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Locally Convex Spaces Preliminary Concepts

Vector Spaces

Denote by R and C the fields of real and complex numbers.

We use Φ to denote either of these two fields.

A linear space, or a vector space, over Φ is a nonempty set X on
which two operations, addition and scalar multiplication, are
defined such that:
(a) X is an abelian group under addition, i.e., to every pair x ,y ∈X , the

sum x +y is also in X , and we have for all x ,y ,z ∈X :

(i) x +y = y +x ;
(ii) x +(y +z)+(x +y)+z ;
(iii) There is a zero element 0 ∈X , such that x +0= x , for all x ;
(iv) For each x ∈X , there is an element −x ∈X , such that x +(−x)= 0.

(b) For every pair a,x with a ∈Φ and x ∈X , the scalar product a ·x is an
element in X , and we have for all a,b ∈Φ and x ,y ∈X :

(i) 1 ·x = x ;
(ii) a ·(b ·x)= (a ·b) ·x ;
(iii) a ·(x +y)= a ·x +a ·y ;
(iv) (a+b) ·x = a ·x +b ·x .
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Locally Convex Spaces Preliminary Concepts

Properties and Notation

The zero element is unique.

Every x ∈X has a unique additive inverse −x .

0 ·x = 0 and (−1) ·x =−x , for every x ∈X .

a ·0= 0, for every a ∈Φ.

The same symbol 0 is used to denote the zeros of both Φ and X .

The dot symbol for the product is usually dropped.
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Locally Convex Spaces Preliminary Concepts

Linear Independence, Basis and Dimension

The elements of a vector space X are called vectors.

The vectors x1, . . . ,xn are linearly independent if the equation
a1x1+·· ·+anxn = 0, with ak ∈Φ, implies ak = 0, for all k .

Otherwise, they are linearly dependent.

The set {x1, . . . ,xn} of vectors in X is said to span the space X if any
x ∈X can be represented by a linear combination of the form
x = a1x1+·· ·+anxn, where ak ∈Φ.

Any (finite) set of linearly independent vectors {x1, . . . ,xn} which spans
X is called a basis of X .

The dimension of X is then n, the number of elements in its basis.

If no such basis exists, X is said to be infinite dimensional.

In a linear space X with basis {x1, . . . ,xn}, any vector x ∈X has a
unique representation of the form x = a1x1+·· ·+anxn, in the sense
that the scalar coefficients ak are uniquely determined by x .
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Locally Convex Spaces Preliminary Concepts

Subspaces

A nonempty subset M of a linear space X is called a (linear)
subspace of X if whenever x ,y ∈M and a ∈Φ,

x +y ∈M and ax ∈M .

In that case M is a linear space in its own right.

{0} is a subspace of every linear space.

With x ∈X ,λ ∈Φ and A⊆X , we use the notation

x +A= {x +y : y ∈A}, λA= {λy : y ∈A}.

The “sum” A+B of two subsets of X denotes the set
{x +y : x ∈A,y ∈B};

The “difference” A−B will be used to denote the set {x ∈A : x 6∈B},
for any pair of sets A and B , i.e., the complement of B in A.
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Locally Convex Spaces Preliminary Concepts

Subsets of a Vector Space

We define three types of subsets of the linear space X :

(1) E ⊆X is convex if, whenever x ,y ∈E and 0≤λ≤ 1, then

λx + (1−λ)y ∈E .

Thus, a convex set contains the “line segment” joining x and y

whenever it contains x and y .
(2) E ⊆X is balanced if, whenever x ∈E and |λ| ≤ 1, then λx ∈E .

By choosing λ= 0, we see that every balanced set in X contains 0.
(3) E ⊆X is absorbing if for every x ∈X , there is a λ> 0, such that x ∈λE .

Here again it is obvious that 0 is contained in every absorbing set.
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Locally Convex Spaces Preliminary Concepts

n-Dimensional Euclidean Space

The set Rn whose elements are the n-tuples (x1, . . . ,xn), with xk ∈R,
1≤ k ≤ n, is an n-dimensional linear space over R under the operations

(x1, . . . ,xn)+ (y1, . . . ,yn) = (x1+y1, . . . ,xn+yn)
a(x1, . . . ,xn) = (ax1, . . . ,axn).

