
Discrete Structures for Computer Science

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU CSci 341

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 1 / 66

Outline

1 Functions
Definitions and Examples

Some Useful Functions

Composition of Functions
Properties of Functions
Infinite Sets

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 2 / 66

Functions Definitions and Examples

Subsection 1

Definitions and Examples

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 3 / 66

Functions Definitions and Examples

Functions

Let A and B be sets.

A function from A to B is an association to each element in A of
exactly one element in B .

Functions are normally denoted by letters like f , g and h.

If f is a function from A to B , written f : A → B or A
f
→ B , and f

associates x ∈ A with y ∈ B , then we write y = f (x).

When f (x) = y , we often say, “f maps x to y”.

Functions are also called mappings, transformations and operators.

The following associations are not functions from A to B .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 4 / 66

Functions Definitions and Examples

Description of Functions

Functions can be described in many ways:
By a formula.
The function f : N → N mapping every natural number x to its square
can be described by

f (x) = x2, for all x ∈ N.

By a list.
A function g : A → B from A = {a, b, c} to B = {1, 2, 3} may be
defined by

g(a) = 1, g(b) = 1, g(c) = 2.

By a graph (e.g., Venn diagram, digraph, Cartesian graph).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 5 / 66

Functions Definitions and Examples

Terminology

The set of all functions from A to B is denoted A → B .

If f ∈ A → B , i.e., f : A → B , then we say f has type A → B .

The set A is called the domain of f .
The set B is the codomain of f .

If f (x) = y , then:

x is an argument of f ;
y is a value of f .

If the domain of a function f is a product of n sets, A1 × · · · × An,
then we say that f has arity n, or f has n arguments.

If (x1, . . . , xn) ∈ A1 × · · · × An, then instead of f ((x1, . . . , xn)) we
usually write f (x1, . . . , xn).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 6 / 66

Functions Definitions and Examples

Binary Functions and Infix Notation

A function f with two arguments is called a binary function.

Binary functions give us the option of writing f (x , y) in the popular
infix form xfy .

Example: Consider addition of real numbers

+ : R×R → R.

Instead of writing +(4, 5), we usually prefer 4 + 5.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 7 / 66

Functions Definitions and Examples

Range, Images and Pre-Images

The range of f , written range(f), is the set of elements in B that are
associated with some element of A:

range(f) = {f (a) : a ∈ A}.

If S ⊆ A, then the image of S under f , written f (S), is the set of
values in B associated with elements of S :

f (S) = {f (x) : x ∈ S}.

As a special case f (A) = range(f).

If T ⊆ B , then the pre-image or inverse image of T under f ,
written f −1(T), is the set of elements in A that associate with some
elements of T :

f −1(T) = {a ∈ A : f (a) ∈ T}.

We have f −1(B) = A.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 8 / 66

Functions Definitions and Examples

Example

Consider the function f : {a, b, c} → {1, 2, 3} defined by
f (a) = f (b) = 1 and f (c) = 2.

f has type {a, b, c} → {1, 2, 3}.
The domain of f is {a, b, c}.
The codomain of f is {1, 2, 3}.
The range of f is {1, 2}.
f ({a}) = {1};
f ({a, b}) = {1};
f (A) = f ({a, b, c}) = {1, 2} = range(f);
f −1({1, 2}) = {a, b, c};
f −1({1, 3}) = {a, b};
f −1({3}) = ∅;
f −1(B) = f −1({1, 2, 3}) = {a, b, c} = A.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 9 / 66

Functions Definitions and Examples

Tuples as Functions

Any sequence of objects can be thought of as a function.

Example: The tuple (22, 14, 55, 1, 700, 67) can be considered a listing
of the values of a function

f : {0, 1, 2, 3, 4, 5} → N.

That is, we defined f by setting

f (0) = 22, f (1) = 14, f (2) = 55, f (3) = 1, f (4) = 700, f (5) = 67.

Then (22, 14, 55, 1, 700, 67) is just a listing of the values of f .

An infinite sequence can also be considered a function.

Example: Suppose we have the following sequence of things from a
set S :

(b0, b1, . . . , bn, . . .).

The elements bn can be considered values of the function b : N → S ,
defined by b(n) = bn.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 10 / 66

Functions Definitions and Examples

Functions and Binary Relations

Functions are special kinds of binary relations.

A function f : A → B is a binary relation from A to B such that

for each a ∈ A there is a unique b ∈ B , such that (a, b) ∈ f .

We can describe this uniqueness condition in the following way:

If (a, b), (a, c) ∈ f , then b = c .

