
Discrete Structures for Computer Science

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU CSci 341

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 1 / 145

Outline

1 Analysis Techniques
Analysis of Algorithms
Summations and Closed Forms
Permutations and Combinations
Discrete Probability
Recurrences
Rates of Growth

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 2 / 145

Analysis Techniques Analysis of Algorithms

Subsection 1

Analysis of Algorithms

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 3 / 145

Analysis Techniques Analysis of Algorithms

The Optimal Algorithm Problem

The Optimal Algorithm Problem

Suppose algorithm A solves problem P .
Is A the best solution to P?

For us best will mean taking the least time.

Time will be measured by the number of operations of a certain type
performed by the algorithm.

For a numerical problem we may count, e.g., additions and
multiplications.
For a sorting problem we may count, e.g., comparisons.

Since the number of operations depends on the size of the input, we
also have to “standardize” measurements with regard to the size of
the input.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 4 / 145

Analysis Techniques Analysis of Algorithms

Worst-Case Complexity

An input of size n is a worst case input if, when compared to all
other inputs of size n, it causes A to execute the largest number of
operations.

Consider an input I for an algorithm A.

size(I) denotes its size;
time(I) denotes the number of operations executed by A on I .

The worst case function for A is defined by

WA(n) = max {time(I) : I is an input and size(I) = n}.

If A and B are algorithms that solve P and if WA(n) ≤ WB(n) for all
n > 0, then we know algorithm A has worst case performance that is
better than or equal to that of algorithm B .

An algorithm A is optimal in the worst case for problem P if, for
any possible algorithm B , WA(n) ≤ WB(n) for all n > 0.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 5 / 145

Analysis Techniques Analysis of Algorithms

Finding Optimal Algorithms

Find an algorithm that is optimal in the worst case for a problem P
involves, in general three steps:

1. (Find an algorithm) Find or design an algorithm A to solve P .
Then do an analysis of A to find the worst case function WA.

2. (Find a lower bound) Find a function F such that F (n) ≤ WB(n) for
all n > 0 and for all algorithms B that solve P .

3. Compare F and WA.
If F = WA, then A is optimal in the worst case.

If we discover that F 6= WA (i.e., F (n) < WA(n) for some n) there
are two possible courses of action to consider:

Try to find a better algorithm than A, i.e., an algorithm C such that
WC (n) < WA(n) for all n > 0.
Try to find a “better” lower bound than F , i.e., a new function G , such
that F (n) < G(n) ≤ WB(n) for all n > 0 and for all algorithms B that
solve P .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 6 / 145

Analysis Techniques Analysis of Algorithms

Example: Finding the Minimum in a List

We look at an example of an optimal algorithm to find the minimum
number in an unsorted list of n numbers.

We count the number of comparison operations that an algorithm
makes between elements of the list.

To find the minimum number in a list of n numbers, the minimum
number must be compared with the other n − 1 numbers.

So n − 1 is a lower bound on the number of comparisons needed to
find the minimum number in a list of n numbers.

If we represent the list as an array a indexed from 1 to n, then the
following algorithm is optimal because the operation ≤ is executed
exactly n − 1 times.

m := a[1];
for i := 2 to n

m := if m ≤ a[i] then m else a[i]

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 7 / 145

Analysis Techniques Analysis of Algorithms

Example: Simple Sort

We construct a simple algorithm to sort an array a of numbers
indexed from 1 to n as follows:

Find the smallest element in a, and exchange it with the first element.
Then find the smallest element in positions 2 through n, and exchange
it with the element in position 2.
Continue in this manner to obtain a sorted array.

We use a function min and a procedure exchange:
min(a, i , n) is the index of the minimum number among the elements
a[i], a[i + 1], . . ., a[n].
We can easily modify the algorithm in the previous example to
accomplish this task with n − i comparisons.
exchange(a[i], a[j]) represents the usual operation of swapping elements
and does not use any comparisons.

We can write the sorting algorithm as follows:
for i := 1 to n − 1
j := min(a, i , n);
exchange(a[i], a[j])

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 8 / 145

Analysis Techniques Analysis of Algorithms

Example: Simple Sort (Cont’d)

We compute the number of comparison operations in simple sort.

The algorithm for min(a, i , n) makes n − i comparisons.

So as i moves from 1 to n − 1, the number of comparison operations
moves from n− 1 to n − (n − 1) = 1.

Adding these comparisons gives the arithmetic expression

(n − 1) + (n − 2) + · · ·+ 1 =
n(n− 1)

2
.

We note that there are many faster sorting algorithms.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 9 / 145

Analysis Techniques Analysis of Algorithms

Analysis of a Loop

Count the number of times that a procedure S is executed in the
following program fragment, where n is a positive integer:

i := 1;
while i ≤ n

S(i);
i := i + 2

Since S occurs in the body of the while loop, we need to count the
number of times the body of the loop is executed.

The body is entered each time i takes on one of the k values
1, 3, 5, . . . , 2k − 1, where 2k − 1 ≤ n < 2k + 1.

With this information, we can express k as a function of n:

2k − 1 ≤ n < 2k + 1 ⇒ 2k ≤ n + 1 < 2k + 2

⇒ k ≤ n+1
2 < k + 1.

Using the floor function, we conclude k = ⌊n+1
2 ⌋.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 10 / 145

Analysis Techniques Analysis of Algorithms

Another Analysis of a Loop

Count the number of times that a procedure S is executed in the
following program fragment, where n is a positive integer:

while n ≥ 1
S(n);
n := ⌊n/2⌋

S is executed each time the body of the while loop is entered.

That happens for each of the k values n, ⌊n2⌋, ⌊⌊n2⌋/2⌋ = ⌊n4⌋, . . .,
⌊ n
2k−1 ⌋, where ⌊ n

2k−1 ⌋ ≥ 1 > ⌊ n
2k
⌋.

Since ⌊ n
2k−1 ⌋ ≥ 1, it follows that n

2k−1 ≥ 1.

Because 1 > ⌊ n
2k
⌋, we have ⌊ n

2k
⌋ = 0. So n

2k
< 1 implying n

2k−1 < 2.

Now we have

1 ≤ n

2k−1
< 2 ⇒ 2k−1 ≤ n ≤ 2k ⇒ k − 1 ≤ log2 n < k .

Using the floor function, we have k − 1 = ⌊log2 n⌋, i.e.,
k = ⌊log2 n⌋+ 1.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 11 / 145

Analysis Techniques Analysis of Algorithms

Binary Search and Decision Trees

Suppose we search the sorted list below in a binary fashion.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

We check the middle element of the list to see whether it is the key we
are looking for.
If not, then we perform the same operation on either the left half or
the right half of the list, depending on the value of the key.

This algorithm has a nice representation as a decision tree:

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 12 / 145

Analysis Techniques Analysis of Algorithms

Binary Search (Cont’d)

It is easy to see based on the decision tree that there will be at most
four comparisons to find whether a number K is in the list.

So a worst case lower bound for the number of comparisons is 4,
which is 1 plus the depth of the binary tree whose nodes are the
numbered nodes in the figure.

The minimum depth of a binary tree with n nodes is ⌊log2 n⌋.
So the lower bound for the worst case of a binary search algorithm on
a sorted input list of n elements is

1 + ⌊log2 n⌋.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 13 / 145

Analysis Techniques Analysis of Algorithms

Weighing Things

Suppose that we are given eight coins that look alike seven of which
have identical weight and one is heavier.

We want to find the heavy coin among the eight using a pan balance.

There are two ways to proceed, depending on whether or not we want
to consider the possibility that the balance may balance.

If the pan never balances, then we will obtain a binary decision tree.
Otherwise, we get a ternary decision tree.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 14 / 145

Analysis Techniques Analysis of Algorithms

Weighing Things: Binary Tree

Let each internal node of the tree represent the pan balance, with an
equal number of coins on each side.

If the left side goes down, then the heavy coin is on the left side.

Otherwise, the heavy coin is on the right side of the balance.

Each leaf represents one coin that is the heavy coin.

One algorithm’s decision tree is pictured:

This algorithm finds the heavy coin in three weighings.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 15 / 145

Analysis Techniques Analysis of Algorithms

Weighing Things: Ternary Tree

Since we allow for the third possibility that the two pans are
balanced, we do not have to use all eight coins on the first weighing.

There is no middle branch on the middle subtree, since at this point,
one of the coins 7 or 8 must be the heavy one.

This algorithm finds the heavy coin in two weighings.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 16 / 145

Analysis Techniques Analysis of Algorithms

Weighing Things: Optimality

The second solution is an optimal pan balance algorithm for this
problem, where we are counting the number of weighings to find the
heavy coin.

Any one of the eight coins could be the heavy one.

Therefore there must be at least eight leaves on any algorithm’s
decision tree.

A ternary tree of depth k can have 3k possible leaves.

To get eight leaves, we must have 3k ≥ 8, or k ≥ 2.

Therefore 2 is a lower bound for the number of weighings.

Since the second solution solves the problem in two weighings, it is
optimal.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 17 / 145

Analysis Techniques Summations and Closed Forms

Subsection 2

Summations and Closed Forms

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 18 / 145

Analysis Techniques Summations and Closed Forms

Sums and Basic Properties of Sums

The sum of n terms a1, a2, . . . , an, is denoted

n
∑

k=1

ak = a1 + a2 + · · ·+ an.

Basic Properties of Sums:

(a)
∑n

k=m c = (n −m + 1)c ;

(b)
∑n

k=m cak = c
∑n

k=m ak ;

(c)
∑n

k=1(ak − ak−1) = an − a0 and
∑n

k=1(ak−1 − ak) = a0 − an;

(d)
∑n

k=m(ak + bk) =
∑n

k=m ak +
∑n

k=m bk ;

(e)
∑n

k=m ak =
∑i

k=m ak +
∑n

k=i+1 ak , m ≤ i < n;

(f)
∑n

k=m akx
k+i = x i

∑n
k=m akx

k ;

(g)
∑n

k=m ak+i =
∑n+i

k=m+i ak .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 19 / 145

Analysis Techniques Summations and Closed Forms

Sum of First Powers

Show that
∑n

k=1 k = n(n+1)
2 .

Note the equation k2 − (k − 1)2 = − 1 + 2k .

Sum from 1 to n to get

n
∑

k=1

(k2 − (k − 1)2) =
n

∑

k=1

(−1 + 2k).

This gives

n2 =
n

∑

k=1

(−1) +
n

∑

k=1

2k = − n+ 2
n

∑

k=1

k .

Solving for
∑n

k=1 k , we obtain

n
∑

k=1

k =
n2 + n

2
=

n(n + 1)

2
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 20 / 145

Analysis Techniques Summations and Closed Forms

Sums of Squares

We compute

k3 − (k − 1)3 = k3 − (k3 − 3k2 + 3k − 1) = 1− 3k + 3k2.

Sum from 1 to n to obtain
∑n

k=1(k
3 − (k − 1)3) =

∑n
k=1(1− 3k + 3k2).

This gives

n3 =
n

∑

k=1

1− 3
n

∑

k=1

k + 3
n

∑

k=1

k2 = n − 3
n(n + 1)

2
+ 3

n
∑

k=1

k2.

Thus, solving for 3
∑n

k=1 k
2, we get

3
∑n

k=1 k
2 = n3 + 3n(n+1)

2 − n = 2n3+3n(n+1)−2n
2

= n(2n2+3n+1)
2 = n(n+1)(2n+1)

2 .

