Discrete Structures for Computer Science

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University
LSSU CSci 341
(1) Functions

- Definitions and Examples - Some Useful Functions
- Composition of Functions
- Properties of Functions
- Infinite Sets

Subsection 1

Definitions and Examples

Functions

- Let A and B be sets.
- A function from A to B is an association to each element in A of exactly one element in B.
- Functions are normally denoted by letters like f, g and h.
- If f is a function from A to B, written $f: A \rightarrow B$ or $A \xrightarrow{f} B$, and f associates $x \in A$ with $y \in B$, then we write $y=f(x)$.
- When $f(x)=y$, we often say, " f maps x to y ".
- Functions are also called mappings, transformations and operators.
- The following associations are not functions from A to B.

Description of Functions

- Functions can be described in many ways:
- By a formula.

The function $f: \mathbb{N} \rightarrow \mathbb{N}$ mapping every natural number x to its square can be described by

$$
f(x)=x^{2}, \text { for all } x \in \mathbb{N}
$$

- By a list.

A function $g: A \rightarrow B$ from $A=\{a, b, c\}$ to $B=\{1,2,3\}$ may be defined by

$$
g(a)=1, \quad g(b)=1, \quad g(c)=2
$$

- By a graph (e.g., Venn diagram, digraph, Cartesian graph).

Terminology

- The set of all functions from A to B is denoted $A \rightarrow B$.
- If $f \in A \rightarrow B$, i.e., $f: A \rightarrow B$, then we say f has type $A \rightarrow B$.
- The set A is called the domain of f.
- The set B is the codomain of f.
- If $f(x)=y$, then:
- x is an argument of f;
- y is a value of f.
- If the domain of a function f is a product of n sets, $A_{1} \times \cdots \times A_{n}$, then we say that f has arity n, or f has n arguments.
- If $\left(x_{1}, \ldots, x_{n}\right) \in A_{1} \times \cdots \times A_{n}$, then instead of $f\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ we usually write $f\left(x_{1}, \ldots, x_{n}\right)$.

Binary Functions and Infix Notation

- A function f with two arguments is called a binary function.
- Binary functions give us the option of writing $f(x, y)$ in the popular infix form xfy.
- Example: Consider addition of real numbers

$$
+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}
$$

Instead of writing $+(4,5)$, we usually prefer $4+5$.

Range, Images and Pre-Images

- The range of f, written range (f), is the set of elements in B that are associated with some element of A :

$$
\operatorname{range}(f)=\{f(a): a \in A\}
$$

- If $S \subseteq A$, then the image of S under f, written $f(S)$, is the set of values in B associated with elements of S :

$$
f(S)=\{f(x): x \in S\}
$$

- As a special case $f(A)=\operatorname{range}(f)$.
- If $T \subseteq B$, then the pre-image or inverse image of T under f, written $f^{-1}(T)$, is the set of elements in A that associate with some elements of T :

$$
f^{-1}(T)=\{a \in A: f(a) \in T\} .
$$

- We have $f^{-1}(B)=A$.

Example

- Consider the function $f:\{a, b, c\} \rightarrow\{1,2,3\}$ defined by $f(a)=f(b)=1$ and $f(c)=2$.
- f has type $\{a, b, c\} \rightarrow\{1,2,3\}$.
- The domain of f is $\{a, b, c\}$.
- The codomain of f is $\{1,2,3\}$.
- The range of f is $\{1,2\}$.
- $f(\{a\})=\{1\}$;
- $f(\{a, b\})=\{1\}$;
- $f(A)=f(\{a, b, c\})=\{1,2\}=\operatorname{range}(f)$;
- $f^{-1}(\{1,2\})=\{a, b, c\}$;
- $f^{-1}(\{1,3\})=\{a, b\}$;
- $f^{-1}(\{3\})=\emptyset$;
- $f^{-1}(B)=f^{-1}(\{1,2,3\})=\{a, b, c\}=A$.

Tuples as Functions

- Any sequence of objects can be thought of as a function.
- Example: The tuple $(22,14,55,1,700,67)$ can be considered a listing of the values of a function

$$
f:\{0,1,2,3,4,5\} \rightarrow \mathbb{N}
$$

That is, we defined f by setting

$$
f(0)=22, f(1)=14, f(2)=55, f(3)=1, f(4)=700, f(5)=67
$$

Then $(22,14,55,1,700,67)$ is just a listing of the values of f.

- An infinite sequence can also be considered a function.
- Example: Suppose we have the following sequence of things from a set S :

$$
\left(b_{0}, b_{1}, \ldots, b_{n}, \ldots\right)
$$

The elements b_{n} can be considered values of the function $b: \mathbb{N} \rightarrow S$, defined by $b(n)=b_{n}$.

Functions and Binary Relations

- Functions are special kinds of binary relations.
- A function $f: A \rightarrow B$ is a binary relation from A to B such that for each $a \in A$ there is a unique $b \in B$, such that $(a, b) \in f$.
- We can describe this uniqueness condition in the following way:

$$
\text { If }(a, b),(a, c) \in f, \text { then } b=c
$$

- In case the relation $f \subseteq A \times B$ happens to be a function of type $A \rightarrow B$, the functional notation $f(a)=b$ is preferred over the relational notations $f(a, b)$ and $(a, b) \in f$.

Example

- Consider the sets $A=\{a, b, c, d, e\}$ and $B=\{0,1,2\}$.
- Let $R \subseteq A \times B$ be the following binary relation from A to B :

$$
R=\{(a, 0),(b, 0),(c, 2),(d, 1),(e, 2)\}
$$

- Since R associates to each element of A a unique element of B, it is a function $R: A \rightarrow B$.
- In this case, instead of the relational $(c, 2) \in R$ or $R(c, 2)$, we may write the functional $R(c)=2$.

