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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

The Idea of a Turing Machine

A Turing machine consists of a tape and a control unit.

The tape is a sequence of cells
that extends to infinity in both
directions.

Each cell contains a symbol from
a finite alphabet Γ.

A tape head reads from a cell and writes into the same cell.
The control unit contains a finite set of instructions.
Each instruction causes the tape head to:

read the symbol from a cell;
write a symbol into the same cell;
either move the tape head to an adjacent cell or leave it at the same
cell.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 4 / 77



Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Instructions of a Turing Machine

Each instruction of a Turing machine can be represented as a 5-tuple
consisting of the following five parts:

The current machine state;
A tape symbol read from the current tape cell;
A tape symbol to write into the current tape cell;
A direction for the tape head to move (Left, Stay, R ight);
The next machine state.

Example: Suppose we have the instruc-
tion (i , a, b, L, j). The instruction is in-
terpreted as follows:

If the current state of the machine is i , and if the symbol in the current
tape cell is a, then:

write b into the current tape cell;
move left one cell;
go to state j .
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Formal Definition of Turing Machines

A Turing machine M = 〈A, Γ,Q, q0, h, δ〉 consists of:

An input alphabet A, consisting of the symbols that are allowed in the
initial tape contents;
A tape alphabet Γ, which is a finite set of symbols, such that:

Λ ∈ Γ, called the blank symbol;
A ⊆ Γ− {Λ};

A finite nonempty set of states Q;
q0 ∈ S is the initial state;
h ∈ S is the final or halt state;
δ ⊆ (Q − {h})× Γ× Γ× {L, S ,R} × Q is the transition relation.

If the transition relation contains two instructions with the same
current state and current tape symbol, then the machine is
nondeterministic.

Otherwise it is deterministic.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 6 / 77



Turing Machines and Computability Turing Machines and the Church-Turing Thesis

How the Turing Machine Computes

An input string is represented on the tape by placing the letters of the
string in contiguous tape cells.

All other cells of the tape contain the blank symbol Λ.

The tape head is positioned at the leftmost cell of the input string
unless specified otherwise.

The computation starts at the start state q0.

The execution of a Turing machine stops when:

it enters the halt state h; or
it enters a state for which there is no valid move.

Example: If a Turing machine enters state i and reads a in the
current cell, but there is no instruction of the form (i , a, . . .), then the
machine stops in state i .
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

The Language Accepted by a Turing Machine

Let M be a Turing machine.

We say that an input string is accepted by M if the machine enters
the halt state h.

Otherwise, the input string is rejected.

There are two ways to reject an input string:

The machine stops by entering a state other than h from which there is
no move;
The machine runs forever.

The language of M, denoted L(M), is the set of all input strings
accepted by M.

Note that Turing machines can solve all the problems that PDAs can
solve because a stack can be maintained on some portion of the tape.
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Example

Construct a Turing machine for the regular language
{anbm : n,m ∈ N}.

The machine starts at the start state (0) scanning the first symbol of
the input string.

It continues scanning the tape to the right, looking for the empty
symbol (end of the input string), making sure that no a’s are scanned
after any occurrence of b.

The instructions are

(0,Λ,Λ,S , h) (Accept Λ
or only a’s)

(0, a, a,R , 0) (Scan a’s)
(0, b, b,R , 1)
(1, b, b,R , 1) (Scan b’s)
(1,Λ,Λ,S , h).
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Example

Construct a Turing machine for the non-context-free language
{anbncn : n ≥ 0}.

First we devise an algorithm for the task:

If the current cell is empty, then halt with success;
If the current cell contains an a, then write an X in the cell and scan
right; looking for a corresponding b to the right of any a’s;
Replace the b by Y ;
Then continue scanning to the right, looking for a corresponding c to
the right of any b’s;
Replace the c by Z ;
Now scan left to the X and see whether there is an a to its right;

If so, then start the process again.
If there are no a’s, then scan right, making sure there are no b’s and no
c’s.
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Example (Instructions)

If Λ is found, then halt.

If a is found, then write X and scan right.

If Y is found, then scan over Y ’s and Z ’s to find the right end of the
string.

(0, a,X ,R , 1) Replace a by X and scan right
(0,Y ,Y ,R , 0) Scan right
(0,Z ,Z ,R , 0) Go make the final check
(0,Λ,Λ,S , h) Success

Scan right, looking for b.

If found, replace it by Y .

(1, a, a,R , 1) Scan right
(1, b,Y ,R , 2) Replace b by Y and scan right
(1,Y ,Y ,R , 1) Scan right
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Example (Instructions Cont’d)

Scan right, looking for c .

If found, replace it by Z .

(2, c ,Z , L, 3) Replace c by Z and scan left
(2, b, b,R , 2) Scan right
(2,Z ,Z ,R , 2) Scan right

Scan left until an X is found.

Then move right one cell, and repeat the process.

