Discrete Structures for Computer Science

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU CSci 341

Functions

- Definitions and Examples Some Useful Functions
- Composition of Functions
- Properties of Functions
- Infinite Sets

Subsection 1

Definitions and Examples

Functions

- Let A and B be sets.
- A function from A to B is an association to each element in A of exactly one element in B.
- Functions are normally denoted by letters like f, g and h.
- If f is a function from A to B, written $f : A \to B$ or $A \xrightarrow{f} B$, and f associates $x \in A$ with $y \in B$, then we write y = f(x).
- When f(x) = y, we often say, "f maps x to y".
- Functions are also called mappings, transformations and operators.
- The following associations are not functions from A to B.

4 / 66

Description of Functions

- Functions can be described in many ways:
 - By a formula.

The function $f: \mathbb{N} \to \mathbb{N}$ mapping every natural number x to its square can be described by

$$f(x) = x^2$$
, for all $x \in \mathbb{N}$.

By a list.
 A function g : A → B from A = {a, b, c} to B = {1, 2, 3} may be defined by

$$g(a) = 1$$
, $g(b) = 1$, $g(c) = 2$.

• By a graph (e.g., Venn diagram, digraph, Cartesian graph).

Terminology

- The set of all functions from A to B is denoted $A \rightarrow B$.
- If $f \in A \rightarrow B$, i.e., $f : A \rightarrow B$, then we say f has **type** $A \rightarrow B$.
 - The set A is called the **domain** of f.
 - The set B is the **codomain** of f.
- If f(x) = y, then:
 - x is an **argument** of f;
 - y is a **value** of f.
- If the domain of a function f is a product of n sets, $A_1 \times \cdots \times A_n$, then we say that f has **arity** n, or f **has** n **arguments**.
- If $(x_1, \ldots, x_n) \in A_1 \times \cdots \times A_n$, then instead of $f((x_1, \ldots, x_n))$ we usually write $f(x_1, \ldots, x_n)$.

Binary Functions and Infix Notation

- A function f with two arguments is called a **binary function**.
- Binary functions give us the option of writing f(x, y) in the popular infix form xfy.
- Example: Consider addition of real numbers

 $+:\mathbb{R}\times\mathbb{R}\to\mathbb{R}.$

Instead of writing +(4, 5), we usually prefer 4 + 5.

Range, Images and Pre-Images

• The **range** of *f*, written range(*f*), is the set of elements in *B* that are associated with some element of *A*:

$$range(f) = \{f(a) : a \in A\}.$$

If S ⊆ A, then the image of S under f, written f(S), is the set of values in B associated with elements of S:

$$f(S) = \{f(x) : x \in S\}.$$

- As a special case $f(A) = \operatorname{range}(f)$.
- If T ⊆ B, then the pre-image or inverse image of T under f, written f⁻¹(T), is the set of elements in A that associate with some elements of T:

$$f^{-1}(T) = \{a \in A : f(a) \in T\}.$$

• We have $f^{-1}(B) = A$.

Example

Tuples as Functions

- Any sequence of objects can be thought of as a function.
- Example: The tuple (22, 14, 55, 1, 700, 67) can be considered a listing of the values of a function

$$f: \{0, 1, 2, 3, 4, 5\} \to \mathbb{N}.$$

That is, we defined f by setting

$$f(0) = 22, f(1) = 14, f(2) = 55, f(3) = 1, f(4) = 700, f(5) = 67.$$

Then (22, 14, 55, 1, 700, 67) is just a listing of the values of f.

- An infinite sequence can also be considered a function.
- Example: Suppose we have the following sequence of things from a set *S*:

$$(b_0, b_1, \ldots, b_n, \ldots).$$

The elements b_n can be considered values of the function $b : \mathbb{N} \to S$, defined by $b(n) = b_n$.

Functions and Binary Relations

- Functions are special kinds of binary relations.
- A function $f : A \rightarrow B$ is a binary relation from A to B such that

for each $a \in A$ there is a unique $b \in B$, such that $(a, b) \in f$.

• We can describe this uniqueness condition in the following way:

If
$$(a, b), (a, c) \in f$$
, then $b = c$.

In case the relation f ⊆ A × B happens to be a function of type A → B, the functional notation f(a) = b is preferred over the relational notations f(a, b) and (a, b) ∈ f.

Example

- Consider the sets $A = \{a, b, c, d, e\}$ and $B = \{0, 1, 2\}$.
- Let $R \subseteq A \times B$ be the following binary relation from A to B:

 $R = \{(a,0), (b,0), (c,2), (d,1), (e,2)\}.$

- Since R associates to each element of A a unique element of B, it is a function R : A → B.
- In this case, instead of the relational (c, 2) ∈ R or R(c, 2), we may write the functional R(c) = 2.

Equality of Functions

 If f and g are both functions of type A → B, then f and g are said to be equal, written f = g, if

$$f(x) = g(x)$$
, for all $x \in A$.