Equality of Functions

- If f and g are both functions of type $A \rightarrow B$, then f and g are said to be equal, written $f=g$, if

$$
f(x)=g(x), \text { for all } x \in A
$$

- Example: Suppose f and g are functions of type $\mathbb{N} \rightarrow \mathbb{N}$ and they are defined by the formulas

$$
f(x)=x+x
$$

and

$$
g(x)=2 x
$$

Then $f=g$.

Definition by Cases

- Functions can be defined by cases.
- Example: The absolute value function abs has type $\mathbb{R} \rightarrow \mathbb{R}$ and can be defined by the following rule:

$$
\operatorname{abs}(x)=\left\{\begin{aligned}
x, & \text { if } x \geq 0 \\
-x, & \text { if } x<0
\end{aligned}\right.
$$

- A definition by cases can also be written in terms of the if-then-else rule.
- Example: We can write the preceding definition in the form:

$$
\operatorname{abs}(x)=\text { if } x \geq 0 \text { then } x \text { else }-x
$$

Partial Functions

- A partial function from A to B is like a function except that it might not be defined for some elements of A.
- We still have the requirement that if $x \in A$ is associated with $y \in B$, then x cannot be associated with any other element of B.
- Example: Since division by zero is not allowed, \div is a partial function of type $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$.
- When discussing partial functions, to avoid confusion we use the term total function to mean a function that is defined on all its domain.

From Partial Functions to Total Functions

- Any partial function can be transformed into a total function.
- One simple technique is to shrink the domain to the set of elements for which the partial function is defined.
- Example: \div is a total function of type $\mathbb{R} \times(\mathbb{R}-\{0\}) \rightarrow \mathbb{R}$.
- A second technique keeps the domain the same but increases the size of the codomain.
- Example: Suppose $f: A \rightarrow B$ is a partial function.
- Pick some symbol that is not in B, say $\# \notin B$;
- Assign $f(x)=$ \# whenever $f(x)$ is not defined.

Then we can think of f as the total function of type $A \rightarrow B \cup\{\#\}$.

- In programming, the analogy would be to pick an error message to indicate that an incorrect input string has been received.

The Floor and Ceiling Functions

- The floor function has type $\mathbb{R} \rightarrow \mathbb{Z}$ and is defined by floor $(x)=$ the largest integer less than or equal to x.
- Example: floor $(8)=8$, floor $(8.9)=8$, floor $(-3.5)=-4$.
- floor (x) is also denoted by $\lfloor x\rfloor$.
- The ceiling function has type $\mathbb{R} \rightarrow \mathbb{Z}$ and is defined by ceiling $(x)=$ the smallest integer greater than or equal to x.
- Example: $\operatorname{ceiling}(8)=8$, ceiling $(8.9)=9$, ceiling $(-3.5)=-3$.
- ceiling (x) is also denoted by $\lceil x\rceil$.

A Simple Property of the Floor Function

- For all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$,

$$
\lfloor x+n\rfloor=\lfloor x\rfloor+n .
$$

Let $x \in \mathbb{R}$ and $n \in \mathbb{Z}$.

- If $x \in \mathbb{Z}$, then $x+n \in \mathbb{Z}$.

So we have $\lfloor x+n\rfloor=x+n=\lfloor x\rfloor+n$.

- If $x \notin \mathbb{Z}$, then, there exists $m \in \mathbb{Z}$ and $0<r<1$, such that $x=m+r$. So we have:

$$
\begin{aligned}
\lfloor x+n\rfloor & =\lfloor m+r+n\rfloor=\lfloor(m+n)+r\rfloor \\
& =m+n=\lfloor m+r\rfloor+n \\
& =\lfloor x\rfloor+n .
\end{aligned}
$$

Floor and Ceiling: Divide and Conquer

- If $n \in \mathbb{Z}$, then

$$
n=\lfloor n / 2\rfloor+\lceil n / 2\rceil .
$$

Consider two cases:

- If n is even, then $n=2 k$ for some $k \in \mathbb{Z}$.

So we have

$$
\begin{aligned}
& \lfloor n / 2\rfloor=\lfloor 2 k / 2\rfloor=\lfloor k\rfloor=k ; \\
& \lceil n / 2\rceil=\lceil 2 k / 2\rceil=\lceil k\rceil=k .
\end{aligned}
$$

So $\lfloor n / 2\rfloor+\lceil n / 2\rceil=k+k=2 k=n$.

- If n is odd, then $n=2 k+1$ for some $k \in \mathbb{Z}$.

In this case, we have

$$
\begin{aligned}
& \lfloor n / 2\rfloor=\lfloor(2 k+1) / 2\rfloor=\lfloor k+1 / 2\rfloor=k ; \\
& \lceil n / 2\rceil=\lceil(2 k+1) / 2\rceil=\lceil k+1 / 2\rceil=k+1 .
\end{aligned}
$$

So $\lfloor n / 2\rfloor+\lceil n / 2\rceil=k+k+1=2 k+1=n$.

Greatest Common Divisor

- The greatest common divisor of two integers a and b, not both zero, denoted $\operatorname{gcd}(a, b)$, is the largest number that divides them both.
- Example:

The common divisors of 12 and 18 are $\pm 1, \pm 2, \pm 3, \pm 6$. So $\operatorname{gcd}(12,18)=6$.

- Example: $\operatorname{gcd}(-44,-12)=4, \operatorname{gcd}(5,0)=5$.
- If $a \neq 0$, we have $\operatorname{gcd}(a, 0)=|a|$.
- If $\operatorname{gcd}(a, b)=1$, we say a and b are relatively prime.
- Example: 9 and 4 are relatively prime.

