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Functions Definitions and Examples

Functions

Let A and B be sets.

A function from A to B is an association to each element in A of
exactly one element in B .

Functions are normally denoted by letters like f , g and h.

If f is a function from A to B , written f : A → B or A
f
→ B , and f

associates x ∈ A with y ∈ B , then we write y = f (x).

When f (x) = y , we often say, “f maps x to y”.

Functions are also called mappings, transformations and operators.

The following associations are not functions from A to B .
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Functions Definitions and Examples

Description of Functions

Functions can be described in many ways:
By a formula.
The function f : N → N mapping every natural number x to its square
can be described by

f (x) = x2, for all x ∈ N.

By a list.
A function g : A → B from A = {a, b, c} to B = {1, 2, 3} may be
defined by

g(a) = 1, g(b) = 1, g(c) = 2.

By a graph (e.g., Venn diagram, digraph, Cartesian graph).
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Functions Definitions and Examples

Terminology

The set of all functions from A to B is denoted A → B .

If f ∈ A → B , i.e., f : A → B , then we say f has type A → B .

The set A is called the domain of f .
The set B is the codomain of f .

If f (x) = y , then:

x is an argument of f ;
y is a value of f .

If the domain of a function f is a product of n sets, A1 × · · · × An,
then we say that f has arity n, or f has n arguments.

If (x1, . . . , xn) ∈ A1 × · · · × An, then instead of f ((x1, . . . , xn)) we
usually write f (x1, . . . , xn).
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Functions Definitions and Examples

Binary Functions and Infix Notation

A function f with two arguments is called a binary function.

Binary functions give us the option of writing f (x , y) in the popular
infix form xfy .

Example: Consider addition of real numbers

+ : R×R → R.

Instead of writing +(4, 5), we usually prefer 4 + 5.
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Functions Definitions and Examples

Range, Images and Pre-Images

The range of f , written range(f ), is the set of elements in B that are
associated with some element of A:

range(f ) = {f (a) : a ∈ A}.

If S ⊆ A, then the image of S under f , written f (S), is the set of
values in B associated with elements of S :

f (S) = {f (x) : x ∈ S}.

As a special case f (A) = range(f ).

If T ⊆ B , then the pre-image or inverse image of T under f ,
written f −1(T ), is the set of elements in A that associate with some
elements of T :

f −1(T ) = {a ∈ A : f (a) ∈ T}.

We have f −1(B) = A.
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Functions Definitions and Examples

Example

Consider the function f : {a, b, c} → {1, 2, 3} defined by
f (a) = f (b) = 1 and f (c) = 2.

f has type {a, b, c} → {1, 2, 3}.
The domain of f is {a, b, c}.
The codomain of f is {1, 2, 3}.
The range of f is {1, 2}.
f ({a}) = {1};
f ({a, b}) = {1};
f (A) = f ({a, b, c}) = {1, 2} = range(f );
f −1({1, 2}) = {a, b, c};
f −1({1, 3}) = {a, b};
f −1({3}) = ∅;
f −1(B) = f −1({1, 2, 3}) = {a, b, c} = A.
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Functions Definitions and Examples

Tuples as Functions

Any sequence of objects can be thought of as a function.

Example: The tuple (22, 14, 55, 1, 700, 67) can be considered a listing
of the values of a function

f : {0, 1, 2, 3, 4, 5} → N.

That is, we defined f by setting

f (0) = 22, f (1) = 14, f (2) = 55, f (3) = 1, f (4) = 700, f (5) = 67.

Then (22, 14, 55, 1, 700, 67) is just a listing of the values of f .

An infinite sequence can also be considered a function.

Example: Suppose we have the following sequence of things from a
set S :

(b0, b1, . . . , bn, . . .).

The elements bn can be considered values of the function b : N → S ,
defined by b(n) = bn.
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Functions Definitions and Examples

Functions and Binary Relations

Functions are special kinds of binary relations.

A function f : A → B is a binary relation from A to B such that

for each a ∈ A there is a unique b ∈ B , such that (a, b) ∈ f .

We can describe this uniqueness condition in the following way:

If (a, b), (a, c) ∈ f , then b = c .

In case the relation f ⊆ A× B happens to be a function of type
A → B , the functional notation f (a) = b is preferred over the
relational notations f (a, b) and (a, b) ∈ f .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 11 / 66



Functions Definitions and Examples

Example

Consider the sets A = {a, b, c , d , e} and B = {0, 1, 2}.

