PDA from an empty stack
PDA, with initial stack symbol X :
1. Create a new start state s, a new final state f , and a new stack symbol

Y , set as the initial stack symbol of the new PDA.
2. Connect the new start state to the old start state by an edge labeled

Λ,Y

push(X)
.

3. Connect each state of the given PDA to the new final state f , and

label each of these new edges with the expression
Λ,Y

nop
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 20 / 46

Context-Free Languages and Pushdown Automata Pushdown Automata

Example

The PDA on the left accepts {Λ} by empty stack, with initial stack
symbol X .

We get a PDA accepting {Λ} by final state with initial stack symbol
Y .

This is shown on the right.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 21 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages and Pushdown Automata

Subsection 3

Context-Free Languages and Pushdown Automata

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 22 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages and Pushdown Automata

Allowing Multiple Stack Operations

To shorten a PDA’s description, we allow the operation field of a
PDA instruction to hold a list of stack instructions.

The 5-tuple
(i , a,C , 〈pop, push(X), push(Y)〉, j)

is executed by performing the operations pop, push(X), push(Y).

This generalization does not alter the “power” of PDAs:

For each generalized PDA, there exists an ordinary (single stack
instruction) PDA that recognizes the same language.

We can implement the generalized instructions in an ordinary PDA by
placing enough new symbols on the stack at the start of the
computation to make sure that any sequence of pop operations will
not empty the stack if it is followed by a push operation.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 23 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages and Pushdown Automata

Example

Consider again the instruction

(i , a,C , 〈pop, push(X), push(Y)〉, j).

We can execute this instruction in an ordinary PDA by the following
sequence of instructions, where k and ℓ are new states:

(i , a,C , pop, k)
(k ,Λ, ?, push(X), ℓ) (? represents some stack symbol)
(ℓ,Λ,X , push(Y), j).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 24 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages and Pushdown Automata

From a Context-Free Grammar to a PDA (Empty Stack)

Given a context-free grammar G .

We construct a (generalized) PDA accepting by emptystack with:

A single state 0;
Stack symbols the set of terminals and nonterminals;
Initial stack symbol the grammar’s start symbol.
The transition function consists of the following instructions:

1. For each terminal symbol a, the instruction (0, a, a, pop, 0);
2. For each production A → B1B2 . . .Bn, where each Bi represents either

a terminal or a nonterminal, create the instruction

(0,Λ,A, 〈pop, push(Bn), push(Bn−1), . . . , push(B1)〉, 0).

3. For each production A → Λ, create the instruction (0,Λ,A, pop, 0).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 25 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages and Pushdown Automata

Example

Suppose we have the following context-free grammar for the language
{anbn : n ≥ 0}:

S → aSb|Λ.

Apply the algorithm to obtain a PDA accepting by empty stack the
same language.
1. From the terminals a and b we create the two instructions

(0, a, a, pop, 0), (0, b, b, pop, 0).

2. From the production S → aSb, we create the instruction
(0,Λ, S , 〈pop, push(b), push(S), push(a)〉, 0).

3. From the production S → Λ we create the instruction (0,Λ, S , pop, 0).

We have the PDA, with set of states {0}, input alphabet {a, b},
stack alphabet {S , a, b}, initial stack symbol S and transition
{(0, a, a,Λ, 0), (0, b, b,Λ, 0),
(0,Λ,S , 〈pop, push(b), push(S), push(a)〉, 0), (0,Λ,S ,Λ, 0)}.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 26 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages and Pushdown Automata

Example (Cont’d)

For the PDA constructed above, with transition {(0, a, a,Λ, 0),
(0, b, b,Λ, 0), (0,Λ,S , pop, push(b), push(S), push(a), 0),
(0,Λ,S ,Λ, 0)}, write an accepting PDA computation for the input
aabb.