We conclude that
∑n

k=1 k
2 = n(n+1)(2n+1)

6 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 21 / 145

Analysis Techniques Summations and Closed Forms

Sum of a Geometric Progression

Find the sum of the geometric progression 1, a, a2, . . . , an, where
a 6= 1.

We have ak+1 − ak = (a − 1)ak .

Sum from 0 to n to get

n
∑

k=0

(ak+1 − ak) =

n
∑

k=0

(a − 1)ak .

Thus, we obtain

an+1 − 1 = (a − 1)

n
∑

k=0

ak .

Therefore,
n

∑

k=0

ak =
an+1 − 1

a− 1
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 22 / 145

Analysis Techniques Summations and Closed Forms

A Sum of Products

Note
(k + 1)ak+1 − kak = kak+1 + ak+1 − kak

= (a − 1)kak + ak+1.
Sum from k = 1 to n:
∑n

k=1[(k + 1)ak+1 − kak] =
∑n

k=1[(a − 1)kak + ak+1]
(n + 1)an+1 − a = (a − 1)

∑n
k=1 ka

k +
∑n

k=1 a
k+1

= (a − 1)
∑n

k=1 ka
k + a

∑n
k=1 a

k

= (a − 1)
∑n

k=1 ka
k + a(

∑n
k=0 a

k − 1)

= (a − 1)
∑n

k=1 ka
k + a(a

n+1−1
a−1 − 1).

We now get

(a − 1)
∑n

k=1 ka
k = (n + 1)an+1 − a − an+2−a

a−1 + a

= (n+1)an+2−(n+1)an+1−a2+a−an+2+a+a2−a
a−1

= a−(n+1)an+1+nan+2

a−1 .

We conclude that
∑n

k=1 ka
k = a−(n+1)an+1+nan+2

(a−1)2
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 23 / 145

Analysis Techniques Summations and Closed Forms

Example: Polynomial Problem

Compute the number of arithmetic operations needed to evaluate the
following polynomial at some number x :

c0 + c1x + c2x
2 + · · ·+ cnx

n.

Suppose that we compute each term in isolation and then add up all
the terms.

There are n addition operations.

Each term of the form cix
i takes i multiplication operations.

So the total number of arithmetic operations is given by the following
sum:

n+ (0 + 1 + 2 + · · · + n) = n +
∑n

k=0 k

= n + n(n+1)
2

= 2n+n2+n
2

= n2+3n
2 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 24 / 145

Analysis Techniques Summations and Closed Forms

Example: A Simple Sort

We sort an array a of numbers indexed from 1 to n as follows:

Find the smallest element in a and exchange it with the first element.
Then find the smallest element in positions 2 through n and exchange
it with the element in position 2.
Continue in this manner to obtain a sorted array.

To write the algorithm, we use a function “min” and a procedure
“exchange” which are defined as follows:

min(a, i , n) is the index of the minimum number among the elements
a[i], a[i + 1], . . . , a[n].
This task can be accomplished using n − i comparisons.
exchange(a[i], a[j]) is the usual operation of swapping elements.
It does not use any comparisons.

We write our sorting algorithm:

for i := 1 to n − 1
j := min(a, i , n);
exchange(a[i], a[j])

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 25 / 145

Analysis Techniques Summations and Closed Forms

Example: A Simple Sort (Cont’d)

Sorting algorithm:

for i := 1 to n − 1
j := min(a, i , n);
exchange(a[i], a[j])

We compute the number of comparison operations:

The algorithm for min(a, i , n) makes n − i comparisons.

So as i moves from 1 to n − 1, the number of comparison operations
moves from n− 1 to n − (n − 1) = 1.

Adding these comparisons gives the sum of an arithmetic progression,

(n − 1) + (n − 2) + · · ·+ 1 =
n(n− 1)

2
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 26 / 145

Analysis Techniques Summations and Closed Forms

Example: A Problem of Loops

Assume a procedure P(j) executes 3j operations of a certain type.

Find the number T (n) of operations executed by P in the following
algorithm:

i := 1;
while i < n

i := 2i ;
for j := 1 to i

P(j)

Start by the for-loop: For each i , the for-loop calls
P(1),P(2),P(3), . . . ,P(i). Since each call to P(j) executes 3j
operations, it follows that for each i , the number of operations f (i)
executed by the calls on P by the for-loop is

f (i) = 3(1 + 2 + 3 + · · · + i) = 3
i(i + 1)

2
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 27 / 145

Analysis Techniques Summations and Closed Forms

Example: A Problem of Loops

Now we find the values of i that are used to enter the for-loop.

The values of i to enter the while-loop are 1, 2, 4, 8, . . . , 2k , where
2k < n ≤ 2k+1.

So the values of i to enter the for-loop are 2, 4, 8, . . . , 2k+1.

So we have

T (n) =
∑k+1

m=1 f (2
m) =

∑k+1
m=1

3
22

m(2m + 1)

=
∑k+1

m=1 3 · 2m−1(2m + 1) = 3
∑k

m=0 2
m(2m+1 + 1)

= 3
∑k

m=0(2
m+1 + 2m) = 3

∑k
m=0 2

2m+1 + 3
∑k

m=0 2
m

= 6
∑k

m=0 4
m + 3

∑k
m=0 2

m = 2(4k+1 − 1) + 3(2k+1 − 1).

Since 2k < n ≤ 2k+1, we get k < log2 n ≤ k + 1.

Therefore, ⌈log2 n⌉ = k + 1.

Thus, we get

T (n) = 2(4⌈log2 n⌉ − 1) + 3(2⌈log2 n⌉ − 1)

= 2 · 4⌈log2 n⌉ + 3 · 2⌈log2 n⌉ − 5.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 28 / 145

Analysis Techniques Summations and Closed Forms

Sample Approximations

Suppose we have the following sum of logs.

n
∑

k=1

log k = log 1 + log 2 + · · ·+ log n.

By observing that log n is the maximum value and log 1 = 0 is the
minimum value, we get

0 = log 1 + log 1 + · · · + log 1 ≤
∑n

k=1 log k ≤ log n + log n + · · ·+ log n = n log n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 29 / 145

Analysis Techniques Summations and Closed Forms

Sample Approximations (Cont’d)

We can obtain closer bounds by splitting up the sum and bounding
each part:

∑n
k=1 log k = (log 1 + log 2 + · · ·+ log ⌊n2⌋)

+ (log (⌊n2⌋+ 1) + · · · + log n)

=
∑⌊n/2⌋

k=1 log k +
∑n

k=⌊n/2⌋+1 log k .

For a lower bound, we can replace each term of the first sum by 0
and each term of the second sum by log (⌊n2⌋+ 1).

To get a better upper bound, we can replace each term of the first
sum by log ⌊n2⌋ and each term of the second sum by log n.

This gives us

⌈n
2
⌉ log (⌊n

2
⌋+ 1) ≤

n
∑

k=1

log k ≤ ⌊n
2
⌋(log ⌊n

2
⌋+ log n).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 30 / 145

Analysis Techniques Summations and Closed Forms

Approximating Using Integrals

We want to approximate a sum of the form

n
∑

k=1

f (k) = f (1) + f (2) + · · ·+ f (n),

where f is a continuous function with nonnegative values.

Each number f (k) can be thought of as the area of a rectangle of
with base [k , k + 1] and height f (k).

In this way the sum represents the area of n rectangles, whose bases
form the partition [1, 2], [2, 3], . . ., [n, n + 1] of [1, n + 1].

The area under the curve f (x) above the x-axis for x in the closed

interval [1, n + 1] is given by the definite integral
∫ n+1
1 f (x)dx .

So this definite integral is an approximation for the sum:

n
∑

k=1

f (k) ≈
∫ n+1

1
f (x)dx .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 31 / 145

Analysis Techniques Summations and Closed Forms

Bounds of Monotonic Functions

Assume f is a monotonic increasing function, which means that
x < y implies f (x) ≤ f (y).

Then the area of each rectangle with base [k , k + 1] and height f (k)
is less than or equal to the area of region under the graph of f on the
interval.

So the integral approximation gives us the following upper bound

n
∑

k=1

f (k) ≤
∫ n+1

1
f (x)dx .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 32 / 145

Analysis Techniques Summations and Closed Forms

Bounds of Monotonic Functions (Cont’d)

For a lower bound notice that the area of each rectangle with base
[k − 1, k] and height f (k) is greater than or equal to the area of
region under the graph of f on the interval.

So in this case, the sum represents the area of n rectangles, whose
bases consist of the partition [0, 1], [1, 2], . . ., [n − 1, n] of [0, n].

So we obtain the following lower bound on the sum

∫ n

0
f (x)dx ≤

n
∑

k=1

f (k).

So we have

∫ n

0
f (x)dx ≤

n
∑

k=1

f (k) ≤
∫ n+1

1
f (x)dx .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 33 / 145

Analysis Techniques Summations and Closed Forms

Example

Find bounds for the following sum, where r is a real number and
r 6= −1:

n
∑

k=1

k r = 1r + 2r + · · ·+ nr .

If r = 0, then the sum becomes 1 + 1 + + 1 = n.

If r > 0, then x r is increasing for x ≥ 0.

So we can obtain bounds using integrals:
∑n

k=1 k
r ≥

∫ n

0 x rdx = x r+1

r+1 |n0= nr+1

r+1 ;
∑n

k=1 k
r ≤

∫ n+1
1 x rdx = x r+1

r+1 |n+1
1 = (n+1)r+1

r+1 − 1
r+1 .

So, if r > 0, we get

nr+1

r + 1
≤

n
∑

k=1

k r ≤ (n + 1)r+1

r + 1
− 1

r + 1
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 34 / 145

Analysis Techniques Summations and Closed Forms

Example (Cont’d)

If r < 0, then x r is decreasing for x > 0, but is not defined at x = 0.

So the upper bound given in the theory does not exist.

We work around the problem by raising each lower limit by 1:

∫ n+1

2
x rdx ≤

n
∑

k=2

k r ≤
∫ n

1
x rdx .

We obtain
∑n

k=2 k
r ≤

∫ n

1 x rdx = x r+1

r+1 |n1= nr+1

r+1 − 1
r+1 ;

∑n
k=2 k

r ≥
∫ n+1
2 x rdx = x r+1

r+1 |n+1
2 = (n+1)r+1

r+1 − 2r+1

r+1 .

Adding 1 to each bound gives us the bounds

1 +
(n + 1)r+1

r + 1
− 2r+1

r + 1
≤

n
∑

k=1

k r ≤ 1 +
nr+1

r + 1
− 1

r + 1
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 35 / 145

Analysis Techniques Summations and Closed Forms

Harmonic Numbers

The n-th harmonic number is Hn = 1 + 1
2 +

1
3 + · · · + 1

n
.

To approximate Hn, note that:
1
x
is decreasing for x > 0;

1
x
is undefined for x = 0.

So we use the trick used previously to get

∫ n+1

2

1

x
dx ≤

n
∑

k=2

1

k
≤

∫ n

1

1

x
dx .

Using integrals, we find:

ln (n + 1)− ln 2 ≤ Hn − 1 ≤ ln n.

Therefore

ln (
n + 1

2
) + 1 ≤ Hn ≤ ln n + 1.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 36 / 145

Analysis Techniques Summations and Closed Forms

A Sum Involving Harmonic Numbers

Prove the following formula for the sum of the first n harmonic
numbers:

n
∑

k=1

Hk = (n + 1)Hn − n.