Division Algorithm

- Division Algorithm:

If a and b are integers and $b \neq 0$, then there are unique integers q and r such that $a=b q+r$, where $0 \leq r<|b|$.

- Example: If $a=19$ and $b=4$, then

$$
19=4 \cdot 4+3
$$

- Example: If $a=-16$ and $b=3$, then

$$
-16=3 \cdot(-6)+2
$$

Euclid's Algorithm

- We describe Euclid's Algorithm that calculates $\operatorname{gcd}(a, b)$ for a and b natural numbers that are not both zero.
- Euclid's Algorithm:

Input two natural numbers a and b, not both zero.
while $b>0$
Use the division algorithm to compute q and r such that $a=b q+r$, where $0 \leq r<b ;$

$$
\begin{aligned}
& a:=b \\
& b:=r
\end{aligned}
$$

Output a.

- Apply Euclid's Algorithm to compute the gcd of 315 and 54.
- Initialization: $a:=315 ; b:=54$;
- While Loop:
- Iteration 1: $315=54 \cdot 5+45 ; \quad a=54 ; b:=45$;
- Iteration 2: $54=45 \cdot 1+9 ; \quad a:=45 ; b:=9$;
- Iteration 3: $45=9 \cdot 5+0 ; \quad a:=9 ; b:=0$;
- Output: $a=9$.

Greatest Common Divisor as Linear Combination

- The following holds for all nonnegative integers a, b that are not both zero:

If $g=\operatorname{gcd}(a, b)$, then there exist integers m, n, such that $g=m \cdot a+n \cdot b$.

- We can use Euclid's algorithm to find m and n.
- Keep track of the equations $a=b q+r$ from each execution of the loop:

$$
\begin{aligned}
315 & =54 \cdot 5+45 \\
54 & =45 \cdot 1+9 \\
45 & =9 \cdot 5+0
\end{aligned}
$$

- Work backwards to solve for $\operatorname{gcd}(a, b)$ in terms of a and b.
- Solve the second equation for 9 :

$$
9=54-45 \cdot 1
$$

- Use the first equation to replace 45 :

$$
9=54-(315-54 \cdot 5) \cdot 1=54-315+54 \cdot 5=-315+54 \cdot 6 .
$$

The Mod Function

- If a and b are integers, where $b>0$, then the division algorithm states that there are two unique integers q and r such that

$$
a=b q+r, \text { where } 0 \leq r<b
$$

- We say that q is the quotient and r is the remainder upon division of a by b.
- If a and b are integers with $b>0$, then the remainder upon the division of a by b is denoted

$$
a \bmod b
$$

- Example:

$$
5 \bmod 4=1 ;-5 \bmod 4=3 ;
$$

The Mod n Function

- Fix n as a positive integer constant.
- Define a function $f: \mathbb{Z} \rightarrow \mathbb{N}$ by

$$
f(x)=x \quad \bmod n
$$

- Example: Fix $n=3$. We have
- $25 \bmod 3=1$;
- $12 \bmod 3=0$;
- $8 \bmod 3=2$;
- $-4 \bmod 3=2$;
- $-8 \bmod 3=1$.
- The range of f is $\{0,1, \ldots, n-1\}$, which is the set of possible remainders obtained upon division of x by n.
- We let \mathbb{N}_{n} or \mathbb{Z}_{n} denote the set

$$
\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\} .
$$

- For example, $\mathbb{Z}_{0}=\emptyset, \mathbb{Z}_{1}=\{0\}$, and $\mathbb{Z}_{2}=\{0,1\}$.

Some Properties of the Mod n Function

(a) For all $x, y \in \mathbb{Z}, x \bmod n=y \bmod n$ iff n divides $x-y$ iff $(x-y)$ $\bmod n=0$.
Suppose $x \bmod n=y \bmod n=r$.
Then we have $x=q_{1} n+r$ and $y=q_{2} n+r$.
Therefore, $x-y=q_{1} n+r-\left(q_{2} n+r\right)=\left(q_{1}-q_{2}\right) n+0$.
Thus, $(x-y) \bmod n=0$.
Conversely, suppose $x-y=0 \bmod n$. Then $x-y=q n$, for some $q \in \mathbb{Z}$. But then, we have $x \bmod n=(y+q n) \bmod n=y \bmod n$.
(b) For all $a, x, y \in \mathbb{Z}$, if $a x \bmod n=$ ay $\bmod n$ and $\operatorname{gcd}(a, n)=1$, then $x \bmod n=y \bmod n$.
Suppose ax $\bmod n=$ ay $\bmod n$.
Then, by Property (a), $(a x-a y) \bmod n=0$. Thus, $n \mid a(x-y)$.
But, if a positive integer divides a product and is relatively prime with one of its factors, then it must divide the other. It follows that $n \mid(x-y)$. By Property (a) again $x \bmod n=y \bmod n$.

From Decimal to Binary Notation

- We can use the floor and mod functions to implement division by 2 :

$$
x=2 \cdot\left\lfloor\frac{x}{2}\right\rfloor+\left(\begin{array}{ll}
x & \bmod 2
\end{array}\right)
$$

- This enables writing an integer in binary notation by keeping track of remainders.
- Example: Write 53 in binary notation.

$$
\begin{aligned}
53 & =2 \cdot 26+1 \\
26 & =2 \cdot 13+0 \\
13 & =2 \cdot 6+1 \\
6 & =2 \cdot 3+0 \\
3 & =2 \cdot 1+1 \\
1 & =2 \cdot 0+1
\end{aligned}
$$

So the binary representation of 53 is 110101 .