In case the relation f ⊆ A× B happens to be a function of type
A → B , the functional notation f (a) = b is preferred over the
relational notations f (a, b) and (a, b) ∈ f .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 11 / 66

Functions Definitions and Examples

Example

Consider the sets A = {a, b, c , d , e} and B = {0, 1, 2}.

Let R ⊆ A× B be the following binary relation from A to B :

R = {(a, 0), (b, 0), (c , 2), (d , 1), (e, 2)}.

Since R associates to each element of A a unique element of B , it is a
function R : A → B .

In this case, instead of the relational (c , 2) ∈ R or R(c , 2), we may
write the functional R(c) = 2.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 12 / 66

Functions Definitions and Examples

Equality of Functions

If f and g are both functions of type A → B , then f and g are said to
be equal, written f = g , if

f (x) = g(x), for all x ∈ A.

Example: Suppose f and g are functions of type N → N and they are
defined by the formulas

f (x) = x + x

and
g(x) = 2x .

Then f = g .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 13 / 66

Functions Definitions and Examples

Definition by Cases

Functions can be defined by cases.

Example: The absolute value function abs has type R → R and can
be defined by the following rule:

abs(x) =

{

x , if x ≥ 0
− x , if x < 0

A definition by cases can also be written in terms of the if-then-else
rule.

Example: We can write the preceding definition in the form:

abs(x) = if x ≥ 0 then x else − x .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 14 / 66

Functions Definitions and Examples

Partial Functions

A partial function from A to B is like a function except that it might
not be defined for some elements of A.

We still have the requirement that if x ∈ A is associated with y ∈ B ,
then x cannot be associated with any other element of B .

Example: Since division by zero is not allowed, ÷ is a partial function
of type R×R → R.

When discussing partial functions, to avoid confusion we use the term
total function to mean a function that is defined on all its domain.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 15 / 66

Functions Definitions and Examples

From Partial Functions to Total Functions

Any partial function can be transformed into a total function.

One simple technique is to shrink the domain to the set of elements
for which the partial function is defined.

Example: ÷ is a total function of type R× (R− {0}) → R.

A second technique keeps the domain the same but increases the
size of the codomain.

Example: Suppose f : A → B is a partial function.

Pick some symbol that is not in B, say # 6∈ B;
Assign f (x) = # whenever f (x) is not defined.

Then we can think of f as the total function of type A → B ∪ {#}.

In programming, the analogy would be to pick an error message to
indicate that an incorrect input string has been received.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 16 / 66

Functions Definitions and Examples

The Floor and Ceiling Functions

The floor function has type R → Z and is defined by

floor(x) = the largest integer less than or equal to x .

Example: floor(8) = 8, floor(8.9) = 8, floor(−3.5) = − 4.

floor(x) is also denoted by ⌊x⌋.

The ceiling function has type R → Z and is defined by

ceiling(x) = the smallest integer greater than or equal to x .

Example: ceiling(8) = 8, ceiling(8.9) = 9, ceiling(−3.5) = − 3.

ceiling(x) is also denoted by ⌈x⌉.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 17 / 66

Functions Definitions and Examples

A Simple Property of the Floor Function

For all x ∈ R and all n ∈ Z,

⌊x + n⌋ = ⌊x⌋+ n.

Let x ∈ R and n ∈ Z.

If x ∈ Z, then x + n ∈ Z.
So we have ⌊x + n⌋ = x + n = ⌊x⌋+ n.
If x 6∈ Z, then, there exists m ∈ Z and 0 < r < 1, such that x = m+ r .
So we have:

⌊x + n⌋ = ⌊m + r + n⌋ = ⌊(m + n) + r⌋
= m + n = ⌊m + r⌋+ n

= ⌊x⌋+ n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 18 / 66

Functions Definitions and Examples

Floor and Ceiling: Divide and Conquer

If n ∈ Z, then
n = ⌊n/2⌋ + ⌈n/2⌉.

Consider two cases:

If n is even, then n = 2k for some k ∈ Z.
So we have

⌊n/2⌋ = ⌊2k/2⌋ = ⌊k⌋ = k ;
⌈n/2⌉ = ⌈2k/2⌉ = ⌈k⌉ = k .

So ⌊n/2⌋+ ⌈n/2⌉ = k + k = 2k = n.
If n is odd, then n = 2k + 1 for some k ∈ Z.
In this case, we have

⌊n/2⌋ = ⌊(2k + 1)/2⌋ = ⌊k + 1/2⌋ = k ;
⌈n/2⌉ = ⌈(2k + 1)/2⌉ = ⌈k + 1/2⌉ = k + 1.

So ⌊n/2⌋+ ⌈n/2⌉ = k + k + 1 = 2k + 1 = n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 19 / 66

Functions Definitions and Examples

Greatest Common Divisor

The greatest common divisor of two integers a and b, not both
zero, denoted gcd(a, b), is the largest number that divides them both.

