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Construction Techniques Inductively Defined Sets

Subsection 1

Inductively Defined Sets
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Construction Techniques Inductively Defined Sets

Inductive Definitions Informally

Consider the set A = {3, 5, 7, 9, . . .}.

This set can also be described as A = {2k + 3 : k ∈ N}.

Another way to describe A is as follows:

3 ∈ A;
Whenever x ∈ A, then x + 2 ∈ A;
The only way an element gets in A is by the previous two steps.

The three ingredients involved in such an inductive definition of an
inductive set:

1. There is a starting element (3 in this case).
2. There is a construction operation to build new elements from existing

elements (addition by 2 in this case).
3. There is a statement that no other elements are in the set.
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Construction Techniques Inductively Defined Sets

Inductive Definitions Formally

An inductive definition of a set S consists of three steps:

Basis: List some specific elements of S (at least one element must be listed).
Induction: Give one or more rules to construct new elements of S from existing

elements of S .
Closure: State that S consists exactly of the elements obtained by the basis and

induction steps.

The Closure step is usually assumed rather than stated explicitly, but
should not be underestimated!

Example: Consider the two steps

3 ∈ S ;
If x ∈ S , then x + 2 ∈ S .

Without the Closure step, these two steps do not define {3, 5, 9, . . .}
(as intended), since the set N is another set satisfying these
requirements (and there are many others!).
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Constructors of an Inductive Set

The constructors of an inductive set are:

the basis elements;
the rules for constructing new elements.

Example: Consider again the inductive set S = {3, 5, 7, 9, . . .} defined
inductively by:

3 ∈ S ;
x ∈ S implies x + 2 ∈ S ;
Closure.

It has two constructors:

the number 3;
the operation of adding 2 to a number.
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Inductive Definition of the Natural Numbers

The set of natural numbers N = {0, 1, 2, . . .} is an inductive set:

Basis: 0 ∈ N;
Induction: If n ∈ N, then n + 1 ∈ N.

The constructors of N are:

the integer 0;
the operation that adds 1 to an element of N, called the successor

function and written
succ(n) = n+ 1.

Rephrasing, we can say that N is the inductive set defined by:

Basis: 0 ∈ N;
Induction: If n ∈ N, then succ(n) ∈ N.

So N is an inductive set with the two constructors 0 and succ.
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Example

Give an inductive definition of A = {1, 3, 7, 15, 31, . . .}.

The basis case should place 1 in A.

If x ∈ A, then we can construct another element of A with the
expression 2x + 1.

So the constructors of A are:

the number 1;
the operation of multiplying by 2 and adding 1.

An inductive definition of A is:

Basis: 1 ∈ A;
Induction: If x ∈ A, then 2x + 1 ∈ A.
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Example

Write an inductive definition of A = {2, 3, 4, 7, 8, 11, 15, 16, . . .}.

We think of A as the union of the two sets

B = {2, 4, 8, 16, . . .};
C = {3, 7, 11, 15, . . .}.

Both these sets are inductive.
The constructors of B are:

the number 2;
the operation of multiplying by 2.

The constructors of C are:
the number 3;
the operation of adding 4.

We can combine these definitions to give an inductive definition of A:
Basis: 2, 3 ∈ A;

Induction: If x ∈ A and x is odd, then x + 4 ∈ A;
If x ∈ A and x is even, then 2x ∈ A.
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The Set of All Strings Over an Alphabet

Let A be an alphabet.

The set A∗ of all strings over A is defined inductively as follows:

Basis: Λ ∈ A∗;
Induction: If s ∈ A∗ and a ∈ A, then as ∈ A∗.

Here, we used the two constructors:

the empty string Λ;
the operation of concatenation (placing two strings next to each other
in juxtaposition to form a new string).
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Inductively Defined Languages Over {a, b}

Recall that a language over an alphabet A is a subset of A∗.

Give inductive definitions of the following languages over A = {a, b}:

(a) S = {a, ab, abb, abbb, . . .} = {abn : n ∈ N};
(b) S = {Λ, ab, aabb, aaabbb, . . .} = {anbn : n ∈ N};
(c) S = {Λ, ab, abab, ababab, . . .} = {(ab)n : n ∈ N}.

(a) S is defined inductively as follows:

Basis: a ∈ S ;
Induction: If s ∈ S , then sb ∈ S .

(b) S is defined inductively as follows:

Basis: Λ ∈ S ;
Induction: If s ∈ S , then asb ∈ S .

(c) S is defined inductively as follows:

Basis: Λ ∈ S ;
Induction: If s ∈ S , then abs ∈ S .
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Example

Define inductively the following language over A = {a, b}:

S = {a, b, ab, ba, aab, bba, aaab, bbba, . . .}.

Think of S as the union of two simpler sets

A = {a, ba, bba, . . .} and B = {b, ab, aab, . . .}.

The definition of S can be written as follows:

Basis: a, b, ba, ab ∈ S ;
Induction: Let s ∈ S .

If s 6= a and s starts with a, then as ∈ S ;
If s 6= b and s starts with b, then bs ∈ S .
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Construction Techniques Inductively Defined Sets

Inductively Defined Languages Over {0, 1}

Define inductively the language S of strings over A = {0, 1} such that
each string in S contains exactly one occurrence of 0 and that
occurrence is on the right.

Note that this is the language

S = {0, 10, 110, 1110, . . .}.

The inductive definition of S can be written as follows:
Basis: 0 ∈ S ;

Induction: If s ∈ S , then 1s ∈ S .

Give an inductive definition of the set S of strings over A = {0, 1}
with the following property:

No string contains a leading zero except 0 itself.

S should contain strings like 0, 1, 10, 11, 100, 101, 110, 111, . . ..
The inductive definition of S can be written as follows:

Basis: 0, 1 ∈ S ;
Induction: If s ∈ S and s 6= 0, then s0, s1 ∈ S .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 13 / 86



Construction Techniques Inductively Defined Sets

Lists Over A Revisited

Recall that Lists[A] is the set of all lists over A.