Let R ⊆ A× B be the following binary relation from A to B :

R = {(a, 0), (b, 0), (c , 2), (d , 1), (e, 2)}.

Since R associates to each element of A a unique element of B , it is a
function R : A → B .

In this case, instead of the relational (c , 2) ∈ R or R(c , 2), we may
write the functional R(c) = 2.
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Functions Definitions and Examples

Equality of Functions

If f and g are both functions of type A → B , then f and g are said to
be equal, written f = g , if

f (x) = g(x), for all x ∈ A.

Example: Suppose f and g are functions of type N → N and they are
defined by the formulas

f (x) = x + x

and
g(x) = 2x .

Then f = g .
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Functions Definitions and Examples

Definition by Cases

Functions can be defined by cases.

Example: The absolute value function abs has type R → R and can
be defined by the following rule:

abs(x) =

{

x , if x ≥ 0
− x , if x < 0

A definition by cases can also be written in terms of the if-then-else
rule.

Example: We can write the preceding definition in the form:

abs(x) = if x ≥ 0 then x else − x .
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Functions Definitions and Examples

Partial Functions

A partial function from A to B is like a function except that it might
not be defined for some elements of A.

We still have the requirement that if x ∈ A is associated with y ∈ B ,
then x cannot be associated with any other element of B .

Example: Since division by zero is not allowed, ÷ is a partial function
of type R×R → R.

When discussing partial functions, to avoid confusion we use the term
total function to mean a function that is defined on all its domain.
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Functions Definitions and Examples

From Partial Functions to Total Functions

Any partial function can be transformed into a total function.

One simple technique is to shrink the domain to the set of elements
for which the partial function is defined.

Example: ÷ is a total function of type R× (R− {0}) → R.

A second technique keeps the domain the same but increases the
size of the codomain.

Example: Suppose f : A → B is a partial function.

Pick some symbol that is not in B, say # 6∈ B;
Assign f (x) = # whenever f (x) is not defined.

Then we can think of f as the total function of type A → B ∪ {#}.

In programming, the analogy would be to pick an error message to
indicate that an incorrect input string has been received.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 16 / 66



Functions Definitions and Examples

The Floor and Ceiling Functions

The floor function has type R → Z and is defined by

floor(x) = the largest integer less than or equal to x .

Example: floor(8) = 8, floor(8.9) = 8, floor(−3.5) = − 4.

floor(x) is also denoted by ⌊x⌋.

The ceiling function has type R → Z and is defined by

ceiling(x) = the smallest integer greater than or equal to x .

Example: ceiling(8) = 8, ceiling(8.9) = 9, ceiling(−3.5) = − 3.

ceiling(x) is also denoted by ⌈x⌉.
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Functions Definitions and Examples

A Simple Property of the Floor Function

For all x ∈ R and all n ∈ Z,

⌊x + n⌋ = ⌊x⌋+ n.

Let x ∈ R and n ∈ Z.

If x ∈ Z, then x + n ∈ Z.
So we have ⌊x + n⌋ = x + n = ⌊x⌋+ n.
If x 6∈ Z, then, there exists m ∈ Z and 0 < r < 1, such that x = m+ r .
So we have:

⌊x + n⌋ = ⌊m + r + n⌋ = ⌊(m + n) + r⌋
= m + n = ⌊m + r⌋+ n

= ⌊x⌋+ n.
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Functions Definitions and Examples

Floor and Ceiling: Divide and Conquer

If n ∈ Z, then
n = ⌊n/2⌋ + ⌈n/2⌉.

Consider two cases:

If n is even, then n = 2k for some k ∈ Z.
So we have

⌊n/2⌋ = ⌊2k/2⌋ = ⌊k⌋ = k ;
⌈n/2⌉ = ⌈2k/2⌉ = ⌈k⌉ = k .

So ⌊n/2⌋+ ⌈n/2⌉ = k + k = 2k = n.
If n is odd, then n = 2k + 1 for some k ∈ Z.
In this case, we have

⌊n/2⌋ = ⌊(2k + 1)/2⌋ = ⌊k + 1/2⌋ = k ;
⌈n/2⌉ = ⌈(2k + 1)/2⌉ = ⌈k + 1/2⌉ = k + 1.

So ⌊n/2⌋+ ⌈n/2⌉ = k + k + 1 = 2k + 1 = n.
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Functions Definitions and Examples

Greatest Common Divisor

The greatest common divisor of two integers a and b, not both
zero, denoted gcd(a, b), is the largest number that divides them both.

Example:

The common divisors of 12 and 18 are ±1,±2,±3,±6.
So gcd(12, 18) = 6.