Example:

The common divisors of 12 and 18 are ±1,±2,±3,±6.
So gcd(12, 18) = 6.

Example: gcd(−44,−12) = 4, gcd(5, 0) = 5.

If a 6= 0, we have gcd(a, 0) = |a|.

If gcd(a, b) = 1, we say a and b are relatively prime.

Example: 9 and 4 are relatively prime.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 20 / 66

Functions Definitions and Examples

Division Algorithm

Division Algorithm:

If a and b are integers and b 6= 0, then there are unique integers q and
r such that a = bq + r , where 0 ≤ r < |b|.

Example: If a = 19 and b = 4, then

19 = 4 · 4 + 3.

Example: If a = −16 and b = 3, then

−16 = 3 · (−6) + 2.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 21 / 66

Functions Definitions and Examples

Euclid’s Algorithm

We describe Euclid’s Algorithm that calculates gcd(a, b) for a and b

natural numbers that are not both zero.
Euclid’s Algorithm:

Input two natural numbers a and b, not both zero.
while b > 0

Use the division algorithm to compute q and r such that
a = bq + r , where 0 ≤ r < b;

a := b;
b := r ;

Output a.

Apply Euclid’s Algorithm to compute the gcd of 315 and 54.
Initialization: a := 315; b := 54;
While Loop:

Iteration 1: 315 = 54 · 5 + 45; a = 54; b := 45;
Iteration 2: 54 = 45 · 1 + 9; a := 45; b := 9;
Iteration 3: 45 = 9 · 5 + 0; a := 9; b := 0;

Output: a = 9.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 22 / 66

Functions Definitions and Examples

Greatest Common Divisor as Linear Combination

The following holds for all nonnegative integers a, b that are not both
zero:

If g = gcd(a, b), then there exist integers m, n, such that
g = m · a+ n · b.

We can use Euclid’s algorithm to find m and n.

Keep track of the equations a = bq + r from each execution of the
loop:

315 = 54 · 5 + 45;
54 = 45 · 1 + 9;
45 = 9 · 5 + 0.

Work backwards to solve for gcd(a, b) in terms of a and b.
Solve the second equation for 9:

9 = 54− 45 · 1.

Use the first equation to replace 45:
9 = 54− (315− 54 · 5) · 1 = 54− 315 + 54 · 5 = − 315 + 54 · 6.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 23 / 66

Functions Definitions and Examples

The Mod Function

If a and b are integers, where b > 0, then the division algorithm
states that there are two unique integers q and r such that

a = bq + r , where 0 ≤ r < b.

We say that q is the quotient and r is the remainder upon division
of a by b.

If a and b are integers with b > 0, then the remainder upon the
division of a by b is denoted

a mod b

Example:
5 mod 4 = 1; − 5 mod 4 = 3;

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 24 / 66

Functions Definitions and Examples

The Mod n Function

Fix n as a positive integer constant.

Define a function f : Z → N by

f (x) = x mod n.

Example: Fix n = 3. We have
25 mod 3 = 1;
12 mod 3 = 0;
8 mod 3 = 2;
−4 mod 3 = 2;
−8 mod 3 = 1.

The range of f is {0, 1, . . . , n − 1}, which is the set of possible
remainders obtained upon division of x by n.

We let Nn or Zn denote the set

Zn = {0, 1, 2, . . . , n − 1}.

For example, Z0 = ∅, Z1 = {0}, and Z2 = {0, 1}.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 25 / 66

Functions Definitions and Examples

Some Properties of the Mod n Function

(a) For all x , y ∈ Z, x mod n = y mod n iff n divides x − y iff (x − y)
mod n = 0.

Suppose x mod n = y mod n = r .

Then we have x = q1n+ r and y = q2n + r .

Therefore, x − y = q1n + r − (q2n + r) = (q1 − q2)n + 0.

Thus, (x − y) mod n = 0.

Conversely, suppose x − y = 0 mod n. Then x − y = qn, for some
q ∈ Z. But then, we have x mod n = (y + qn) mod n = y mod n.

(b) For all a, x , y ∈ Z, if ax mod n = ay mod n and gcd(a, n) = 1, then
x mod n = y mod n.

Suppose ax mod n = ay mod n.

Then, by Property (a), (ax − ay) mod n = 0. Thus, n | a(x − y).
But, if a positive integer divides a product and is relatively prime with
one of its factors, then it must divide the other. It follows that
n | (x − y). By Property (a) again x mod n = y mod n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 26 / 66

Functions Definitions and Examples

From Decimal to Binary Notation

We can use the floor and mod functions to implement division by 2:

x = 2 ·
⌊x

2

⌋

+ (x mod 2).