Destructors are the operations:

head : Lists[A]− {〈〉} → A returning the head of a list;
tail : Lists[A] → Lists[A] returning the tail of a list.

Constructor is the operation:

cons : A× Lists[A] → Lists[A] that given an element in A and a list over
A constructs a new list with the element as head and the list as tail.

For any nonempty list L, we have

L = cons(head(L), tail(L)).

Example: We have

head(〈x , y , z〉) = x ;
tail(〈x , y , z〉) = 〈y , z〉;
cons(x , 〈y , z〉) = 〈x , y , z〉.
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Inductive Definition of Lists

To write an inductive definition of lists over A we use the following
constructors:

the empty list 〈〉;
the list constructor cons.

Then the set Lists[A] is defined inductively by:

Basis: 〈〉 ∈ Lists[A];
Induction: If x ∈ A and L ∈ Lists[A], then cons(x , L) ∈ Lists[A].
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Construction Techniques Inductively Defined Sets

Infix Notation for cons

The infix form of cons(x , L) is x :: L.

Example: The list 〈a, b, c〉 can be constructed by using cons as
follows:

cons(a, cons(b, cons(c , 〈〉))) = cons(a, cons(b, 〈c〉))
= cons(a, 〈b, c〉)
= 〈a, b, c〉.

Using the infix form, we construct 〈a, b, c〉 as follows:

a :: (b :: (c :: 〈〉)) = a :: (b :: 〈c〉) = a :: 〈b, c〉 = 〈a, b, c〉.

When parentheses are omitted in infix, we associate on the right.

Example: a :: b :: c :: 〈〉 means a :: (b :: (c :: 〈〉)).
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Example

Define inductively the set S of all nonempty lists over the set {0, 1},
where the elements in each list alternate between 0 and 1.

We get an idea about S by listing a few elements:

S = {〈0〉, 〈1〉, 〈1, 0〉, 〈0, 1〉, 〈0, 1, 0〉, 〈1, 0, 1〉, . . .}.

We use the constructors:

the lists 〈0〉, 〈1〉;
the list constructor cons.

An inductive definition for S can be written as follows:

Basis: 〈0〉, 〈1〉 ∈ S ;
Induction: If L ∈ S and head(L) = 0, then cons(1, L) ∈ S .

If L ∈ S and head(L) = 1, then cons(0, L) ∈ S .
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Construction Techniques Inductively Defined Sets

Example

Define inductively the set S of all lists over {a, b} that begin with the
single letter a followed by zero or more occurrences of b.

We can describe S informally by writing a few of its elements:

S = {〈a〉, 〈a, b〉, 〈a, b, b〉, 〈a, b, b, b〉, . . .}.

We make 〈a〉 the basis element of S .

Then we can construct a new list from any list L ∈ S by attaching the
letter b on the left end of the tail of L by using

cons(a, cons(b, tail(L))) ∈ S .

So we have the following inductive definition of S :

Basis: 〈a〉 ∈ S ;
Induction: If L ∈ S , then a :: b :: tail(L) ∈ S .
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Inductive Definition of a Product

To give an inductive definition for a product A× B of two sets A and
B , we may use one of two techniques:

The first can be used if both A and B are inductively defined:

For the basis case, put (a, b) ∈ A× B whenever a is a basis element of
A and b is a basis element of B;
For the inductive part, if (x , y) ∈ A× B and x ′ ∈ A and y ′ ∈ B are
elements constructed from x and y , respectively, then put the elements
(x , y ′), (x ′

, y) in A× B.

The second technique can be used if only one of the sets, say A, is
inductively defined:

For the basis case, put (a, b) ∈ A× B for all basis elements a ∈ A and
all elements b ∈ B;
For the induction case, if (x , y) ∈ A× B and x ′ ∈ A is constructed
from x , then put (x ′

, y) ∈ A× B.

A similar definition of A× B can also be made that uses only the fact
that B is inductively defined.
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Construction Techniques Inductively Defined Sets

Example

Recall the inductive definition of N:

Basis: 0 ∈ N;
Induction: If n ∈ N then succ(n) ∈ N.

Give an inductive definition of the set N×N.

According to the method of the preceding slide, we can define N×N

inductively as follows:

Basis: (0, 0) ∈ N×N;
Induction: If (x , y) ∈ N×N, then (x , succ(y)), (succ(x), y) ∈ N×N.
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Construction Techniques Inductively Defined Sets

Example

Let A = {n ∈ N : n mod 5 = 2} and B = {2n : n ∈ N}.

Give an inductive definition for A× B .

Note that

A = {2, 7, 12, 17, 22, . . .}, B = {1, 2, 4, 8, 16, . . .}.

Now we have the following inductive definitions:
For A:

Basis: 2 ∈ A;
Induction: If x ∈ A, then x + 5 ∈ A.

For B:

Basis: 1 ∈ B;
Induction: If y ∈ B, then 2y ∈ B.

Thus, for A× B , we obtain:

Basis: (2, 1) ∈ A× B;
Induction: If (x , y) ∈ A× B, then (x + 5, y), (x , 2y) ∈ A× B.
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Construction Techniques Recursive Functions and Procedures

Subsection 2

Recursive Functions and Procedures
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Construction Techniques Recursive Functions and Procedures

Recursively Defined Functions and Procedures

A procedure is a subprogram that:

carries out one or more actions;
returns any number of values - including none - through its arguments.

A function or a procedure is said to be recursively defined if it is
defined in terms of itself:

A function f is recursively defined if at least one value f (x) is defined
in terms of another value f (y), where x 6= y .
A procedure P is recursively defined if the actions of P for some
argument x are defined in terms of the actions of P for another
argument y , where x 6= y .
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Construction Techniques Recursive Functions and Procedures

Constructing a Recursively Defined Function/Procedure

Suppose S is an inductively defined set.
We can construct a function f with domain S as follows:

Basis: For each basis element x ∈ S , specify a value for f (x).
Induction: For any inductively defined element x ∈ S , give rules that define f (x)

in terms of previously defined values of f .