Example: gcd(−44,−12) = 4, gcd(5, 0) = 5.

If a 6= 0, we have gcd(a, 0) = |a|.

If gcd(a, b) = 1, we say a and b are relatively prime.

Example: 9 and 4 are relatively prime.
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Functions Definitions and Examples

Division Algorithm

Division Algorithm:

If a and b are integers and b 6= 0, then there are unique integers q and
r such that a = bq + r , where 0 ≤ r < |b|.

Example: If a = 19 and b = 4, then

19 = 4 · 4 + 3.

Example: If a = −16 and b = 3, then

−16 = 3 · (−6) + 2.
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Functions Definitions and Examples

Euclid’s Algorithm

We describe Euclid’s Algorithm that calculates gcd(a, b) for a and b

natural numbers that are not both zero.
Euclid’s Algorithm:

Input two natural numbers a and b, not both zero.
while b > 0

Use the division algorithm to compute q and r such that
a = bq + r , where 0 ≤ r < b;

a := b;
b := r ;

Output a.

Apply Euclid’s Algorithm to compute the gcd of 315 and 54.
Initialization: a := 315; b := 54;
While Loop:

Iteration 1: 315 = 54 · 5 + 45; a = 54; b := 45;
Iteration 2: 54 = 45 · 1 + 9; a := 45; b := 9;
Iteration 3: 45 = 9 · 5 + 0; a := 9; b := 0;

Output: a = 9.
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Functions Definitions and Examples

Greatest Common Divisor as Linear Combination

The following holds for all nonnegative integers a, b that are not both
zero:

If g = gcd(a, b), then there exist integers m, n, such that
g = m · a+ n · b.

We can use Euclid’s algorithm to find m and n.

Keep track of the equations a = bq + r from each execution of the
loop:

315 = 54 · 5 + 45;
54 = 45 · 1 + 9;
45 = 9 · 5 + 0.

Work backwards to solve for gcd(a, b) in terms of a and b.
Solve the second equation for 9:

9 = 54− 45 · 1.

Use the first equation to replace 45:
9 = 54− (315− 54 · 5) · 1 = 54− 315 + 54 · 5 = − 315 + 54 · 6.
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Functions Definitions and Examples

The Mod Function

If a and b are integers, where b > 0, then the division algorithm
states that there are two unique integers q and r such that

a = bq + r , where 0 ≤ r < b.

We say that q is the quotient and r is the remainder upon division
of a by b.

If a and b are integers with b > 0, then the remainder upon the
division of a by b is denoted

a mod b

Example:
5 mod 4 = 1; − 5 mod 4 = 3;
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Functions Definitions and Examples

The Mod n Function

Fix n as a positive integer constant.

Define a function f : Z → N by

f (x) = x mod n.

Example: Fix n = 3. We have
25 mod 3 = 1;
12 mod 3 = 0;
8 mod 3 = 2;
−4 mod 3 = 2;
−8 mod 3 = 1.

The range of f is {0, 1, . . . , n − 1}, which is the set of possible
remainders obtained upon division of x by n.

We let Nn or Zn denote the set

Zn = {0, 1, 2, . . . , n − 1}.

For example, Z0 = ∅, Z1 = {0}, and Z2 = {0, 1}.
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Functions Definitions and Examples

Some Properties of the Mod n Function

(a) For all x , y ∈ Z, x mod n = y mod n iff n divides x − y iff (x − y)
mod n = 0.

Suppose x mod n = y mod n = r .

Then we have x = q1n+ r and y = q2n + r .

Therefore, x − y = q1n + r − (q2n + r) = (q1 − q2)n + 0.

Thus, (x − y) mod n = 0.

Conversely, suppose x − y = 0 mod n. Then x − y = qn, for some
q ∈ Z. But then, we have x mod n = (y + qn) mod n = y mod n.

(b) For all a, x , y ∈ Z, if ax mod n = ay mod n and gcd(a, n) = 1, then
x mod n = y mod n.

Suppose ax mod n = ay mod n.

Then, by Property (a), (ax − ay) mod n = 0. Thus, n | a(x − y).
But, if a positive integer divides a product and is relatively prime with
one of its factors, then it must divide the other. It follows that
n | (x − y). By Property (a) again x mod n = y mod n.
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Functions Definitions and Examples

From Decimal to Binary Notation

We can use the floor and mod functions to implement division by 2:

x = 2 ·
⌊x

2

⌋

+ (x mod 2).