The Log Function: Definition

- Let $0<b \neq 1$ be a fixed real number.
- The $\log (\operatorname{logarithm})$ function base $b, \log _{b}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is defined by

$$
\log _{b} x=y, \text { where } b^{y}=x
$$

- Example: We have:
- $\log _{2} 16=4 ;$
- $\log _{3} 27=3$;
- $\log _{7} \frac{1}{49}=-2$;
- $\log _{32} 2=\frac{1}{5}$;
- $\log _{8} \frac{1}{2}=-\frac{1}{3}$.

The Log Function: Application

- Consider a binary search tree with 16 nodes having the structure shown:

- Then the depth of the tree is 4 .
- So a maximum of 4 comparisons are needed to find any element in the tree.
- Since $16=2^{4}$, the depth in terms of the number of nodes is:

$$
4=\log _{2} 16
$$

The Log Function: Properties

- The log base b satisfies the following properties:
- $\log _{b} 1=0$ and $\log _{b} b=1$;
- $\log _{b}\left(b^{x}\right)=x$ and $b^{\log _{b} x}=x$;
- $\log _{b}(x y)=\log _{b} x+\log _{b} y$;
- $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$;
- $\log _{b}\left(x^{y}\right)=y \log _{b} x$;
- $\log _{b} x=\frac{\log _{a} x}{\log _{a} b}$.
- Example: Write $\log _{2}\left(2^{7} 3^{4}\right)$ in terms of $\log _{2} 3$.

We have, using the properties above:

$$
\log _{2}\left(2^{7} 3^{4}\right)=\log _{2}\left(2^{7}\right)+\log _{2}\left(3^{4}\right)=7+4 \log _{2} 3
$$

Subsection 2

Composition of Functions

Composition of Functions

- Consider two functions in which the domain of one contains the codomain of the other: $f: A \rightarrow$ $B, B \subseteq C$ and $g: C \rightarrow D$.

- The composition of f and g is the function $g \circ f: A \rightarrow D$ defined by

$$
(g \circ f)(x)=g(f(x))
$$

- This means that we first apply f to x and then apply g to the resulting value.

Examples of Composition

- Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x+1$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=x^{2}$.
Then we have:
- $(g \circ f)(7)=g(f(7))=g(8)=64 ;$
- $(f \circ g)(3)=f(g(3))=f(9)=10$;
- $(g \circ f)(x)=g(f(x))=g(x+1)=(x+1)^{2}$;
- $(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=x^{2}+1$;
- $(f \circ f)(x)=f(x+1)=(x+1)+1=x+2$;
- Consider $\log _{2}:(0, \infty) \rightarrow \mathbb{R}$ and floor : $\mathbb{R} \rightarrow \mathbb{Z}$.

Then we have:

- floor $\left(\log _{2} 64\right)=$ floor $(6)=6$;
- floor $\left(\log _{2} 5\right)=2$, because $2<\log _{2} 5<3$.

Associativity of Composition

- If f, g and h are functions of the right type such that $(f \circ g) \circ h$ and $f \circ(g \circ h)$ make sense, then

$$
(f \circ g) \circ h=f \circ(g \circ h) .
$$

To prove this, calculate the expressions for both sides:

$$
\begin{aligned}
& ((f \circ g) \circ h)(x)=(f \circ g)(h(x))=f(g(h(x))) ; \\
& (f \circ(g \circ h))(x)=f((g \circ h)(x))=f(g(h(x)))
\end{aligned}
$$

- This property allows writing the composition of three or more functions without the use of parentheses, since $f \circ g \circ h$ has exactly one meaning.

Non-Commutativity of Composition

- Composition is not commutative in general.

This can be shown by counterexample.
Consider $f(x)=x+1$ and $g(x)=x^{2}$.
We have

$$
\begin{aligned}
& (f \circ g)(2)=f(g(2))=f(4)=5 ; \\
& (g \circ f)(2)=g(f(2))=g(3)=9 .
\end{aligned}
$$

So $(f \circ g)(2) \neq(g \circ f)(2)$.
This shows that $f \circ g \neq g \circ f$.

Identity Function and Composition

- The identity function $\mathrm{id}_{A}: A \rightarrow A$ always returns its argument:

$$
\operatorname{id}_{A}(a)=a, \text { for all } a \in A
$$

- For every function $f: A \rightarrow B$, we have

$$
f \circ \mathrm{id}_{A}=f=\mathrm{id}_{B} \circ f .
$$

These equalities are easy to see: For every $a \in A$ we have:

- $\left(f \circ \mathrm{id}_{A}\right)(a)=f\left(\mathrm{id}_{A}(a)\right)=f(a)$.
- $\left(\mathrm{id}_{B} \circ f\right)(a)=\operatorname{id}_{B}(f(a))=f(a)$.

Sequence, Distribute and Pairs Functions

- The sequence function seq : $\mathbb{N} \rightarrow$ Lists $[\mathbb{N}]$ is defined by

$$
\operatorname{seq}(n)=\langle 0,1, \ldots, n\rangle
$$

- Example: $\operatorname{seq}(0)=\langle 0\rangle ; \operatorname{seq}(4)=\langle 0,1,2,3,4\rangle$.
- The distribute function dist : $A \times \operatorname{Lists}[B] \rightarrow \operatorname{Lists}[A \times B]$ takes an element x from A and a list y from Lists $[B]$ and returns the list of pairs made up by pairing x with each element of y.
- Example: $\operatorname{dist}(x,\langle r, s, t\rangle)=\langle(x, r),(x, s),(x, t)\rangle$.
- The pairs function takes two lists of equal length and returns the list of pairs of corresponding elements.
- Example:

$$
\operatorname{pairs}(\langle a, b, c\rangle,\langle d, e, f\rangle)=\langle(a, d),(b, e),(c, f)\rangle .
$$

- Since the domain of pairs is a proper subset of Lists $[A] \times \operatorname{Lists}[B]$, it is only a partial function of type Lists $[A] \times \operatorname{Lists}[B] \rightarrow \operatorname{Lists}[A \times B]$.