If we define the distance between any two vectors (points)
x = (x1, . . . ,xn) and y = (y1, . . . ,yn) in Rn by

|x −y | =

[

n
∑

k=1

(xk −yk)
2

]1/2

,

then Rn is called n-dimensional Euclidean space.

In this space the set of points x , such that |x | ≤ r , for some positive
number r , defines a ball of radius r and center 0.

Such balls are convex, balanced and absorbing.
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Locally Convex Spaces Preliminary Concepts

Topological Spaces

A topological space is a nonempty set X in which a collection τ of
subsets is defined, such that:

τ contains X and the empty set ;;
The intersection of any pair in τ is in τ;
The union of any collection in τ is in τ.

The members of τ are known as open sets.

τ is said to define a topology on X .

Since different topologies may be defined on the same set X , the
topological space should properly be denoted by the pair (X ,τ), but
we shall often use only X to denote the topological space.
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Locally Convex Spaces Preliminary Concepts

Standard Terminology for Topological Spaces

Let (X ,τ) be a topological space.

(1) A neighborhood of x ∈X is any subset of X which contains an open
set containing x .

(2) (X ,τ) is a Hausdorff space if distinct points of X have disjoint
neighborhoods.

(3) Let τ and σ be two topologies on X .

We say that τ is stronger (finer) than σ, or that σ is weaker

(coarser) than τ, if σ⊆ τ, i.e., if every open set in (X ,σ) is open in
(X ,τ).

(4) A collection σ⊆ τ of open sets is a base for τ if every member of τ is
a union of sets of σ.
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Locally Convex Spaces Preliminary Concepts

Terminology on Topological Spaces II

(5) The product topology on X ×Y , where Y is another topological
space, is the topology which has as a base the collection of all sets of
the form U ×V , where U is an open set in X and V is an open set in
Y .

(6) A collection σ of neighborhoods of x ∈X is a local base at x if every
neighborhood of x contains a member of σ.

(7) A sequence (xn : n ∈N) in the topological space X converges to a
limit x ∈X , written limxn = x or xn → x , if every neighborhood of x
contains all but finitely many elements of the sequence.

A weaker requirement is to have an element of (xn), different from x ,
in every neighborhood of x , in which case x is called a cluster point

of (xn).

In a Hausdorff space the limit of a sequence, if it exists, is unique.
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Locally Convex Spaces Preliminary Concepts

Terminology on Topological Spaces III

(8) The interior of a set E ⊆X is the union of all open subsets of E .

It is denoted by E ◦ and is clearly an open set.

(9) A subset E of X is closed if its complement in X , E c =X −E is open.

The closure of E ⊆X is the intersection of all closed sets which
contain E .

The closure of E , denoted by E , is always closed.

By De Morgan’s law, its complement is the union of open subsets of
E c , and is therefore open.

We have
(E )c = (

⋂

{F :E ⊆F ,F closed})c

=
⋃

{G :G ⊆E c ,G open}

= (E c)◦.
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Locally Convex Spaces Preliminary Concepts

Terminology on Topological Spaces IV

(10) A subset E of X is dense in X if E =X .

Even when E is not a subset of X , we still say that E is dense in X if
E ∩X is dense in X .

(11) The boundary of E ⊆X is the set ∂E =E −E ◦.

It is closed since it is the intersection of the closed sets E and (E ◦)c .

(12) E ⊆X is compact if every collection of open sets of X whose union
contains E has a finite subcollection whose union contains E .

(13) If E ⊆X and σ is the collection of sets E ∩U , where U runs through
the open sets in τ, then σ is a topology on E .

With this inherited topology any subset of X becomes a topological
space in its own right.

This topology is also referred to as the subspace topology of E in X .
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Locally Convex Spaces Preliminary Concepts

Mappings I

Consider a mapping, or a map, from a nonempty set X to a
nonempty set Y , written T :X →Y .
When Y =Φ, the mapping T is usually referred to as a function from
X to Y .
(i) The image of any x ∈X is denoted by T (x) ∈Y .

If A⊆X , the set T (A)= {T (x) : x ∈A} ⊆Y is the image, under T , of A.
If B ⊆Y , the set T−1(B)= {x ∈X :T (x) ∈B} ⊆X is the preimage,
under T , of B.
T is injective (or one-to-one) if T (x1)=T (x2) implies x1 = x2, for
any pair x1,x2 ∈X .
T is surjective (or onto) if T (X )=Y .
When T is both injective and surjective it is called bijective.
In this case, the inverse mapping T−1 :Y →X is defined by

T−1(y)= x if and only if T (x)= y .