We can construct a procedure P to process the elements of S as
follows:

Basis: For each basis element x ∈ S , specify a set of actions for P(x).
Induction: For any inductively defined element x ∈ S , give rules that define the

actions of P(x) in terms of previously defined actions of P.
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Example: Pattern-Matching Definitions

Let f : N → N denote the function that, for each n ∈ N, returns the
sum of the odd numbers from 1 to 2n + 1:

f (n) = 1 + 3 + · · ·+ 2n + 1.

Since f (0) = 1, we have a definition for f applied to the basis element
0 ∈ N.
For the inductive part of the definition, we have:

f (n + 1) = 1 + 3 + · · ·+ (2n + 1) + [2(n + 1) + 1]
= 1 + 3 + · · ·+ (2n + 1) + (2n + 3)
= f (n) + 2n+ 3.

This gives us the necessary ingredients for a recursive definition of f :
Basis: f (0) = 1;

Induction: f (n + 1) = f (n) + 2n + 3.

A definition like this is often called a pattern-matching definition

because the evaluation of an expression f (x) depends on f (x)
matching either f (0) or f (n + 1).
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Example: Conditional Definitions

Consider again f : N → N defined by

f (n) = 1 + 3 + · · ·+ 2n + 1.

An alternative form for the definition of f is the conditional form.
One conditional form consists of equations with conditionals:

Basis: f (0) = 1;
Induction: f (n) = f (n − 1) + 2n + 1, if n > 0.

A second conditional form is the familiar if-then-else equation as
follows:

f (n) = if n = 0 then 1 else f (n − 1) + 2n + 1.
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Evaluation of Recursive Functions

A recursively defined function can be easily evaluated by a technique
called unfolding the definition.

Example: Consider the function f defined recursively by

Basis: f (0) = 1;
Induction: f (n + 1) = f (n) + 2n + 3.

Unfold the definition to find the value of f (3).

f (3) = f (2) + 2 · 2 + 3
= f (1) + 2 · 1 + 3 + 2 · 2 + 3
= f (0) + 2 · 0 + 3 + 2 · 1 + 3 + 2 · 2 + 3
= 1 + 2 · 0 + 3 + 2 · 1 + 3 + 2 · 2 + 3
= 1 + 3 + 5 + 7
= 16.
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Example: The Rabbit Problem and Fibonacci Numbers

Start with a single pair of rabbits.

Assume that every month each pair produces a new pair that
becomes productive after one month.

(a) Find the number of new pairs produced each month for the first nine
months.

Month 0 1 2 3 4 5 6 · · ·

Old 1 1 2 3 5 8 13 · · ·

Young 0 1 1 2 3 5 8 · · ·

(b) Let fib(n), the n-th Fibonacci number, be the number of new
rabbits produced after month n.

Give a recursive definition of n.

Basis: fib(0) = 0, fib(1) = 1;
Induction: fib(n + 2) = fib(n + 1) + fib(n).
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Example: Complements of Strings

Let A = {a, b} be a 2-symbol alphabet.

Given a string s over A, its complement is the string formed by
changing every letter in s.

Example: The complement of bbab is aaba.

Find a recursive definition of the function f : A∗ → A∗, defined by

f (s) = the complement of s.

First, an arbitrary string over A is either Λ or has the form as or bs
for some string s.

So, we have the following recursive definition:

Basis: f (Λ) = Λ;
Induction: f (as) = bf (s);

f (bs) = af (s).
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Example: Prefixes of Strings

A string p is a prefix of the string x if x can be written in the form
x = ps for some string s.

Define the function pfix(x , y) giving the longest common prefix of two
strings x , y over {a, b}.

Example: The longest common prefix of the two strings aabbab and
aababb is

pfix(aabbab, aababb) = aab.
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Example: Pattern-Matching Definition of pfix

An arbitrary string over {a, b} matches one of the following patterns:

the empty string Λ;
the form as, for some string s;
the form bs for some string s.

A pattern-matching inductive definition of f is as follows:

Basis: pfix(Λ, x) = Λ;
pfix(x ,Λ) = Λ;

Induction: pfix(as, bt) = Λ;
pfix(bs, at) = Λ;
pfix(as, at) = apfix(s, t);
pfix(bs, bt) = bpfix(s, t).
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Example: Conditional Definition of pfix

The set of pairs of strings S = {a, b}∗ × {a, b}∗ over {a, b} is defined
by induction as follows:

Basis: (Λ,Λ) ∈ S ;
Induction: If (x , y) ∈ S , then (sx , y), (x , sy) ∈ S , for any s ∈ {a, b};

To write a conditional form of the definition of pfix we assume that
we have available functions head and tail for strings with the obvious
functionalities.

A conditional form of an inductive definition of pfix is as follows:

Basis: pfix(Λ,Λ) = Λ;
Induction: pfix(sx , y) = if head(y) = s then spfix(x , tail(y)) else Λ;

pfix(x , sy) = if head(x) = s then spfix(tail(x), y) else Λ;
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Natural Numbers to Binary Strings

The division algorithm gives the following representation of a natural
number x :

x = 2 · floor(x/2) + x mod 2.

Give a recursive definition of a function bin converting a decimal
representation of x to a binary representation of x .

This formula above can be used to create a binary string
representation of x :

x mod 2 is the rightmost bit of the representation;
The next bit is found by computing floor(x/2) mod 2.
The next bit is floor(floor(x/2)/2) mod 2, and so on.

The recursive definition is as follows:

Basis: bin(0) = 0;
bin(1) = 1;

Induction: bin(x) = cat(bin(floor(x/2)), x mod 2), if x > 1.
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Natural Numbers to Binary Strings (Cont’d)

We gave the recursive definition:

Basis: bin(0) = 0; bin(1) = 1;
Induction: bin(x) = cat(bin(floor(x/2)), x mod 2), if x > 1.