This enables writing an integer in binary notation by keeping track of
remainders.

Example: Write 53 in binary notation.

53 = 2 · 26 + 1;
26 = 2 · 13 + 0;
13 = 2 · 6 + 1;
6 = 2 · 3 + 0;
3 = 2 · 1 + 1;
1 = 2 · 0 + 1.

So the binary representation of 53 is 110101.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 27 / 66

Functions Definitions and Examples

The Log Function: Definition

Let 0 < b 6= 1 be a fixed real number.

The log (logarithm) function base b, logb : R+ → R is defined by

logb x = y , where by = x .

Example: We have:

log2 16 = 4;
log3 27 = 3;
log7

1
49 = − 2;

log32 2 = 1
5 ;

log8
1
2 = − 1

3 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 28 / 66

Functions Definitions and Examples

The Log Function: Application

Consider a binary search tree with 16 nodes having the structure
shown:

Then the depth of the tree is 4.

So a maximum of 4 comparisons are needed to find any element in
the tree.

Since 16 = 24, the depth in terms of the number of nodes is:

4 = log2 16.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 29 / 66

Functions Definitions and Examples

The Log Function: Properties

The log base b satisfies the following properties:

logb 1 = 0 and logb b = 1;
logb (b

x) = x and blogb x = x ;
logb (xy) = logb x + logb y ;
logb (

x
y
) = logb x − logb y ;

logb (x
y) = y logb x ;

logb x = loga x
loga b

.

Example: Write log2 (2
734) in terms of log2 3.

We have, using the properties above:

log2 (2
734) = log2 (2

7) + log2 (3
4) = 7 + 4 log2 3.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 30 / 66

Functions Composition of Functions

Subsection 2

Composition of Functions

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 31 / 66

Functions Composition of Functions

Composition of Functions

Consider two functions in which
the domain of one contains the
codomain of the other: f : A →
B , B ⊆ C and g : C → D.

The composition of f and g is the function g ◦ f : A → D defined by

(g ◦ f)(x) = g(f (x)).

This means that we first apply f to x and then apply g to the
resulting value.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 32 / 66

Functions Composition of Functions

Examples of Composition

Consider f : R → R defined by f (x) = x + 1 and g : R → R defined
by g(x) = x2.

Then we have:

(g ◦ f)(7) = g(f (7)) = g(8) = 64;
(f ◦ g)(3) = f (g(3)) = f (9) = 10;
(g ◦ f)(x) = g(f (x)) = g(x + 1) = (x + 1)2;
(f ◦ g)(x) = f (g(x)) = f (x2) = x2 + 1;
(f ◦ f)(x) = f (x + 1) = (x + 1) + 1 = x + 2;

Consider log2 : (0,∞) → R and floor : R → Z.

Then we have:

floor(log2 64) = floor(6) = 6;
floor(log2 5) = 2, because 2 < log2 5 < 3.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 33 / 66

Functions Composition of Functions

Associativity of Composition

If f , g and h are functions of the right type such that (f ◦ g) ◦ h and
f ◦ (g ◦ h) make sense, then

(f ◦ g) ◦ h = f ◦ (g ◦ h).

To prove this, calculate the expressions for both sides:

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f (g(h(x)));
(f ◦ (g ◦ h))(x) = f ((g ◦ h)(x)) = f (g(h(x))).

This property allows writing the composition of three or more
functions without the use of parentheses, since f ◦ g ◦ h has exactly
one meaning.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 34 / 66

Functions Composition of Functions

Non-Commutativity of Composition

Composition is not commutative in general.

This can be shown by counterexample.

Consider f (x) = x + 1 and g(x) = x2.

We have
(f ◦ g)(2) = f (g(2)) = f (4) = 5;
(g ◦ f)(2) = g(f (2)) = g(3) = 9.

So (f ◦ g)(2) 6= (g ◦ f)(2).

This shows that f ◦ g 6= g ◦ f .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 35 / 66

Functions Composition of Functions

Identity Function and Composition

The identity function idA : A → A always returns its argument:

idA(a) = a, for all a ∈ A.

For every function f : A → B , we have

f ◦ idA = f = idB ◦ f .

These equalities are easy to see: For every a ∈ A we have:

(f ◦ idA)(a) = f (idA(a)) = f (a).
(idB ◦ f)(a) = idB(f (a)) = f (a).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 36 / 66

Functions Composition of Functions

Sequence, Distribute and Pairs Functions

The sequence function seq : N → Lists[N] is defined by

seq(n) = 〈0, 1, . . . , n〉.