ID Instruction
(0, aabb,S)
(0, aabb, aSb) (0,Λ,S , 〈pop, push(b), push(S), push(a)〉, 0)
(0, abb,Sb) (0, a, a, pop, 0)
(0, abb, aSbb) (0,Λ,S , 〈pop, push(b), push(S), push(a)〉, 0)
(0, bb,Sbb) (0, a, a, pop, 0)
(0, bb, bb) (0,Λ,S , pop, 0)
(0, b, b) (0, b, b, pop, 0)
(0,Λ,Λ) (0, b, b, pop, 0)

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 27 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages and Pushdown Automata

From a PDA (Empty Stack) to a Context -Free Grammar

Given a PDA that accepts strings by empty stack, with start state s

and initial stack symbol E .

For each stack symbol B and each pair of states i and j of the PDA,
we construct a nonterminal of the grammar and denote it by Bij .

We think of Bij as deriving all strings that cause the PDA to move, in
one or more steps, from state i to state j in such a way that the stack
at state j is obtained from the stack at state i by popping B.

We create one additional nonterminal S to denote the start symbol
for the grammar.

1. For each state j of the PDA, construct a production S → Esj ;
2. For each instruction of the form (p, a,B, pop, q), construct a

production Bpq → a.
3. For each instruction of the form (p, a,B, nop, q), and each state j ,

construct a production Bpj → aBqj .
4. For each instruction of the form (p, a,B, push(C), q), and all states i

and j construct a production Bpj → aCqiBij .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 28 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages and Pushdown Automata

Example

The following PDA accepts the
language

{anbn+2 : n ≥ 1}

by empty stack, where X is the ini-
tial stack symbol:
We have the nonterminals S ,X00,X01,X10,X11,Y00,Y01,Y10,Y11.

We construct the following productions:

S → X00,S → X01

X11 → b,Y11 → b

Y00 → bY10,Y01 → bY11

X00 → aY00X00,X01 → aY00X01,X00 → aY01X10,X01 → aY01X11

Y00 → aY00Y00,Y01 → aY00Y01,Y00 → aY01Y10,Y01 → aY01Y11.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 29 / 46

Context-Free Languages and Pushdown Automata Context-Free Languages and Pushdown Automata

Example (Cont’d)

We constructed the grammar:

S → X00,S → X01

X11 → b,Y11 → b

Y00 → bY10,Y01 → bY11

X00 → aY00X00,X01 → aY00X01,X00 → aY01X10,X01 → aY01X11

Y00 → aY00Y00,Y01 → aY00Y01,Y00 → aY01Y10,Y01 → aY01Y11.

Many derivations are unusable (X10 and Y10 do not appear on the left
hand side of any rule).
We can shrink the grammar by discarding unusable rules:

S → X01

X01 → aY01X11

Y01 → aY01Y11|bY11

X11 → b

Y11 → b.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 30 / 46

Context-Free Languages and Pushdown Automata Chomsky Normal Form

Subsection 4

Chomsky Normal Form

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 31 / 46

Context-Free Languages and Pushdown Automata Chomsky Normal Form

Removing Λ Productions

Given a grammar, such that Λ does not occur in the language
generated by the grammar.

Then we can write a grammar for the same language without
Λ-productions by using the following algorithm:

1. Find the set of all nonterminals N such that N derives Λ.
2. For each production of the form A → w , create all possible productions

of the form A → w ′, where w ′ is obtained from w by removing one or
more occurrences of the nonterminals found in Step 1.

3. The desired grammar consists of the original productions together with
the productions constructed in Step 2, minus any productions of the
form A → Λ.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 32 / 46

Context-Free Languages and Pushdown Automata Chomsky Normal Form

Example

Consider the grammar

S → aDaE D → bD|E E → cE |Λ

The language of the grammar does not contain Λ.

Apply the algorithm to eliminate Λ-productions.

1. The nonterminals deriving Λ are D and E : E ⇒ Λ and D ⇒ E ⇒ Λ.

2. Original productions together with corresponding new productions:

S → aDaE S → aaE |aDa|aa
D → bD D → b

D → E D → Λ
E → cE E → c

E → Λ Discarded

3. New grammar: S → aDaE |aaE |aDa|aa
D → bD|b|E
E → cE |c

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 33 / 46

Context-Free Languages and Pushdown Automata Chomsky Normal Form

Chomsky Normal Form

A context-free grammar is in Chomsky normal form if the right side
of each production is either:

a single terminal or
a string of two nonterminals.