Unfold the definition to compute bin(9).

bin(9) = cat(bin(4), 1)
= cat(cat(bin(2), 0), 1)
= cat(cat(cat(bin(1), 0), 0), 1)
= cat(cat(cat(1, 0), 0), 1)
= cat(cat(10, 0), 1)
= cat(100, 1)
= 1001.
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Example: Computing a List

Give a recursive definition of the function f : N → Lists[N] that
computes the list

〈n, n − 1, . . . , 1, 0〉.

We have
f (n) = 〈n, n − 1, . . . , 1, 0〉

= cons(n, 〈n − 1, . . . , 1, 0〉)
= cons(n, f (n − 1)).

Therefore, the inductive definition is as follows:

Basis: f (0) = 〈0〉;
Induction: f (n) = cons(n, f (n − 1)), for n 6= 0.
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Length of a List

Let S be a set.

Define length : Lists[S ] → N as the function that returns the number
of elements in a list.

Give a recursive definition of length.

Note that:

the length of an empty list is zero;
the length of a nonempty list is one plus the length of its tail.

A recursive definition is as follows:

Basis: length(〈〉) = 0;
Induction: length(L) = 1 + length(tail(L)), if L 6= 〈〉.

Observe that the induction step can also be written as:

Induction: length(cons(x , t)) = 1 + length(t).
Induction: length(x :: t) = 1 + length(t).
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The Distribute Function

Write a recursive definition for the distribute function, denoted
dist : A× Lists[A] → Lists[A× A] defined by

dist(a, 〈a1, a2, . . . , an〉) = 〈(a, a1), (a, a2), . . . , (a, an)〉.

We use induction on the second argument (a list) to define dist.

Note the following:

dist(a, 〈a1, a2, . . . , an〉)
= 〈(a, a1), (a, a2), . . . , (a, an)〉
= (a, a1) :: 〈(a, a2), . . . , (a, an)〉
= (a, a1) :: dist(a, 〈a2, . . . , an〉).

So we have the following definition:

Basis: dist(a, 〈〉) = 〈〉;
Induction: dist(a, L) = (a, head(L)) :: dist(a, tail(L)), if L 6= 〈〉.
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The Pairs Function

The function pairs is defined by

pairs(〈a1, a2, . . . , an〉, 〈b1, b2, . . . , bn〉) = 〈(a1, b1), (a2, b2), . . . , (an, bn)〉.

Give a recursive definition of pairs.

The key is to compute:

pairs(〈a1, a2, . . . , an〉, 〈b1, b2, . . . , bn〉)
= 〈(a1, b1), (a2, b2), . . . , (an, bn)〉
= (a1, b1) :: 〈(a2, b2), . . . , (an, bn)〉
= (a1, b1) :: pairs(〈〈a2, . . . , an〉, 〈b2, . . . , bn〉).

The pairs function can be defined recursively by:

Basis: pairs(〈〉, 〈〉) = 〈〉;
Induction: pairs(L, L′) = (head(L), head(L′)) :: pairs(tail(L), tail(L′)).
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Appending an Element on the Right

Write a recursive definition of the function
consR : Lists[A]× A → Lists[A], defined by

consR(〈a1, a2, . . . , an〉, a) = 〈a1, a2, . . . , an, a〉.

We compute:

consR(〈a1, a2, . . . , an〉, a) = 〈a1, a2, . . . , an, a〉
= a1 :: 〈a2, . . . , an, a〉
= a1 :: consR(〈a2, . . . , an〉, a).

So the inductive definition is as follows:

Basis: consR(〈〉, a) = 〈a〉;
Induction: consR(L, a) = head(L) :: consR(tail(L), a).
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Concatenation of Lists

Let cat : Lists[A]× Lists[A] → Lists[A] denote the concatenation
function, defined by

cat(〈a1, . . . , an〉, 〈b1, . . . , bm〉) = 〈a1, . . . , an, b1, . . . , bm〉.

Write a recursive definition of cat.

Note that
cat(〈a1, . . . , an〉, 〈b1, . . . , bm〉)
= 〈a1, . . . , an, b1, . . . , bm〉
= a1 :: 〈a2, . . . , an, b1, . . . , bm〉
= a1 :: cat(〈a2, . . . , an〉, 〈b1, . . . , bm〉).

So, we have the following recursive definition:

Basis: cat(〈〉, L′) = L′;
Induction: cat(L, L′) = head(L) :: cat(tail(L), L′).
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Inserting a Number in a Sorted List

Give a recursive procedure insert(x ,S) for inserting a new number
into a sorted list of numbers.

Assume that whenever the number to be inserted is already in the
list, then a new redundant copy will be placed to the left of the one
already there.

We work by induction on the length of the second argument.

The empty list is sorted, and to insert x into 〈〉, we simply create the
singleton list 〈x〉.
Otherwise if the sorted list is not empty, then:

Either x belongs on the left of the list or
x should be inserted somewhere else in the list.

The inductive definition is as follows:

Basis: insert(x , 〈〉) = 〈x〉;
Induction: If L 6= 〈〉, insert(x , L) =

if x ≤ head(L) then x :: L else head(L) :: insert(x , tail(L)).
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The Function map

Let f : A → B be a function.

Give a recursive definition of the function
map(f ) : Lists[A] → Lists[B ], defined by

map(f )(〈a1, a2, . . . , an〉) = 〈f (a1), f (a2), . . . , f (an)〉.

Note that:

map(f )(〈a1, a2, . . . , an〉) = 〈f (a1), f (a2), . . . , f (an)〉
= cons(f (a1), 〈f (a2), . . . , f (an)〉)
= cons(f (a1),map(f )(〈a2, . . . , an〉)).