Example: seq(0) = 〈0〉; seq(4) = 〈0, 1, 2, 3, 4〉.

The distribute function dist : A× Lists[B] → Lists[A× B] takes an
element x from A and a list y from Lists[B] and returns the list of
pairs made up by pairing x with each element of y .

Example: dist(x , 〈r , s, t〉) = 〈(x , r), (x , s), (x , t)〉.

The pairs function takes two lists of equal length and returns the list
of pairs of corresponding elements.

Example:

pairs(〈a, b, c〉, 〈d , e, f 〉) = 〈(a, d), (b, e), (c , f)〉.

Since the domain of pairs is a proper subset of Lists[A]× Lists[B], it
is only a partial function of type Lists[A]× Lists[B] → Lists[A× B].

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 37 / 66

Functions Composition of Functions

Composition of Functions With Different Arities

Suppose we are given the following three functions:

f : A → B , g : A → C , h : B × C → D.

We can form the composition h ◦ (f , g) : A → D, defined, for all
x ∈ A, by

(h ◦ (f , g))(x) = h(f (x), g(x)).

Example: Suppose f : A → R, g : A → R and + : R×R → R.

Then we have that + ◦ (f , g) : A → R is given, for all x ∈ A by

(+ ◦ (f , g))(x) = +(f (x), g(x)) = f (x) + g(x).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 38 / 66

Functions Composition of Functions

Example

Use known functions and constructions to build the function
f : N → Lists[N×N] defined by

f (n) = 〈(0, 0), (1, 1), . . . , (n, n)〉.

We have

f (n) = 〈(0, 0), (1, 1), . . . , (n, n)〉
= pairs(〈0, 1, . . . , n〉, 〈0, 1, . . . , n〉)
= pairs(seq(n), seq(n)).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 39 / 66

Functions Composition of Functions

Example

Use known functions and constructions to build the function
g : N → Lists[N ×N] defined by

g(k) = 〈(k , 0), (k , 1), . . . , (k , k)〉, for all k ∈ N.

We have
g(k) = 〈(k , 0), (k , 1), . . . , (k , k)〉

= dist(k , 〈0, 1, . . . , k〉)
= dist(k , seq(k)).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 40 / 66

Functions Composition of Functions

The Map or Apply-To-All Function

The map function map : (A → B) → (Lists[A] → Lists[B]) takes one
argument, a function f : A → B , and returns as a result the function
map(f) : Lists[A] → Lists[B], where map(f) applies f to each element
in its argument list:

map(f)(〈a1, . . . , an〉) = 〈f (a1), . . . , f (an)〉.

Example: Let f : {a, b, c} → {1, 2, 3} be defined by f (a) = f (b) = 1
and f (c) = 2. Then map(f) applied to the list 〈a, b, c , a〉 can be
calculated as follows:

map(f)(〈a, b, c , a〉) = 〈f (a), f (b), f (c), f (a)〉 = 〈1, 1, 2, 1〉.

The map function is sometimes called the “applyToAll” function.
Example: Consider + and apply map(+) to a list of pairs of integers:

map(+)(〈(1, 2), (3, 4), (5, 6)〉) = 〈+(1, 2),+(3, 4),+(5, 6)〉
= 〈3, 7, 11〉.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 41 / 66

Functions Composition of Functions

Example

Use known functions and constructions to build the function
squares : N → Lists[N] defined by

squares(n) = 〈0, 1, 4, . . . , n2〉.

We have:

squares(n) = 〈0, 1, 4, . . . , n2〉
= 〈∗(0, 0), ∗(1, 1), ∗(2, 2), . . . , ∗(n, n)〉
= map(∗)(〈(0, 0), (1, 1), (2, 2), . . . , (n, n)〉)
= map(∗)(pairs(〈0, 1, 2, . . . , n〉, 〈0, 1, 2, . . . , n〉))
= map(∗)(pairs(seq(n), seq(n))).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 42 / 66

Functions Properties of Functions

Subsection 3

Properties of Functions

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 43 / 66

Functions Properties of Functions

Injective Functions

A function f : A → B is called injective (or one-to-one or an
embedding) if no two elements in A map to the same element in B .

Formally, f is injective if for all x , y ∈ A, whenever x 6= y , then
f (x) 6= f (y).

By contraposition, f is injective if, for all x , y ∈ A, if f (x) = f (y),
then x = y .

An injective function is called an injection.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 44 / 66

Functions Properties of Functions

Surjective Functions

A function f : A → B is called surjective (or onto) if each element
b ∈ B can be written as b = f (x) for some element x in A.

Another way to say this is that f is surjective if range(f) = B .