A bijective map from X to Y is also referred to as a bijection or a
one-to-one correspondence from X to Y .
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Locally Convex Spaces Preliminary Concepts

Linear Maps

(ii) If X and Y are linear spaces over Φ, then T is linear if

T (ax +by)= aT (x)+bT (y),

for every a,b ∈Φ and x ,y ∈X .

When T is linear it follows that:

T (0)= 0;
T (A) is a subspace of Y whenever A is a subspace of X ;
T−1(B) is a subspace of X whenever B is a subspace of Y .

In particular the subspace T−1({0})⊆X is called the null space (or
the kernel) of T and is denoted by N(T )= {x ∈X :T (x)= 0}.

When X is a linear space over Φ and Y =Φ the linear function T is
called a linear functional.
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Locally Convex Spaces Preliminary Concepts

Continuous Maps

(iii) If X and Y are topological spaces, then T is continuous at x ∈X if,
for every neighborhood V of T (x), the set T−1(V ) is a neighborhood
of x .

T is continuous on X , or simply continuous, if it is continuous at
every point in X .

Equivalently, T is continuous on X if and only if T−1(V ) is an open
set in X whenever V is an open set in Y .

By taking complements, T is continuous if and only if T−1(V ) is a
closed subset of X whenever V is a closed subset of Y .

Consequently, if E ⊆X , then the identity mapping from E into X is
continuous on E provided the topology of E is either the topology
inherited from X or a stronger topology.
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Locally Convex Spaces Preliminary Concepts

Homeomorphisms and Embeddings

A homeomorphism from X to E is a continuous bijection from X to
E whose inverse is continuous.

Thus, when there is a homeomorphism from X to Y , the image of an
open set in X is an open set in Y , and the inverse image of an open
set in Y is an open set in X .

The topologies on X and Y are therefore in a one-to-one
correspondence, and the two spaces are said to be homeomorphic.

(iv) If X and Y are topological spaces and T :X →Y is an injective
continuous mapping, then the mapping S :X →Z =T (X ), defined by
S(x)=T (x), for all x ∈X , is clearly bijective.
If S is a homeomorphism from X to Z , T is called a (topological)
embedding of X in Y .

When X ⊆Y the identity mapping from X to Y is always an embedding
whenever the topology of X coincides with its subspace topology in Y .
If X carries a stronger topology then we merely have a continuous
injection of X into Y .

George Voutsadakis (LSSU) Theory of Distributions January 2024 18 / 67



Locally Convex Spaces Preliminary Concepts

Metric Spaces

A metric space X is a topological space in which the topology is
generated by a metric, or distance, function d :X ×X →R satisfying:

(i) 0≤ d(x ,y)<∞;
(ii) d(x ,y)= 0 if and only if x = y ;
(iii) d(x ,y)= d(y ,x);
(iv) d(x ,y)= d(x ,z)+d(z ,y), for all x ,y ,z ∈X .

For any x ∈X and r > 0, the set B(x ,r)= {y ∈X : d(x ,y)< r } is called
an open ball with center at x and radius r .

By defining a subset of X to be open if and only if it is a (possibly
empty) union of open balls, the axioms of open sets are satisfied and
X becomes a topological space.

Every metric space is Hausdorff.

For any distinct pair x ,y ∈X , the open balls B(x ,r) and B(y ,r) are
disjoint if r < 1

2
d(x ,y).
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Locally Convex Spaces Preliminary Concepts

Sequences in Metric Spaces

Every point of a metric space has a countable base of neighborhoods.

One such choice is
{

B
(

x ,
1
n

)

: n ∈N
}

.

Using this property it can be shown that if f maps the metric space X

into the topological space Y , then f is continuous at x ∈X if and only
if, for every sequence (xn) in X which converges to x , the sequence
(f (xn)) converges to f (x) in Y .

If E is a subset of X and x is a cluster point of E , then there is a
sequence in E which converges to x .

The set of cluster points of E is contained in its closure E .

E will be dense in X if every x ∈X is the limit of a sequence (xn) in E .
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Locally Convex Spaces Preliminary Concepts

Cauchy Sequences and Complete Metric Spaces

In a metric space X the sequence (xn) is called a Cauchy sequence

if, for every ε> 0, there is a positive integer N, such that

d(xn,xm)< ε, for all n ≥N and m≥N.