∑n
k=1 Hk = H1 + H2 + H3 + · · · + Hn

= 1 + (1 + 1
2) + (1 + 1

2 + 1
3) + · · ·

+ (1 + 1
2 + 1

3 + · · ·+ 1
n
)

= n · 1 + (n − 1)12 + (n − 2)13 + · · ·+ 1 · 1
n

=
∑n

k=1(n − k + 1) 1
k

=
∑n

k=1(n + 1) 1
k
−∑n

k=1 k
1
k

= (n + 1)
∑n

k=1
1
k
−∑n

k=1 1

= (n + 1)Hn − n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 37 / 145

Analysis Techniques Summations and Closed Forms

Sums of Sums

Assume that a call to S(j) executes about n
j
operations.

Find the number of operations executed by the following algorithm:
k := 1;
while k < n

k := k + 1;
for j := 1 to k

S(j)

We examine the for-loop for some value of k : S(j) is called k times
with j taking values 1, 2, . . . , k . Since S(j) executes n

j
operations, the

number of operations executed in each for-loop by S is
∑k

j=1
n
j
= n

∑k
j=1

1
j
= nHk .

Now we need to find the values of k at the for-loop: The values of k
that enter the while-loop are 1, 2, . . . , n− 1. Since k gets incremented
by 1 upon entry, the values of k at the for-loop are 2, 3, . . . , n. So the
number of operations by S is given by

∑n
k=2 nHk = n

∑n
k=2 Hk =

n(
∑n

k=1 Hk − H1) = n(
∑n

k=1 Hk − 1) = n(n + 1)(Hn − 1).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 38 / 145

Analysis Techniques Summations and Closed Forms

Polynomials: Division

we consider rational functions, i.e., expressions of the form p(x)
q(x) ,

where p(x) and q(x) are two polynomials.

To work with those fractions we require that the degree of p(x) be
less than the degree of q(x).

If the degree of p(x) is greater than or equal to the degree of q(x),
then we can transform the expression into the form

p(x)

q(x)
= s(x) +

p1(x)

q(x)
,

where s(x), p1(x), and q(x) are polynomials and the degree of p1(x)
is less than the degree of q(x).

The transformation can be carried out by using long division for
polynomials.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 39 / 145

Analysis Techniques Summations and Closed Forms

Example

Perform the long division (2x3 + 1)÷ (x2 + 3x + 2).

We have

2x-6
x2 + 3x + 2 | 2x3 + 1

2x3 + 6x2 + 4x
—————————–
− 6x2 − 4x + 1
− 6x2 − 18x − 12
—————————–
14x + 13

So we have

2x3 + 1

x2 + 3x + 2
= 2x − 6 +

14x + 13

x2 + 3x + 2
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 40 / 145

Analysis Techniques Summations and Closed Forms

Polynomials: Partial Fractions

Assume that we have the quotient p(x)
q(x) of polynomials, where the

degree of p(x) is less than the degree of q(x).
Its partial fraction representation or decomposition is a sum of terms
that satisfy the following rules, where q(x) has been factored into a
product of linear and/or quadratic factors.
1. If the linear polynomial ax + b is repeated k times as a factor of q(x),

then add the following terms to the partial fraction representation,

A1

ax + b
+

A2

(ax + b)2
+ · · ·+ Ak

(ax + b)k
,

where A1, . . . ,Ak are constants to be determined;
2. If the quadratic polynomial cx2 + dx + e is repeated k times as a factor

of q(x), then add the following terms to the partial fraction
representation,

A1x + B1

cx2 + dx + e
+

A2x + B2

(cx2 + dx + e)2
+ · · ·+ Akx + Bk

(cx2 + dx + e)k
,

where Ai and Bi are constants to be determined.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 41 / 145

Analysis Techniques Summations and Closed Forms

Examples

x−1
x(x−2)(x+1) =

A
x
+ B

x−2 +
C

x+1 ;

x3−1
x2(x−2)3

= A
x
+ B

x2
+ C

x−2 +
D

(x−2)2
+ E

(x−2)3
;

x2

(x−1)(x2+x+1)
= A

x−1 +
Bx+C
x2+x+1

;

x
(x−1)(x2+1)2

= A
x−1 +

Bx+C
x2+1

+ Dx+E
(x2+1)2

;

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 42 / 145

Analysis Techniques Summations and Closed Forms

Determining the Constants

Decompose x+1
(2x−1)(3x−1) into partial fractions.

x+1
(2x−1)(3x−1) =

A
2x−1 +

B
3x−1

⇒ x + 1 = A(3x − 1) + B(2x − 1)

⇒ x + 1 = (3A + 2B)x + (−A− B)

⇒
{

3A+ 2B = 1
−A− B = 1

}

⇒
{

A = 3
B = − 4

So we have x+1
(2x−1)(3x−1) =

3
2x−1 − 4

3x−1 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 43 / 145

Analysis Techniques Summations and Closed Forms

Example: Partial Fractions and Collapsing Sums

Consider the summation
n

∑

k=1

1

k2 + k
.

The summand has a partial fraction representation as

1
k2+k

= 1
k(k+1) =

A
k
+ B

k+1

⇒ 1 = A(k + 1) + Bk ⇒ 1 = (A + B)k + A

⇒
{

A+ B = 0
A = 1

}

⇒
{

A = 1
B = −1

So we have 1
k2+k

= 1
k
− 1

k+1 .

So we can compute the sum as follows:

n
∑

k=1

1

k2 + k
=

n
∑

k=1

(
1

k
− 1

k + 1
) =

1

1
− 1

n+ 1
=

n

n + 1
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 44 / 145

Analysis Techniques Summations and Closed Forms

Example: Sum with a Harmonic Answer

Evaluate the sum
n

∑

k=1

14k + 13

k2 + 3k + 2
.

We can use partial fractions:

14k+13
k2+3k+2

= 14k+13
(k+1)(k+2) = A

k+1 + B
k+2

⇒ 14k + 13 = A(k + 2) + B(k + 1)
⇒ 14k + 13 = (A + B)k + (2A + B)

⇒
{

A+ B = 14
2A+ B = 13

}

⇒
{

A = −1
B = 15

So we can calculate the sum as follows:
∑n

k=1
14k+13
k2+3k+2

=
∑n

k=1(
15
k+2 − 1

k+1)

= 15
∑n

k=1
1

k+2 −∑n
k=1

1
k+1

= 15
∑n+2

k=3
1
k
−∑n+1

k=2
1
k

= 15(Hn+2 − H2)− (Hn+1 − H1).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 45 / 145

Analysis Techniques Permutations and Combinations

Subsection 3

Permutations and Combinations

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 46 / 145

Analysis Techniques Permutations and Combinations

The Rule of Sum and the Rule of Product

Rule of Sum:

If there are m choices for some event to occur and n choices for
another event to occur and the events are disjoint, then there are
m+ n choices for either event to occur.

This is just another way to say that the cardinality of the union of
disjoint sets is the sum of the cardinalities of the two sets.

Rule of Product:

If there are m choices for some event and n choices for another event,
then there are mn choices for both events to occur.

This is just another way to say that the cardinality of the Cartesian
product of two finite sets is the product of the cardinalities of the two
sets.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 47 / 145

Analysis Techniques Permutations and Combinations

Examples

Suppose a vending machine has six types of drinks and 18 types of
snack food.
(a) How many choices are there in the machine?
(b) In how many ways can a customer choose both a drink and a snack?

(a) There are 6 + 18 = 24 possible choices in the machine.

(b) There are 6 · 18 = 108 possible choices of a drink and a snack.

Suppose we have a bookshelf with 5 technical books, 12 biographies,
and 37 novels.

In how many ways can we choose two books of different types?

There are:
5 · 12 = 60 ways to choose a technical book and a biography;
5 · 37 = 185 ways to choose a technical book and a novel;
12 · 37 = 444 ways to choose a biography and novel.

So there are 50 + 185 + 444 = 689 ways to choose two books of
different types.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 48 / 145

Analysis Techniques Permutations and Combinations

Permutations

A permutation of a set S of n elements is an ordered arrangement of
the elements of S .

There are n! permutations of a set of n elements.
We reason as follows:

There are n choices for the first element.
For each of these choices there are n − 1 choices for the second
element.
...
Finally, there is only one choice left for the last element.

We obtain n · (n − 1) · · · · · 2 · 1 = n! different permutations of n
elements.

Example: If S = {a, b, c}, then there are 3! = 6 possible
permutations of S :

abc , acb, bac , bca, cab, cba.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 49 / 145

Analysis Techniques Permutations and Combinations

r -Permutations of n Elements

The number of permutations of r elements chosen from a set of n
elements, where 1 ≤ r ≤ n, is n!

(n−r)! .

There are n choices for the first element.
For each of these choices there are n − 1 choices for the second
element.
...
We continue this process r times, with n − r + 1 remaining choices for
the last element.

We get n(n− 1) · · · (n − r + 1) = n(n−1)···(n−r+1)(n−r)···1
(n−r)···1 = n!

(n−r)! .

This number is denoted by the symbol P(n, r), read “the number of
permutations of n objects taken r at a time”.

So we have

P(n, r) = n · (n − 1) · · · (n − r + 1) =
n!

(n − r)!
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 50 / 145

Analysis Techniques Permutations and Combinations

Example

Suppose S = {a, b, c , d}.
(a) Find the number of 2-permutations of S .
(b) List all 2-permutations of S .

(a) The number of 2-permutations of S is

P(4, 2) =
4!

(4− 2)!
=

4!

2!
= 12.

(b) The 12 permutations are listed as follows:

ab, ba, ac , ca, ad , da, bc , cb, bd , db, cd , dc .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 51 / 145

Analysis Techniques Permutations and Combinations

Permutations With Replacement

If we can pick an element more than once, then the objects are said
to be selected/permuted with replacement or with repetitions

allowed.

The number of permutations of r objects from a set of n elements
with replacement is nr .

The first element can be selected in n ways.
For each choice, the second element can be selected in n ways.
...
Finally, the last element can also be selected in n ways.

Therefore, there are n · n · · · n = nr permutations of r out of n objects
with replacement.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 52 / 145

Analysis Techniques Permutations and Combinations

Example

Consider the set S = {a, b, c}.
(a) Find the the number of 2-permutations with replacement of S .
(b) List the 2-permutations with replacement of S .

(a) The number of 2-permutations with replacement of S is

32 = 9.

(b) They can be listed as

aa, ab, ac , ba, bb, bc , ca, cb, cc .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 53 / 145

Analysis Techniques Permutations and Combinations

Permutations With Fixed Number of Repetitions

Let S be a set with k elements.

An (m1,m2, . . . ,mk)-permutation of S is a permutation of
n = m1 +m2 + · · ·+mk elements with replacement in which:

Element 1 occurs m1 times;
Element 2 occurs m2 times;
...
Element k occurs mk times.

The number of (m1,m2, . . . ,mk)-permutations of a set of n elements
is

n!

m1!m2! · · ·mk !
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 54 / 145

Analysis Techniques Permutations and Combinations

Example

Let S = {a, b}.
(a) Find the number of (2, 3)-permutations of S .
(b) List the (2, 3)-permutations of S .

(a) We have k = 2, n = 5, m1 = 2, m2 = 3.

So the number (2, 3)-permutations of S is

5!

2! · 3! = 10.

(b) The (2, 3)-permutations of S are:

aabbb, ababb, abbab, abbba, baabb,
babab, babba, bbaab, bbaba, bbbaa.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 55 / 145

Analysis Techniques Permutations and Combinations

Example: Worst Case Lower Bound for Comparison Sorting

Find a lower bound for the number of comparison operations
performed by any sorting algorithm that sorts by comparing elements
in the list to be sorted.