So we have the following inductive definition:

Basis: map(f )(〈〉) = 〈〉;
Induction: map(f )(L) = cons(f (head(L)),map(f )(tail(L))), if L 6= 〈〉.
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Streams (Infinite Sequences)

A stream is an infinite list.

We define the constructor cons : A× Stream[A] → Stream[A], with

cons(a0, 〈a1, a2, . . .〉) = 〈a0, a1, a2, . . .〉.

We also define the destructors:
head : Stream[A]− {〈〉} → A, with

head(〈a0, a1, . . .〉) = a0;

tail : Stream[A] → Stream[A], with

tail(〈a0, a1, a2, . . .〉) = 〈a1, a2, . . .〉.

Note the property that, for any stream s,

cons(head(s), tail(s)) = s.
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Example

Example: Consider the function ints : Z → Stream[Z], defined by

ints(x) = 〈x , x + 1, x + 2, . . .〉.

We have the following:

ints(x) = x :: ints(x + 1);
head(ints(x)) = x ;
tail(ints(x)) = ints(x + 1).
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Pseudo-Recursive Definitions

The following can be taken as the definition of ints:

ints(x) = x :: ints(x + 1).

Strictly speaking, it is not recursive since it does not have a basis.

It is still “recursive” in the sense that it is defined in terms of itself.

If we executed the definition, an infinite loop would construct the
stream, e.g.:

ints(0) = 0 :: ints(1)
= 0 :: 1 :: ints(2)
= 0 :: 1 :: 2 :: ints(3)
= · · ·
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Lazy Evaluation

In practice, when a stream like ints(x) is used as an argument to
another function, it is evaluated only when some of its values are
needed, a technique called lazy evaluation.

Example: Use lazy evaluation to compute

head(tail(ints(3))).

head(tail(ints(3))) = head(tail(3 :: ints(4)))
= head(ints(4))
= head(4 :: ints(5))
= 4.
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Summing

(a) Build a function sum : N× Stream[Z] → Z that takes a natural
number n and a stream s of integers and returns the sum of the first
n elements of s.

We can make the following general definition:

sum(n, s) = if n = 0 then 0 else head(s) + sum(n − 1, tail(s)).

(b) Unfold the definition to evaluate sum(3, ints(4)).

sum(3, ints(4)) = 4 + sum(2, ints(5))
= 4 + 5 + sum(1, ints(6))
= 4 + 5 + 6 + sum(0, ints(7))
= 4 + 5 + 6 + 0
= 15.
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Skipping

(a) Construct the function skipTwo : Z → Stream[Z] defined by:

skipTwo(x) = 〈x , x + 2, x + 4, . . .〉.

The definition is as follows:

skipTwo(x) = x :: skipTwo(x + 2).

(b) Unfold the definition to compute skipTwo(5).

skipTwo(5) = 5 :: skipTwo(7)
= 5 :: 7 :: skipTwo(9)
= 5 :: 7 :: 9 :: skipTwo(11)
= 〈5, 7, 9, 11, . . .〉.
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More General Skipping

(a) Construct a function named skip : Z×N → Stream[Z], defined by

skip(x , k) = 〈x , x + k , x + 2k , . . .〉.

We may define skip by

skip(x , k) = x :: skip(x + k , k).

(b) Evaluate the expression skip(−5, 3).

skip(−5, 3) = − 5 :: skip(−2, 3)
= − 5 :: −2 :: skip(1, 3)
= − 5 :: −2 :: 1 :: skip(4, 3)
= 〈−5,−2, 1, 4, . . .〉.
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Subsection 3

Grammars
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Grammars

A grammar consists of four parts:

1. An alphabet N of grammar symbols called nonterminals.
2. An alphabet T of symbols called terminals.

The terminals are distinct from the nonterminals.
3. A specific nonterminal S , called the start symbol.
4. A finite set of grammar rules or productions of the form α → β,

where α and β are strings over the alphabet N ∪ T with the restriction
that α is not the empty string.

There is at least one production with only S on its left side.
Each nonterminal must appear on the left side of some production.

We will only deal with grammar rules that have a single nonterminal
on the left side.

Under this hypothesis, all restrictions concerning productions can be
summarized by saying that

Each nonterminal appears as the left side of some production.
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Derivation Steps

Consider the grammar G = 〈N,T ,S ,P〉, where:

1. N = {S} is the set of nonterminals;
2. T = {Λ, a, b} is the set of terminals;
3. S is the start symbol;
4. P = {S → Λ, S → aS , S → bS} is the set of productions.

A rule α → β is read “replace α by β”, “α produces β”, “α
rewrites to β” or “α reduces to β”.

We show that this grammar “derives” the string aabab:

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aabaS

⇒ aababS ⇒ aababΛ = aabab.

Each step ⇒ is called a derivation step and is read “derives in one

step”.

A derivation is a sequence of derivation steps.
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The Tree of a Derivation

Consider again the derivation

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aabaS ⇒ aababS ⇒ aababΛ = aabab.

It has the following derivation tree:

Its root is the start symbol;

Each step in the derivation
corresponds to attaching a new
subtree to the existing derivation
tree.
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Notational and Other Conventions

When two or more productions have the same left side, we can
simplify the notation by writing one production with alternate right
sides separated by the vertical line |.

Example: The three productions S → Λ, S → aS , S → bS can be
written in the following shorthand form: S → Λ|aS |bS .

For a particular grammar, we may only write down the productions of
the grammar, where the nonterminals are capital letters and the first
production listed contains the start symbol on its left side.

Example: Suppose given the grammar

S → AB

A → Λ|aA
B → Λ|bB

From this we can deduce that N = {S ,A,B}, T = {Λ, a, b}, S is the
start symbol and P = {S → AB ,A → Λ,A → aA,B → Λ,B → bB}.
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Derivations

In discussing derivations we use the symbols:

⇒ derives in one step

⇒+ derives in one or more steps

⇒∗ derives in zero or more steps

Example: Consider the grammar:

S → AB , A → Λ|aA, B → Λ|bB .