• Example: Suppose f and g are functions of type $\mathbb{N} \to \mathbb{N}$ and they are defined by the formulas

$$f(x) = x + x$$

and

$$g(x)=2x.$$

Then f = g.

Definition by Cases

- Functions can be defined by cases.
- Example: The absolute value function abs has type $\mathbb{R}\to\mathbb{R}$ and can be defined by the following rule:

$$\mathsf{abs}(x) = \left\{egin{array}{cc} x, & ext{if } x \geq 0 \ -x, & ext{if } x < 0 \end{array}
ight.$$

- A definition by cases can also be written in terms of the **if-then-else** rule.
- Example: We can write the preceding definition in the form:

$$abs(x) = if x \ge 0$$
 then x else $-x$.

Partial Functions

- A partial function from A to B is like a function except that it might not be defined for some elements of A.
- We still have the requirement that if x ∈ A is associated with y ∈ B, then x cannot be associated with any other element of B.
- Example: Since division by zero is not allowed, \div is a partial function of type $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
- When discussing partial functions, to avoid confusion we use the term **total function** to mean a function that is defined on all its domain.

From Partial Functions to Total Functions

- Any partial function can be transformed into a total function.
- One simple technique is to **shrink the domain** to the set of elements for which the partial function is defined.
- Example: \div is a total function of type $\mathbb{R} \times (\mathbb{R} \{0\}) \to \mathbb{R}$.
- A second technique keeps the domain the same but **increases the size of the codomain**.
- Example: Suppose $f : A \rightarrow B$ is a partial function.
 - Pick some symbol that is not in *B*, say $\# \notin B$;
 - Assign f(x) = # whenever f(x) is not defined.

Then we can think of *f* as the total function of type $A \rightarrow B \cup \{\#\}$.

• In programming, the analogy would be to pick an error message to indicate that an incorrect input string has been received.

The Floor and Ceiling Functions

 $\bullet\,$ The floor function has type $\mathbb{R}\to\mathbb{Z}$ and is defined by

floor(x) = the largest integer less than or equal to x.

- Example: floor(8) = 8, floor(8.9) = 8, floor(-3.5) = -4.
- floor(x) is also denoted by $\lfloor x \rfloor$.
- The ceiling function has type $\mathbb{R} \to \mathbb{Z}$ and is defined by

 $\operatorname{ceiling}(x) = \operatorname{the smallest}$ integer greater than or equal to x.

Example: ceiling(8) = 8, ceiling(8.9) = 9, ceiling(-3.5) = -3.
ceiling(x) is also denoted by [x].

A Simple Property of the Floor Function

• For all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$,

$$\lfloor x+n \rfloor = \lfloor x \rfloor + n.$$

Let $x \in \mathbb{R}$ and $n \in \mathbb{Z}$.

- If $x \in \mathbb{Z}$, then $x + n \in \mathbb{Z}$. So we have |x + n| = x + n = |x| + n.
- If $x \notin \mathbb{Z}$, then, there exists $m \in \mathbb{Z}$ and 0 < r < 1, such that x = m + r. So we have:

$$\lfloor x + n \rfloor = \lfloor m + r + n \rfloor = \lfloor (m + n) + r \rfloor$$

= $m + n = \lfloor m + r \rfloor + n$
= $\lfloor x \rfloor + n.$

Floor and Ceiling: Divide and Conquer

• If $n \in \mathbb{Z}$, then

$$n=\lfloor n/2\rfloor+\lceil n/2\rceil.$$

Consider two cases:

• If *n* is even, then n = 2k for some $k \in \mathbb{Z}$. So we have

$$\lfloor n/2 \rfloor = \lfloor 2k/2 \rfloor = \lfloor k \rfloor = k; \lceil n/2 \rceil = \lceil 2k/2 \rceil = \lceil k \rceil = k.$$

So $\lfloor n/2 \rfloor + \lceil n/2 \rceil = k + k = 2k = n$.

• If n is odd, then n = 2k + 1 for some $k \in \mathbb{Z}$. In this case, we have

$$\lfloor n/2 \rfloor = \lfloor (2k+1)/2 \rfloor = \lfloor k+1/2 \rfloor = k; \lceil n/2 \rceil = \lceil (2k+1)/2 \rceil = \lceil k+1/2 \rceil = k+1.$$

So $\lfloor n/2 \rfloor + \lceil n/2 \rceil = k + k + 1 = 2k + 1 = n$.

Greatest Common Divisor

• The greatest common divisor of two integers *a* and *b*, not both zero, denoted gcd(*a*, *b*), is the largest number that divides them both.

• Example:

The common divisors of 12 and 18 are $\pm 1, \pm 2, \pm 3, \pm 6$. So gcd(12, 18) = 6.