Assume that we have a set of n distinct numbers.

There are n! possible arrangements of these numbers.

So any decision tree for a comparison sorting algorithm must contain
at least n! leaves, one leaf for each possible outcome of sorting one
arrangement.

We know that a binary tree of depth d has at most 2d leaves.

So the depth d of the decision tree for any comparison sort of n items
must satisfy the inequality n! ≤ 2d .

Solving this inequality for d we get:

log2(n!) ≤ d ⇒ ⌈log2 (n!)⌉ ≤ d .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 56 / 145

Analysis Techniques Permutations and Combinations

Circular Arrangements

In how many ways can 20 people be arranged in a circle if we do not
count a rotation of the circle as a different arrangement?

There are 20! arrangements of 20 people in a line.

We can form a circle by joining the two ends of a line.

However, the same circle is obtained by 20 distinct arrangements of
the people.

It follows that there are 20!
20 = 19! distinct arrangements of 20 people

in a circle.

Another way to proceed is to fix one person at which the circle will be
broken.

Then we fill in the remaining 19 people in all possible ways to get 19!
arrangements.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 57 / 145

Analysis Techniques Permutations and Combinations

Example

How many distinct strings can be made by rearranging the letters of
the word

banana

The distinct strings represent the (3, 1, 2)-permutations of the set
S = {a, b, n}.
We have

k = 3, n = 6, m1 = 3, m2 = 1, m3 = 2.

So the number of strings is

6!

3!1!2!
= 60.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 58 / 145

Analysis Techniques Permutations and Combinations

Example

How many distinct strings of length 10 can be constructed from the
digits 0 and 1 with the restriction that five characters must be 0 and
five must be 1?

We are looking for the number of (5, 5)-permutations of the set {0, 1}
We get

10!

5!5!
= 252.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 59 / 145

Analysis Techniques Permutations and Combinations

Combinations

An r -combination of a set of n elements is a selection of r of the n

elements (in which order is not important).

The number of r -combinations of a set of n elements is
C (n, r) = n!

r !(n−r)! .

The key is to notice that to form an r -permutation:

First choose an r -combination;
For each choice, order the r elements selected.

Using the Rule of Product, we get the equation: P(n, r) = C (n, r) · r !.
Therefore,

C (n, r) =
P(n, r)

r !
=

n!
(n−r)!

r !
=

n!

r !(n − r)!
=:

(

n

r

)

.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 60 / 145

Analysis Techniques Permutations and Combinations

Example

Let S = {a, b, c , d}.
(a) Find the number of 3-combinations of S .
(b) List all 3-combinations of S .

(a) We have n = 4, r = 3.

So we get

C (4, 3) =
4!

3!(4− 3)!
= 4.

(b) The 3-combinations of S are:

{a, b, c}, {a, b, d}, {a, c , d}, {b, c , d}.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 61 / 145

Analysis Techniques Permutations and Combinations

Algebraic vs. Combinatorial Proofs

Prove that
(

n
k

)

=
(

n
n−k

)

.

Algebraic Proof: We expand and simplify:

(

n

n − k

)

=
n!

(n − k)!(n − n+ k)!
=

n!

k!(n − k)!
=

(

n

k

)

.

Combinatorial Proof: Reason that both sides are counting the
number of ways of performing essentially the same task (following
different strategies).

The left side is the number of ways to select k objects out of a set of n
objects to “take”.
The right side is the number of ways to select n − k objects out of a
set of n objects to “leave out”.

Either selection amounts to the same thing.
Therefore

(

n
k

)

=
(

n
n−k

)

.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 62 / 145

Analysis Techniques Permutations and Combinations

An Algebraic Proof

Prove that
(

n
k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

.

We expand and simplify:

(

n−1
k

)

+
(

n−1
k−1

)

= (n−1)!
k!(n−1−k)! +

(n−1)!
(k−1)!(n−1−k+1)!

= (n−1)!
(k−1)!(n−k−1)!

[

1
k
+ 1

n−k

]

= (n−1)!
(k−1)!(n−k−1)!

n−k+k
k(n−k)

= (n−1)!n
(k−1)!k(n−k−1)!(n−k)

= n!
k!(n−k)!

=
(

n
k

)

.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 63 / 145

Analysis Techniques Permutations and Combinations

A Combinatorial Proof

Prove that
(

n
k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

.

Suppose that we want to count the k-combinations of a set of n
elements.

We may use one of two different ways:

The first way to do the selection directly in
(

n
k

)

ways.
Alternatively, we may consider a distinguished element x .
The k-combinations can be partitioned into those that include x and
those that do not include x .

The number of those that include x is the number of the
(k − 1)-combinations of the remaining n − 1 elements.
The number of those that do not include x is the number of
k-combinations of the remaining n − 1 elements.

Thus, the total number is
(

n−1
k

)

+
(

n−1
k−1

)

.

Since both ways count the number of k-combinations of a set of n
elements, they are equal:

(

n
k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 64 / 145

Analysis Techniques Permutations and Combinations

Combinations With Replacement

Suppose we have an n element set S .

The number of k-combinations of S allowing repetitions is
(

n+k−1
n−1

)

.

Imagine that we select:
m1 elements of type 1;
m2 elements of type 2;
...
mn elements of type n.

Here m1,m2, . . . ,mn ≥ 0 and m1 + · · ·+mn = k .

We think of this selection written as a string where elements of the
same type are written together separated by |.
Thus, such a combination amounts to the placement of the n − 1
separators in the string of n + k − 1 symbols.

This placement can be done in as many ways as selecting n− 1
positions out of a total of n+ k − 1 distinct positions, i.e., in

(

n+k−1
n−1

)

ways.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 65 / 145

Analysis Techniques Permutations and Combinations

Example

In how many ways can 4 coins be selected from a collection of
pennies, nickels, and dimes?

Let S = {penny, nickel, dime}.
Then we need the number of 4-combinations of S with replacement.

The answer is
(

3 + 4− 1

3− 1

)

=

(

6

2

)

= 15.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 66 / 145

Analysis Techniques Permutations and Combinations

Example

In how many ways can five people be selected from a collection of
Democrats, Republicans and Independents?

Let
S = {Democrat,Republican, Independent}.

We want the number of 5-combinations of S allowing repetitions.

The answer is
(

3 + 5− 1

3− 1

)

=

(

7

2

)

= 21.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 67 / 145

Analysis Techniques Discrete Probability

Subsection 4

Discrete Probability

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 68 / 145

Analysis Techniques Discrete Probability

Sample Spaces and Probability Distributions

A sample space is the set of all possible outcomes of an experiment.

Outcomes are also called (sample) points.

Example: Consider the experiment of tossing a coin twice.

The sample space for this experiment is S = {HH,HT ,TH,TT}.
A probability distribution on a sample space S = {x1, x2, . . . , xn} is
a function P : S → [0, 1], such that

P(x1) + P(x2) + · · ·+ P(xn) = 1.

Example (Cont’d): If the coin tossed is fair, we may adopt the
following probability distribution on S = {HH,HT ,TH,TT}:

P(HH) = P(HT) = P(TH) = P(TT) =
1

4
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 69 / 145

Analysis Techniques Discrete Probability

Events and Probabilities

An event E in a sample space S is a subset of S , i.e., a set of some
outcomes of the experiment.

Example (Cont’d): The event E of getting at least one heads in two
tosses of a coin is E = {HH,HT ,TH}.
The probability P(E) of an event E in S is the sum of the
probabilities of the outcomes included in E :

P(E) =
∑

x∈E
P(x).

Example (Cont’d): Assuming S = {HH,HT ,TH,TT} and
P(HH) = P(HT) = P(TH) = P(TT) = 1

4 , we have

P({HH,HT ,TH}) = P(HH) + P(HT) + P(TH) =
3

4
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 70 / 145

Analysis Techniques Discrete Probability

Elementary Properties

Let S be a sample space with probability distribution P and E ⊆ S .

(a) P(∅) = 0;
(b) P(E ′) = 1− P(E);
(c) P(S) = 1.

(a) P(∅) = ∑

x∈∅ P(x) =
∑ ∅ = 0.

(b) By definition
∑

x∈S P(x) = 1.

Therefore,
∑

x∈E P(x) +
∑

x∈E ′ P(x) = 1.

This gives
∑

x∈E ′ P(x) = 1−∑

x∈E P(x).

The last is rewritten as P(E ′) = 1− P(E).

(c) P(S) =
∑

x∈S P(x) = 1.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 71 / 145

Analysis Techniques Discrete Probability

Union and Mutually Exclusive Events

The Union Formula

If A and B are two events, then

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Two events A and B are called mutually exclusive if A ∩ B = ∅.
The Union Formula for Mutually Exclusive Events

If A and B are mutually exclusive events, then

P(A ∪ B) = P(A) + P(B).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 72 / 145

Analysis Techniques Discrete Probability

Example

Consider the experiment of tossing a fair coin 5 times.

What is the probability of getting at least one head?

The sample space S consists of 25 = 32 outcomes.

Let E be the event “at least one head”.

Then, we have

P(E) = 1− P(E ′)
= 1− P({TTTTT})
= 1− 1

32
= 31

32 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 73 / 145

Analysis Techniques Discrete Probability

Example

A bowl contains ten tickets numbered 1, 2, . . . , 10.

Three friends are drawing a ticket in turn, with replacement.

What is the probability of at least two drawing the same ticket?

The sample space has 103 = 1000 outcomes.

Since all outcomes are equally likely, each has probability 1
1000 .

Let E be the event “at least two tickets same”.

Then E ′ is the event “all three tickets are different”.

Thus, the number of outcomes in E ′ is

P(10, 3) =
10!

(10 − 3)!
=

10!

7!
= 8 · 9 · 10 = 560.

Therefore, we get

P(E) = 1− P(E ′) = 1− 560

1000
=

440

1000
= 0.44.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 74 / 145

Analysis Techniques Discrete Probability

Odds For and Against an Event

Let S be a sample space and E an event in S .

The odds for (or odds in favor of) E is the ratio P(E)
P(E ′) .

The odds against E is the ratio P(E ′)
P(E) .

Example: Suppose we roll a pair of fair dice.

Consider the event E = “the total on the two dice adds up to 5”.

We have E = {(1, 4), (2, 3), (3, 2), (4, 1)}.
Therefore, P(E) = 4

36 and P(E ′) = 32
36 .

So the odds in favor of the roll coming up 5 are 4
32 = 1

8 .

This is often read as “1 to 8”.

Given the odds, we can recover the probabilities:

If the odds in favor of E are x
y
, then P(E) = x

x+y
and P(E ′) = y

x+y
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 75 / 145

Analysis Techniques Discrete Probability

Conditional Probability

If A and B are events in a sample space and P(B) 6= 0, then the
conditional probability of A given B is denoted by P(A|B) and
defined by

P(A|B) =
P(A ∩ B)

P(B)
.

Example: Consider the experiment of flipping two fair coins.
(a) Find the probability of the two flips giving a different outcome.
(b) What is the conditional probability that the two flips give different

outcomes given that at least one came up tails?

(a) Let E = “flips different”. Then E = {(H,T), (T ,H)}. So
P(E) = 2

4 = 1
2 .

(b) Let F = “at least one tails”.