(3, a, a, L, 3) Scan left
(3, b, b, L, 3) Scan left
(3,X ,X ,R , 0) Found X ; Move right one cell
(〈3,Y ,Y , L, 3) Scan left
(3,Z ,Z , L, 3) Scan left
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Example (Diagram)

0 : aabbcc 3 : XaYbZc 2 : XXYYZc 0 : XXYYZZ

1 : Xabbcc 3 : XaYbZc 2 : XXYYZc 0 : XXYYZZ

1 : Xabbcc 3 : XaYbZc 3 : XXYYZZ 0 : XXYYZZ

2 : XaYbcc 0 : XaYbZc 3 : XXYYZZ 0 : XXYYZZ
2 : XaYbcc 1 : XXYbZc 3 : XXYYZZ 0 : XXYYZZΛ
3 : XaYbZc 1 : XXYbZc 3 : XXYYZZ h : XXYYZZΛ
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Equivalence with Other Models

Some alternative models are the following:

Multihead Turing machines;
Multitape Turing machines;
Nondeterministic Turing machines.
...

It turns out that all these models are equivalent in the sense that,
given a Turing machine of a certain kind, there is a Turing machine of
any other kind that accepts the same language as the given one.
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Universal Turing Machine

Up to now, we saw “special purpose” Turing machines built to accept
a specific language.

A universal Turing machine U is a Turing machine that can take as
input:

an arbitrary Turing machine M (a program);
an arbitrary input for M (input to the program)

and then perform the execution of M on its input.

A universal Turing machine acts like a “general purpose” computer
that:

stores a program;
stores data for the program

and then executes the program using the data.
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Description of a Universal Turing Machine

Since U can have only a finite number of instructions and a finite
alphabet of tape cell symbols, we must represent any Turing machine
in terms of the fixed symbols of U.
We select:

A fixed infinite set of states, say N;
A fixed infinite set of tape cell symbols, say L = {ai : i ∈ N}.

We require that every Turing machine must use states from the set N
and tape cell symbols from L.

This is easy to do by simply renaming the symbols used in any Turing
machine.

We select a fixed finite alphabet A for the machine U.
We fix a way to encode, using strings over A:

Any Turing machine (i.e., the instructions for any Turing machine);
Any input string for a Turing machine.

Now that we have the two strings over A, one for the Turing machine
and one for its input, we can describe the action of machine U.
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

Description of a Universal Turing Machine

We describe U as a three-tape Turing machine:

This does no harm since any k-tape machine can be simulated by a
one-tape machine.

We initialize U by placing on:

Tape 1: The representation for a Turing machine M ;
Tape 2: The representation of an input string w .
Tape 3: The start state of M .

U repeatedly performs the following actions:

If the state on tape 3 is the halt state, then halt.
Otherwise, get the current state from tape 3 and the current input
symbol from tape 2.
With this information, find the proper instruction on tape 1.
Write the next state at the beginning of tape 3, and then perform the
indicated write and move operations on tape 2.
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Turing Machines and Computability Turing Machines and the Church-Turing Thesis

The Church-Turing Thesis

We say that something, e.g. a language or a problem, is intuitively
computable if there is a formal description (algorithm) of a process
(execution) that accepts the language or decides the problem.

A formalization of the notion of computation is called a model of
computation. Examples of models are:

The derivation process based on grammars;
The evaluation process based on functions;
The state transition process based on machines;
The execution process based on programs written in some
programming language.

We saw that there are models that differ in power, such as finite
automata, pushdown automata and Turing machines.

The Church-Turing Thesis postulates that there exists a most
powerful model:

Anything that is intuitively computable can be computed by a Turing
machine.
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Turing Machines and Computability Computability

Subsection 2

Computability
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Turing Machines and Computability Computability

Effective Enumerations

An effective enumeration of a set is a listing of its elements by an
algorithm.

There is no requirement that:

the elements be listed in any particular order, or
the elements not be repeated.

Our goal is to effectively enumerate all instances of a particular
computational model.

Since any instance of a computational model can be thought of as a
string of symbols, we associate each natural number with an
appropriate string of symbols.
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Turing Machines and Computability Computability

Effective Enumeration of Models

We apply the following steps:

First, let b(n) denote the binary representation of a natural number n.
Next, partition b(n) into seven-bit blocks by starting at the right end of
the string.
If necessary, we can add leading zeros to the left end of the string to
make sure that all blocks contain seven bits.
Let a(b(n)) denote the string of ASCII characters represented by the
partitioning of b(n) into seven-bit blocks.

If the string a(b(n)) represents a syntactically correct definition for an
instance of the model, then we use it as the nth instance of the model.
If a(b(n)) does not make any sense, we set the nth instance of the
model to be some specifically chosen instance.
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Turing Machines and Computability Computability

Example: Enumeration of Turing Machines

For each natural number n, let Tn denote the Turing machine defined
as follows:

If a(b(n)) represents a string of valid Turing machine instructions, then
let Tn = a(b(n)).
Otherwise, let Tn be the simple machine Tn = “(0, a, a, S , h)”.

So we can effectively enumerate all the Turing machines

T0,T1,T2,T3, . . . .
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Turing Machines and Computability Computability

Example: Enumeration of Computable Functions

We can effectively enumerate all Turing machines.

By the Church-Turing Thesis, we can effectively enumerate all
possible computable functions (including partially defined ones).

We assume that we have an effective enumeration of all the
computable functions as follows:

f0, f1, f2, f3, . . .

We can also effectively enumerate all possible computable functions
with a single argument.
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Turing Machines and Computability Computability

Decision Problems and Decidability

A decision problem is a problem that asks a question that has a
YES or NO answer.