S ⇒+ aab means that there exists a derivation of aab that takes one
or more steps. In fact we have

S ⇒ AB ⇒ aAB ⇒ aaAB ⇒ aaB ⇒ aabB ⇒ aab.
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Leftmost and Rightmost Derivations

When a grammar contains more than one nonterminal, it may be
possible to find several different derivations of the same string.

A derivation is called a leftmost derivation if at each step the
leftmost nonterminal is reduced by some production.

A derivation is called a rightmost derivation if at each step the
rightmost nonterminal is reduced by some production.

Example: Consider again the grammar:

S → AB , A → Λ|aA, B → Λ|bB .

The following are the leftmost and rightmost derivations, respectively
of aab:

S ⇒ AB ⇒ aAB ⇒ aaAB ⇒ aaB ⇒ aabB ⇒ aab;
S ⇒ AB ⇒ AbB ⇒ Ab ⇒ aAb ⇒ aaAb ⇒ aab.
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The Language of a Grammar

If G is a grammar, then the language of G , denoted L(G ), is the set
of terminal strings derived from the start symbol of G .

More formally, if
G = 〈N,T ,S ,P〉

is a grammar, then the language of G is the set

L(G ) = {s ∈ T ∗ : S ⇒+ s}.
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Grammars for Finite Languages

Suppose we want to produce a grammar for a language L.

If the language L is finite, say L = {w1,w2, . . . ,wn}, then a grammar
G can consist of the rules:

S → w1|w2| · · · |wn.

Example: Consider the language

L = {a, ab, aab}.

A grammar G , such that L(G ) = L is:

S → a|ab|aab.
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Grammars for Infinite Languages

If the language is infinite, then some production or sequence of
productions must be used repeatedly to construct the derivations.

Example:

The infinite language
L = {anb : n ≥ 0}

can be described by the grammar G

S → b|aS .

To derive the string anb:

use the production S → aS repeatedly n times;
stop the derivation by using the production S → b.

For example, we derive the string a5b:

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaaS ⇒ aaaaaS ⇒ aaaaab.
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Recursive Grammars

A production is called recursive if its left side occurs on its right side.

Example: The production A → aA is recursive.

A production A → α is indirectly recursive if A derives a string that
contains A.

Example: Suppose we have the following grammar:

S → b|aA
A → c |bS

The productions S → aA and A → bS are both indirectly recursive
because of the following derivations:

S ⇒ aA ⇒ abS , A ⇒ bS ⇒ baA.

A grammar is recursive if it contains either a recursive production or
an indirectly recursive production.

A grammar for an infinite language must be recursive.
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Example

Consider the grammar G :

S → Λ|aB
B → b|bB .

Find the language L(G ).

First, look at derivations that do not contain recursive productions:

S ⇒ Λ, S ⇒ aB ⇒ ab.

So, we have Λ, ab ∈ L(G ).

Every other derivation must use the recursive production B → bB one
or more times, each time adding a new letter b to the derived string:

S ⇒ aB ⇒ abB ⇒ abb;
S ⇒ aB ⇒ abB ⇒ abbB ⇒ abbb.

So if B → bB is used n times (n ≥ 1), then we can conclude that
abn ∈ L(G ). Therefore, L(G ) = {Λ} ∪ {abn : n ≥ 1}.
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Some Simple Languages and Their Grammars

We use the following simple languages and associated grammars as
building blocks together with methods to combine grammars to
obtain grammars for more complex languages.

Language Grammar

{a, ab, abb, abbb} S → a|ab|abb|abbb
{Λ, a, aa, . . . , an, . . .} S → Λ|aS
{Λ, ab, aabb, . . . , anbn, . . .} S → Λ|aSb
{Λ, ab, abab, . . . , (ab)n, . . .} S → Λ|abS
{b, bbb, . . . , b2n+1, . . .} S → b|bbS
{b, abc , aabcc , . . . , anbcn, . . .} S → b|aSc
{ac , abc , abbc , . . . , abnc , . . .} S → aBc

B → Λ|bB
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Combining Grammars

Given two grammars, by renaming nonterminal symbols we can
assume that they have disjoint sets of nonterminals.

Suppose M and N are languages whose grammars have disjoint sets
of nonterminals.
Suppose also that the start symbols for the grammars of M and N are
A and B , respectively.

Union Rule: The language M ∪ N starts with the two productions

S → A|B

Product Rule: The language M · N starts with the production

S → AB.

Closure Rule: The language M∗ starts with the production

S → AS |Λ.
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Example: Union Rule

Write a grammar for the language

L = {Λ, a, b, aa, bb, . . . , an, bn, . . .}.

L is the union of the two languages

M = {an : n ∈ N} and N = {bn : n ∈ N}.

Recall that these have grammars:

A → Λ|aA and B → Λ|bB .

Thus, we can write a grammar for L as follows:

S → A|B union rule
A → Λ|aA grammar for M
B → Λ|bB grammar for N
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Example: Product Rule

Write a grammar for the language

L = {ambn : m, n ∈ N}.

L is the product of the two languages

M = {am : m ∈ N} and N = {bn : n ∈ N}.

These have grammars:

A → Λ|aA and B → Λ|bB .

Thus we can write a grammar for L as follows:

S → AB product rule
A → Λ|aA grammar for M
B → Λ|bB grammar for N

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 65 / 86



Construction Techniques Grammars

Example: Closure Rule

Construct the language L of all possible strings made up from zero or
more occurrences of aa or bb.

The language is
L = {aa, bb}∗.

The grammar for {aa, bb} is

A → aa|bb.

So we can write a grammar for L as follows:

S → AS |Λ closure rule
A → aa|bb grammar for {aa, bb}

We can simplify this grammar as follows:

S → aaS |bbS |Λ.
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Example: Decimal Numerals

Find a grammar for the language of decimal numerals.