This enables writing an integer in binary notation by keeping track of
remainders.

Example: Write 53 in binary notation.

53 = 2 · 26 + 1;
26 = 2 · 13 + 0;
13 = 2 · 6 + 1;
6 = 2 · 3 + 0;
3 = 2 · 1 + 1;
1 = 2 · 0 + 1.

So the binary representation of 53 is 110101.
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Functions Definitions and Examples

The Log Function: Definition

Let 0 < b 6= 1 be a fixed real number.

The log (logarithm) function base b, logb : R+ → R is defined by

logb x = y , where by = x .

Example: We have:

log2 16 = 4;
log3 27 = 3;
log7

1
49 = − 2;

log32 2 = 1
5 ;

log8
1
2 = − 1

3 .
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Functions Definitions and Examples

The Log Function: Application

Consider a binary search tree with 16 nodes having the structure
shown:

Then the depth of the tree is 4.

So a maximum of 4 comparisons are needed to find any element in
the tree.

Since 16 = 24, the depth in terms of the number of nodes is:

4 = log2 16.
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Functions Definitions and Examples

The Log Function: Properties

The log base b satisfies the following properties:

logb 1 = 0 and logb b = 1;
logb (b

x) = x and blogb x = x ;
logb (xy) = logb x + logb y ;
logb (

x
y
) = logb x − logb y ;

logb (x
y ) = y logb x ;

logb x = loga x
loga b

.

Example: Write log2 (2
734) in terms of log2 3.

We have, using the properties above:

log2 (2
734) = log2 (2

7) + log2 (3
4) = 7 + 4 log2 3.
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Functions Composition of Functions

Subsection 2

Composition of Functions
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Functions Composition of Functions

Composition of Functions

Consider two functions in which
the domain of one contains the
codomain of the other: f : A →
B , B ⊆ C and g : C → D.

The composition of f and g is the function g ◦ f : A → D defined by

(g ◦ f )(x) = g(f (x)).

This means that we first apply f to x and then apply g to the
resulting value.
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Functions Composition of Functions

Examples of Composition

Consider f : R → R defined by f (x) = x + 1 and g : R → R defined
by g(x) = x2.

Then we have:

(g ◦ f )(7) = g(f (7)) = g(8) = 64;
(f ◦ g)(3) = f (g(3)) = f (9) = 10;
(g ◦ f )(x) = g(f (x)) = g(x + 1) = (x + 1)2;
(f ◦ g)(x) = f (g(x)) = f (x2) = x2 + 1;
(f ◦ f )(x) = f (x + 1) = (x + 1) + 1 = x + 2;

Consider log2 : (0,∞) → R and floor : R → Z.

Then we have:

floor(log2 64) = floor(6) = 6;
floor(log2 5) = 2, because 2 < log2 5 < 3.
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Functions Composition of Functions

Associativity of Composition

If f , g and h are functions of the right type such that (f ◦ g) ◦ h and
f ◦ (g ◦ h) make sense, then

(f ◦ g) ◦ h = f ◦ (g ◦ h).

To prove this, calculate the expressions for both sides:

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f (g(h(x)));
(f ◦ (g ◦ h))(x) = f ((g ◦ h)(x)) = f (g(h(x))).

This property allows writing the composition of three or more
functions without the use of parentheses, since f ◦ g ◦ h has exactly
one meaning.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 34 / 66



Functions Composition of Functions

Non-Commutativity of Composition

Composition is not commutative in general.

This can be shown by counterexample.

Consider f (x) = x + 1 and g(x) = x2.

We have
(f ◦ g)(2) = f (g(2)) = f (4) = 5;
(g ◦ f )(2) = g(f (2)) = g(3) = 9.

So (f ◦ g)(2) 6= (g ◦ f )(2).

This shows that f ◦ g 6= g ◦ f .
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Functions Composition of Functions

Identity Function and Composition

The identity function idA : A → A always returns its argument:

idA(a) = a, for all a ∈ A.

For every function f : A → B , we have

f ◦ idA = f = idB ◦ f .

These equalities are easy to see: For every a ∈ A we have:

(f ◦ idA)(a) = f (idA(a)) = f (a).
(idB ◦ f )(a) = idB(f (a)) = f (a).
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Functions Composition of Functions

Sequence, Distribute and Pairs Functions

The sequence function seq : N → Lists[N] is defined by

seq(n) = 〈0, 1, . . . , n〉.

Example: seq(0) = 〈0〉; seq(4) = 〈0, 1, 2, 3, 4〉.