A decision problem is decidable if there is an algorithm that, given
any arbitrary instance of the problem, halts with the correct answer.

If no such algorithm exists, then the problem is undecidable.

A decision problem is partially decidable if there is an algorithm
that, given any arbitrary instance of the problem:

Answers YES for those instances of the problem that have YES
answers;
May run forever for those instances of the problem whose answers are
NO.
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Turing Machines and Computability Computability

The Halting Problem

The Halting Problem:
Is there an algorithm that can decide, given an arbitrary program and
an arbitrary input, whether the execution of the program halts on the
given input?

The Halting Problem is undecidable.

Assume, to the contrary the the Halting Problem is decidable.

Consider an effective enumeration of all computable (partial)
functions of a single argument f0, f1, f2, f3, . . . .

Define the halt function h(x) as follows:

h(x) = if fx(x) halts then 1 else 0.

By our hypothesis, h(x) is computable.

Define the function g(x) as follows:

g(x) = if h(x) = 1 then loop forever else 0.

Since h(x) is computable, then g(x) is also computable.
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Turing Machines and Computability Computability

The Halting Problem (Cont’d)

We defined

h(x) = if fx(x) halts then 1 else 0
g(x) = if h(x) = 1 then loop forever else 0

and reasoned that g(x) is computable.

Since f0, f1, f2, f3, . . . is an effective enumeration of all computable
functions, there exists n ∈ N, such that g(x) = fn(x).

Now we compute fn(n):

fn(n) = g(n)
= if h(n) = 1 then loop forever else 0
= if fn(n) halts then loop forever else 0.

This gives an immediate contradiction:
If fn(n) halts, then fn(n) loops forever;
If fn(n) does not halt, then fn(n) halts with value 0.

We conclude that the Halting Problem is undecidable.
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Turing Machines and Computability Computability

Total Functions

A total function is one that is defined (or produces an output) for
any arbitrary input.

There is no effective enumeration of all total computable functions.

We prove the statement for the case of natural number functions
having a single variable.

Suppose, by way of contradiction, that we have an effective
enumeration of all the total computable functions:

h0, h1, h2, h3, . . . .

Now define a new function H(n) by

H(n) = hn(n) + 1.

Since each hn is total, it follows that H is total.
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Turing Machines and Computability Computability

Total Functions

We defined the total function

H(n) = hn(n) + 1.

Since h0, h1, h2, h3, . . . is an effective enumeration, there is an
algorithm that, given n, produces hn.

Therefore, hn(n) + 1 is computable.

Thus, H is a total computable function.

It follows that there exists a k ∈ N, such that H(n) = hk(n).

But then hk(k) = H(k) = hk(k) + 1.

This gives a contradiction, since hk(k) is a natural number.
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Turing Machines and Computability Computability

The Total Problem

The Total Problem:

Is there an algorithm to tell whether an arbitrary computable function
is total?

The Total Problem is undecidable.

Suppose, to the contrary, that the Total Problem is decidable.

Consider an effective enumeration of all computable functions

f0, f1, f2, f3, . . . .

By hypothesis, there exists a computable function computing the
condition, “fx is a total function”.

We obtain a contradiction by exhibiting an effective enumeration of
all total computable functions, which is impossible.
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Turing Machines and Computability Computability

The Total Problem (Cont’d)

We construct an effective enumeration of all total computable
functions as follows:

We define the function g as follows:

g(0) = the smallest index k such that fk is total
g(n + 1) = the smallest index k > g(n) such that fk is total

Since the condition “fk is total” is computable, it follows that g is
computable.

Therefore, we have the following effective enumeration of all the total
computable functions.

fg(0), fg(1), fg(2), fg(3), . . . .
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Turing Machines and Computability Computability

Other Undecidable Problems

The Equivalence Problem: Does there exist an algorithm that can
decide whether two arbitrary computable functions produce the same
output?

Posts Correspondence Problem: Given a finite sequence of pairs of
strings (s1, t1), . . . , (sn, tn), is there a sequence of indices i1, . . . , ik ,
with repetitions allowed, such that si1 . . . sik = ti1 . . . tik?

Hilbert’s Tenth Problem: Does a polynomial equation
p(x1, . . . , xn) = 0 with integer coefficients have a solution consisting
of integers?

Turing Machine Problems: Given a Turing machine M:

Does M halt when started on the empty tape?
Is there an input string for which M halts?
Does M halt on every input string?
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Turing Machines and Computability Computability

Partially Decidable Problems

Whenever we can search for a YES answer to a decision problem and
are sure that it takes a finite amount of time, then the problem is
partially decidable.
Example: The halting problem is partially decidable because, for any
computable function fn and any input x , we can evaluate the
expression fn(x).

If the evaluation halts with a value, then we output YES.
We do not care what happens if fn(x) is undefined or its evaluation
never halts.

Example: Post’s correspondence problem is partially decidable.
We can check for a solution by systematically looking at all sequences
of length 1, then length 2, and so on.

If there is a sequence that gives two matching strings, we eventually
find it and output YES.
Otherwise, we do not care what happens.

Example: The Total Problem is not even partially decidable.
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Turing Machines and Computability Complexity Classes

Subsection 3

Complexity Classes
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Turing Machines and Computability Complexity Classes

The Traveling Salesman Problem

Recall that a decision problem is one that admits a YES or NO
answer.