- Example: gcd(-44, -12) = 4, gcd(5, 0) = 5.
- If $a \neq 0$, we have gcd(a, 0) = |a|.
- If gcd(a, b) = 1, we say a and b are relatively prime.
- Example: 9 and 4 are relatively prime.

Division Algorithm

Division Algorithm:

If a and b are integers and $b \neq 0$, then there are unique integers q and r such that a = bq + r, where $0 \le r < |b|$.

• Example: If a = 19 and b = 4, then

$$19 = 4 \cdot 4 + 3.$$

• Example: If a = -16 and b = 3, then

$$-16 = 3 \cdot (-6) + 2.$$

Euclid's Algorithm

- We describe Euclid's Algorithm that calculates gcd(*a*, *b*) for *a* and *b* natural numbers that are not both zero.
- Euclid's Algorithm:

Input two natural numbers a and b, not both zero.

while b > 0

Use the division algorithm to compute q and r such that

a = bq + r, where $0 \le r < b$;

a := b;

b := r;

Output a.

• Apply Euclid's Algorithm to compute the gcd of 315 and 54.

- Initialization: *a* := 315; *b* := 54;
- While Loop:
 - Iteration 1: 315 = 54 · 5 + 45; a = 54; b := 45;
 - Iteration 2: $54 = 45 \cdot 1 + 9$; a := 45; b := 9;
 - Iteration 3: $45 = 9 \cdot 5 + 0; \quad a := 9; \ b := 0;$
- Output: *a* = 9.

Greatest Common Divisor as Linear Combination

• The following holds for all nonnegative integers *a*, *b* that are not both zero:

If g = gcd(a, b), then there exist integers m, n, such that $g = m \cdot a + n \cdot b$.

- We can use Euclid's algorithm to find *m* and *n*.
- Keep track of the equations a = bq + r from each execution of the loop:

- Work backwards to solve for gcd(a, b) in terms of a and b.
 - Solve the second equation for 9:

$$9 = 54 - 45 \cdot 1.$$

• Use the first equation to replace 45:

 $9 = 54 - (315 - 54 \cdot 5) \cdot 1 = 54 - 315 + 54 \cdot 5 = -315 + 54 \cdot 6.$

The Mod Function

• If *a* and *b* are integers, where *b* > 0, then the division algorithm states that there are two unique integers *q* and *r* such that

$$a = bq + r$$
, where $0 \le r < b$.

- We say that q is the **quotient** and r is the **remainder** upon division of a by b.
- If a and b are integers with b > 0, then the remainder upon the division of a by b is denoted

• Example:

5 mod
$$4 = 1$$
; $-5 \mod 4 = 3$;

The Mod *n* Function

- Fix *n* as a positive integer constant.
- Define a function $f:\mathbb{Z}\to\mathbb{N}$ by

$$f(x) = x \mod n.$$

- Example: Fix n = 3. We have
 - 25 mod 3 = 1;
 - 12 mod 3 = 0;
 - 8 mod 3 = 2;
 - −4 mod 3 = 2;
 - $-8 \mod 3 = 1.$
- The range of f is $\{0, 1, ..., n-1\}$, which is the set of possible remainders obtained upon division of x by n.
- We let \mathbb{N}_n or \mathbb{Z}_n denote the set

$$\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}.$$

• For example, $\mathbb{Z}_0 = \emptyset$, $\mathbb{Z}_1 = \{0\}$, and $\mathbb{Z}_2 = \{0, 1\}$.

Some Properties of the Mod n Function

(a) For all $x, y \in \mathbb{Z}$, $x \mod n = y \mod n$ iff n divides x - y iff (x - y)mod n = 0. Suppose x mod $n = y \mod n = r$. Then we have $x = q_1 n + r$ and $y = q_2 n + r$. Therefore, $x - y = q_1 n + r - (q_2 n + r) = (q_1 - q_2)n + 0$. Thus, $(x - y) \mod n = 0$. Conversely, suppose $x - y = 0 \mod n$. Then x - y = qn, for some $q \in \mathbb{Z}$. But then, we have x mod $n = (y + qn) \mod n = y \mod n$. (b) For all $a, x, y \in \mathbb{Z}$, if $ax \mod n = ay \mod n$ and gcd(a, n) = 1, then x mod $n = y \mod n$. Suppose $ax \mod n = ay \mod n$. Then, by Property (a), $(ax - ay) \mod n = 0$. Thus, $n \mid a(x - y)$. But, if a positive integer divides a product and is relatively prime with one of its factors, then it must divide the other. It follows that $n \mid (x - y)$. By Property (a) again x mod $n = y \mod n$.