The distribute function dist : A× Lists[B ] → Lists[A× B ] takes an
element x from A and a list y from Lists[B ] and returns the list of
pairs made up by pairing x with each element of y .

Example: dist(x , 〈r , s, t〉) = 〈(x , r), (x , s), (x , t)〉.

The pairs function takes two lists of equal length and returns the list
of pairs of corresponding elements.

Example:

pairs(〈a, b, c〉, 〈d , e, f 〉) = 〈(a, d), (b, e), (c , f )〉.

Since the domain of pairs is a proper subset of Lists[A]× Lists[B ], it
is only a partial function of type Lists[A]× Lists[B ] → Lists[A× B ].
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Functions Composition of Functions

Composition of Functions With Different Arities

Suppose we are given the following three functions:

f : A → B , g : A → C , h : B × C → D.

We can form the composition h ◦ (f , g) : A → D, defined, for all
x ∈ A, by

(h ◦ (f , g))(x) = h(f (x), g(x)).

Example: Suppose f : A → R, g : A → R and + : R×R → R.

Then we have that + ◦ (f , g) : A → R is given, for all x ∈ A by

(+ ◦ (f , g))(x) = +(f (x), g(x)) = f (x) + g(x).
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Functions Composition of Functions

Example

Use known functions and constructions to build the function
f : N → Lists[N×N] defined by

f (n) = 〈(0, 0), (1, 1), . . . , (n, n)〉.

We have

f (n) = 〈(0, 0), (1, 1), . . . , (n, n)〉
= pairs(〈0, 1, . . . , n〉, 〈0, 1, . . . , n〉)
= pairs(seq(n), seq(n)).
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Functions Composition of Functions

Example

Use known functions and constructions to build the function
g : N → Lists[N ×N] defined by

g(k) = 〈(k , 0), (k , 1), . . . , (k , k)〉, for all k ∈ N.

We have
g(k) = 〈(k , 0), (k , 1), . . . , (k , k)〉

= dist(k , 〈0, 1, . . . , k〉)
= dist(k , seq(k)).
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Functions Composition of Functions

The Map or Apply-To-All Function

The map function map : (A → B) → (Lists[A] → Lists[B ]) takes one
argument, a function f : A → B , and returns as a result the function
map(f ) : Lists[A] → Lists[B ], where map(f ) applies f to each element
in its argument list:

map(f )(〈a1, . . . , an〉) = 〈f (a1), . . . , f (an)〉.

Example: Let f : {a, b, c} → {1, 2, 3} be defined by f (a) = f (b) = 1
and f (c) = 2. Then map(f ) applied to the list 〈a, b, c , a〉 can be
calculated as follows:

map(f )(〈a, b, c , a〉) = 〈f (a), f (b), f (c), f (a)〉 = 〈1, 1, 2, 1〉.

The map function is sometimes called the “applyToAll” function.
Example: Consider + and apply map(+) to a list of pairs of integers:

map(+)(〈(1, 2), (3, 4), (5, 6)〉) = 〈+(1, 2),+(3, 4),+(5, 6)〉
= 〈3, 7, 11〉.
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Functions Composition of Functions

Example

Use known functions and constructions to build the function
squares : N → Lists[N] defined by

squares(n) = 〈0, 1, 4, . . . , n2〉.

We have:

squares(n) = 〈0, 1, 4, . . . , n2〉
= 〈∗(0, 0), ∗(1, 1), ∗(2, 2), . . . , ∗(n, n)〉
= map(∗)(〈(0, 0), (1, 1), (2, 2), . . . , (n, n)〉)
= map(∗)(pairs(〈0, 1, 2, . . . , n〉, 〈0, 1, 2, . . . , n〉))
= map(∗)(pairs(seq(n), seq(n))).
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Functions Properties of Functions

Subsection 3

Properties of Functions
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Functions Properties of Functions

Injective Functions

A function f : A → B is called injective (or one-to-one or an
embedding) if no two elements in A map to the same element in B .

Formally, f is injective if for all x , y ∈ A, whenever x 6= y , then
f (x) 6= f (y).

By contraposition, f is injective if, for all x , y ∈ A, if f (x) = f (y),
then x = y .

An injective function is called an injection.
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Functions Properties of Functions

Surjective Functions

A function f : A → B is called surjective (or onto) if each element
b ∈ B can be written as b = f (x) for some element x in A.

Another way to say this is that f is surjective if range(f ) = B .