Even general computational problems can often be rephrased as
decision problems without altering their essence.

Example:
The Traveling Salesman Problem

Find the shortest tour of a set of cities that starts and ends at the
same city.

Traveling Salesman Problem (TSP) (Decision Version)

Given a set of cities {c1, . . . , cn}, a set of distances d(ci , cj) > 0, for
i 6= j , and a bound B > 0, does there exist a tour of the n cities that
starts and ends at the same city, such that the total distance traveled is
less than or equal to B?

We restrict our discussion to decision problems.
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Turing Machines and Computability Complexity Classes

Instances and their Length

An instance of a decision problem is a specific example of the input
to the problem.

Example: An instance I of TSP can be represented as follows:

I = {{c1, c2, c3, c4},
B = 27,
d(c1, c2) = 10, d(c1, c3) = 5, d(c1, c4) = 9,
d(c2, c3) = 6, d(c2, c4) = 9, d(c3, c4) = 3}.

The length of an instance is an indication of the space required to
represent the instance.

Example: The length of the preceding instance I might be the
number of characters that occur between the two braces { and }.

Or the length might be some other measure, like the number of bits
required to represent the instance as an ASCII string.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 35 / 77



Turing Machines and Computability Complexity Classes

Approximation of the Length

We often approximate the length of an instance.

Example: An instance I of TSP with n cities contains n(n−1)
2

distances and one bounding relation.

We can assume that each of these entities takes no more than some
constant amount of space.

If c is this constant, then the length of I is no more than

c

[

n + 1 +
n(n − 1)

2

]

= c

(

1

2
n2 +

1

2
n+ 1

)

= O(n2).

So we can assume that the length of I is O(n2), where n is the
number of cities.
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Turing Machines and Computability Complexity Classes

Solutions and YES Instances

Sometimes we want more than just a YES or NO answer to a decision
problem.

A solution for an instance of a decision problem is a structure that
yields a YES answer to the problem.

If an instance has a solution, then the instance is called a YES

instance.

Otherwise, the instance is a NO-instance.

Example: Consider again

I = {{c1, c2, c3, c4},
B = 27,
d(c1, c2) = 10, d(c1, c3) = 5, d(c1, c4) = 9,
d(c2, c3) = 6, d(c2, c4) = 9, d(c3, c4) = 3}.

The tour (c1, c2, c4, c3) is a solution for the instance I because its
total distance is 27. So I is a YES instance of TSP.
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Turing Machines and Computability Complexity Classes

The Class P

A deterministic algorithm is one whose steps during a computation
are uniquely determined.

We say that a deterministic algorithm solves a decision problem if,
for each instance of the problem, the algorithm halts with the correct
answer, YES or NO.

The class P consists of those decision problems that can be solved by
deterministic algorithms with worst case running times bounded by a
polynomial in the size of the input.
More formally, a decision problem is in the class P if:

There is a deterministic algorithm A that solves the problem;
There is a polynomial p such that

WA(n) = max {timeA(I ) : I an input of size n} ≤ p(n).

The class P consists of those decision problems that can be solved by
deterministic algorithms of order O(p(n)) for some polynomial p.
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Turing Machines and Computability Complexity Classes

Example

Consider the problem determining whether an item can be found in
an n-element list.

A simple search that compares the item to each element of the list
takes at most n comparisons.

If we assume that the size of the input is n, then the algorithm solves
the problem in time O(n).

Since p(n) = n is a polynomial, the problem is in P.
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Turing Machines and Computability Complexity Classes

Tractable and Intractable Problems

A problem is said to be tractable if it is in P

A problem is intractable if it is not in P.

A problem is intractable if it has a lower bound worst case complexity
greater than any polynomial.
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Turing Machines and Computability Complexity Classes

Non-Deterministic Algorithms

A nondeterministic algorithm for an instance I of a decision
problem has two distinct stages:

Guessing Guess a possible solution S for instance I .
Checking A deterministic algorithm starts up to check whether the guess S from

the guessing stage is a solution to instance I .
This checking algorithm will halt with the answer YES if and only if S
is a solution of I .
But it may or may not halt if S is not a solution of I .

In theory:

The guess at a possible solution S could be made out of thin air;
S could be a structure of infinite length so that the guessing stage
would never halt;
The checking stage may not even consider S .
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Turing Machines and Computability Complexity Classes

The Class NP

We say that a nondeterministic algorithm solves a decision problem
in polynomial time if there is a polynomial p such that:

For each YES instance I there is a solution S that, when guessed in the
guessing stage, will lead the checking stage to halt with YES answer;
The time for the checking stage is less than or equal to p(n), where
n = length(I ).

The class NP consists of those decision problems that can be solved
by nondeterministic algorithms in polynomial time.
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Turing Machines and Computability Complexity Classes

P versus NP

P is a subset of NP: P ⊆ NP.

Suppose that a decision problem π is in P.

Then, by definition, there is a deterministic algorithm A that solves
any instance of π in polynomial time.

Construct a nondeterministic polynomial time algorithm to solve π as
follows:

Let I be an instance of π;
The guessing stage makes a guess S ;
The checking stage ignores S and runs algorithm A on I .
This stage will halt with YES or NO, depending on whether I is a YES
instance or not.