From Decimal to Binary Notation

• We can use the floor and mod functions to implement division by 2:

$$x = 2 \cdot \left\lfloor \frac{x}{2} \right\rfloor + (x \mod 2).$$

- This enables writing an integer in binary notation by keeping track of remainders.
- Example: Write 53 in binary notation.

$$53 = 2 \cdot 26 + 1;$$

$$26 = 2 \cdot 13 + 0;$$

$$13 = 2 \cdot 6 + 1;$$

$$6 = 2 \cdot 3 + 0;$$

$$3 = 2 \cdot 1 + 1;$$

$$1 = 2 \cdot 0 + 1.$$

So the binary representation of 53 is 110101.

The Log Function: Definition

- Let $0 < b \neq 1$ be a fixed real number.
- The log (logarithm) function base b, $\log_b : \mathbb{R}_+ \to \mathbb{R}$ is defined by

 $\log_b x = y$, where $b^y = x$.

The Log Function: Application

• Consider a binary search tree with 16 nodes having the structure shown:

- Then the depth of the tree is 4.
- So a maximum of 4 comparisons are needed to find any element in the tree.
- Since $16 = 2^4$, the depth in terms of the number of nodes is:

$$4 = \log_2 16.$$

The Log Function: Properties

• The log base *b* satisfies the following properties:

•
$$\log_b 1 = 0$$
 and $\log_b b = 1$;
• $\log_b (b^x) = x$ and $b^{\log_b x} = x$;
• $\log_b (xy) = \log_b x + \log_b y$;
• $\log_b (\frac{x}{y}) = \log_b x - \log_b y$;
• $\log_b (x^y) = y \log_b x$;

•
$$\log_b x = \frac{\log_a x}{\log_a b}$$
.

• Example: Write $\log_2(2^73^4)$ in terms of $\log_2 3$.

We have, using the properties above:

$$\log_2(2^73^4) = \log_2(2^7) + \log_2(3^4) = 7 + 4\log_2 3.$$

Subsection 2

Composition of Functions

Composition of Functions

 Consider two functions in which the domain of one contains the codomain of the other: f : A → B, B ⊆ C and g : C → D.

• The composition of f and g is the function $g \circ f : A \to D$ defined by

$$(g \circ f)(x) = g(f(x)).$$

• This means that we first apply f to x and then apply g to the resulting value.

Examples of Composition

• Consider $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + 1 and $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2$.

Then we have:

- $(g \circ f)(7) = g(f(7)) = g(8) = 64;$ • $(f \circ g)(3) = f(g(3)) = f(9) = 10;$ • $(g \circ f)(x) = g(f(x)) = g(x+1) = (x+1)^2;$
- $(f \circ g)(x) = f(g(x)) = f(x^2) = x^2 + 1;$ • $(f \circ f)(x) = f(x+1) = (x+1) + 1 = x + 2;$
- Consider $\log_2 : (0, \infty) \to \mathbb{R}$ and floor $: \mathbb{R} \to \mathbb{Z}$. Then we have:
 - $floor(log_2 64) = floor(6) = 6;$
 - floor($\log_2 5$) = 2, because $2 < \log_2 5 < 3$.

Associativity of Composition

 If f, g and h are functions of the right type such that (f ∘ g) ∘ h and f ∘ (g ∘ h) make sense, then

$$(f \circ g) \circ h = f \circ (g \circ h).$$

To prove this, calculate the expressions for both sides:

$$\begin{array}{rcl} ((f \circ g) \circ h)(x) &=& (f \circ g)(h(x)) = f(g(h(x))); \\ (f \circ (g \circ h))(x) &=& f((g \circ h)(x)) = f(g(h(x))). \end{array}$$

 This property allows writing the composition of three or more functions without the use of parentheses, since f
 og
 h has exactly one meaning.

Non-Commutativity of Composition

• Composition is not commutative in general. This can be shown by counterexample.

Consider f(x) = x + 1 and $g(x) = x^2$.

We have

$$(f \circ g)(2) = f(g(2)) = f(4) = 5;$$

 $(g \circ f)(2) = g(f(2)) = g(3) = 9.$

So $(f \circ g)(2) \neq (g \circ f)(2)$. This shows that $f \circ g \neq g \circ f$.

Identity Function and Composition

• The **identity function** $id_A : A \rightarrow A$ always returns its argument:

$$\mathsf{id}_{\mathcal{A}}(a) = a$$
, for all $a \in \mathcal{A}$.