Then F = {(H,T), (T ,H), (T ,T)}.
Moreover E ∩ F = {(H,T), (T ,H)}.
So we get P(E |F) = P(E∩F)

P(F) = 2/4
3/4 = 2

3 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 76 / 145

Analysis Techniques Discrete Probability

The Product Rule for the Intersection

The Product Rule
Given two events A and B in a sample space, with P(B) 6= 0,

P(A ∩ B) = P(A|B)P(B).
Example: An ad on a web site is read by 20% of the visitors.

Moreover, if the ad is read, then the probability that the reader buys
the product advertised is 0.005.

What is the probability that a visitor to the website will read the ad
and buy the product?

We set
A = “read the ad”;
B = “buy the product”.

We know that P(A) = 0.20 and P(B |A) = 0.005.

We want to find the probability P(A ∩ B):

P(A ∩ B) = P(A)P(B |A) = (0.20)(0.005) = 0.001.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 77 / 145

Analysis Techniques Discrete Probability

Bayes’ Theorem

A priori probability is a probability of an event happening in the
future given past experience.

A posteriori probability is the probability of an even having
happened given new, after-the-fact, information.

Bayes’ Formula
Suppose a sample space S is partitioned into mutual exclusive events
H1, . . . ,Hn. Let E be another event such that P(E) 6= 0.
Then, for all i = 1, . . . , n, we have

P(Hi |E) =
P(Hi ∩ E)

P(H1 ∩ E) + · · ·+ P(Hn ∩ E)

=
P(Hi)P(E |Hi)

P(H1)P(E |H1) + · · ·+ P(Hn)P(E |Hn)
.

P(Hi) is the a priori probability of Hi .

P(Hi |E) is the a posteriori probability of Hi given E .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 78 / 145

Analysis Techniques Discrete Probability

Example

Suppose a sports team wins 75% of the games it plays in good
weather, but only 50% of the games it plays in bad weather.

The historic weather pattern for September has good weather 2
3 of

the time and bad weather the rest of the time.

If we read in the paper that the team has won a game on September
12, what is the probability that the weather was bad on that day?

We set G and B the events of the weather being good and being bad,
respectively, and W the event that the team wins.

The we know P(G) = 2
3 ,P(B) = 1

3 ,P(W |G) = 3
4 ,P(W |B) = 1

2 .

Therefore, we can compute the a posteriori probability:

P(B |W) = P(B)P(W |B)
P(G)P(W |G)+P(B)P(W |B)

=
1
3
· 1
2

2
3
· 3
4
+ 1

3
· 1
2

=
1
6

1
2
+ 1

6

= 1
4 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 79 / 145

Analysis Techniques Discrete Probability

Example

Suppose the input data set for a program may be any of two types.

One makes up 60% of the data and the other makes up 40%.

Suppose further that inputs from the two types cause warning
messages 15% of the time and 20% of the time, respectively.

If a random warning message is received, what are the chances that it
was caused by an input of the second type?

Set T1 and T2 be the events that the data are of type 1 and type 2,
respectively and W be the event that a warning message occurs.

Then we know
P(T1) =

3
5 ,P(T2) =

2
5 ,P(W |T1) =

3
20 ,P(W |T2) =

1
5 .

Therefore, we have

P(T2|W) = P(T2)P(W |T2)
P(T1)P(W |T1)+P(T2)P(W |T2)

=
2
5
· 1
5

3
5
· 3
20
+ 2

5
· 1
5

=
2
25

9
100

+ 2
25

= 8
17 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 80 / 145

Analysis Techniques Discrete Probability

Independent Events

Two events A and B are independent if

P(A ∩ B) = P(A)P(B).

Recall by the product rule P(A ∩ B) = P(A)P(B |A) = P(B)P(A|B).

Therefore, if A and B are independent, we also get

P(B |A) = P(B) and P(A|B) = P(A).

Example: Consider the experiment of flipping two fair coins.

Show that the events A =“first coin heads” and B =“coins come up
different” are independent.

We have
A = {(H,H), (H,T)};
B = {(H,T), (T ,H)};

A ∩ B = {(H,T)}.
Therefore

P(A ∩ B) =
1

4
=

1

2
· 1
2
= P(A)P(B).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 81 / 145

Analysis Techniques Discrete Probability

Binomial Distribution

Suppose an experiment has two outcomes, “success” with probability
p and “failure” with probability 1− p.

The experiment is repeated n times, each repetition called a trial.

We assume that the trials are independent.

The probability of getting k successes in n independent trials is

b(n, k) =

(

n

k

)

pk(1− p)n−k , 0 ≤ k ≤ n.

The set of these probabilities is called the binomial distribution.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 82 / 145

Analysis Techniques Discrete Probability

Example

A golfer wins 60% of the tournaments that he enters.

What is the probability that the golfer will win exactly five of the next
seven tournaments?

We ask for the probability of 5 successes in a series of 7 independent
trials, with probability of success p = 3

5 .

So we have

b(7, 5) =

(

7

5

)(

3

5

)5 (2

5

)2

.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 83 / 145

Analysis Techniques Discrete Probability

Conditional Independence

Two events A and B are conditionally independent given the

event C if
P(A ∩ B |C) = P(A|C)P(B |C).

If P(A ∩ C) 6= 0 and P(B ∩ C) 6= 0, then conditional independence of
A and B given C may be equivalently expressed by

P(A|B ∩ C) = P(A|C) or P(B |A ∩ C) = P(B |C).

We show the equivalence of the definition with the first condition:

Let P(A ∩ B |C) = P(A|C)P(B |C).

P(A|B ∩ C) = P(A∩B∩C)
P(B∩C)

= P(A∩B|C)P(C)
P(B∩C)

= P(A|C)P(B|C)P(C)
P(B∩C)

= P(A|C)P(B∩C)
P(B∩C)

= P(A|C).

Let P(A|B ∩ C) = P(A|C).

P(A ∩ B |C) = P(A∩B∩C)
P(C)

= P(A|B∩C)P(B∩C)
P(C)

= P(A|C)P(B∩C)
P(C)

= P(A|C)P(B|C)P(C)
P(C)

= P(A|C)P(B |C).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 84 / 145

Analysis Techniques Discrete Probability

Example

Consider the experiment of:
1. Selecting one die from a pair of two dice with:

one die fair;
one die loaded, so that it always comes up 3.

2. Rolling the selected die twice.

Consider the three events: A = “the first roll is 3”, B =“the second
roll is 3”, C =“the selected die is fair”.

(a) Are the events A and B independent given C?

P(A|C) = 1
6 ;

P(B |C) = 1
6 ;

P(A ∩ B |C) = 1
36 .

So we have P(A ∩ B |C) = P(A|C)P(B |C).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 85 / 145

Analysis Techniques Discrete Probability

Example (Cont’d)

(b) Are the events A and B independent?

We have

P(A) = P(A ∩ C) + P(A ∩ C ′)
= P(A|C)P(C) + P(A|C ′)P(C ′)
= 1

6 · 1
2 + 1 · 1

2 = 1
12 +

1
2 = 7

12 ;
P(B) = P(B ∩ C) + P(B ∩ C ′)

= P(B |C)P(C) + P(B |C ′)P(C ′)
= 1

6 · 1
2 + 1 · 1

2 = 7
12 ;

P(A ∩ B) = P(A ∩ B ∩ C) + P(A ∩ B ∩ C ′)
= P(A ∩ B |C)P(C) + P(A ∩ B |C ′)P(C ′)
= 1

36 · 1
2 + 1 · 1

2 = 1
72 + 36

72 = 37
72 .

Thus, P(A ∩ B) 6= P(A)P(B).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 86 / 145

Analysis Techniques Discrete Probability

Random Variables

Consider an experiment with sample space S = {s1, . . . , sn}.
A random variable is a function X : S → V .
To calculate the probability that the random variable takes a value
x ∈ V , we add the probabilities of all outcomes that X maps to x :

P(X = x) =
∑

i :X (si)=x

P(si).

Example: Consider the experiment of tossing a fair coin three times.
Let X =“number of heads that occur”.
Then we have

s X (s)

HHH 3
HHT ,HTH,THH 2
HTT ,THT ,TTH 1

TTT 0

Therefore, e.g., P(X = 2) = P({HHT ,HTH,THH}) = 3
8 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 87 / 145

Analysis Techniques Discrete Probability

Expectation

Let S = {s1, s2, . . . , sn} be a sample space.

Consider a random variable X : S → V .
The expected value or expectation of X is

E (X) =
∑

s∈S
X (s)P(s).

or E (X) = X (s1)P(s1) + X (s2)P(s2) + · · ·+ X (sn)P(sn).

It turns out that this is the same as:

E (X) =
∑

x∈V
xP(X = x).

Example: In the experiment of tossing three fair coins, with random
variable X =“number of heads occurring”, find E (X).

E (X) = 0 · P(X = 0) + 1 · P(X = 1)
+ 2 · P(X = 2) + 3 · P(X = 3)

= 1 · 3
8 + 2 · 3

8 + 3 · 1
8 = 12

8 = 3
2 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 88 / 145

Analysis Techniques Discrete Probability

Example

Consider the experiment of flipping a single coin.

If the coin comes up heads, we agree to pay 4 dollars;
If it comes up tails, we agree to accept 5 dollars.

Find the expected winnings if:

(a) the coin is fair.
(b) the coin is biased, with p(H) = 2

5 and p(T) = 3
5 .

The sample space is S = {H,T}.
We construct a random variable X : S → R (reflecting the winnings),
with X (H) = − 4 and X (T) = 5.

Then we have the following:

(a) E (X) = X (H)P(H) + X (T)P(T) = (−4) 12 + 5 1
2 = − 4

2 +
5
2 = 1

2 ;

(b) E (X) = X (H)P(H) + X (T)P(T) = (−4) 25 + 5 3
5 = − 8

5 +
15
5 = 7

5 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 89 / 145

Analysis Techniques Discrete Probability

Average Performance of an Algorithm

Consider an algorithm A solving a certain problem.

Let S = {I1, I2, . . . , Ik} be a sample space consisting of the set of all
possible inputs of size n.

Define a probability distribution P : S → [0, 1] on S representing our
estimate of how likely it is for each of the inputs of size n to occur.

Let X : S → R be a random variable giving the number of operations
required by A on each input of size n.

Based on the preceding, compute the average number of operations
to execute A, or average performance of A, as a function of input
size n by calculating the following expectation:

AvgA(n) =
k
∑

i=1

X (Ii)P(Ii).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 90 / 145

Analysis Techniques Discrete Probability

Optimality in the Average Case

Let A an algorithm solving a given problem.

Specify a sample space Sn of inputs of size n, for all n.

Specify a probability distribution Pn : In → [0, 1], for all n.

We say that algorithm A is optimal in the average case for the
problem, if

AvgA(n) ≤ AvgB(n)

for all n > 0 and for all algorithms B that solve the same problem.

Finding lower bounds for the average case is difficult, as or more so
than finding lower bounds for the worst case.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 91 / 145

Analysis Techniques Discrete Probability

Sequential Search

Consider the problem of searching for an element k in an array L,
indexed from 1 to n.

Consider the following algorithm A for this problem, which returns the
index of the rightmost occurrence of k , if k is in L and returns 0 if k
is not in L:

i:= n;
while i ≥ 1 and k 6= L[i]

i:= i-1

We count the average number of comparisons k 6= L[i] performed by
the algorithm.

Let Ii be the input case where the rightmost occurrence of k is at the
ith position of L.

Let In+1 be the case in which k is not in L.