A surjective function is called a surjection.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 45 / 66

Functions Properties of Functions

Example

Function f : R → Z; f (x) = ⌈x + 1⌉.
Injective? No! f (0.1) = ⌈0.1 + 1⌉ = 2 = ⌈0.2 + 1⌉ = f (0.2).
Surjective? Yes! For k ∈ Z, let x ∈ R be x = k − 1. Then
f (x) = ⌈(k − 1) + 1⌉ = k .

Function f : N8 → N8; f (x) = 2x mod 8.

Injective? No! f (0) = 0 mod 8 = 8 mod 8 = f (4).
Surjective? No! range(f) = {0, 2, 4, 6}.

Function f : N → N×N; f (x) = (x , x).

Injective? Yes! Suppose x , y ∈ N, with f (x) = f (y). Then
(x , x) = (y , y). This implies x = y .
Surjective? No! (0, 1) 6∈ range(f).

Function f : N×N → N; f (x , y) = 2x + y .

Injective? No! f (0, 2) = 2 = f (1, 0).
Surjective? Yes! Suppose n ∈ N. Let x = (0, n) ∈ N×N. Then
f (0, n) = 2 · 0 + n = n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 46 / 66

Functions Properties of Functions

Bijective Functions

A function is called bijective (or one-to-one and onto) if it is both
injective and surjective.

A bijective function is called a bijection or a one-to-one
correspondence.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 47 / 66

Functions Properties of Functions

Injectivity, Surjectivity and Composition

Suppose f : A → B and g : B → C .
(a) If f and g are injective, then g ◦ f is injective.
(b) If f and g are surjective, then g ◦ f is surjective.
(c) If f and g are bijective, then g ◦ f is bijective.
(d) There is an injection from A to B if and only if there is a surjection

from B to A.

(a) Let a, a′ ∈ A, such that (g ◦ f)(a) = (g ◦ f)(a′).
This means g(f (a)) = g(f (a′)).

By the injectivity of g , we get f (a) = f (a′).

By the injectivity of f , we get a = a′.

We conclude that g ◦ f is injective.

(b) To show that g ◦ f is surjective, let c ∈ C .

Since g is surjective, there exists b ∈ B , such that g(b) = c .

Since f is surjective, there exists a ∈ A, such that f (a) = b.

Thus, we get g(f (a)) = g(b) = c .

We conclude g ◦ f is surjective.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 48 / 66

Functions Properties of Functions

Bijections and Inverse Functions

A function g : B → A is called an inverse of a function f : A → B ,
denoted g = f −1, if g ◦ f = idA and f ◦ g = idB .

A function f : A → B is bijective if and only if it has an inverse
function g : B → A.

(⇒) Suppose that f is a bijection. To define g : B → A, let b ∈ B. Since f

is onto, there exists a ∈ A, such that f (a) = b. Since f is 1-1, there
cannot exist a′ 6= a in A, such that f (a′) = b. We define

g(b) = a, for the unique a ∈ A such that f (a) = b.

Then we have:

g(f (a)) = g(b) = a = idA(a).
f (g(b)) = f (a) = b = idB(b).

(⇐) Suppose, conversely, that there exists g : B → A, such that g ◦ f = idA
and f ◦ g = idB . Then, for all a, a

′ ∈ A and b ∈ B:

b = idB(b) = f (g(b)), so f is onto.
f (a) = f (a′) ⇒ g(f (a)) = g(f (a′)) ⇒ a = a′, so f is 1-1.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 49 / 66

Functions Properties of Functions

Example

Let Odd and Even be the sets of odd and even natural numbers.
(a) Show that the function f : Odd → Even defined by f (x) = x − 1 is a

bijection.
(b) Find the inverse function f −1.

(a) f is injective: Suppose x1, x2 ∈ Odd, such that x1 6= x2. Then
x1 − 1 6= x2 − 1. So f (x1) 6= f (x2).

f is surjective: Let y ∈ Even. Then x = y + 1 ∈ Odd and
f (x) = (y + 1)− 1 = y .

(b) Define g : Even → Odd by setting

g(y) = y + 1, for all y ∈ Even.

It is easy to check that

g(f (x)) = x , for all x ∈ Odd,
f (g(y)) = y , for all y ∈ Even.

So g = f −1.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 50 / 66

Functions Properties of Functions

Example

Consider the function f : N5 → N5, defined by f (x) = 2x mod 5.

(a) Show that f is a bijection.
(b) Find the inverse function f −1.

(a) Since the domain of f is a small finite set, we create a table of values:

x f (x)

0 0
1 2
2 4
3 1
4 3

x f −1(x)

0 0
1 3
2 1
3 4
4 2

f is injective: No two elements share the same image.
f is surjective: The range is N5.