• For every function $f : A \rightarrow B$, we have

$$f \circ \operatorname{id}_A = f = \operatorname{id}_B \circ f.$$

These equalities are easy to see: For every $a \in A$ we have:

Sequence, Distribute and Pairs Functions

 \bullet The sequence function $\mathsf{seq}:\mathbb{N}\to\mathsf{Lists}[\mathbb{N}]$ is defined by

$$\operatorname{seq}(n) = \langle 0, 1, \ldots, n \rangle.$$

- Example: seq(0) = $\langle 0 \rangle$; seq(4) = $\langle 0, 1, 2, 3, 4 \rangle$.
- The distribute function dist : A × Lists[B] → Lists[A × B] takes an element x from A and a list y from Lists[B] and returns the list of pairs made up by pairing x with each element of y.
- Example: dist $(x, \langle r, s, t \rangle) = \langle (x, r), (x, s), (x, t) \rangle$.
- The **pairs function** takes two lists of equal length and returns the list of pairs of corresponding elements.
- Example:

$$\mathsf{pairs}(\langle a, b, c \rangle, \langle d, e, f \rangle) = \langle (a, d), (b, e), (c, f) \rangle.$$

 Since the domain of pairs is a proper subset of Lists[A] × Lists[B], it is only a partial function of type Lists[A] × Lists[B] → Lists[A × B].

Composition of Functions With Different Arities

• Suppose we are given the following three functions:

$$f: A \rightarrow B, g: A \rightarrow C, h: B \times C \rightarrow D.$$

• We can form the composition $h \circ (f,g) : A \rightarrow D$, defined, for all $x \in A$, by

$$(h \circ (f,g))(x) = h(f(x),g(x)).$$

• Example: Suppose $f : A \to \mathbb{R}$, $g : A \to \mathbb{R}$ and $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Then we have that $+ \circ (f, g) : A \to \mathbb{R}$ is given, for all $x \in A$ by

$$(+\circ (f,g))(x) = +(f(x),g(x)) = f(x) + g(x).$$

Example

• Use known functions and constructions to build the function $f : \mathbb{N} \to \text{Lists}[\mathbb{N} \times \mathbb{N}]$ defined by

$$f(n) = \langle (0,0), (1,1), \ldots, (n,n) \rangle.$$

We have

$$f(n) = \langle (0,0), (1,1), \dots, (n,n) \rangle$$

= pairs($\langle 0,1,\dots,n \rangle, \langle 0,1,\dots,n \rangle$)
= pairs(seq(n), seq(n)).

Example

• Use known functions and constructions to build the function $g:\mathbb{N}\to \mathrm{Lists}[\mathbb{N}\times\mathbb{N}]$ defined by

$$g(k) = \langle (k,0), (k,1), \dots, (k,k)
angle, ext{ for all } k \in \mathbb{N}.$$

We have

$$g(k) = \langle (k,0), (k,1), \dots, (k,k) \rangle$$

= dist(k, (0,1, ..., k))
= dist(k, seq(k)).

The Map or Apply-To-All Function

The map function map : (A → B) → (Lists[A] → Lists[B]) takes one argument, a function f : A → B, and returns as a result the function map(f) : Lists[A] → Lists[B], where map(f) applies f to each element in its argument list:

$$\mathsf{map}(f)(\langle a_1,\ldots,a_n\rangle)=\langle f(a_1),\ldots,f(a_n)\rangle$$

 Example: Let f: {a, b, c} → {1,2,3} be defined by f(a) = f(b) = 1 and f(c) = 2. Then map(f) applied to the list (a, b, c, a) can be calculated as follows:

$$\mathsf{map}(f)(\langle a, b, c, a \rangle) = \langle f(a), f(b), f(c), f(a) \rangle = \langle 1, 1, 2, 1 \rangle.$$

• The map function is sometimes called the "applyToAll" function.

• Example: Consider + and apply map(+) to a list of pairs of integers:

$$\max(+)(\langle (1,2), (3,4), (5,6) \rangle) = \langle +(1,2), +(3,4), +(5,6) \rangle \\ = \langle 3,7,11 \rangle.$$

Example

• Use known functions and constructions to build the function squares : $\mathbb{N}\to Lists[\mathbb{N}]$ defined by

squares
$$(n) = \langle 0, 1, 4, \dots, n^2 \rangle$$
.

We have:

$$squares(n) = \langle 0, 1, 4, ..., n^2 \rangle = \langle *(0, 0), *(1, 1), *(2, 2), ..., *(n, n) \rangle = map(*)(\langle (0, 0), (1, 1), (2, 2), ..., (n, n) \rangle) = map(*)(pairs(\langle 0, 1, 2, ..., n \rangle, \langle 0, 1, 2, ..., n \rangle)) = map(*)(pairs(seq(n), seq(n))).$$

Subsection 3

Properties of Functions

Injective Functions

- A function f : A → B is called injective (or one-to-one or an embedding) if no two elements in A map to the same element in B.
- Formally, f is injective if for all $x, y \in A$, whenever $x \neq y$, then $f(x) \neq f(y)$.
- By contraposition, f is injective if, for all $x, y \in A$, if f(x) = f(y), then x = y.
- An injective function is called an **injection**.

Surjective Functions

- A function f : A → B is called surjective (or onto) if each element
 b ∈ B can be written as b = f(x) for some element x in A.
- Another way to say this is that f is surjective if range(f) = B.
- A surjective function is called a surjection.