X is said to be (sequentially) complete if every Cauchy sequence in
X converges to a point in X .
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Locally Convex Spaces Preliminary Concepts

Metrizable Spaces and Isometries

Not every topological space (X ,τ) is a metric space because it is not
always possible to define a metric on X , with the above properties,
which will generate the topology τ.

When this is possible, we say that the topological space is metrizable,
and that its topology can be induced or generated by a metric.

A homeomorphism h from a metric space (X ,d1) to another (Y ,d2) is
called an isometry if it preserves distances, in the sense that

d2(h(x1),h(x2))= d1(x1,x2), for all x1,x2 ∈X .

Two metrics d1 and d2 on the same set X are said to be equivalent if
the identity map from (X ,d1) onto (X ,d2) is a homeomorphism.

This is equivalent to saying that a set is open with respect to one
metric whenever it is open with respect to the other.
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Locally Convex Spaces Topological Vector Spaces

Subsection 2

Topological Vector Spaces
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Locally Convex Spaces Topological Vector Spaces

Topological Vector Spaces and Normed Spaces

A topological vector space is a linear space X on which a topology
τ is defined so that the operations of addition from X ×X to X and
scalar multiplication from Φ×X to X are continuous.

A linear space X is a normed (linear) space if to every x ∈X
corresponds a real number ‖x‖, called the norm of x , such that:

(i) ‖x‖ 6= 0, whenever x 6= 0;
(ii) ‖cx‖= |c |‖x‖, for all c ∈Φ and x ∈X ;
(iii) ‖x +y‖ ≤ ‖x‖+‖y‖, for all x ,y ∈X .

Property (iii) yields |‖x‖−‖y‖| ≤ ‖x −y‖.

Thus, the norm of a vector is never negative.

Property (ii) implies that the norm of the zero vector is zero.
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Locally Convex Spaces Topological Vector Spaces

Banach Spaces

A normed space is also a metric space if we define d(x ,y)= ‖x−y‖, as
the distance from x to y .

The normed space is called a Banach space if it is complete in this
metric.

The continuity of the operations (x ,y) 7→ x +y and (c ,x) 7→ cx is then
a direct consequence of the above properties of the norm.

Suppose xn → x and yn → y in X and cn → c in Φ.

Now we have

‖(xn+yn)− (x +y)‖ ≤ ‖xn−x‖+‖yn−y‖;
‖cnxn−cx‖ = ‖cn(xn−x)+ (cn −c)x‖

≤ |cn|‖xn−x‖+|cn −c |‖x‖.

Therefore, xn+yn → x +y and cnxn → cx in X .

Example: The n-dimensional Euclidean space Rn, with the usual
Euclidean distance, is a finite dimensional Banach space.
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Locally Convex Spaces Topological Vector Spaces

Boundedness and Translations

We say that a subset E of a topological vector space X is bounded if,
with a suitable contraction, it can be contained in any neighborhood
of 0.

More precisely, E ⊆X is bounded if, for every neighborhood U of
0∈X , there is a number λ> 0, such that E ⊆λU .

For any point x0 in the topological vector space X , consider the
translation from X onto X defined by x 7→ x +x0.

It is injective.
By assumption, it is continuous.
Its inverse x 7→ x −x0 is also continuous.

Therefore translation by x0 is a homeomorphism in X .

In particular, the set U +x0 = {x +x0 : x ∈U} is open whenever U is
open.

Consequently, τ is completely determined by any local base, which will
always be taken at 0.
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Locally Convex Spaces Topological Vector Spaces

Scalability

For any nonzero λ∈Φ, the mapping from X onto itself defined by
x 7→λx is a homeomorphism.

We can use the continuity of the mapping (λ,x) 7→λx to conclude
that every neighborhood of 0 is absorbing and contains a balanced
neighborhood of 0.

Suppose U is a neighborhood of 0 ∈X . Let x is any (nonzero) point in
X . The mapping λ 7→λx is continuous at λ= 0. So there is a
neighborhood {λ ∈Φ : |λ| < ε} of 0 ∈Φ which is mapped into U . Hence,
λx ∈U , for all |λ| < ε. So x ∈µU , for all |µ| > 1

ε
.