Clearly this nondeterministic algorithm solves π in polynomial time.

Therefore, π is in NP.

We conclude P ⊆ NP.
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Turing Machines and Computability Complexity Classes

The P
?
= NP Problem

We showed that P ⊆ NP.

It is not known whether this inclusion is proper, i.e., whether P is a
proper subset of NP or whether the two are equal.

In other words:

No one has been able to find an NP problem that is not in P, which
would prove that P 6= NP;
No one has been able to prove that all NP problems are in P, which
would prove that P = NP.

This problem, known as the P
?
= NP, is one of the foremost open

questions of Mathematics and Computer Science.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 44 / 77



Turing Machines and Computability Complexity Classes

Example: The Traveling Salesman Problem

TSP is an NP problem.

Consider an instance of TSP with n cities, a bound B , and a distance
function d .

Suppose that a guess is made that (c1, . . . , cn, c1) is a solution.

The checking stage can check whether

d(c1, c2) + · · ·+ d(cn1, cn) + d(cn, c1) ≤ B .

This check takes n − 1 additions and one comparison.

Assuming that each of these operations takes a constant amount of
time, a guess can be checked in time O(n).

So the checking stage can be done in polynomial time.

Therefore, TSP is in NP.
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Example: TSP (Cont’d)

It is not known whether TSP is in P.

It appears that any deterministic algorithm to solve the problem
might have to check all possible tours of n cities.

Since each tour begins and ends at the same city, there are (n − 1)!
possible tours to check.

But (n − 1)! has higher order than any polynomial in n.
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Example: The Clique Problem

A clique is a set of vertices in a graph that are pairwise adjacent (i.e.,
connected by an edge).

Clique Problem (CLIQUE)

Given graph G with n vertices and a natural number k ≤ n, decide
whether G has a clique with k vertices.

CLIQUE is in NP.

Consider a graph G with n vertices and a natural number k ≤ n.

Suppose a guess is made that a set of vertices {v1, . . . , vk} forms a
clique.

In this case, it takes at most k(k−1)
2 comparisons to check whether

the k vertices are connected to each other by edges.

Since k ≤ n, the comparisons for any instance can be checked in time
O(n2).
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Example: The Clique Problem (Cont’d)

As with TSP, it is not known whether CLIQUE is in P.

A brute force solution searches through all the subsets of k vertices
looking for one consisting of pairwise adjacent vertices.

There are
(

n
k

)

subsets of k vertices to check.

Each of those subsets has at most k(k−1)
2 possible edges to check.

So, the total number of comparisons could be as large as

(

n

k

)

k(k − 1)

2
.

This has exponential order when k is close to n
2 .
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Example: The Hamiltonian Cycle Problem

A Hamiltonian cycle in a graph is a cycle that visits all the vertices
of the graph.

The Hamiltonian cycle problem (HCP)

Given a graph with at least three vertices, does the graph have a
Hamiltonian cycle?

HCP is in NP.

An instance I of HCP is a graph G with n vertices.

Suppose a guess is made that a sequence of its vertices
〈v1, v2, . . . , vn, v1〉 forms a Hamiltonian cycle.

Since G has n vertices it has a maximum of n(n−1)
2 edges.

To see whether the sequence is a cycle, we need to check if there is
an edge connecting each of the n adjacent pairs in the sequence.

So, we must perform n × n(n−1)
2 = O(n3) comparisons.
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Example: The Hamiltonian Cycle Problem (Cont’d)

As with TSP and CLIQUE, it is not known whether HCP is in P.

A brute force solution looks for a cycle by examining different
sequences of n vertices.

There are n! such sequences.

Moreover, n! has higher order than any polynomial in n.
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The Class PSpace

The class PSpace is the set of decision problems that can be solved
by deterministic algorithms that use no more memory cells than a
polynomial in the length of an instance.

More formally, a problem is in PSpace if:

There is a deterministic algorithm that solves it;
There is a polynomial p such that the algorithm uses no more than
p(n) memory cells, where n is the length of an instance.
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NP versus PSpace

NP ⊆ PSpace.

For any problem π in NP, there is a nondeterministic algorithm A

and a polynomial p such that A takes at most p(n) steps to check a
solution for a YES instance I of length n.

Any step of A can access at most a fixed number k of memory cells.

So A uses at most kp(n) memory cells to check a solution for I .

Since p is a polynomial, kp is also a polynomial.

So the checking stage uses polynomial space.

If S is a solution for I , then the part of S used by the checking stage
fits within kp(n) memory cells.

So we can assume that S is a string of length at most kp(n) over a
finite alphabet of symbols - one symbol per memory cell.
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NP versus PSpace (Cont’d)

Define a deterministic algorithm B to solve π:
For an instance of length n, B generates and checks - one at a time -
all possible strings of length at most kp(n).
The checking is done by the checking stage of A modified to stop after
p(n) steps if it has not stopped yet.
If a solution is found, then B stops with a YES answer.
Otherwise, B stops with a NO answer after generating and checking all
possible strings of length at most kp(n).

The generating stage uses polynomial space because it generates a
string of length at most kp(n).

The checking stage uses polynomial space because it is the checking
stage of A modified by adding a clock.