Composition of Functions With Different Arities

- Suppose we are given the following three functions:

$$
f: A \rightarrow B, \quad g: A \rightarrow C, \quad h: B \times C \rightarrow D
$$

- We can form the composition $h \circ(f, g): A \rightarrow D$, defined, for all $x \in A$, by

$$
(h \circ(f, g))(x)=h(f(x), g(x))
$$

- Example: Suppose $f: A \rightarrow \mathbb{R}, g: A \rightarrow \mathbb{R}$ and $+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. Then we have that $+\circ(f, g): A \rightarrow \mathbb{R}$ is given, for all $x \in A$ by

$$
(+\circ(f, g))(x)=+(f(x), g(x))=f(x)+g(x)
$$

Example

- Use known functions and constructions to build the function $f: \mathbb{N} \rightarrow$ Lists $[\mathbb{N} \times \mathbb{N}]$ defined by

$$
f(n)=\langle(0,0),(1,1), \ldots,(n, n)\rangle .
$$

We have

$$
\begin{aligned}
f(n) & =\langle(0,0),(1,1), \ldots,(n, n)\rangle \\
& =\operatorname{pairs}(\langle 0,1, \ldots, n\rangle,\langle 0,1, \ldots, n\rangle) \\
& =\operatorname{pairs}(\operatorname{seq}(n), \operatorname{seq}(n))
\end{aligned}
$$

Example

- Use known functions and constructions to build the function $g: \mathbb{N} \rightarrow$ Lists $[\mathbb{N} \times \mathbb{N}]$ defined by

$$
g(k)=\langle(k, 0),(k, 1), \ldots,(k, k)\rangle, \text { for all } k \in \mathbb{N}
$$

We have

$$
\begin{aligned}
g(k) & =\langle(k, 0),(k, 1), \ldots,(k, k)\rangle \\
& =\operatorname{dist}(k,\langle 0,1, \ldots, k\rangle) \\
& =\operatorname{dist}(k, \operatorname{seq}(k)) .
\end{aligned}
$$

The Map or Apply-To-All Function

- The map function map : $(A \rightarrow B) \rightarrow(\operatorname{Lists}[A] \rightarrow$ Lists $[B])$ takes one argument, a function $f: A \rightarrow B$, and returns as a result the function $\operatorname{map}(f): \operatorname{Lists}[A] \rightarrow \operatorname{Lists}[B]$, where $\operatorname{map}(f)$ applies f to each element in its argument list:

$$
\operatorname{map}(f)\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=\left\langle f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\rangle
$$

- Example: Let $f:\{a, b, c\} \rightarrow\{1,2,3\}$ be defined by $f(a)=f(b)=1$ and $f(c)=2$. Then $\operatorname{map}(f)$ applied to the list $\langle a, b, c, a\rangle$ can be calculated as follows:

$$
\operatorname{map}(f)(\langle a, b, c, a\rangle)=\langle f(a), f(b), f(c), f(a)\rangle=\langle 1,1,2,1\rangle
$$

- The map function is sometimes called the "applyToAll" function.
- Example: Consider + and apply map(+) to a list of pairs of integers:

$$
\begin{aligned}
\operatorname{map}(+)(\langle(1,2),(3,4),(5,6)\rangle) & =\langle+(1,2),+(3,4),+(5,6)\rangle \\
& =\langle 3,7,11\rangle .
\end{aligned}
$$

Example

- Use known functions and constructions to build the function squares: $\mathbb{N} \rightarrow$ Lists[\mathbb{N}] defined by

$$
\operatorname{squares}(n)=\left\langle 0,1,4, \ldots, n^{2}\right\rangle
$$

We have:

$$
\begin{aligned}
\operatorname{squares}(n) & =\left\langle 0,1,4, \ldots, n^{2}\right\rangle \\
& =\langle *(0,0), *(1,1), *(2,2), \ldots, *(n, n)\rangle \\
& =\operatorname{map}(*)(\langle(0,0),(1,1),(2,2), \ldots,(n, n)\rangle) \\
& =\operatorname{map}(*)(\operatorname{pairs}(\langle 0,1,2, \ldots, n\rangle,\langle 0,1,2, \ldots, n\rangle)) \\
& =\operatorname{map}(*)(\operatorname{pairs}(\operatorname{seq}(n), \operatorname{seq}(n))) .
\end{aligned}
$$

Subsection 3

Properties of Functions

Injective Functions

- A function $f: A \rightarrow B$ is called injective (or one-to-one or an embedding) if no two elements in A map to the same element in B.
- Formally, f is injective if for all $x, y \in A$, whenever $x \neq y$, then $f(x) \neq f(y)$.
- By contraposition, f is injective if, for all $x, y \in A$, if $f(x)=f(y)$, then $x=y$.
- An injective function is called an injection.

Surjective Functions

- A function $f: A \rightarrow B$ is called surjective (or onto) if each element $b \in B$ can be written as $b=f(x)$ for some element x in A.
- Another way to say this is that f is surjective if range $(f)=B$.
- A surjective function is called a surjection.