The mapping (λ,x) 7→λx is continuous at (λ,x)= (0,0). So there is a
neighborhood V of 0 ∈X and a positive number ε, such that λV ⊆U ,
whenever |λ| < ε. Thus, the set W =

⋃

|λ|<ελV is a balanced
neighborhood of 0 which is contained in U .

We conclude that every topological vector space X has a balanced,
absorbing local base.
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Locally Convex Spaces Topological Vector Spaces

Types of Topological Vector Spaces

A topological vector space X is called a:

(i) locally convex space if its topology has a local base whose members
are convex sets;

(ii) locally bounded space if 0 has a bounded neighborhood;
(iii) Frechet space if it is locally convex, metrizable and complete;
(iv) normable space if a norm can be defined on X which is compatible

with the topology of X , in the sense that it generates the topology.
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Locally Convex Spaces Topological Vector Spaces

Cauchy Sequences and Completeness

Let B is a local base for the topology of a topological vector space X .

The sequence (xn) in X is a Cauchy sequence if, to every U ∈B,
corresponds an N, such that xn−xm ∈U , for all n≥N and m≥N.

A topological vector space X is complete if every Cauchy sequence in
X converges to a point in X .

We remark that the notion of completeness of a topological vector
space X is more general than sequential completeness, and is defined
in terms of Cauchy filters instead of Cauchy sequences.

But, for our purposes, it suffices to consider sequential completeness.
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Locally Convex Spaces Topological Vector Spaces

Completeness and Boundedness

If (xn) is a Cauchy sequence in the topological vector space X , the
sequence (xn) is bounded in the sense that the set {xn} is bounded.

Let U be a neighborhood of 0.

Then there is an N, such that xk −xN ∈U , for all k ≥N.

Thus, {xk : k ≥N} ⊆ xN +U .

But λ(xN +U) may be contained in any neighborhood of 0 by a
suitable choice of λ> 0.

Hence, the sequence (xn) is bounded.
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Locally Convex Spaces Topological Vector Spaces

Bounded and Continuous Maps

Let X and Y be topological vector spaces over the same field Φ.

Let T be a linear map from X to Y .

T is said to be bounded if T (A) is a bounded subset of Y for every
bounded subset A of X .

Since every bounded subset of X may be mapped homeomorphically
into any neighborhood of 0∈X , T is bounded if and only if it is
bounded on a neighborhood of 0.

Similarly, T is continuous if and only if it is continuous at 0.

Suppose T is continuous at 0. Then, for every neighborhood V of
0∈Y , there is a neighborhood U of 0∈X , such that T (U)⊆V .

But then, for every x0 ∈X ,

T (x0+U)=T (x0)+T (U)⊆T (x0)+V .
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Locally Convex Spaces Topological Vector Spaces

Algebraic and Topological Dual

An important class of linear mappings consists of those for which
Y =Φ, i.e., the linear functional on X .

This class is denoted by X ∗ and called algebraic dual of X .

With the definition

(aT +bS)(x)= aT (x)+bS(x),

for any a,b ∈Φ and x ∈X , X ∗ is a linear space over Φ.

In the usual metric topology of Φ, the continuous linear functionals on
X constitute a subspace X ′ of X ∗.

X ′ is called the topological dual of X , or simply the dual of X .
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Locally Convex Spaces Topological Vector Spaces

Characterization of Continuity

Theorem

If T is a linear functional on a topological vector space X , then the
following statements are equivalent:

(i) T is continuous at 0.

(ii) T is continuous.

(iii) T−1({0}) is closed.

(iv) T is bounded.

(i)⇔(ii) This equivalence as already been proved.

(ii)⇒(iii) Suppose T is continuous. But {0} is closed in Φ.

So T−1({0})=N(T ) is closed in X .
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Locally Convex Spaces Topological Vector Spaces

Characterization of Continuity

(iii)⇒(iv) Suppose N(T ) is closed.

If T is identically zero, then it is bounded.

Suppose T is not identically zero.

Then there is a point x0 ∈X −N(T ), with T (x0)= 1.

Now N(T ) is closed. So its complement X −N(T ) is open.

Thus, there is a balanced neighborhood U of 0, such that
x0+U ⊆X −N(T ). This implies that (x0+U)∩N(T )=;.

Suppose |T (x)| ≥ 1, for some x ∈U .