The finite alphabet and other local variables use a constant amount
of space.

So B uses polynomial space.

Therefore, NP ⊆ PSpace.
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Relations Between Classes

We have the following relations between complexity classes:

P ⊆ NP ⊆ PSpace.

We mentioned that it is not known whether

P
?
= NP.

Similarly, it is not known whether

NP
?
= PSpace.
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Quantified Boolean Formulae

A quantified Boolean formula is a logical expression of the form

Q1x1Q2x2 · · ·QnxnE , n ≥ 1,

where:

each Qi is either ∀ or ∃;
each xi is distinct;
E is a formula of the propositional calculus that is restricted to using
the variables x1, . . . , xn; the operations ¬,∧ and ∨ and parentheses.

Example: The following formulas are quantified Boolean formulas:

∃x x

∀x∃y(¬x ∨ y)
∀x∃y∀z((x ∨ ¬y) ∧ z)
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Truth Value of a Quantified Boolean Formula

A quantified Boolean formula is true if its value is T over the domain
{T ,F}. Otherwise, it is false.

Example: We have the following truth values:

Formula Truth Value

∃x x T

∀x∃y(¬x ∨ y) T

∀x∃y∀z((x ∨ ¬y) ∧ z) F

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 56 / 77



Turing Machines and Computability Complexity Classes

The Function val

We define the function val that computes the truth value of a
quantified Boolean formula by induction:

Basis: val(T ) = T and val(F ) = F ;
Induction: We have multiple cases depending on the main connective:

val(¬A) = ¬val(A);
val(A ∧ B) = val(A) ∧ val(B);
val(A ∨ B) = val(A) ∨ val(B);
val(∀xE) = val(E(x/T )) ∧ val(E(x/F ));
val(∃xE) = val(E(x/T )) ∨ val(E(x/F )).

Example: We compute val(∀x∃y(¬x ∨ y)).

val(∀x∃y(¬x ∨ y))
= val(∃y(¬T ∨ y)) ∧ val(∃y(¬F ∨ y))
= (val(¬T ∨ T ) ∨ val(¬T ∨ F )) ∧ (val(¬F ∨ T ) ∨ val(¬F ∨ F ))
= ((¬T ∨ T ) ∨ (¬T ∨ F )) ∧ ((¬F ∨ T ) ∨ (¬F ∨ F ))
= ((F ∨ T ) ∨ (F ∨ F )) ∧ ((T ∨ T ) ∨ (T ∨ F ))
= (T ∨ F ) ∧ (T ∨ T ) = T ∧ T = T .
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The Quantified Boolean Formula Problem

The Quantified Boolean Formula Problem (QBF)
Given a quantified Boolean formula, is it true?

QBF is in PSpace.

The number of operations (¬, ∧, ∨, ∀ and ∃) and distinct variables in
a formula is at most the length k of the formula.

Each operation requires at most two recursive calls in its evaluation.

So the time required by the algorithm is O(2k).

The depth of recursion is proportional to the number of connectives,
i.e., O(k).

The space required for each recursive call is O(k), because space can
be reused.

So the space used by the algorithm is O(k2).

Therefore, QBF is in PSpace.

It is not known whether QBF is in NP.
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Subsection 4

Reductions and Completeness
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Polynomial Time Reductions

A problem A is polynomial time reducible to a problem B if there is
a polynomial time computable function f that maps instances of A to
instances of B such that:

I is a YES instance of A iff f (I ) is a YES instance of B .

This property of f says two things:

YES instances of A get mapped to YES instances of B;
NO instances of A get mapped to NO instances of B.
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Example

The Hamiltonian Cycle Problem (HCP)

Given a graph with n vertices, n ≥ 3, does it have a Hamiltonian, cycle?

Traveling Salesman Problem (TSP)

Given a set of cities {c1, . . . , cn}, a set of distances d(ci , cj) > 0, for
i 6= j , and a bound B > 0, does there exist a tour of the n cities that
starts and ends at the same city, such that the total distance traveled is
less than or equal to B?

Let I be an instance of HCP.

For each pair of distinct vertices v and w in the graph, we set

d(v ,w) = if vw is an edge then 1 else 2.

Define f (I ) to be the instance of TSP where:

The cities are the vertices in the graph;
The bound is the number of vertices B = n;
The distance between cities is given by d .
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Example (Cont’d)

Time needed for the reduction from I to f (I ):

If the graph has n vertices, then there are n(n−1)
2 values of the form

d(v ,w) that must be computed.

For each value of d , there are at most n(n−1)
2 edges to check.

So f is polynomial time computable because the number of
comparisons to compute f (I ) is O(n4).

Condition for the reduction:

An instance I is a YES instance of HCP

if and only if the sequence of vertices forms a cycle of length n

if and only if the sequence is a tour of the n cities (which are the
vertices)

if and only if f (I ) is a YES instance of TSP.

So we have a polynomial time reduction from HCP to TSP.
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Example (Illustration)

Consider the following instance of HCP:

I = {{u, v ,w , x}, {uv , uw , ux , vw , vx}}.

It is a YES instance, since (u, x , v ,w , u) is a Hamiltonian cycle.