Example

- Function $f: \mathbb{R} \rightarrow \mathbb{Z} ; f(x)=\lceil x+1\rceil$.
- Injective? No! $f(0.1)=\lceil 0.1+1\rceil=2=\lceil 0.2+1\rceil=f(0.2)$.
- Surjective? Yes! For $k \in \mathbb{Z}$, let $x \in \mathbb{R}$ be $x=k-1$. Then

$$
f(x)=\lceil(k-1)+1\rceil=k .
$$

- Function $f: \mathbb{N}_{8} \rightarrow \mathbb{N}_{8} ; f(x)=2 x \bmod 8$.
- Injective? No! $f(0)=0 \bmod 8=8 \bmod 8=f(4)$.
- Surjective? No! range $(f)=\{0,2,4,6\}$.
- Function $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N} ; f(x)=(x, x)$.
- Injective? Yes! Suppose $x, y \in \mathbb{N}$, with $f(x)=f(y)$. Then $(x, x)=(y, y)$. This implies $x=y$.
- Surjective? No! $(0,1) \notin$ range (f).
- Function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} ; f(x, y)=2 x+y$.
- Injective? No! $f(0,2)=2=f(1,0)$.
- Surjective? Yes! Suppose $n \in \mathbb{N}$. Let $x=(0, n) \in \mathbb{N} \times \mathbb{N}$. Then $f(0, n)=2 \cdot 0+n=n$.

Bijective Functions

- A function is called bijective (or one-to-one and onto) if it is both injective and surjective.
- A bijective function is called a bijection or a one-to-one correspondence.

Injectivity, Surjectivity and Composition

- Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) If f and g are injective, then $g \circ f$ is injective.
(b) If f and g are surjective, then $g \circ f$ is surjective.
(c) If f and g are bijective, then $g \circ f$ is bijective.
(d) There is an injection from A to B if and only if there is a surjection from B to A.
(a) Let $a, a^{\prime} \in A$, such that $(g \circ f)(a)=(g \circ f)\left(a^{\prime}\right)$.

This means $g(f(a))=g\left(f\left(a^{\prime}\right)\right)$.
By the injectivity of g, we get $f(a)=f\left(a^{\prime}\right)$.
By the injectivity of f, we get $a=a^{\prime}$.
We conclude that $g \circ f$ is injective.
(b) To show that $g \circ f$ is surjective, let $c \in C$.

Since g is surjective, there exists $b \in B$, such that $g(b)=c$.
Since f is surjective, there exists $a \in A$, such that $f(a)=b$.
Thus, we get $g(f(a))=g(b)=c$.
We conclude $g \circ f$ is surjective.

Bijections and Inverse Functions

- A function $g: B \rightarrow A$ is called an inverse of a function $f: A \rightarrow B$, denoted $g=f^{-1}$, if $g \circ f=\mathrm{id}_{A}$ and $f \circ g=\mathrm{id}_{B}$.
- A function $f: A \rightarrow B$ is bijective if and only if it has an inverse function $g: B \rightarrow A$.
(\Rightarrow) Suppose that f is a bijection. To define $g: B \rightarrow A$, let $b \in B$. Since f is onto, there exists $a \in A$, such that $f(a)=b$. Since f is $1-1$, there cannot exist $a^{\prime} \neq a$ in A, such that $f\left(a^{\prime}\right)=b$. We define

$$
g(b)=a, \text { for the unique } a \in A \text { such that } f(a)=b
$$

Then we have:

- $g(f(a))=g(b)=a=\operatorname{id}_{A}(a)$.
- $f(g(b))=f(a)=b=\operatorname{id}_{B}(b)$.
(\Leftarrow) Suppose, conversely, that there exists $g: B \rightarrow A$, such that $g \circ f=\mathrm{id}_{A}$ and $f \circ g=\mathrm{id}_{B}$. Then, for all $a, a^{\prime} \in A$ and $b \in B$:
- $b=\operatorname{id}_{B}(b)=f(g(b))$, so f is onto.
- $f(a)=f\left(a^{\prime}\right) \Rightarrow g(f(a))=g\left(f\left(a^{\prime}\right)\right) \Rightarrow a=a^{\prime}$, so f is $1-1$.

Example

- Let Odd and Even be the sets of odd and even natural numbers.
(a) Show that the function f : Odd \rightarrow Even defined by $f(x)=x-1$ is a bijection.
(b) Find the inverse function f^{-1}.
(a) f is injective: Suppose $x_{1}, x_{2} \in \operatorname{Odd}$, such that $x_{1} \neq x_{2}$. Then $x_{1}-1 \neq x_{2}-1$. So $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
f is surjective: Let $y \in$ Even. Then $x=y+1 \in$ Odd and $f(x)=(y+1)-1=y$.
(b) Define $g:$ Even \rightarrow Odd by setting

$$
g(y)=y+1, \text { for all } y \in \text { Even. }
$$

It is easy to check that

$$
\begin{aligned}
& g(f(x))=x, \text { for all } x \in \text { Odd, } \\
& f(g(y))=y, \text { for all } y \in \text { Even. }
\end{aligned}
$$

So $g=f^{-1}$.

Example

- Consider the function $f: \mathbb{N}_{5} \rightarrow \mathbb{N}_{5}$, defined by $f(x)=2 x \bmod 5$.
(a) Show that f is a bijection.
(b) Find the inverse function f^{-1}.
(a) Since the domain of f is a small finite set, we create a table of values:

x	$f(x)$			
	0		x	$f^{-1}(x)$
0	2		0	0
1	2	3		
2	4		2	1
3	1		3	4
4	3		4	2

- f is injective: No two elements share the same image.
- f is surjective: The range is \mathbb{N}_{5}.
(b) The table on the right specifies f^{-1}. Note that $f^{-1}(x)=3 x \bmod 5$.