(b) The table on the right specifies f −1. Note that f −1(x) = 3x mod 5.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 51 / 66

Functions Infinite Sets

Subsection 4

Infinite Sets

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 52 / 66

Functions Infinite Sets

Equipotence

We say that two sets A and B have the same size or the same
cardinality or are equipotent, denoted |A| = |B |, if there is a
bijection between them.

Formally, |A| = |B | if there is a function f : A → B that is bijective.

Example: Show that A = {x2 : x ∈ N and 1 ≤ x2 ≤ 90} and
B = {0, 1, . . . , 8} are equipotent sets.

Note that A = {1, 4, 9, . . . , 81}.

Define a function f : B → A, by setting

f (x) = (x + 1)2, for all x ∈ B .

f is one-to-one and onto, so a bijection.

We conclude that |A| = |B |.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 53 / 66

Functions Infinite Sets

Example

Show that the set Even and the set Odd of even and odd natural
numbers, respectively, have the same cardinality.

Consider the function f : Even → Odd, defined by

f (x) = x + 1, for all x ∈ Even.

f is injective: If x1, x2 ∈ Even, with x1 6= x2, then x1 + 1 6= x2 + 1. So
f (x1) 6= f (x2).
f is surjective: Let y ∈ Odd. Then x = y − 1 ∈ Even and

f (x) = f (y − 1) = y − 1 + 1 = y .

So f is surjective.

We conclude that f is a bijection. So |Even| = |Odd|.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 54 / 66

Functions Infinite Sets

Example

Show that the set Odd has the same cardinality with N.

Define f : N → Odd by seting

f (x) = 2x + 1, for all x ∈ N.

f is injective: Suppose x1, x2 ∈ N, with f (x1) = f (x2). Then
2x1 + 1 = 2x2 + 1. Subtracting 1 from both sides and then dividing by
2, we get x1 = x2.
f is surjective: Let y ∈ Odd. Then x = y−1

2 ∈ N and

f (x) = f (
y − 1

2
) = 2

y − 1

2
+ 1 = y .

We conclude that f is a bijection. So |N| = |Odd|.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 55 / 66

Functions Infinite Sets

Inequalities Between Cardinalities

For two sets A and B , we say the cardinality of A is less than or
equal to the cardinality of B , written |A| ≤ |B |,

iff there is an injection f : A → B

iff there is a surjection g : B → A.

If there is an injection f : A → B but no bijection between them, we
write |A| < |B | and say that the cardinality of A is less than the
cardinality of B .

Thus, the cardinality of A is less than the cardinality of B if:

|A| ≤ |B|; and
|A| 6= |B|.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 56 / 66

Functions Infinite Sets

Countable and Uncountable Sets

A set C is countable if it is finite or if |C | = |N|.

In the case |C | = |N| we sometimes say that C is countably infinite.

If a set is not countable, it is called uncountable.

Example: N is the fundamental example of a countably infinite set.

Important Properties:

(a) Every subset of N is countable.
(b) A set S is countable if and only if |S | ≤ |N|.
(c) Every subset of a countable set is countable.
(d) Any image of a countable set is countable.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 57 / 66

Functions Infinite Sets

Cartesian Products of Countable Sets

The set N×N is countable.

We need to describe a bijection between N×N and N.

We arrange the elements of N×N so that they can be counted.

In the following listing each row lists a sequence of tuples in N×N

followed by a corresponding sequence of natural numbers:

(0, 0) ↔ 0
(0, 1), (1, 0) ↔ 1, 2
(0, 2), (1, 1), (2, 0) ↔ 3, 4, 5
(0, 3), (1, 2), (2, 1), (3, 0) ↔ 6, 7, 8, 9

...

This listing shows that we have a bijection between N×N and N.

Therefore, N×N is countable.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 58 / 66

Functions Infinite Sets

Countable Unions of Countable Sets

If S0,S1, . . . ,Sn, . . . is a sequence of countable sets, then the union
S0 ∪ S1 ∪ · · · ∪ Sn ∪ · · · is a countable set.

Since each set Sn is countable, its ele-
ments can be listed (possibly with repeti-
tions) xn0, xn1, xn2,
So the elements of the union can be ar-
ranged as on the right.

x00, x01, x02, . . .
x10, x11, x12, . . .
...

xi0, xi1, xi2, . . .
...

Thus, we have a function f : N×N → S1 ∪ S2 ∪ · · · defined by
f (m, n) = xmn.

This mapping is surjective since the array includes all elements in the
union.

Therefore, S1 ∪ S2 ∪ · · · is the image of the countable set N×N.