Exception: If the language of the grammar contains Λ, then S → Λ
is allowed, where S is the start symbol.

Any context-free grammar can be written in Chomsky normal form.

The Chomsky normal form is useful for many reasons:

Any string of length n > 0 can be derived in 2n− 1 steps;
The derivation trees are binary trees.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 34 / 46

Context-Free Languages and Pushdown Automata Chomsky Normal Form

Converting into Chomsky Normal Form

Given a context-free grammar.

1. If the start symbol S of the given grammar occurs on the right side of
some production, then create a new start symbol S ′ and add S ′ → S .

2. If there is a production A → Λ, where A is not the start symbol, then
use algorithm to remove all productions that contain Λ. If this process
removes a Λ production from the start symbol, then add it back.

3. For each pair of nonterminals A and B, if A → B is a unit production
or if there is a derivation A ⇒+ B, then add all productions of the form
A → w , where B → w is not a unit production.
Now remove all the unit productions.

4. For each production whose right side has two or more symbols, replace
all occurrences of each terminal a with a new nonterminal A, and also
add the new production A → a.

5. Replace each production of the form B → C1C2 · · ·Cn, where n > 2,
with the following two productions, where D is a new nonterminal:
B → C1D and D → C2 · · ·Cn.
Continue this step until all right sides have two nonterminals.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 35 / 46

Context-Free Languages and Pushdown Automata Chomsky Normal Form

Example (Steps 1 and 2)

Write the following grammar in Chomsky normal form:

S → R |aTa
R → S |b
T → R |c

1. Since there is S on the right of a production, we introduce a new
start symbol S ′ and the production S ′ → S :

S ′ → S

S → R |aTa
R → S |b
T → R |c

2. There are no occurrences of Λ on the right.

So this step leaves the grammar unchanged.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 36 / 46

Context-Free Languages and Pushdown Automata Chomsky Normal Form

Example (Step 3)

In Step 2, we got the grammar on the left.

S ′ → S

S → R |aTa
R → S |b
T → R |c

S ′ → aTa|b
S → aTa|b
R → aTa|b
T → aTa|b|c

S ′ → aTa|b
T → aTa|b|c

3. We have the unit productions

S ′ ⇒ S |R , S → R , R → S , T ⇒ R |S .

The symbols S and R appear on the right and the nonunit
productions they give are S → aTa and R → b.

So we must add the productions

S ′ → aTa|b, S → b, R → aTa, T → aTa|b.

This gives the grammar in the middle above.

Eliminating unused productions, we get the grammar on the right.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 37 / 46

Context-Free Languages and Pushdown Automata Chomsky Normal Form

Example (Steps 4 and 5)

In Step 3 we got the grammar

S ′ → aTa|b
T → aTa|b|c

4. Replace the letter a in aTa by A and add the new production A → a:

S ′ → ATA|b
T → ATA|b|c
A → a

5. Replace S ′ → ATA by S ′ → AB and T → ATA by T → AB , where
B → TA.

We obtain the Chomsky normal form:

S ′ → AB |b
T → AB |b|c
B → TA

A → a

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 38 / 46

Context-Free Languages and Pushdown Automata Properties of Context-Free Languages

Subsection 5

Properties of Context-Free Languages

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 39 / 46

Context-Free Languages and Pushdown Automata Properties of Context-Free Languages

The Pumping Lemma for Context-Free Languages

Pumping Lemma for Context-Free Languages

Let L be an infinite context-free language.
There is a positive integer m such that for all strings z ∈ L with
|z | ≥ m, z can be written in the form z = uvwxy , where the following
properties hold:

|vx | ≥ 1
|vwx | ≤ m

uvkwxky ∈ L, for all k ≥ 0.

The positive integer m depends on the grammar for the language L.

It must be large enough to ensure a recursive derivation of any string
of length m or more.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 40 / 46

Context-Free Languages and Pushdown Automata Properties of Context-Free Languages

Example

Show that the language L = {anbncn : n ≥ 0} is not context-free.

Assume L is context-free.