Example

- Function $f : \mathbb{R} \to \mathbb{Z}$; $f(x) = \lceil x+1 \rceil$.
 - Injective? No! f(0.1) = [0.1 + 1] = 2 = [0.2 + 1] = f(0.2).
 - Surjective? Yes! For $k \in \mathbb{Z}$, let $x \in \mathbb{R}$ be x = k 1. Then $f(x) = \lfloor (k 1) + 1 \rfloor = k$.
- Function $f : \mathbb{N}_8 \to \mathbb{N}_8$; $f(x) = 2x \mod 8$.
 - Injective? No! $f(0) = 0 \mod 8 = 8 \mod 8 = f(4)$.
 - Surjective? No! range $(f) = \{0, 2, 4, 6\}$.
- Function $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$; f(x) = (x, x).
 - Injective? Yes! Suppose $x, y \in \mathbb{N}$, with f(x) = f(y). Then (x, x) = (y, y). This implies x = y.
 - Surjective? No! $(0,1) \notin \operatorname{range}(f)$.
- Function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$; f(x, y) = 2x + y.
 - Injective? No! f(0,2) = 2 = f(1,0).
 - Surjective? Yes! Suppose $n \in \mathbb{N}$. Let $x = (0, n) \in \mathbb{N} \times \mathbb{N}$. Then $f(0, n) = 2 \cdot 0 + n = n$.

Bijective Functions

- A function is called **bijective** (or **one-to-one and onto**) if it is both injective and surjective.
- A bijective function is called a **bijection** or a **one-to-one correspondence**.

Injectivity, Surjectivity and Composition

- Suppose $f : A \rightarrow B$ and $g : B \rightarrow C$.
 - (a) If f and g are injective, then $g \circ f$ is injective.
 - (b) If f and g are surjective, then $g \circ f$ is surjective.
 - (c) If f and g are bijective, then $g \circ f$ is bijective.
 - (d) There is an injection from A to B if and only if there is a surjection from B to A.

Since g is surjective, there exists $b \in B$, such that g(b) = c. Since f is surjective, there exists $a \in A$, such that f(a) = b. Thus, we get g(f(a)) = g(b) = c. We conclude $g \circ f$ is surjective.

Bijections and Inverse Functions

- A function g : B → A is called an inverse of a function f : A → B, denoted g = f⁻¹, if g ∘ f = id_A and f ∘ g = id_B.
- A function f : A → B is bijective if and only if it has an inverse function g : B → A.
 - (⇒) Suppose that f is a bijection. To define $g : B \to A$, let $b \in B$. Since f is onto, there exists $a \in A$, such that f(a) = b. Since f is 1-1, there cannot exist $a' \neq a$ in A, such that f(a') = b. We define

$$g(b) = a$$
, for the unique $a \in A$ such that $f(a) = b$.

Then we have:

(⇐) Suppose, conversely, that there exists $g : B \to A$, such that $g \circ f = id_A$ and $f \circ g = id_B$. Then, for all $a, a' \in A$ and $b \in B$:

b = id_B(b) = f(g(b)), so f is onto.
 f(a) = f(a') ⇒ g(f(a)) = g(f(a')) ⇒ a = a', so f is 1-1.

Example

- Let Odd and Even be the sets of odd and even natural numbers.
 - (a) Show that the function $f : \text{Odd} \to \text{Even defined by } f(x) = x 1$ is a bijection.
 - (b) Find the inverse function f^{-1} .
- (a) f is injective: Suppose x₁, x₂ ∈ Odd, such that x₁ ≠ x₂. Then x₁ 1 ≠ x₂ 1. So f(x₁) ≠ f(x₂).
 f is surjective: Let y ∈ Even. Then x = y + 1 ∈ Odd and f(x) = (y + 1) 1 = y.
- (b) Define $g : Even \rightarrow Odd$ by setting

$$g(y) = y + 1$$
, for all $y \in Even$.

It is easy to check that

$$g(f(x)) = x$$
, for all $x \in Odd$,
 $f(g(y)) = y$, for all $y \in Even$.

So $g = f^{-1}$.

Example

- Consider the function $f : \mathbb{N}_5 \to \mathbb{N}_5$, defined by $f(x) = 2x \mod 5$.
 - (a) Show that f is a bijection.
 - (b) Find the inverse function f^{-1} .
- (a) Since the domain of f is a small finite set, we create a table of values:

X	f(x)		x	$f^{-1}(x)$
0	0	_	0	0
1	2		1	3
2	4		2	1
3	1		3	4
4	3		4	2

- f is injective: No two elements share the same image.
- f is surjective: The range is \mathbb{N}_5 .

(b) The table on the right specifies f^{-1} . Note that $f^{-1}(x) = 3x \mod 5$.