A decimal numeral is either a digit or a digit followed by a decimal
numeral.

The following grammar rules (inspired by the union rule) reflect this
idea:

S → D|DS
D → 0|1|2|3|4|5|6|7|8|9.

We can say that:

S is replaced by either D or DS ;
D can be replaced by any decimal digit.
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Example: Even Decimal Numerals

Find a grammar for the language of decimal numerals for the even
natural numbers.

Each numeral must have an even digit on its right side.

So an even decimal numeral is an even digit or it can be built as a
decimal digit followed by an even decimal numeral.

The following grammar will do the job:

S → E |DS
E → 0|2|4|6|8
D → 0|1|2|3|4|5|6|7|8|9.
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Example: Palindromes

A palindrome is a string that is the same when written in reverse
order.

Write a grammar for the set of all palindromes over the alphabet
A = {a, b, c}.

Let P be the start symbol.

Then the language of palindromes over the alphabet A has the
grammar

P → aPa|bPb|cPc |a|b|c |Λ.

Use this grammar to derive the palindrome abcba.

P ⇒ aPa ⇒ abPba ⇒ abcba.
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Meaning and Ambiguity

Let G be a grammar and L(G ) its language.

The meaning of a string w ∈ L(G ) is the parse tree produced by a
derivation of w in G .

A grammar G is called ambiguous if its language L(G ) contains a
string that has two different parse trees, i.e., two different meanings.

This is equivalent to saying that some string has two distinct leftmost
or two distinct rightmost derivations in G .
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Example of an Ambiguous Grammar

Suppose we define a set of arithmetic expressions by the grammar

E → a|b|E − E .

This grammar is ambiguous because it has a string, namely,
a − b − a, that has two distinct leftmost derivations:

E ⇒ E − E ⇒ a − E ⇒ a − E − E ⇒ a − b − E ⇒ a − b − a

E ⇒ E − E ⇒ E − E − E ⇒ a− E − E ⇒ a − b − E ⇒ a − b − a
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Disambiguation

To make sure there is only one parse tree for every string in the
language, we can try to find a different grammar for the same set of
strings.

Example: Suppose we want a − b − a to mean (a − b)− a.

To give the first minus sign higher precedence than the second, we
introduce a new nonterminal:

E → E − T |T
T → a|b.

Notice that T can be replaced in a derivation
only by either a or b.
Therefore every derivation of a − b − a pro-
duces the unique parse tree:
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Subsection 4

Inductive Proofs
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Theoretical Basis for Mathematical Induction

Theoretical Basis of Mathematical Induction

Let m ∈ Z and W = {n ∈ Z : n ≥ m}.
Let S be a nonempty subset of W such that:

1. m ∈ S ;
2. Whenever k ∈ S , then k + 1 ∈ S .

Then S = W .

To prove S = W we use contradiction.

Suppose S 6= W . Then W − S has a least element x because every
nonempty subset of W has a least element. Condition 1 tells us that
m ∈ S . It follows that x > m. Thus x − 1 ≥ m. It follows that
x − 1 ∈ S . Apply the second condition to obtain x = (x − 1) + 1 ∈ S .
This is a contradiction, since we cannot have both x ∈ S and
x ∈ W − S at the same time. Therefore, S = W .
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The Principle of Mathematical Induction

The Principle of Mathematical Induction

Let m ∈ Z.
To prove that a property P(n) is true for all integers n ≥ m, perform
the following two steps:

1. Prove that P(m) is true;
2. Assume that P(k) is true for an arbitrary k ≥ m.

Prove that P(k + 1) is true.

Let W = {n : n ≥ m}, and let S = {n ∈ W : P(n) holds}.

Assume that we have performed the two steps of the principle.

Then S satisfies the hypothesis of the theoretical basis.

Therefore S = W .

In other words, P(n) is true for all n ≥ m.
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Example: A Closed Form

Prove that the following property P(n) holds, for all n ≥ 1:

1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

We use the Principle of Mathematical Induction:
1. We show P(1) holds:

1 =
1(1 + 1)

2
.

2. Assume that P(k) holds for some k ≥ 1.
We prove that P(k + 1) holds.

1 + 2 + · · ·+ k + (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)
P(k)
= k(k+1)

2 + (k + 1)
= (k + 1)[ k2 + 1]
= (k + 1) k+2

2

= (k+1)((k+1)+1)
2 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 76 / 86



Construction Techniques Inductive Proofs

Example: Correctness of a Summation Program

Show that the following if-then-else program computes the sum
1 + 2 + · · ·+ n for all n ≥ 0:

f (n) = if n = 0 then 0 else f (n − 1) + n.

For each n ∈ N, let P(n) be the property that f (n) = 1+ 2 + · · ·+ n.

We use the Principle of Mathematical Induction to show that P(n)
holds for all n.
1. f (0) = 0 is correct.
2. Assume that P(k) is true for some k ∈ N.

We must prove P(k + 1).

f (k + 1) = f (k + 1− 1) + (k + 1) (definition of f )
= f (k) + (k + 1)
= (1 + 2 + · · ·+ k) + (k + 1) (P(k))
= 1 + 2 + · · ·+ (k + 1).
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Example: Arithmetic Progressions

An arithmetic progression with first term a and difference d is the
sequence defined by

a, a + d , a + 2d , . . . , an = a + (n − 1)d , . . .

Prove that a1 + a2 + · · ·+ an = n(a1+an)
2 .

We show that, for all n ≥ 1, a1 + a2 + · · ·+ an = n(2a+(n−1)d)
2 .

1. For n = 1, a1 =
1(2a+0·d)

2 .