Applying f , we obtain the following instance f (I ) of TSP:

f (I ) = {{u, v ,w , x},
B = 4,
d(u, v) = 1, d(u,w) = 1, d(u, x) = 1,
d(v ,w) = 1, d(v , x) = 1, d(w , x) = 2}.

f (I ) is a YES instance of TSP since tour (u, x , v ,w , u) has length 4.
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Polynomial Time Reductions and Efficient Algorithms

Suppose the following:

There is a polynomial time reduction from problem A to problem B via
the polynomial time computable function f ;
There is a polynomial time algorithm M to solve B.

Then there exists a polynomial time algorithm that solves A.

The algorithm can be described as follows:

1. Given an arbitrary instance I of problem A.
2. Construct the instance f (I ) of problem B.
3. Run algorithm M on the instance f (I ).
4. If M finds that f (I ) is a YES instance of B, then I is a YES instance of

A.
5. If M finds that f (I ) is a NO instance of B, then I is a NO instance of

A.

In short:

Reducing, via a polynomial time reduction, a problem A to an
efficiently solvable problem shows that A is also efficiently solvable.
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NP-Hard and NP-Complete Problems

A decision problem is said to be NP-hard if every decision problem in
NP is polynomial time reducible to it.

A decision problem is said to be NP-complete if:
It is in the class NP;
It is NP-hard.

Significance of NP-Completeness: Suppose we find an
NP-complete problem B (i.e., a problem in NP such that every other
problem in NP is polynomial time reduced to B).

If we ever found a deterministic polynomial time algorithm for B ,
then, by the previous slide, every problem in NP would have a
deterministic polynomial time algorithm.

Success in this quest would have dramatic consequences:
It would provide us with efficient solutions to all NP problems among
which are many well known ones;

It would also solve the P
?
= NP question to the affirmative.
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Conjunctive Normal Form

A literal is a variable or the negation of a variable.

Example: x and ¬z are literals, but ¬(x ∧ y) is not a literal.

A clause is a disjunction of one or more literals.

Example: x ∨ y ∨ ¬z and ¬x are clauses.

¬(x ∧ y) is not a clause.

A Boolean formula, built up from variables x , y , z , x1, x2, . . . and the
connectives ¬,∧ and ∨ (negation, conjunction (and) and disjunction
(or), respectively) is in conjunctive normal form (CNF) if it is
written as a conjunction of clauses (conjunction of disjunctions).

Example: The formulae (x ∨ y ∨ ¬z) ∧ (x ∨ z) and
(x ∨ y) ∧ (x ∨ ¬y) ∧ ¬x are in conjunctive normal form.

The formula ¬(x ∧ ¬y) is not in CNF.

A formula is said to be in 3-conjunctive normal form (3CNF) if it
is in CNF and each clause is a disjunction of at most three literals.
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CNF-Satisfiability Problem

A Boolean formula ϕ is satisfiable if there exists an assignment of
truth values, T or F , to its variables, such that the value of ϕ is T .

Example: Consider the formula (x ∨ y ∨ ¬z) ∧ (x ∨ z).

Let val(x) = T , val(y) = F and val(z) = F .

Then we have

val((x ∨ y ∨ ¬z) ∧ (x ∨ z))
= (T ∨ F ∨ ¬F ) ∧ (T ∨ F ) = T ∧ T = T .

Therefore, the formula is satisfiable.

Example: Consider the formula (x ∨ y) ∧ (x ∨ ¬y) ∧ ¬x .

By constructing the truth table, we can see that this formula is not
satisfiable (is unsatisfiable) since all assignments of truth values to
its variables result in the formula assuming the value F .

CNF-Satisfiability Problem (SAT)
Given a Boolean formula in CNF, is it satisfiable?
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SAT is in NP

SAT is in NP.

Let the length of a formula be the total number of literals that appear
in it. If n is the length of a formula, then the number of distinct
variables in the formula is at most n.

E.g., the length of (x ∨ y ∨ ¬z) ∧ (x ∨ z) is 5, and it has 3 variables.

The guessing stage of a nondeterministic algorithm can produce some
assignment of truth values for the variables of the formula.
The checking stage must check to see whether each clause of the
formula is true for the guessed assignment.
This involves checking that at least one literal in the clause takes the
value true. Since there are n literals in the formula, there are at most n
literals to check.
So the checking stage can be done in O(n) time.

Therefore, SAT is in NP.
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Cook’s Theorem

Cook proved that SAT is NP-complete by showing that any NP

problem can be polynomial time reduced to SAT:

Cook’s Theorem

The CNF-satisfiability problem (SAT) is NP-complete.
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Proving NP-Completeness

Once we have an NP-complete problem (e.g., SAT), to show that
some other problem A is NP-complete, we only have to show that:

A is in NP;
some known NP-complete problem (e.g., SAT) is polynomial time
reducible to A.

Algorithm to Show NP-Completeness

Let A be an NP problem;
Find, if possible, an NP-complete problem B and a polynomial time
reduction from B to A;
Then A is also NP-complete.

The reason this algorithm works is:

By B’s NP-completeness, any problem π in NP is reducible to B.
But B is reducible to A;
So, any problem π in NP is reducible to A;
As A is also in NP, it is NP-complete.
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3-Satisfiability

The 3-satisfiability problem (3-SAT) is NP-complete.