51 / 66

Subsection 4

Infinite Sets

Equipotence

- We say that two sets A and B have the same size or the same cardinality or are equipotent, denoted |A| = |B|, if there is a bijection between them.
- Formally, |A| = |B| if there is a function $f : A \rightarrow B$ that is bijective.
- Example: Show that $A = \{x^2 : x \in \mathbb{N} \text{ and } 1 \le x^2 \le 90\}$ and $B = \{0, 1, \dots, 8\}$ are equipotent sets.

Note that $A = \{1, 4, 9, \dots, 81\}$.

Define a function $f : B \rightarrow A$, by setting

$$f(x) = (x+1)^2$$
, for all $x \in B$.

f is one-to-one and onto, so a bijection. We conclude that |A| = |B|.

Example

 Show that the set Even and the set Odd of even and odd natural numbers, respectively, have the same cardinality.

Consider the function $f : Even \rightarrow Odd$, defined by

f(x) = x + 1, for all $x \in$ Even.

- f is injective: If $x_1, x_2 \in Even$, with $x_1 \neq x_2$, then $x_1 + 1 \neq x_2 + 1$. So $f(x_1) \neq f(x_2)$.
- f is surjective: Let $y \in \text{Odd}$. Then $x = y 1 \in \text{Even and}$

$$f(x) = f(y - 1) = y - 1 + 1 = y.$$

So *f* is surjective.

We conclude that f is a bijection. So |Even| = |Odd|.

Example

- Show that the set Odd has the same cardinality with IN.
- Define $f : \mathbb{N} \to \text{Odd}$ by setting

$$f(x) = 2x + 1$$
, for all $x \in \mathbb{N}$.

- f is injective: Suppose $x_1, x_2 \in \mathbb{N}$, with $f(x_1) = f(x_2)$. Then $2x_1 + 1 = 2x_2 + 1$. Subtracting 1 from both sides and then dividing by 2, we get $x_1 = x_2$.
- f is surjective: Let $y \in \text{Odd}$. Then $x = \frac{y-1}{2} \in \mathbb{N}$ and

$$f(x) = f(\frac{y-1}{2}) = 2\frac{y-1}{2} + 1 = y.$$

We conclude that f is a bijection. So $|\mathbb{N}| = |\mathsf{Odd}|$.

Inequalities Between Cardinalities

 For two sets A and B, we say the cardinality of A is less than or equal to the cardinality of B, written |A| ≤ |B|,

> iff there is an injection $f : A \rightarrow B$ iff there is a surjection $g : B \rightarrow A$.

- If there is an injection f : A → B but no bijection between them, we write |A| < |B| and say that the cardinality of A is less than the cardinality of B.
- Thus, the cardinality of A is less than the cardinality of B if:
 - $|A| \leq |B|$; and
 - $|A| \neq |B|$.

Countable and Uncountable Sets

- A set C is **countable** if it is finite or if $|C| = |\mathbb{N}|$.
- In the case $|C| = |\mathbb{N}|$ we sometimes say that C is **countably infinite**.
- If a set is not countable, it is called uncountable.
- Example: $\mathbb N$ is the fundamental example of a countably infinite set.
- Important Properties:
 - (a) Every subset of $\mathbb N$ is countable.
 - (b) A set S is countable if and only if $|S| \leq |\mathbb{N}|$.
 - (c) Every subset of a countable set is countable.
 - (d) Any image of a countable set is countable.

Cartesian Products of Countable Sets

 $\bullet~$ The set $\mathbb{N}\times\mathbb{N}$ is countable.

We need to describe a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} . We arrange the elements of $\mathbb{N} \times \mathbb{N}$ so that they can be counted. In the following listing each row lists a sequence of tuples in $\mathbb{N} \times \mathbb{N}$ followed by a corresponding sequence of natural numbers:

This listing shows that we have a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} . Therefore, $\mathbb{N} \times \mathbb{N}$ is countable.

Countable Unions of Countable Sets

• If $S_0, S_1, \ldots, S_n, \ldots$ is a sequence of countable sets, then the union $S_0 \cup S_1 \cup \cdots \cup S_n \cup \cdots$ is a countable set.

Since each set S_n is countable, its elements can be listed (possibly with repetitions) $x_{n0}, x_{n1}, x_{n2}, \dots$ So the elements of the union can be arranged as on the right. $x_{00}, x_{01}, x_{02}, \dots$ $x_{10}, x_{11}, x_{12}, \dots$ \vdots

Thus, we have a function $f : \mathbb{N} \times \mathbb{N} \to S_1 \cup S_2 \cup \cdots$ defined by $f(m, n) = x_{mn}$.

This mapping is surjective since the array includes all elements in the union.

Therefore, $S_1 \cup S_2 \cup \cdots$ is the image of the countable set $\mathbb{N} \times \mathbb{N}$. So it is itself countable.