A surjective function is called a surjection.
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Functions Properties of Functions

Example

Function f : R → Z; f (x) = ⌈x + 1⌉.
Injective? No! f (0.1) = ⌈0.1 + 1⌉ = 2 = ⌈0.2 + 1⌉ = f (0.2).
Surjective? Yes! For k ∈ Z, let x ∈ R be x = k − 1. Then
f (x) = ⌈(k − 1) + 1⌉ = k .

Function f : N8 → N8; f (x) = 2x mod 8.

Injective? No! f (0) = 0 mod 8 = 8 mod 8 = f (4).
Surjective? No! range(f ) = {0, 2, 4, 6}.

Function f : N → N×N; f (x) = (x , x).

Injective? Yes! Suppose x , y ∈ N, with f (x) = f (y). Then
(x , x) = (y , y). This implies x = y .
Surjective? No! (0, 1) 6∈ range(f ).

Function f : N×N → N; f (x , y) = 2x + y .

Injective? No! f (0, 2) = 2 = f (1, 0).
Surjective? Yes! Suppose n ∈ N. Let x = (0, n) ∈ N×N. Then
f (0, n) = 2 · 0 + n = n.
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Functions Properties of Functions

Bijective Functions

A function is called bijective (or one-to-one and onto) if it is both
injective and surjective.

A bijective function is called a bijection or a one-to-one
correspondence.
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Functions Properties of Functions

Injectivity, Surjectivity and Composition

Suppose f : A → B and g : B → C .
(a) If f and g are injective, then g ◦ f is injective.
(b) If f and g are surjective, then g ◦ f is surjective.
(c) If f and g are bijective, then g ◦ f is bijective.
(d) There is an injection from A to B if and only if there is a surjection

from B to A.

(a) Let a, a′ ∈ A, such that (g ◦ f )(a) = (g ◦ f )(a′).
This means g(f (a)) = g(f (a′)).

By the injectivity of g , we get f (a) = f (a′).

By the injectivity of f , we get a = a′.

We conclude that g ◦ f is injective.

(b) To show that g ◦ f is surjective, let c ∈ C .

Since g is surjective, there exists b ∈ B , such that g(b) = c .

Since f is surjective, there exists a ∈ A, such that f (a) = b.

Thus, we get g(f (a)) = g(b) = c .

We conclude g ◦ f is surjective.
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Functions Properties of Functions

Bijections and Inverse Functions

A function g : B → A is called an inverse of a function f : A → B ,
denoted g = f −1, if g ◦ f = idA and f ◦ g = idB .

A function f : A → B is bijective if and only if it has an inverse
function g : B → A.

(⇒) Suppose that f is a bijection. To define g : B → A, let b ∈ B. Since f

is onto, there exists a ∈ A, such that f (a) = b. Since f is 1-1, there
cannot exist a′ 6= a in A, such that f (a′) = b. We define

g(b) = a, for the unique a ∈ A such that f (a) = b.

Then we have:

g(f (a)) = g(b) = a = idA(a).
f (g(b)) = f (a) = b = idB(b).

(⇐) Suppose, conversely, that there exists g : B → A, such that g ◦ f = idA
and f ◦ g = idB . Then, for all a, a

′ ∈ A and b ∈ B:

b = idB(b) = f (g(b)), so f is onto.
f (a) = f (a′) ⇒ g(f (a)) = g(f (a′)) ⇒ a = a′, so f is 1-1.
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Functions Properties of Functions

Example

Let Odd and Even be the sets of odd and even natural numbers.
(a) Show that the function f : Odd → Even defined by f (x) = x − 1 is a

bijection.
(b) Find the inverse function f −1.

(a) f is injective: Suppose x1, x2 ∈ Odd, such that x1 6= x2. Then
x1 − 1 6= x2 − 1. So f (x1) 6= f (x2).

f is surjective: Let y ∈ Even. Then x = y + 1 ∈ Odd and
f (x) = (y + 1)− 1 = y .

(b) Define g : Even → Odd by setting

g(y) = y + 1, for all y ∈ Even.

It is easy to check that

g(f (x)) = x , for all x ∈ Odd,
f (g(y)) = y , for all y ∈ Even.

So g = f −1.
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Functions Properties of Functions

Example

Consider the function f : N5 → N5, defined by f (x) = 2x mod 5.

(a) Show that f is a bijection.
(b) Find the inverse function f −1.

(a) Since the domain of f is a small finite set, we create a table of values:

x f (x)

0 0
1 2
2 4
3 1
4 3

x f −1(x)

0 0
1 3
2 1
3 4
4 2

f is injective: No two elements share the same image.
f is surjective: The range is N5.