First, 3-SAT is in NP because it is just a restricted form of SAT,
which we know is in NP.

To show that 3-SAT is NP-complete, we show that SAT can be
polynomial time-reduced to it.

The basic idea is to transform each clause that has four or more
literals into a conjunctive normal form where each clause has three
literals with the property that, for some assignment of truth values to
variables, the original clause is true if and only if the replacement
conjunctive normal form is true.
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3-Satisfiability (Reduction)

Suppose we have the following clause that contains k literals, where
k ≥ 4: (ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk).

We transform it into the following conjunctive normal form, where
x1, x2, . . . , xk−3 are new variables (i.e., not appearing in the original
formula):

(ℓ1 ∨ ℓ2 ∨ x1) ∧ (ℓ3 ∨ ¬x1 ∨ x2) ∧ (ℓ4 ∨ ¬x2 ∨ x3) ∧ · · ·
∧ (ℓk−2 ∨ ¬xk−4 ∨ xk−3) ∧ (ℓk−1 ∨ ℓk ∨ ¬xk−3).

This transformation can be applied to each clause (containing four or
more literals) of a conjunctive normal form, resulting in a conjunctive
normal form where each clause has three or fewer literals.

Example: The clause (u ∨ ¬w ∨ x ∨ ¬y ∨ z) is transformed into

(u ∨ ¬w ∨ x1) ∧ (x ∨ ¬x1 ∨ x2) ∧ (¬y ∨ z ∨ ¬x2),

where x1 and x2 are new variables.
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3-Satisfiability (Why It Works)

We must show that there is some assignment to the new variables
such that the original clause is true (i.e., one of its literals is true) if
and only if the new expression is true.

If ℓi = T , then set xj to T , for j ≤ i − 2 and set xj to F , for j > i − 2.
This will make the new expression true.

(ℓ1 ∨ ℓ2 ∨ x1) ∧ (ℓ3 ∨ ¬x1 ∨ x2) ∧ (ℓ4 ∨ ¬x2 ∨ x3) ∧ (ℓ5 ∨ ℓ6 ∨ ¬x3)

Conversely, suppose there is some truth assignment to the variables xj ,
that makes the new expression true.
Then some literal in the original fundamental disjunction must be true.
Otherwise, we can see that both xk−3 and ¬xk−3 must be true, which
is a contradiction.

(ℓ1 ∨ ℓ2 ∨ x1) ∧ (ℓ3 ∨ ¬x1 ∨ x2) ∧ (ℓ4 ∨ ¬x2 ∨ x3) ∧ (ℓ5 ∨ ℓ6 ∨ ¬x3)

Since at least one of the ℓi ’s must be true, the original clause must be
true.
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3-Satisfiability (Time)

We need to show that the transformation can be done in polynomial
time.

A straightforward algorithm to accomplish the transformation applies
the definition to each clause that contains four or more literals.

If an input formula has length n (i.e., n literals), then there are at
most n

4 clauses of length four or more.

Each of these clauses is transformed into a conjunctive normal form
containing at most 3(n − 2) literals.

Therefore, the algorithm constructs at most 3n(n−2)
4 literals.

Since each new literal can be constructed in a constant amount of
time, the algorithm will run in time O(n2).

Therefore, SAT can be polynomial time-reduced to 3-SAT.
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The CLIQUE Problem (Reduction)

The Clique Problem (CLIQUE) is NP-complete.

The usual way to show that CLIQUE is NP-complete is to show that
3-SAT is polynomial time reducible to CLIQUE.

Let I be an instance of 3-SAT that consists of a formula of the form
C1 ∧ C2 ∧ · · · ∧ Ck , where each Ci is a clause with at most 3 literals.

Construct an instance f (I ) of CLIQUE that consists of a graph and
the number k , where the vertices of the graph are all pairs of the
form (ℓ,C ), where ℓ is a literal in clause C .

Construct an edge between two vertices (ℓi ,Ci ) and (ℓj ,Cj ) if Ci 6= Cj

and the literals ℓi , and ℓj are not negations of each other.
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The CLIQUE Problem (Why it Works)

Now we show that an instance I of 3-SAT is a YES instance iff the
corresponding instance f (I ) of CLIQUE is a YES instance:

I is a YES instance of 3-SAT
iff C1 ∧ C2 ∧ · · · ∧ Ck is satisfiable
iff for each i there is a literal ℓi in Ci

that is assigned the truth value T

iff for each i 6= j , the literals ℓi and ℓj
are not negations of each other

iff for each i 6= j , there is an edge connecting (ℓi ,Ci ) to (ℓj ,Cj)
iff the vertices (ℓi ,Ci ) form a k-clique
iff f (I ) is a YES instance of CLIQUE.
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The CLIQUE Problem (Time)

Because the formula in I has k clauses and each clause has at most
3k literals, it follows that f (I ) constructs a graph with at most 3k

vertices and at most 3k(3k1)
2 edges.

So, f (I ) can be constructed in time O(k2).

Therefore, f is polynomial time-computable.

We conclude that 3-SAT is polynomial time reducible to CLIQUE.

Since:

CLIQUE is in NP;
the NP-complete problem 3-SAT is polynomial time reducible to
CLIQUE,

it follows that CLIQUE is also NP-complete.
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