2. Suppose that a1 + · · ·+ ak = k(2a+(k−1)d)
2 .

Now we have

a1 + · · ·+ ak + ak+1 = (a1 + · · ·+ ak) + ak+1

= k(2a+(k−1)d)
2 + a+ kd

= k(2a+kd−d)+2a+2kd
2

= k(2a+kd)−kd+2a+2kd
2

= k(2a+kd)+2a+kd

2

= (k+1)(2a+kd)
2 .
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Example: Geometric Progressions

A geometric progression with first term a and ratio r is the
sequence defined by

a, ar , ar2, . . . , an = arn−1, . . .

Prove that, for all n ≥ 0,

a + ar + ar2 + · · · + arn =
a(rn+1 − 1)

r − 1
.

We use the Principle of Mathematical Induction:

1. If n = 0, a = a(r−1)
r−1 .

2. Assume that, for some k ≥ 0, a + ar + ar2 + · · ·+ ark = a(rk+1
−1)

r−1 .

Then, a + ar + ar2 + · · ·+ ark + ark+1

= a(rk+1
−1)

r−1 + ark+1 = a(rk+1
−1)+(r−1)ark+1

r−1

= ar
k+1

−a+ar
k+2

−ar
k+1

r−1 = a(r (k+1)+1
−1)

r−1 .
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Principle of Generalized Induction

The Principle of Generalized Induction

Let m ∈ Z.
To prove that P(n) is true for all integers n ≥ m, perform the following
two steps:

1. Prove that P(m) is true;
2. Assume that n is an arbitrary integer n > m, and assume that P(k) is

true for all k , m ≤ k < n.
Prove that P(n) is true.
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The Fundamental Theorem of Arithmetic

Every natural number n ≥ 2 is a product of primes.

For n ≥ 2, let P(n) be the statement “n is a product of prime
numbers”.

We need to show that P(n) is true for all n ≥ 2.

1. Since 2 is prime, it follows that P(2) is true.
2. Assume that n > 2 and P(k) is true for 2 ≤ k < n.

We must show that P(n) is true.
If n is prime, then P(n) is true.
If n is not prime, then n = xy , where 2 ≤ x < n and 2 ≤ y < n. By
our assumption, P(x) and P(y) are both true, i.e., x and y are
products of primes. But, then n = xy is also a product of primes.
So P(n) is true.

By the Principle of Generalized Induction, P(n) is true for all n ≥ 2.
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Correctness of a Grammar

Show that the grammar G

S → a|Sb

generates the language L = {abn : n ∈ N}.

We first show L ⊆ L(G ).
For each n ∈ N, let P(n) be the statement “There is a derivation of
abn in G”.
1. If n = 0, then the production S → a gives a derivation of a = ab0.
2. Assume that P(k) is true for some k ≥ 0.

We show that P(k + 1) is true. Since P(k) is true, there is a derivation
S ⇒+ abk . The last step of the derivation must use the production
S → a:

S ⇒∗ Sbk ⇒ abk .

Replacing this step with two steps, we get

S ⇒∗ Sbk ⇒ Sbbk ⇒ abk+1.

This gives a derivation S ⇒+ abk+1. Therefore, P(k + 1) is true.
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Correctness of a Grammar (Converse)

Next, we show L(G ) ⊆ L.

For each k ∈ N− {0}, let P(k) be the statement “Any derivation of
length n (that derives a terminal string) derives a string in L”.

1. For k = 1, there is only one derivation of length 1 that uses the
production S → a, and a = ab0 ∈ L.

2. Assume that P(k) is true for some k ≥ 1.
We show that P(k + 1) is true. Any derivation of length k + 1 must
start with the production S → Sb. The remaining k steps of the
derivation take the form Sb ⇒+ xb, where S ⇒+ x is a derivation of
length k :

S ⇒ Sb ⇒+ xb, with S ⇒+ x .

Since P(k) is true, it follows that x ∈ L. Therefore, xb ∈ L. In other
words, P(k + 1) is true.
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Inducting on a Single Variable

Prove that the following function computes the number y x+1 for any
natural numbers x and y :

f (x , y) = if x = 0 then y else f (x − 1, y)y .

In other words, show that f (x , y) = y x+1, for all (x , y) ∈ N×N.

We use induction on the variable x :

1. The definition of f gives f (0, y) = y = y0+1.
2. Assume that x > 0 and f (n, y) = yn+1 for n < x .

We must show f (x , y) = y x+1.
The definition of f and the induction assumption give the following:

f (x , y) = f (x − 1, y)y (definition of f )
= y x−1+1y (hypothesis)
= y x+1.
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Proofs About Inductively Defined Sets

Let S be the set defined inductively by:

Basis: 1 ∈ S ;
Induction: If x ∈ S , then x + 2 ∈ S .

Prove that S = {2k + 1 : k ∈ N}.

Let T = {2k + 1 : k ∈ N}.

We want to prove S = T .

Recall this entails showing S ⊆ T and T ⊆ S .

S ⊆ T : This part requires showing that T satisfies the basis and the induction
steps in the definition of S , since, by the closure step, S is the smallest
set satisfying these conditions.

T ⊆ S : This part is usually done by induction.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 85 / 86



Construction Techniques Inductive Proofs

Proofs About Inductively Defined Sets (Cont’d)

We show S ⊆ {2k + 1 : k ∈ N}.

Clearly, 1 ∈ {2k + 1 : k ∈ N}.
Suppose that x ∈ {2k + 1 : k ∈ N}.
Then there exists n ∈ N such that x = 2n + 1.
Therefore x + 2 = 2n + 1 + 2 = 2(n+ 1) + 1 ∈ {2k + 1 : k ∈ N}.

Since T satisfies the basis and induction steps defining S , we have, by
closure, that S ⊆ T .

Now we show {2k + 1 : k ∈ N} ⊆ S .

We prove 2k + 1 ∈ S by induction on k ∈ N.

1. For k = 0, 1 ∈ S by the basis step.
2. Suppose 2k + 1 ∈ S .

We must show that 2(k + 1) + 1 ∈ S .
We have 2(k + 1) + 1 = (2k + 1) + 2 ∈ S , by the hypothesis and the
induction step.
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