Then by the Pumping Lemma we can pick a string z = ambmcm in L,
where m is the positive integer mentioned in the lemma.

Since |z | ≥ m, we can write it in the form z = uvwxy , such that
|vx | ≥ 1, |vwx | ≤ m, and such that uvkwxky ∈ L for all k ≥ 0.

Neither v nor x can contain two distinct letters, since then v2 or x2

would contain letters out of order and uv2wx2y 6∈ L.

Since |vx | ≥ 1, we know that at least one of v and x is a nonempty
string of the form ai , or bi , or c i for some i > 0.

Therefore the pumped string uv2wx2y cannot contain the same
number of a’s, b’s, and c ’s because one of the three letters a, b and c

does not get pumped up.

Thus uv2wx2y cannot be in L, contradicting the Pumping Lemma.

Therefore L is not context-free.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 41 / 46

Context-Free Languages and Pushdown Automata Properties of Context-Free Languages

Context-Free Languages and Intersection

Context-free languages are not closed under intersection.

Example: Consider the languages

L1 = {anbnck : n, k ∈ N}, L2 = {akbncn : n, k ∈ N}.

L1 is context-free, since it is the language of the context-free
grammar on the left.

S → AC

A → aAb|Λ
C → cC |Λ

S → AB

A → aA|Λ
B → bBc |Λ

L2 is also context-free, since it is the language of the context-free
grammar on the right.

Finally, note that

L1 ∩ L2 = {anbncn : n ∈ N}.

We saw that L1 ∩ L2 is not context-free.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 42 / 46

Context-Free Languages and Pushdown Automata Properties of Context-Free Languages

Context-Free Languages and Complement

Context-free languages are not closed under complement.

Suppose to the contrary that context-free languages are closed under
complement.

Consider again the context-free languages

L1 = {anbnck : n, k ∈ N}, L2 = {akbncn : n, k ∈ N}.

Then, by hypothesis, L′1 and L′2 are context-free.

Since the union of context-free languages are context-free, we then
have that L′1 ∪ L′2 is context-free.

Then, again by hypothesis,

L1 ∩ L2 = (L′1 ∪ L′2)
′

is context-free.

But L1 ∩ L2 = {anbncn : n ∈ N}, which is not context-free, a
contradiction.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 43 / 46

Context-Free Languages and Pushdown Automata Properties of Context-Free Languages

Closure Properties of Context-Free Languages

Context-free languages satisfy the following closure properties:

1. The union of two context-free languages is context-free;
2. The language product of two context-free languages is context-free;
3. The closure of a context-free language is context-free;
4. The intersection of a regular language with a context-free language is

context-free.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 44 / 46

Context-Free Languages and Pushdown Automata Properties of Context-Free Languages

Context-Free Language Morphisms

Let f : A∗ → A∗ be a language morphism, i.e., such that

f (Λ) = Λ;
f (uv) = f (u)f (v) for all strings u and v .

Let L be a language over A.

1. If L is context-free, then f (L) is context-free;
2. If L is context-free, then f −1(L) is context-free.

1. Since L is context-free, it has a context-free grammar.

We create a context-free grammar for f (L) as follows:

Transform each production A → w into a new production of the form
A → w ′, where w ′ is obtained from w by replacing each terminal a in
w by f (a).

The new grammar is context-free, and any string in f (L) is derived by
this new grammar.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 45 / 46

Context-Free Languages and Pushdown Automata Properties of Context-Free Languages

Example

Show that L = {anbcnden : n ≥ 0} is not context-free.

We can define a morphism

f : {a, b, c , d , e}∗ → {a, b, c , d , e}∗

by
f (a) = a, f (b) = Λ, f (c) = b, f (d) = Λ, f (e) = c .

Then f (L) = {anbncn : n ≥ 0}.

If L is context-free, then we must also conclude that f (L) is
context-free.

But we know that f (L) is not context-free.

Therefore L is not context-free.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 46 / 46

	Context-Free Languages and Pushdown Automata
	Context-Free Languages
	Pushdown Automata
	Context-Free Languages and Pushdown Automata
	Chomsky Normal Form
	Properties of Context-Free Languages