The sample space is the set {I1, I2, . . . , In+1}.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 92 / 145

Analysis Techniques Discrete Probability

Sequential Search (Cont’d)

Let X (I) denote the number of comparisons made by the algorithm
when the input has the form I .

Looking at the algorithm, we obtain the following values:

X (Ii) = n − i + 1, for 1 ≤ i ≤ n;
X (In+1) = n.

Suppose we let q be the probability that k is in L.

Thus 1− q is the probability that k is not in L.

We also assume that whenever k is in L, its position is random.

This gives us the following probability distribution p over the sample
space:

P(Ii) = q
n
, for 1 ≤ i ≤ n;

P(In+1) = 1− q.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 93 / 145

Analysis Techniques Discrete Probability

Sequential Search (Cont’d)

The expected number of comparisons made by the algorithm for this
probability distribution is given by the expected value of X :

AvgA(n) = X (I1)P(I1) + · · ·+ X (In+1)P(In+1)
= q

n
(n + (n − 1) + · · ·+ 1) + (1− q)n

= q n+1
2 + (1− q)n.

If we know that k is in L, then q = 1.

So the expectation is n+1
2 comparisons.

If we know that k is not in L, then q = 0.

The expectation is n comparisons.

If k is in L and it occurs at the first position, then the algorithm takes
n comparisons.

It follows that the worst case occurs for the two input cases In+1 and
I1, and we have WA(n) = n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 94 / 145

Analysis Techniques Discrete Probability

Functions of Random Variables

When a random variable X takes the value xi , then any expression
f (X) takes the value f (xi).

So, we have
E (f (X)) =

∑

i

f (xi)P(X = xi).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 95 / 145

Analysis Techniques Discrete Probability

Joint Probability Distribution

Suppose X and Y are two random variables for an experiment.

Suppose X takes on values of the form xi with probability pi and Y

takes on values of the form yj with probability qj .

For each pair (xi , yj) we have the joint probability

p(xi , yj) = P(X = xi and Y = yj).

With this definition it can be shown using properties of probability
that

pi =
∑

j

p(xi , yj) and qj =
∑

i

p(xi , yj).

If X and Y take values xi and yj , then any expression g(x , y) takes
the value g(xi , yj).

So, we also have

E (g(X ,Y)) =
∑

i ,j

g(xi , yj)p(xi , yj).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 96 / 145

Analysis Techniques Discrete Probability

Linearity of Expectation

(a) If c and d are constants, then E (cX + d) = cE (X) + d .

We have

E (cX + d) =
∑

i(cxi + d)pi =
∑

i(cxipi + dpi)
= c

∑

i xipi + d
∑

i pi = cE (X) + d · 1
= cE (X) + d .

(b) E (X + Y) = E (X) + E (Y).

We have

E (X + Y) =
∑

i ,j(xi + yj)p(xi , yj)

=
∑

i ,j xip(xi , yj) +
∑

i ,j yjp(xi , yj)

=
∑

i xi
∑

j p(xi , yj) +
∑

j yj
∑

i p(xi , yj)

=
∑

i xipi +
∑

j yjpj = E (X) + E (Y).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 97 / 145

Analysis Techniques Discrete Probability

Example

A fair die is rolled twice.

Find the expected value of the sum of the two numbers occurring.

Suppose X =“outcome of a single roll”.

Then

E (X) =

6
∑

i=1

iP(X = i) = 1 · 1
6
+ 2 · 1

6
+ · · ·+ 6 · 1

6
= 21 · 1

6
=

7

2
.

Thus, we get

E (X + X) = E (X) + E (X) =
7

2
+

7

2
= 7.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 98 / 145

Analysis Techniques Discrete Probability

Example

A fair die is rolled twice in a game of chance.
For the first roll the payout is $24 if the number of dots on top is 3 or 5.
Otherwise, the loss is $6.
For the second roll the payout is $30 if the number of dots on top is 6.
Otherwise the loss is $12.

What is the expected value of winnings in this game?

For the first roll let X take on the values 24, −6 with probabilities 1
3 ,

2
3 .

Then E (X) = 24 · 1
3 − 6 · 2

3 = 4.

For the second roll let Y take on the values 30,−12 with probabilities
1
6 ,

5
6 .

Then E (Y) = 30 · 1
6 − 12 · 5

6 = − 5.

So, the expected value of the game is

E (X + Y) = E (X) + E (Y) = 4 + (−5) = −1.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 99 / 145

Analysis Techniques Discrete Probability

Variance

Let X be a random variable with possible values x1, . . . , xn and
probabilities p1, . . . , pn.

The variance of X , which we denote by Var(X), is defined as follows,
where µ = E (X):

Var(X) = (x1 − µ)2p1 + · · ·+ (xn − µ)2pn =

n
∑

i=1

(xi − µ)2pi .

Example: Consider again the coin-flip experiment where the random
variable X is the number of heads that occur when a fair coin is
flipped three times.

X takes on the values 0, 1, 2, 3, with probabilities 1
8 ,

3
8 ,

3
8 ,

1
8 .

We found that µ = E (X) = 3
2 .

Now we compute the variance:

Var(X) = (0− 3
2)

2 · 1
8 + (1− 3

2)
2 · 3

8 + (2− 3
2)

2 · 3
8 + (3− 3

2)
2 · 1

8
= 9

32 +
3
32 + 3

32 + 9
32 = 27

32 .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 100 / 145

Analysis Techniques Discrete Probability

Properties of Variance

(a) If c is a constant, then

Var(c) = 0, Var(cX) = c2Var(X), Var(X + c) = Var(X).

(b) Var(X) = E (X 2)− E (X)2.

We show (b):

Var(X) =
∑n

i=1(xi − µ)2pi
=

∑n
i=1(x

2
i pi − 2xiµpi + µ2pi)

=
∑n

i=1 x
2
i pi − 2µ

∑n
i=1 xipi + µ2

∑n
i=1 pi

= E (X 2)− 2µ2 + µ2(1)
= E (X 2)− µ2 = E (X 2)− E (X)2.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 101 / 145

Analysis Techniques Discrete Probability

Example: Mean and Variance

Consider the experiment of rolling a fair die.

Let X be the value that occurs.

Compute Var(X).

First compute

µ = E (X) =
1

6
(1 + 2 + 3 + 4 + 5 + 6) =

7

2
.

Now we comnpute

E (X 2) =
1

6
(12 + 22 + 32 + 42 + 52 + 62) =

91

6
.

Finally, we get

Var(X) = E (X 2)− E (X)2 =
91

6
− 49

4
=

35

12
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 102 / 145

Analysis Techniques Discrete Probability

Standard Deviation and Properties

The standard deviation of X is the square root of variance and is
denoted by SD(X) and also by the Greek letter “sigma”, σ:

σ = SD(X) = Var(X).

Since σ denotes the standard deviation, we denote the variance by
σ2 = Var(X).

The following properties of standard deviation follow directly from the
fact that it is the square root of variance:

If c is a constant, then

σ(c) = 0, σ(cX) = |c |σ(X), σ(X + c) = σ(X).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 103 / 145

Analysis Techniques Recurrences

Subsection 5

Recurrences

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 104 / 145

Analysis Techniques Recurrences

Recurrence Relations

Any recursively defined function f with domain N that computes
numbers is called a recurrence or a recurrence relation.

When working with recurrences, we often write fn in place of f (n).

Example: The following definition is a recurrence:

f0 = 1
fn = 2fn−1 + n.

Solving a recurrence f means finding an expression for the general
term fn that is not recursive.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 105 / 145

Analysis Techniques Recurrences

Solving by Substitution

Solve the recurrence r0 = 1, rn = 2rn−1 + n by substitution.

We work as follows:

rn = 2rn−1 + n

= 2(2rn−2 + (n − 1)) + n = 22rn−2 + 2(n − 1) + n

= 23rn−3 + 22(n − 2) + 2(n − 1) + n

= 24rn−4 + 23(n − 3) + 22(n − 2) + 2(n − 1) + n
...
= 2nr0 + 2n−11 + 2n−22 + · · ·+ 22(n − 2) + 21(n − 1) + 20n

= 2n +
∑n−1

i=0 2i (n − i)

= 2n + n
∑n−1

i=0 2i −∑n−1
i=0 i2i

= 2n + n(2n − 1)− (2− n2n + (n − 1)2n+1)
= 2n(1 + n + n − 2n + 2)− n − 2
= 3 · 2n − n− 2.

So rn = 3 · 2n − n − 2, for all n ≥ 0.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 106 / 145

Analysis Techniques Recurrences

Solving by Cancelation

Solve the recurrence

r0 = 1, rn = 2rn−1 + n.

We have the following:

rn = 2rn−1 + n

2rn−1 = 22rn−2 + 2(n − 1)
22rn−2 = 23rn−3 + 22(n − 2)

...
2n−1r1 = 2nr0 + 2n−1 · 1

Adding side by side we get

rn = n + 2(n − 1) + 22(n − 2) + · · ·+ 2n−1 · 1 + 2nr0.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 107 / 145

Analysis Techniques Recurrences

The n Ovals Problem

The n Ovals Problem

Suppose that n ovals are drawn on the plane such that no three ovals
meet in a point and each pair of ovals intersects in exactly two points.
How many distinct regions of the plane are created by n ovals?

Let rn be the number of regions created by n ovals.

We have

r1 = 2, r2 = 4, r3 = 8.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 108 / 145

Analysis Techniques Recurrences

The General Recurrence Relation

To find a relation involving rn, consider the following description:

n− 1 ovals divide the plane into rn−1 regions.
The n-th oval will meet each of the previous n − 1 ovals in 2(n − 1)
points.
So the n-th oval will itself be divided into 2(n − 1) arcs.
Each of these 2(n − 1) arcs splits some region in two.
Therefore we add 2(n − 1) regions to rn−1 to obtain rn.

This gives us the following recursive definition for rn, which is called a
recurrence:

rn = rn−1 + 2(n − 1).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 109 / 145

Analysis Techniques Recurrences

Solving Using Substitution

Consider the recurrence r1 = 2, rn = rn−1 + 2(n − 1).

We solve the recurrence using substitution.

rn = rn−1 + 2(n − 1)
= rn−2 + 2(n − 2) + 2(n − 1)
= rn−3 + 2(n − 3) + 2(n − 2) + 2(n − 1)
...
= r1 + 2 · 1 + 2 · 2 + · · ·+ 2(n − 3) + 2(n − 2) + 2(n − 1)
= 2 + 2(1 + 2 + · · ·+ (n − 1))

= 2 + 2n(n−1)
2

= n2 − n + 2.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 110 / 145

Analysis Techniques Recurrences

Solving Using Cancelation

Consider the recurrence r1 = 2, rn = rn−1 + 2(n − 1).

Solve the recurrence using cancelation.

We have
rn = rn−1 + 2(n − 1)

rn−1 = rn−2 + 2(n − 2)
rn−2 = rn−3 + 2(n − 3)

...
r2 = r1 + 2 · 1

So

rn = r1 + 2(1 + 2 + · · · + n− 1) = 2 + 2
n(n − 1)

2
= n2 − n + 2.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 111 / 145

Analysis Techniques Recurrences

Polynomial Multiplication

Suppose that a program computes the value of the polynomial
c0 + c1x + c2x

2 + · · ·+ cnx
n by following the procedure

c0 + c1x + c2x
2 + · · ·+ cnx

n = c0 + x(c1 + c2x + · · ·+ cnx
n−1).

Find a recurrence relation for the number Tn of arithmetic operations
that are involved in such a computation and solve it to find Tn.