Then y =−
x

T (x) ∈U and T (x0+y)= 1−1= 0. So (x0+U)∩N(T ) 6= ;.

This gives a contradiction. So |T (x)| < 1, for all x ∈U .

Thus, T is bounded.

(iv)⇒(i) Let T be bounded on some neighborhood U of 0.

Then there is a number M > 0, such that |T (x)| <M, for every x ∈U .

For any ε> 0, we therefore have |T (x)| < ε, whenever x is in ε
M
U .

But ε
M
U is also a neighborhood of 0. So T is continuous at 0.
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Locally Convex Spaces Seminorms and Locally Convex Spaces

Subsection 3

Seminorms and Locally Convex Spaces
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Locally Convex Spaces Seminorms and Locally Convex Spaces

Seminorms

Let X be a linear space over Φ.
A seminorm on X is a real-valued function p satisfying, for all
x ,y ∈X and λ∈Φ:
(i) p(x +y)≤ p(x)+p(y) (subadditivity);
(ii) p(λx)= |λ|p(x).

For all x ,y ∈X ,

p(x)= p(x −y +y)≤ p(x −y)+p(y).

Interchanging x and y and using property (ii), we obtain

p(y)≤ p(x −y)+p(x).

Therefore, we always have

|p(x)−p(y)| ≤ p(x −y).
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Locally Convex Spaces Seminorms and Locally Convex Spaces

Properties of Seminorms

In particular, p(x)≥ 0, for all x ∈X .

The equality p(0)= 0 follows directly from (ii).

However, it may happen that p(x)= 0, for some x 6= 0.

When p(x)= 0 implies x = 0, then p is a norm on X .

For any linear functional T on X the function p(x)= |T (x)| is an
example of a seminorm on X .

For r > 0, the set
Bp(r) := {x ∈X : p(x)< r }

corresponds to the ball B(0,r) in a metric space with center 0 and
radius r .
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Seminorms and Balls

Theorem

In a linear space X equipped with a seminorm p, the p-ball
Bp(r)= {x ∈X : p(x)< r } is convex, balanced and absorbing.

Let x ,y ∈Bp(r) and 0≤λ≤ 1.

Then we have

p(λx + (1−λ)y)≤λp(x)+ (1−λ)p(y)< r .

So Bp(r) is convex.

Suppose x ∈Bp(r) and |λ| ≤ 1. Then p(λx)= |λ|p(x)< r .

Thus, Bp(r) is balanced.

Let x ∈X and λ> p(x). Then p( rλx)=
p(x)
λ r < r . Hence, x ∈

λ
r
Bp(r).

So Bp(r) is absorbing.
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The Minkowski Functional

Let E be an absorbing subset of the linear space X .

Let x be any point of X .

There is always a finite positive number λ, such that 1
λx ∈E .

The Minkowski functional µE of E is defined, for all x ∈X , by

µE (x)= inf

{

λ> 0 :
1

λ
x ∈E

}

.
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Properties of the Minkowski Functional

µE (0)= 0.

Every absorbing subset of X contains 0.

µE :X → [0,∞).

If, besides being absorbing, E is convex, then for each x ∈X , the set

ME (x)=

{

λ> 0 :
1

λ
x ∈E

}

= {λ> 0 : x ∈λE }

is convex and unbounded.

ME (x) is the semi-infinite interval whose left endpoint is µE (x).
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The Minkowski Functional as a Seminorm

Theorem

In a linear space X the Minkowski functional of a convex, balanced and
absorbing set is a seminorm on X .

Let E be a convex and absorbing subset of X . For any x ,y ∈X , we
choose λ1 and λ2 so that µE (x)<λ1, µE (y)<λ2. Since E is convex,
it then follows that 1

λ1
x ∈E , 1

λ2
y ∈E . Moreover,

1

λ1+λ2
(x +y)=

λ1

λ1+λ2

1

λ1
x +

λ2

λ1+λ2

1

λ2
y

is in E . Thus, µE (x +y)≤λ1+λ2. Since λ1 and λ2 can be taken
arbitrarily close to µE (x) and µE (y), respectively, we conclude that
µE (x +y)≤µE (x)+µE (y).

The relation µE (cx)= |c |µE (x) is always true for c > 0.

When E is balanced, it is also true for |c | = 1.