Countability of the Rationals

We show that the set Q of rational numbers is countable.
 Let Q⁺ denote the set of positive rational numbers.
 We can represent Q⁺ as the following set of fractions (with repetitions)

$$\mathbb{Q}^+ = \{m/n : m, n \in \mathbb{N} \text{ and } n \neq 0\}.$$

The function $f : \mathbb{Q}^+ \to \mathbb{N} \times \mathbb{N}$, defined by f(m/n) = (m, n) is an injection.

Since $\mathbb{N}\times\mathbb{N}$ is countable, we conclude that \mathbb{Q}^+ is countable.

Similarly, the set \mathbb{Q}^- of negative rational numbers is countable.

But $\mathbb{Q}=\mathbb{Q}^+\cup\{0\}\cup\mathbb{Q}^-$ is now the union of a sequence of countable sets.

So ${\mathbb Q}$ is countable.

Set of Strings over a Finite Alphabet

• If A is a finite alphabet, then the set A* of all strings over A is countably infinite.

For each $n \in \mathbb{N}$, let A_n be the set of strings over A having length n.

It follows that A^* is the union of the sets $A_0, A_1, \ldots, A_n, \ldots$

Since each set A_n is finite, we conclude that A^* is countable.

Diagonalization: Uncountability of (0, 1)

• The set (0, 1) is uncountable. Suppose (0, 1) is countable.

Then, its elements can be listed as
 r_0, r_1, r_2, \ldots $r_0 = 0.d_{00}d_{01}d_{02}\ldots$
 $r_1 = 0.d_{10}d_{11}d_{12}\ldots$ Represent each number in decimal $r_i = 0.d_{10}d_{11}d_{12}\ldots$ $r_2 = 0.d_{20}d_{21}d_{22}\ldots$ $0.d_{i0}d_{i1}d_{i2}\ldots$ \vdots In this way we get the list: \vdots

Construct a new number $s = 0.s_0s_1s_2\ldots \in (0,1)$ as follows:

$$s_i = \text{if } d_{ii} = 4 \text{ then } 5 \text{ else } 4.$$

 $s \in (0, 1)$, but s does not occur in the listing above since it differs from r_i in the *i*-th decimal place, for all *i* So the listing above does not exhaust all numbers in (0, 1). So (0, 1) is uncountable.

Diagonalization: Uncountability of $\mathbb{N} \to \mathbb{N}$

The set of functions N → N is uncountable.
Assume, by way of contradiction, that the set is countable.
Then we can list all the functions of type N → N as f₀, f₁, f₂,
Represent each function f_n as the sequence of its values (f_n(0), f_n(1), f_n(2), ...).
Define a function g : N → N by

$$g(n) = \begin{cases} 1, & \text{if } f_n(n) = 2\\ 2, & \text{if } f_n(n) \neq 2. \end{cases}$$

Then the sequence of values (g(0), g(1), g(2), ...) is different from each of the sequences for the listed functions because $g(n) \neq f_n(n)$ for each n.

It follows that f_0, f_1, f_2, \ldots does not list all functions in $\mathbb{N} \to \mathbb{N}$, a contradiction.

Diagonalization: Cantor's Theorem

• Let A be a set. Then

$$|A| < |\mathcal{P}(A)|.$$

To show this we must show that:

(a) $|A| \leq |\mathcal{P}(A)|$, i.e., there is an injection from A to $\mathcal{P}(A)$;

(b) $|A| \neq |\mathcal{P}(A)|$, i.e., there is no bijection between A and $\mathcal{P}(A)$.

(a) Let $f : A \to \mathcal{P}(A)$ be defined by

$$f(a) = \{a\}, \text{ for all } a \in A.$$

f is an injection: f(a) = f(a') implies $\{a\} = \{a'\}$ implies a = a'.

Number of Programs

• The set of all programs in a programming language is countably infinite.

Consider each program as a finite string of symbols over a fixed finite alphabet A.

- For example, A might consist of all characters that can be typed from a keyboard.
- For each natural number n, let P_n denote the set of all programs that are strings of length n over A.
- For example, the program $\{print(4)\}\$ is in P_{10} because it's a string of length 10.
- So the set of all programs is the union of the sets $P_0, P_1, \ldots, P_n, \ldots$

Since each P_n is finite, we get that the set of all programs is countable.

Not Everything is Computable

- There are functions of type N → N that cannot be computed by any computer program in a given programming language. Note that:
 - The set of all computer programs in a given language is countably infinite.
 - $\bullet\,$ The set of all functions in $\mathbb{N}\to\mathbb{N}$ is uncountable.

We conclude that there exist functions of type $\mathbb{N} \to \mathbb{N}$ that cannot be computed by any program in the given language.

• Over any finite alphabet, there are languages that cannot be decided by any computer program.

Again note that:

• The set of all computer programs in a given language is countably infinite.

• The set of all languages in $\mathcal{P}(A^*)$ is uncountable by Cantor's Theorem.

We conclude that there exist languages over A that cannot be decided by any program in the given language.