(b) The table on the right specifies f −1. Note that f −1(x) = 3x mod 5.
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Functions Infinite Sets

Subsection 4

Infinite Sets
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Functions Infinite Sets

Equipotence

We say that two sets A and B have the same size or the same
cardinality or are equipotent, denoted |A| = |B |, if there is a
bijection between them.

Formally, |A| = |B | if there is a function f : A → B that is bijective.

Example: Show that A = {x2 : x ∈ N and 1 ≤ x2 ≤ 90} and
B = {0, 1, . . . , 8} are equipotent sets.

Note that A = {1, 4, 9, . . . , 81}.

Define a function f : B → A, by setting

f (x) = (x + 1)2, for all x ∈ B .

f is one-to-one and onto, so a bijection.

We conclude that |A| = |B |.
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Functions Infinite Sets

Example

Show that the set Even and the set Odd of even and odd natural
numbers, respectively, have the same cardinality.

Consider the function f : Even → Odd, defined by

f (x) = x + 1, for all x ∈ Even.

f is injective: If x1, x2 ∈ Even, with x1 6= x2, then x1 + 1 6= x2 + 1. So
f (x1) 6= f (x2).
f is surjective: Let y ∈ Odd. Then x = y − 1 ∈ Even and

f (x) = f (y − 1) = y − 1 + 1 = y .

So f is surjective.

We conclude that f is a bijection. So |Even| = |Odd|.
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Functions Infinite Sets

Example

Show that the set Odd has the same cardinality with N.

Define f : N → Odd by seting

f (x) = 2x + 1, for all x ∈ N.

f is injective: Suppose x1, x2 ∈ N, with f (x1) = f (x2). Then
2x1 + 1 = 2x2 + 1. Subtracting 1 from both sides and then dividing by
2, we get x1 = x2.
f is surjective: Let y ∈ Odd. Then x = y−1

2 ∈ N and

f (x) = f (
y − 1

2
) = 2

y − 1

2
+ 1 = y .

We conclude that f is a bijection. So |N| = |Odd|.
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Functions Infinite Sets

Inequalities Between Cardinalities

For two sets A and B , we say the cardinality of A is less than or
equal to the cardinality of B , written |A| ≤ |B |,

iff there is an injection f : A → B

iff there is a surjection g : B → A.

If there is an injection f : A → B but no bijection between them, we
write |A| < |B | and say that the cardinality of A is less than the
cardinality of B .

Thus, the cardinality of A is less than the cardinality of B if:

|A| ≤ |B|; and
|A| 6= |B|.
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Functions Infinite Sets

Countable and Uncountable Sets

A set C is countable if it is finite or if |C | = |N|.

In the case |C | = |N| we sometimes say that C is countably infinite.

If a set is not countable, it is called uncountable.

Example: N is the fundamental example of a countably infinite set.

Important Properties:

(a) Every subset of N is countable.
(b) A set S is countable if and only if |S | ≤ |N|.
(c) Every subset of a countable set is countable.
(d) Any image of a countable set is countable.
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Functions Infinite Sets

Cartesian Products of Countable Sets

The set N×N is countable.

We need to describe a bijection between N×N and N.

We arrange the elements of N×N so that they can be counted.

In the following listing each row lists a sequence of tuples in N×N

followed by a corresponding sequence of natural numbers:

(0, 0) ↔ 0
(0, 1), (1, 0) ↔ 1, 2
(0, 2), (1, 1), (2, 0) ↔ 3, 4, 5
(0, 3), (1, 2), (2, 1), (3, 0) ↔ 6, 7, 8, 9

...

This listing shows that we have a bijection between N×N and N.

Therefore, N×N is countable.
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Functions Infinite Sets

Countable Unions of Countable Sets

If S0,S1, . . . ,Sn, . . . is a sequence of countable sets, then the union
S0 ∪ S1 ∪ · · · ∪ Sn ∪ · · · is a countable set.

Since each set Sn is countable, its ele-
ments can be listed (possibly with repeti-
tions) xn0, xn1, xn2, . . ..
So the elements of the union can be ar-
ranged as on the right.

x00, x01, x02, . . .
x10, x11, x12, . . .
...

xi0, xi1, xi2, . . .
...

Thus, we have a function f : N×N → S1 ∪ S2 ∪ · · · defined by
f (m, n) = xmn.

This mapping is surjective since the array includes all elements in the
union.

Therefore, S1 ∪ S2 ∪ · · · is the image of the countable set N×N.