First note that T0 = 0 and T1 = 2.
To compute the value of a polynomial of degree n:

We first compute the value of a polynomial of degree n − 1;
Then we perform one multiplication and one addition.

We conclude that the required recurrence is

T0 = 0, Tn = Tn−1 + 2.

Now we have

Tn = Tn−1 + 2 = Tn−2 + 2 + 2
= Tn−3 + 2 + 2 + 2 = · · · = T0 + 2n = 2n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 112 / 145

Analysis Techniques Recurrences

A Divide-and-Conquer Recurrence

Solve the recurrence T (1) = 1, T (n) = 3T (n2) + n, where n = 2k .

We have

T (n) = 3T (n2) + n

= 32T (n4) + 3n
2 + n

= 33T (n8) + 32 n4 + 3n
2 + n

= · · ·
= 3kT (1) + 3k−1 n

2k−1 + · · ·+ 3n
2 + n

= 3k + n((32)
k−1 + · · · + 3

2 + 1)

= 3k + n
(3
2
)k−1
3
2
−1

= 3k + 2n[(32)
k − 1].

For k = log2 n, we get

T (n) = 3log2 n + 2n[(32)
log2 n − 1] = 3log2 n + 2n[3

log2 n

n
− 1]

= nlog2 3 + 2nlog2 3 − 2n = 3nlog2 3 − 2n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 113 / 145

Analysis Techniques Recurrences

Generating Functions

Let a0, a1, a2, . . . , an, . . . be an infinite sequence.

The generating function for this sequence is the expression

A(x) = a0 + a1x + a2x
2 + · · · + anx

n + · · · =
∞
∑

n=0

anx
n.

Expressions of this form are also called formal power series or
infinite polynomials.

Equality of formal power series is defined by

a0 + a1x + a2x
2 + · · · = b0 + b1x + b2x

2 + · · ·

if and only if a0 = b0, a1 = b1, a2 = b2, . . .,

i.e., two formal power series are equal if and only if their
corresponding coefficients are equal.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 114 / 145

Analysis Techniques Recurrences

Operations on Generating Functions

The sum of two power series is defined by

(a0 + a1x + a2x
2 + · · ·) + (b0 + b1x + b2x

2 + · · ·)
= (a0 + b0) + (a1 + b1)x + (a2 + b2)x

2 + · · ·

The product of two power series is defined by

(a0 + a1x + a2x
2 + · · ·)(b0 + b1x + b2x

2 + · · ·)
= a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x

2 + · · ·

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 115 / 145

Analysis Techniques Recurrences

Example: The Geometric Series

Consider the generating function for the infinite sequence 1, 1, . . . , 1.

This is the geometric series:

1 + x + x2 + x3 + · · · =
∞
∑

n=0

xn.

Note that

(1− x)(1 + x + x2 + x3 + · · ·)
= 1 + (1− 1)x + (1− 1)x2 + (1− 1)x3 + · · ·
= 1.

Therefore, its closed form is

∞
∑

n=0

xn =
1

1− x
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 116 / 145

Analysis Techniques Recurrences

Example

(a) Find the generating function for the sequence

−2, 4,−8, 16,−32, . . . , (−2)n+1, . . .

We work as follows:

− 2 + 4x − 8x2 + 16x3 − 32x4 + · · ·
= − 2(1 − 2x + 4x2 − 8x3 + · · ·)
= − 2

∑∞
n=0(−2x)n = − 2 1

1−(−2x) =
−2

1+2x .

(b) Find the sequence an whose generating function is A(x) = 5
3−9x .

We have

A(x) = 5
3−9x = 5

3
1

1−3x

= 5
3

∑∞
n=0(3x)

n

= 5
3 [1 + 3x + 9x2 + 27x3 + · · ·+ 3nxn + · · ·]

Therefore, an = 5
33

n = 5 · 3n−1.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 117 / 145

Analysis Techniques Recurrences

Example: Partial Fraction Decomposition

Find the sequence an whose generating function is A(x) = −x+2
2x2+x−1

.

First factor the denominator: A(x) = −x+2
(2x−1)(x+1) .

Next decompose into partial fractions:

−x+2
(2x−1)(x+1) = A

2x−1 +
B

x+1

− x + 2 = A(x + 1) + B(2x − 1)
− x + 2 = (A+ 2B)x + (A− B)

So we get

{

− 1 = A+ 2B
2 = A− B

}

⇒
{

A = 1
B = − 1

Now we have

A(x) = −x+2
(2x−1)(x+1) =

1
2x−1 − 1

x+1 = − 1
1−2x − 1

1−(−x)

= −∑∞
n=0(2x)

n −∑∞
n=0(−x)n

= −∑∞
n=0 2

nxn −∑∞
n=0(−1)nxn

=
∑∞

n=0(−2n − (−1)n)xn.

So we get an = − 2n − (−1)n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 118 / 145

Analysis Techniques Recurrences

Solving Recurrences: The Generating Function Method

Solve the following recurrence relation:

an = 5an−1 − 6an−2, n ≥ 2, a0 = 0, a1 = 1.

Suppose that A(x) = a0 + a1x + a2x
2 + · · · .

1. Obtain an equation involving A(x) as follows:
∑∞

n=2 anx
n =

∑∞
n=2(5an−1 − 6an−2)x

n

=
∑∞

n=0 5an−1x
n −∑∞

n=2 6an−2x
n

= 5
∑∞

n=2 an−1x
n − 6

∑∞
n=2 an−2x

n.

Note the following:
∑∞

n=2 anx
n = A(x)− a0 − a1x = A(x)− x ;

∑∞
n=2 an−1x

n =
∑∞

n=1 anx
n+1 = x

∑∞
n=1 anx

n

= x(A(x) − a0) = xA(x);
∑∞

n=2 an−2x
n =

∑∞
n=0 anx

n+2 = x2
∑∞

n=0 anx
n = x2A(x).

So we get A(x)− x = 5xA(x) − 6x2A(x).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 119 / 145

Analysis Techniques Recurrences

The Generating Function Method: Step 2

We found that A(x)− x = 5xA(x)− 6x2A(x).

Now we solve for A(x) and attempt to write the solution as an infinite
power series:

A(x) = x
6x2−5x+1

= x
(2x−1)(3x−1) (factor)

= 1
2x−1 − 1

3x−1 (partial fractions)

= − 1
1−2x + 1

1−3x (prepare to expand)

= −∑∞
n=0(2x)

n +
∑∞

n=0(3x)
n (expand)

= −∑∞
n=0 2

nxn +
∑∞

n=0 3
nxn

=
∑∞

n=0(−2n + 3n)xn.

Since A(x) =
∑∞

n=0 anx
n, we conclude that

an = − 2n + 3n, n ≥ 0.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 120 / 145

Analysis Techniques Recurrences

Two More Generating Functions

We have

(a) 1
(1−x)k+1 =

∑

∞

n=0

(

k+n
n

)

xn, k ∈ N;

(b) (1 + x)r =
∑

∞

n=0
r(r−1)···(r−n+1)

n! xn, r ∈ R.

(a) This can be shown using a combinatorial argument:

1
(1−x)k+1 = (1

1−x
)k+1

= (1 + x + x2 + · · ·)k+1

(choose n out of k + 1 objects with replacement)

=
∑∞

n=0

(

n+k
k

)

xn

=
∑∞

n=0

(

n+k
n

)

xn.

(b) This part can be proved using MacLaurin series

(f (x) =
∑∞

n=0
f (n)(0)

n! xn) for the function (1 + x)r .

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 121 / 145

Analysis Techniques Recurrences

Example: Parenthesizing a Sum

Find the number of ways to parenthesize the expression
t1 + t2 + · · · + tn−1 + tn.

Example: Some of those ways for the expression t1 + t2 + t3 + t4 are:

((t1 + t2) + (t3 + t4)), (t1 + (t2 + (t3 + t4))), (t1 + ((t2 + t3) + t4)).

To solve the problem, let bn denote the total number of possible
parenthesizations for an n-term expression.

If 1 ≤ k ≤ n − 1, then we can split the expression into two
subexpressions as follows: t1 + · · ·+ tn−k and tn−k+1 + · · ·+ tn.

So there are bn−kbk ways to parenthesize the entire expression if the
final + is placed between the two subexpressions above.

Letting k range from 1 to k − 1, we obtain the following formula for
bn when n ≥ 2:

bn = bn−1b1 + bn−2b2 + · · ·+ b2bn−2 + b1bn−1.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 122 / 145

Analysis Techniques Recurrences

Example: Parenthesizing a Sum (Cont’d)

If we let b0 = 0 and b1 = 1, the resulting recurrence is

b0 = 0, b1 = 1, bn = bnb0 + bn−1b1 + · · · + b1bn−1 + b0bn, n ≥ 2.

We solve this recurrence using generating functions:

∑∞
n=2 bnx

n =
∑∞

n=2(bnb0 + bn−1b1 + · · ·+ b1bn−1 + b0bn)x
n

B(x)− b0 − b1x = B(x)B(x)− b0b0 − (b0b1 + b1b0)x
B(x)− x = B(x)2

B(x)2 − B(x) + x = 0

Applying the quadratic formula, we get

B(x) =
−b ±

√
b2 − 4ac

2a
=

1±
√
1− 4x

2
.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 123 / 145

Analysis Techniques Recurrences

Example: Parenthesizing a Sum (Cont’d)

We found B(x) = 1±
√
1−4x
2 .

We expand
√
1− 4x = (1− 4x)1/2.

(1− 4x)1/2 = (1 + (−4x))1/2

=
∑∞

n=0

1
2
(1
2
−1)(1

2
−2)···(1

2
−n+1)

n! (−4x)n

= 1 +
∑∞

n=1

1
2
(− 1

2
)(− 3

2
)···(− 2n−3

2
)

n! (−2)n2nxn

= 1 +
∑∞

n=1
(−1)(1)(3)···(2n−3)

n! 2nxn

= 1 +
∑∞

n=1
(−1)1·2·3·4···(2n−3)(2n−2)

n!2·4···(2n−2) 2nxn

= 1 +
∑∞

n=1
(−1)(2n−2)!

n(n−1)!2n−11·2·3···(n−1)
2nxn

= 1 +
∑∞

n=1
(−1)(2n−2)!
n(n−1)!(n−1)! 2x

n

= 1 +
∑∞

n=1(− 2
n
)
(

2n−2
n−1

)

xn.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 124 / 145

Analysis Techniques Recurrences

Example: Parenthesizing a Sum (Cont’d)

Now we have:

B(x) =
1±

√
1− 4x

2
and

(1− 4x)1/2 = 1 +
∞
∑

n=1

(

−2

n

)(

2n − 2

n − 1

)

xn.

So we get that

B(x) = 1
2 − 1

2

√
1− 4x

= 1
2 − 1

2

[

1 +
∑∞

n=1(− 2
n
)
(

2n−2
n−1

)

xn
]

=
∑∞

n=1
1
n

(

2n−2
n−1

)

xn.

We conclude that

bn =

{

0, if n = 0
1
n

(

2n−2
n−1

)

, if n > 0

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 125 / 145

Analysis Techniques Rates of Growth

Subsection 6

Rates of Growth

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 126 / 145

Analysis Techniques Rates of Growth

Big Oh

We say the growth rate of a function f is bounded above by the

growth rate of a function g if there are positive numbers c and m

such that
|f (n)| ≤ c |g(n)|, for n ≥ m.