Subsection 4

Infinite Sets

Equipotence

- We say that two sets A and B have the same size or the same cardinality or are equipotent, denoted $|A|=|B|$, if there is a bijection between them.
- Formally, $|A|=|B|$ if there is a function $f: A \rightarrow B$ that is bijective.
- Example: Show that $A=\left\{x^{2}: x \in \mathbb{N}\right.$ and $\left.1 \leq x^{2} \leq 90\right\}$ and $B=\{0,1, \ldots, 8\}$ are equipotent sets.
Note that $A=\{1,4,9, \ldots, 81\}$.
Define a function $f: B \rightarrow A$, by setting

$$
f(x)=(x+1)^{2}, \text { for all } x \in B
$$

f is one-to-one and onto, so a bijection.
We conclude that $|A|=|B|$.

Example

- Show that the set Even and the set Odd of even and odd natural numbers, respectively, have the same cardinality.
Consider the function f : Even \rightarrow Odd, defined by

$$
f(x)=x+1, \text { for all } x \in \text { Even. }
$$

- f is injective: If $x_{1}, x_{2} \in$ Even, with $x_{1} \neq x_{2}$, then $x_{1}+1 \neq x_{2}+1$. So $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
- f is surjective: Let $y \in$ Odd. Then $x=y-1 \in$ Even and

$$
f(x)=f(y-1)=y-1+1=y .
$$

So f is surjective.
We conclude that f is a bijection. So \mid Even $|=|$ Odd \mid.

Example

- Show that the set Odd has the same cardinality with \mathbb{N}.
- Define $f: \mathbb{N} \rightarrow$ Odd by seting

$$
f(x)=2 x+1, \text { for all } x \in \mathbb{N}
$$

- f is injective: Suppose $x_{1}, x_{2} \in \mathbb{N}$, with $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $2 x_{1}+1=2 x_{2}+1$. Subtracting 1 from both sides and then dividing by 2 , we get $x_{1}=x_{2}$.
- f is surjective: Let $y \in$ Odd. Then $x=\frac{y-1}{2} \in \mathbb{N}$ and

$$
f(x)=f\left(\frac{y-1}{2}\right)=2 \frac{y-1}{2}+1=y .
$$

We conclude that f is a bijection. So $|\mathbb{N}|=\mid$ Odd \mid.

Inequalities Between Cardinalities

- For two sets A and B, we say the cardinality of A is less than or equal to the cardinality of B, written $|A| \leq|B|$,

> iff there is an injection $f: A \rightarrow B$ iff there is a surjection $g: B \rightarrow A$.

- If there is an injection $f: A \rightarrow B$ but no bijection between them, we write $|A|<|B|$ and say that the cardinality of A is less than the cardinality of B.
- Thus, the cardinality of A is less than the cardinality of B if:
- $|A| \leq|B|$; and
- $|A| \neq|B|$.

Countable and Uncountable Sets

- A set C is countable if it is finite or if $|C|=|\mathbb{N}|$.
- In the case $|C|=|\mathbb{N}|$ we sometimes say that C is countably infinite.
- If a set is not countable, it is called uncountable.
- Example: \mathbb{N} is the fundamental example of a countably infinite set.
- Important Properties:
(a) Every subset of \mathbb{N} is countable.
(b) A set S is countable if and only if $|S| \leq|\mathbb{N}|$.
(c) Every subset of a countable set is countable.
(d) Any image of a countable set is countable.

Cartesian Products of Countable Sets

- The set $\mathbb{N} \times \mathbb{N}$ is countable.

We need to describe a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N}.
We arrange the elements of $\mathbb{N} \times \mathbb{N}$ so that they can be counted.
In the following listing each row lists a sequence of tuples in $\mathbb{N} \times \mathbb{N}$ followed by a corresponding sequence of natural numbers:
$(0,0)$
$\leftrightarrow \quad 0$
$(0,1),(1,0)$
$\leftrightarrow \quad 1,2$
$(0,2),(1,1),(2,0) \quad \leftrightarrow \quad 3,4,5$
$(0,3),(1,2),(2,1),(3,0) \quad \leftrightarrow \quad 6,7,8,9$

This listing shows that we have a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N}.
Therefore, $\mathbb{N} \times \mathbb{N}$ is countable.

Countable Unions of Countable Sets

- If $S_{0}, S_{1}, \ldots, S_{n}, \ldots$ is a sequence of countable sets, then the union $S_{0} \cup S_{1} \cup \cdots \cup S_{n} \cup \cdots$ is a countable set.

Since each set S_{n} is countable, its ele- $x_{00}, x_{01}, x_{02}, \ldots$ ments can be listed (possibly with repeti- $x_{10}, x_{11}, x_{12}, \ldots$ tions) $x_{n 0}, x_{n 1}, x_{n 2}, \ldots$
So the elements of the union can be ar- $x_{i 0}, x_{i 1}, x_{i 2}, \ldots$ ranged as on the right.

Thus, we have a function $f: \mathbb{N} \times \mathbb{N} \rightarrow S_{1} \cup S_{2} \cup \cdots$ defined by $f(m, n)=x_{m n}$.
This mapping is surjective since the array includes all elements in the union.
Therefore, $S_{1} \cup S_{2} \cup \cdots$ is the image of the countable set $\mathbb{N} \times \mathbb{N}$.
So it is itself countable.

Countability of the Rationals

- We show that the set \mathbb{Q} of rational numbers is countable.