So it is itself countable.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 59 / 66

Functions Infinite Sets

Countability of the Rationals

We show that the set Q of rational numbers is countable.

Let Q+ denote the set of positive rational numbers.

We can represent Q+ as the following set of fractions (with
repetitions)

Q+ = {m/n : m, n ∈ N and n 6= 0}.

The function f : Q+ → N×N, defined by f (m/n) = (m, n) is an
injection.

Since N×N is countable, we conclude that Q+ is countable.

Similarly, the set Q− of negative rational numbers is countable.

But Q = Q+ ∪ {0} ∪Q− is now the union of a sequence of countable
sets.

So Q is countable.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 60 / 66

Functions Infinite Sets

Set of Strings over a Finite Alphabet

If A is a finite alphabet, then the set A∗ of all strings over A is
countably infinite.

For each n ∈ N, let An be the set of strings over A having length n.

It follows that A∗ is the union of the sets A0,A1, . . . ,An,

Since each set An is finite, we conclude that A∗ is countable.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 61 / 66

Functions Infinite Sets

Diagonalization: Uncountability of (0, 1)

The set (0, 1) is uncountable.

Suppose (0, 1) is countable.

Then, its elements can be listed as
r0, r1, r2,
Represent each number in decimal ri =
0.di0di1di2
In this way we get the list:

r0 = 0.d00d01d02 . . .
r1 = 0.d10d11d12 . . .
r2 = 0.d20d21d22 . . .

...

Construct a new number s = 0.s0s1s2 . . . ∈ (0, 1) as follows:

si = if dii = 4 then 5 else 4.

s ∈ (0, 1), but s does not occur in the listing above since it differs
from ri in the i -th decimal place, for all i

So the listing above does not exhaust all numbers in (0, 1).

So (0, 1) is uncountable.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 62 / 66

Functions Infinite Sets

Diagonalization: Uncountability of N→ N

The set of functions N → N is uncountable.

Assume, by way of contradiction, that the set is countable.

Then we can list all the functions of type N → N as f0, f1, f2,

Represent each function fn as the sequence of its values
(fn(0), fn(1), fn(2), . . .).

Define a function g : N → N by

g(n) =

{

1, if fn(n) = 2
2, if fn(n) 6= 2.

Then the sequence of values (g(0), g(1), g(2), . . .) is different from
each of the sequences for the listed functions because g(n) 6= fn(n)
for each n.

It follows that f0, f1, f2, . . . does not list all functions in N → N, a
contradiction.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 63 / 66

Functions Infinite Sets

Diagonalization: Cantor’s Theorem

Let A be a set. Then
|A| < |P(A)|.

To show this we must show that:
(a) |A| ≤ |P(A)|, i.e., there is an injection from A to P(A);
(b) |A| 6= |P(A)|, i.e., there is no bijection between A and P(A).

(a) Let f : A → P(A) be defined by

f (a) = {a}, for all a ∈ A.

f is an injection: f (a) = f (a′) implies {a} = {a′} implies a = a′.

(b) Suppose g : A → P(A) is a bijection.

Consider the set D = {a ∈ A : a 6∈ g(a)} ∈ P(A).

Since g : A → P(A) is onto, there exists d ∈ A, such that g(d) = D.
If d ∈ D, then d 6∈ g(d), so d 6∈ D, contradiction.
If d 6∈ D, then d ∈ g(d), so d ∈ D, contradiction.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 64 / 66

Functions Infinite Sets

Number of Programs

The set of all programs in a programming language is countably
infinite.

Consider each program as a finite string of symbols over a fixed finite
alphabet A.

For example, A might consist of all characters that can be typed from
a keyboard.

For each natural number n, let Pn denote the set of all programs that
are strings of length n over A.

For example, the program {print(4)} is in P10 because it’s a string of
length 10.

So the set of all programs is the union of the sets P0,P1, . . . ,Pn,

Since each Pn is finite, we get that the set of all programs is
countable.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 65 / 66

Functions Infinite Sets

Not Everything is Computable

There are functions of type N → N that cannot be computed by any
computer program in a given programming language.
Note that:

The set of all computer programs in a given language is countably
infinite.
The set of all functions in N → N is uncountable.

We conclude that there exist functions of type N → N that cannot
be computed by any program in the given language.

Over any finite alphabet, there are languages that cannot be decided
by any computer program.
Again note that:

The set of all computer programs in a given language is countably
infinite.
The set of all languages in P(A∗) is uncountable by Cantor’s Theorem.

We conclude that there exist languages over A that cannot be
decided by any program in the given language.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 66 / 66

	Functions
	Definitions and Examples
	Composition of Functions
	Properties of Functions
	Infinite Sets