In this case we write f (n) = O(g(n)) and we say that f (n) is big oh

of g(n).

Example: If 0 ≤ f (n) ≤ g(n) for all n ≥ m for some m, then
f (n) = O(g(n)) because we can let c = 1.

Example: Suppose that f1(n) = O(g(n)) and f2(n) = O(g(n)).

Then there are constants such that |f1(n)| ≤ c1|g(n)| for n ≥ m1, and
|f2(n)| ≤ c2|g(n)| for n ≥ m2.

It follows that, for all n ≥ max {m1,m2},
|f1(n) + f2(n)| ≤ |f1(n)|+ |f2(n)| ≤ (c1 + c2)|g(n)|.

Therefore, f1(n) + f2(n) = O(g(n)).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 127 / 145

Analysis Techniques Rates of Growth

Properties of Big Oh

(a) f (n) = O(f (n)).

(b) If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

(c) If 0 ≤ f (n) ≤ g(n) for all n ≥ m, then f (n) = O(g(n)).

(d) If f (n) = O(g(n)) and a is any real number, then af (n) = O(g(n)).

(e) If f1(n) = O(g(n)) and f2(n) = O(g(n)), then

f1(n) + f2(n) = O(g(n)).

(f) If f1 and f2 have nonnegative values and f1(n) = O(g1(n)) and
f2(n) = O(g2(n)), then

f1(n) + f2(n) = O(g1(n) + g2(n)).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 128 / 145

Analysis Techniques Rates of Growth

Polynomials and Big Oh

If p(n) is a polynomial of degree m or less, then p(n) = O(nm).

Let p(n) = a0 + a1n + · · ·+ amn
m.

If k is an integer such that 0 ≤ k ≤ m, then nk ≤ nm for n ≥ 1.

So by Property (c), we have nk = O(nm).

Now we Property (d) gives akn
k = O(nm).

Finally, Property (e) applied repeatedly to the terms of p(n) yields

p(n) = a0 + a1n+ · · · + amn
m = O(nm).

Example: Suppose we have an algorithm to solve a problem P , whose
worst-case running time is a polynomial of degree m.

Then we can say that an optimal algorithm in the worst case for P , if
one exists, must have a worst-case running time of O(nm).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 129 / 145

Analysis Techniques Rates of Growth

Big Omega

We say the growth rate of f is bounded below by the growth

rate of g if there are positive numbers c and m such that

|f (n)| ≥ c |g(n)| for n ≥ m.

In this case we write f (n) = Ω(g(n)) and we say that f (n) is big

omega of g(n).

The following relationship holds between big omega and big oh:

f (n) = Ω(g(n)) if and only if g(n) = O(f (n)).

Using the constant c for one of the definitions corresponds to using
the constant 1

c
for the other definition.

In other words, we have

|f (n)| ≥ c |g(n)| if and only if |g(n)| ≤ 1

c
|f (n)|.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 130 / 145

Analysis Techniques Rates of Growth

Big Theta

A function f has the same growth rate as g , or f has the same

order as g , if we can find a number m and two positive constants c
and d such that

c |g(n)| ≤ |f (n)| ≤ d |g(n)| for n ≥ m.

In this case we write f (n) = Θ(g(n)) and say that f (n) is big theta

of g(n).

If f (n) = Θ(g(n)) and we also know that g(n) 6= 0 for all n ≥ m,
then we can divide the inequality in the definition by g(n) to obtain

c ≤
∣

∣

∣

∣

f (n)

g(n)

∣

∣

∣

∣

≤ d for n ≥ m.

This inequality gives us a better way to think about “having the same
growth rate”: It says that the ratio of the two functions is always
within a fixed bound beyond some point.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 131 / 145

Analysis Techniques Rates of Growth

Big Theta is an Equivalence Relation

The relation “has the same growth rate as” between functions is an
equivalence relation, i.e., satisfies reflexivity, symmetry and
transitivity:

f (n) = Θ(f (n)).
If f (n) = Θ(g(n)), then g(n) = Θ(f (n)).
If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 132 / 145

Analysis Techniques Rates of Growth

Big Theta and Proportionality

Two functions f and g are proportional if there exists a constant a,
such that

f (n) = ag(n), for all n.

If two functions f and g are proportional, then f (n) = Θ(g(n)).

Indeed, if f (n) = ag(n), we have

|a||g(n)| ≤ |f (n)| ≤ |a||g(n)|, for all n.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 133 / 145

Analysis Techniques Rates of Growth

Example: Logs Over Different Bases

Recall the change-of-base formula for logarithms over bases a > 1 and
b > 1:

loga n =
logb n

logb a
⇒ logb n = (logb a)(loga n).

This shows that log functions with different bases are proportional.

Therefore, we have
loga n = Θ(logb n).

So we can disregard the base of the log function when considering
rates of growth.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 134 / 145

Analysis Techniques Rates of Growth

Example

Show that n2 + n and n2 have the same growth rate.

Since n ≤ n2, for all n, we have

1 · n2 ≤ n2 + n ≤ n2 + n2 = 2 · n2, for all n ≥ 1.

We conclude n2 + n = Θ(n2).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 135 / 145

Analysis Techniques Rates of Growth

Example: Harmonic Numbers

The nth harmonic number Hn was defined as the sum
Hn =

∑n
k=1

1
k
= 1 + 1

2 + 1
3 + · · ·+ 1

n
.

We have the following bounds for Hn:

ln (
n + 1

2
) + 1 ≤ Hn ≤ ln (n) + 1.

Note the following inequalities:
For n ≥ 3:

ln (n) + 1 ≤ ln n + ln n = 2 lnn.

For all n,

ln (
n + 1

2
) + 1 = ln (

n + 1

2
) + ln e = ln (

e

2
(n + 1)) ≥ ln (n + 1) > ln n.

So for n > 3, ln n < Hn < 2 ln n.

Therefore, Hn = Θ(ln n) = Θ(log n) since all logarithms have the
same rate of growth.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 136 / 145

Analysis Techniques Rates of Growth

A Limit Test

To show that two functions have the same growth rate we may use
the following test:

If limn→∞

f (n)
g(n) = c , where c 6= 0 and c 6= ∞, then f (n) = Θ(g(n)).

Example: Show that if p(n) is a polynomial of degree m, then
p(n) = Θ(nm).

Let p(n) = a0 + a1n + · · ·+ amn
m.

Then we have the following limit:

limn→∞
p(n)
nm

= limn→∞
a0+a1n+···+amn

m

nm

= limn→∞ (a0
nm

+ a1
nm−1 +

a2
nm−2 + · · ·+ am

1)

= am.

Since p(n) has degree m, am 6= 0.

So by the limit test we have p(n) = Θ(nm).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 137 / 145

Analysis Techniques Rates of Growth

Remark on the Limit Test

The limit is not a necessary condition for f (n) = Θ(g(n)).

Example: Consider the functions f (n) and g(n), defined by

f (n) = if n is odd then 2 else 4;
g(n) = 2.

Note that
f (n)

g(n)
=

{

1, if n is odd
2, otherwise

Therefore, the limit limn→∞
f (n)
g(n) does not exist.

On the other hand, for all n,

g(n) ≤ f (n) ≤ 2g(n).

So, we do have f (n) = Θ(g(n)).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 138 / 145

Analysis Techniques Rates of Growth

Rate of Growth of Finite Sums

We have the following rates of growth:
∑n

k=1 k = Θ(n2);
∑n

k=1 k
2 = Θ(n3);

∑n

k=0 a
k = Θ(an+1), a 6= 1.

∑n

k=1 ka
k = Θ(nan+1), a 6= 1.

More generally we have, for any r 6= −1,

∞
∑

k=1

k r = Θ(nr+1).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 139 / 145

Analysis Techniques Rates of Growth

Example

Show that log (n!) = Θ(n log n).

log (n!) = log n+ log (n − 1) + · · · + log 1
≤ log n+ log n + · · ·+ log n
= n log n;

log (n!) = log n+ log (n − 1) + · · · + log 1
≥ log n+ log (n − 1) + · · · + log ⌈n2⌉
≥ log ⌈n2⌉+ log ⌈n2⌉+ · · · + log ⌈n2⌉
= ⌈n2⌉ log ⌈n2⌉
≥ n

2 log (
n
2).

We conclude n
2 log (

n
2) ≤ log (n!) ≤ n log n.

But one can also show that 1
2 log n < log (n2), for all n > 4.

So we get

1

2
· n log n ≤ log (n!) ≤ 1 · n log n, for all n > 4.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 140 / 145

Analysis Techniques Rates of Growth

Little Oh

A function f has a lower growth rate than g or f has lower order
than g if

lim
n→∞

f (n)

g(n)
= 0.

In this case we write f (n) = o(g(n)) and say that f is little oh of g .

Example: Show that n = o(n2).

We have

lim
n→∞

n

n2
= lim

n→∞
1

n
= 0.

Example: Show that if a, b > 0, such that a < b, then an = o(bn).

We have

lim
n→∞

an

bn
= lim

n→∞
(
a

b
)n

0< a
b
<1

= 0.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 141 / 145

Analysis Techniques Rates of Growth

Little Oh and L’Hôpital’s Rule

The evaluation of limits can often be accomplished by using
L’Hôpital’s rule:

If limn→∞ f (n) = limn→∞ g(n) = ∞ or
limn→∞ f (n) = limn→∞ g(n) = 0 and f and g are differentiate beyond

some point, then limn→∞

f (n)
g(n) = limn→∞

f ′(n)
g ′(n) .

Example: Show that log n = o(n).

We have limn→∞ log n = limn→∞ n = ∞.

Therefore, by L’Hôpital’s Rule:

lim
n→∞

log n

n
= lim

n→∞

1
n ln 10

1
= lim

n→∞
1

n ln 10
= 0.

So log n = o(n).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 142 / 145

Analysis Techniques Rates of Growth

Hierarchy of Growth Rates

We write f (n) ≺ g(n) to mean that f (n) = o(g(n)).

A hierarchy of some familiar functions according to their growth rates:

1 ≺ log n ≺ n ≺ n log n ≺ n2 ≺ n3 ≺ 2n ≺ 3n ≺ n! ≺ nn.

This hierarchy helps in comparing different algorithms.

Example: We would certainly choose an algorithm with running time
Θ(log n) over an algorithm with running time Θ(n).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 143 / 145

Analysis Techniques Rates of Growth

Using the Symbols in Arithmetic Expressions

The four symbols O,Ω,Θ and o can also be used to represent terms
within an expression.

Example: The equation

h(n) = 4n3 + O(n2)

means that h(n) equals 4n3 plus a term of order at most n2.

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 144 / 145

Analysis Techniques Rates of Growth

Using the Symbols to Represent Sets of Functions

The four symbols O,Ω,Θ and o can be formally defined to represent
sets of functions:

O(g) The set of functions of order bounded above by that of g
Ω(g) The set of functions of order bounded below by that of g
Θ(g) The set of functions with the same order as g
o(g) The set of functions with lower order than g

Now f (n) ∈ O(g(n)) means that f (n) = O(g(n)).

We may also express set theoretic relations, such as:

O(g(n)) ⊇ Θ(g(n)) ∪ o(g(n));
Θ(g(n)) = O(g(n)) ∩Ω(g(n)).

George Voutsadakis (LSSU) Discrete Structures for Computer Science August 2018 145 / 145

	Analysis Techniques
	Analysis of Algorithms
	Summations and Closed Forms
	Permutations and Combinations
	Discrete Probability
	Recurrences
	Rates of Growth