Let \mathbb{Q}^{+}denote the set of positive rational numbers.
We can represent \mathbb{Q}^{+}as the following set of fractions (with repetitions)

$$
\mathbb{Q}^{+}=\{m / n: m, n \in \mathbb{N} \text { and } n \neq 0\} .
$$

The function $f: \mathbb{Q}^{+} \rightarrow \mathbb{N} \times \mathbb{N}$, defined by $f(m / n)=(m, n)$ is an injection.
Since $\mathbb{N} \times \mathbb{N}$ is countable, we conclude that \mathbb{Q}^{+}is countable.
Similarly, the set \mathbb{Q}^{-}of negative rational numbers is countable.
But $\mathbb{Q}=\mathbb{Q}^{+} \cup\{0\} \cup \mathbb{Q}^{-}$is now the union of a sequence of countable sets.
So \mathbb{Q} is countable.

Set of Strings over a Finite Alphabet

- If A is a finite alphabet, then the set A^{*} of all strings over A is countably infinite.
For each $n \in \mathbb{N}$, let A_{n} be the set of strings over A having length n. It follows that A^{*} is the union of the sets $A_{0}, A_{1}, \ldots, A_{n}, \ldots$ Since each set A_{n} is finite, we conclude that A^{*} is countable.

Diagonalization: Uncountability of $(0,1)$

- The set $(0,1)$ is uncountable.

Suppose $(0,1)$ is countable.
Then, its elements can be listed as $r_{0}=0 . d_{00} d_{01} d_{02} \ldots$ $r_{0}, r_{1}, r_{2}, \ldots$.
$r_{1}=0 . d_{10} d_{11} d_{12} \ldots$
Represent each number in decimal $r_{i}=\quad r_{2}=0 . d_{20} d_{21} d_{22} \ldots$ $0 . d_{i 0} d_{i 1} d_{i 2} \ldots$
In this way we get the list:
Construct a new number $s=0 . s_{0} s_{1} s_{2} \ldots \in(0,1)$ as follows:

$$
s_{i}=\text { if } d_{i i}=4 \text { then } 5 \text { else } 4
$$

$s \in(0,1)$, but s does not occur in the listing above since it differs from r_{i} in the i-th decimal place, for all i
So the listing above does not exhaust all numbers in $(0,1)$.
So $(0,1)$ is uncountable.

Diagonalization: Uncountability of $\mathbb{N} \rightarrow \mathbb{N}$

- The set of functions $\mathbb{N} \rightarrow \mathbb{N}$ is uncountable.

Assume, by way of contradiction, that the set is countable.
Then we can list all the functions of type $\mathbb{N} \rightarrow \mathbb{N}$ as $f_{0}, f_{1}, f_{2}, \ldots$
Represent each function f_{n} as the sequence of its values $\left(f_{n}(0), f_{n}(1), f_{n}(2), \ldots\right)$.
Define a function $g: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
g(n)= \begin{cases}1, & \text { if } f_{n}(n)=2 \\ 2, & \text { if } f_{n}(n) \neq 2\end{cases}
$$

Then the sequence of values $(g(0), g(1), g(2), \ldots)$ is different from each of the sequences for the listed functions because $g(n) \neq f_{n}(n)$ for each n.
It follows that $f_{0}, f_{1}, f_{2}, \ldots$ does not list all functions in $\mathbb{N} \rightarrow \mathbb{N}$, a contradiction.

Diagonalization: Cantor's Theorem

- Let A be a set. Then

$$
|A|<|\mathcal{P}(A)| .
$$

To show this we must show that:
(a) $|A| \leq|\mathcal{P}(A)|$, i.e., there is an injection from A to $\mathcal{P}(A)$;
(b) $|A| \neq|\mathcal{P}(A)|$, i.e., there is no bijection between A and $\mathcal{P}(A)$.
(a) Let $f: A \rightarrow \mathcal{P}(A)$ be defined by

$$
f(a)=\{a\}, \text { for all } a \in A .
$$

f is an injection: $f(a)=f\left(a^{\prime}\right)$ implies $\{a\}=\left\{a^{\prime}\right\}$ implies $a=a^{\prime}$.
(b) Suppose $g: A \rightarrow \mathcal{P}(A)$ is a bijection.

Consider the set $D=\{a \in A: a \notin g(a)\} \in \mathcal{P}(A)$.
Since $g: A \rightarrow \mathcal{P}(A)$ is onto, there exists $d \in A$, such that $g(d)=D$.

- If $d \in D$, then $d \notin g(d)$, so $d \notin D$, contradiction.
- If $d \notin D$, then $d \in g(d)$, so $d \in D$, contradiction.

Number of Programs

- The set of all programs in a programming language is countably infinite.
Consider each program as a finite string of symbols over a fixed finite alphabet A.
For example, A might consist of all characters that can be typed from a keyboard.
For each natural number n, let P_{n} denote the set of all programs that are strings of length n over A.
For example, the program $\{\operatorname{print}(4)\}$ is in P_{10} because it's a string of length 10.
So the set of all programs is the union of the sets $P_{0}, P_{1}, \ldots, P_{n}, \ldots$. Since each P_{n} is finite, we get that the set of all programs is countable.

Not Everything is Computable

- There are functions of type $\mathbb{N} \rightarrow \mathbb{N}$ that cannot be computed by any computer program in a given programming language. Note that:
- The set of all computer programs in a given language is countably infinite.
- The set of all functions in $\mathbb{N} \rightarrow \mathbb{N}$ is uncountable.

We conclude that there exist functions of type $\mathbb{N} \rightarrow \mathbb{N}$ that cannot be computed by any program in the given language.

- Over any finite alphabet, there are languages that cannot be decided by any computer program.
Again note that:
- The set of all computer programs in a given language is countably infinite.
- The set of all languages in $\mathcal{P}\left(A^{*}\right)$ is uncountable by Cantor's Theorem. We conclude that there exist languages over A that cannot be decided by any program in the given language.