So it is itself countable.
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Functions Infinite Sets

Countability of the Rationals

We show that the set Q of rational numbers is countable.

Let Q+ denote the set of positive rational numbers.

We can represent Q+ as the following set of fractions (with
repetitions)

Q+ = {m/n : m, n ∈ N and n 6= 0}.

The function f : Q+ → N×N, defined by f (m/n) = (m, n) is an
injection.

Since N×N is countable, we conclude that Q+ is countable.

Similarly, the set Q− of negative rational numbers is countable.

But Q = Q+ ∪ {0} ∪Q− is now the union of a sequence of countable
sets.

So Q is countable.
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Functions Infinite Sets

Set of Strings over a Finite Alphabet

If A is a finite alphabet, then the set A∗ of all strings over A is
countably infinite.

For each n ∈ N, let An be the set of strings over A having length n.

It follows that A∗ is the union of the sets A0,A1, . . . ,An, . . ..

Since each set An is finite, we conclude that A∗ is countable.
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Functions Infinite Sets

Diagonalization: Uncountability of (0, 1)

The set (0, 1) is uncountable.

Suppose (0, 1) is countable.

Then, its elements can be listed as
r0, r1, r2, . . ..
Represent each number in decimal ri =
0.di0di1di2 . . ..
In this way we get the list:

r0 = 0.d00d01d02 . . .
r1 = 0.d10d11d12 . . .
r2 = 0.d20d21d22 . . .

...

Construct a new number s = 0.s0s1s2 . . . ∈ (0, 1) as follows:

si = if dii = 4 then 5 else 4.

s ∈ (0, 1), but s does not occur in the listing above since it differs
from ri in the i -th decimal place, for all i

So the listing above does not exhaust all numbers in (0, 1).

So (0, 1) is uncountable.
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Functions Infinite Sets

Diagonalization: Uncountability of N→ N

The set of functions N → N is uncountable.

Assume, by way of contradiction, that the set is countable.

Then we can list all the functions of type N → N as f0, f1, f2, . . ..

Represent each function fn as the sequence of its values
(fn(0), fn(1), fn(2), . . .).

Define a function g : N → N by

g(n) =

{

1, if fn(n) = 2
2, if fn(n) 6= 2.

Then the sequence of values (g(0), g(1), g(2), . . .) is different from
each of the sequences for the listed functions because g(n) 6= fn(n)
for each n.

It follows that f0, f1, f2, . . . does not list all functions in N → N, a
contradiction.
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Functions Infinite Sets

Diagonalization: Cantor’s Theorem

Let A be a set. Then
|A| < |P(A)|.

To show this we must show that:
(a) |A| ≤ |P(A)|, i.e., there is an injection from A to P(A);
(b) |A| 6= |P(A)|, i.e., there is no bijection between A and P(A).

(a) Let f : A → P(A) be defined by

f (a) = {a}, for all a ∈ A.

f is an injection: f (a) = f (a′) implies {a} = {a′} implies a = a′.

(b) Suppose g : A → P(A) is a bijection.

Consider the set D = {a ∈ A : a 6∈ g(a)} ∈ P(A).

Since g : A → P(A) is onto, there exists d ∈ A, such that g(d) = D.
If d ∈ D, then d 6∈ g(d), so d 6∈ D, contradiction.
If d 6∈ D, then d ∈ g(d), so d ∈ D, contradiction.
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Functions Infinite Sets

Number of Programs

The set of all programs in a programming language is countably
infinite.

Consider each program as a finite string of symbols over a fixed finite
alphabet A.

For example, A might consist of all characters that can be typed from
a keyboard.

For each natural number n, let Pn denote the set of all programs that
are strings of length n over A.

For example, the program {print(4)} is in P10 because it’s a string of
length 10.

So the set of all programs is the union of the sets P0,P1, . . . ,Pn, . . ..

Since each Pn is finite, we get that the set of all programs is
countable.
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Functions Infinite Sets

Not Everything is Computable

There are functions of type N → N that cannot be computed by any
computer program in a given programming language.
Note that:

The set of all computer programs in a given language is countably
infinite.
The set of all functions in N → N is uncountable.

We conclude that there exist functions of type N → N that cannot
be computed by any program in the given language.

Over any finite alphabet, there are languages that cannot be decided
by any computer program.
Again note that:

The set of all computer programs in a given language is countably
infinite.
The set of all languages in P(A∗) is uncountable by Cantor’s Theorem.

We conclude that there exist languages over A that cannot be
decided by any program in the given language.
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