Thus, µE (cx)= |c |µE (x), for any c ∈Φ.
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Continuity of the Minkowski Functional

The definition of µE implies that

{x ∈X :µE (x)< 1} ⊆E ⊆ {x ∈X :µE (x)≤ 1}

for any convex (and absorbing) subset E of the linear space X .

If, moreover, X is a topological vector space, then E is a
neighborhood of 0 if and only if µE is continuous.

Suppose, first, that E is a neighborhood of 0. Then the inequality
|µE (x)−µE (y)| ≤µE (x −y), which follows from the subadditive
property of µE , shows that it suffices to prove continuity at 0.

But, by definition, for any ε> 0, if x ∈ εE , then µE (x)≤ ε.

Conversely, suppose µE is continuous. Then {x ∈X :µE (x)< 1} is an
open set which contains 0 and is contained in E . Indeed, in this case:

{x ∈X :µE (x)< 1} is the interior E ◦ of E ;

{x ∈X :µE (x)≤ 1} is the closure E of E .
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The Topology Induced by a Collection of Seminorms

Theorem

Given any set {pi : i ∈ I } of seminorms on a linear space X , there is a
topology on X , compatible with its algebraic structure, in which every
seminorm pi , is continuous. Under this topology X is a locally convex
topological space.

Let P = {pi : i ∈ I }. For each i ∈ I , r > 0, Bi(r)= {x ∈X : pi (x)< r } is
convex, balanced and absorbing, according to a previous theorem.

We take Bi(r) to be an open neighborhood of 0.

For any finite I ′ ⊆ I , let P
′ = {pi : i ∈ I

′} be the corresponding finite
subset of P . Define B ′ =

⋂

i∈I ′ Bi(1).

Clearly B ′ is a convex, balanced and absorbing set.

The collection B = {rB ′ :P ′ ⊆P ,r > 0}, where P
′ runs through the

finite subsets of P , satisfies the properties of a base of neighborhoods
of the origin. So (X ,B) is a locally convex space.
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The Topology Induced by Seminorms (Cont’d)

In this topology, every pi is continuous because every Bi(r) is a
neighborhood of 0.

It remains to show that the algebraic operations on X are also
continuous. For any pair x ,y ∈X and any B in B, we have, using the
convexity of B ,

(

x +
1

2
B

)

+

(

y +
1

2
B

)

= (x +y)+B .

So addition is continuous on (X ,B).

For scalar multiplication, let x ∈X , λ∈Φ and B ∈B.

Note that µy −λx =µ(y −x)+ (µ−λ)x .

So, if µ(y −x) ∈ 1
2
B and (µ−λ)x ∈

1
2
B , then µy −λx is in B .

Pick ε small enough so that εx ∈ 1
2
B .

The first condition is satisfied by choosing y ∈ x + 1
2(|λ|+ε)

B;

The second condition is satisfied by taking |µ−λ| < ε.
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The Separation Axiom

The topology defined on X in this proof is the weakest topology in
which every seminorm p, is continuous.

It is referred to as the topology generated by the family of

seminorms {pi }.

Even though p(x)= 0 does not guarantee that x = 0, if enough
seminorms vanished at x , then, presumably, we may safely conclude
that x = 0.

Definition

A family P of seminorms on the linear space X satisfies the separation

axiom, or is separating, if, for every x 6= 0 in X , there is a seminorm
p ∈P , such that p(x) 6= 0.
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Separation and Locally Convex Hausdorff Spaces

Proposition

A linear space with a separating family of seminorms may be topologized to
produce a locally convex Hausdorff space in which each seminorm is
continuous. Conversely, any locally convex Hausdorff space X is a
topological vector space in which the topolology is generated by a
separating family of continuous seminorms defined by the Minkowski
functionals of the convex local base of X .

In any locally convex topological vector space X , let B be a convex
and balanced local base in X . For each B ∈B, which is always
absorbing, a previous theorem shows that the Minkowski functional µB

is a seminorm on X . If X is Hausdorff then, for any nonzero vector x
in X , there is B ∈B, such that x 6∈B. Consequently, µB(x)≥ 1.
Thus, {µB :B ∈B} is a separating family of seminorms in X .
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Separation and Locally Convex Hausdorff Spaces (Cont’d)

Conversely, suppose the seminorms {pi } on the linear space X are
separating. Then the topology which they generate on X , according to
the previous theorem is Hausdorff. This follows from the observation
that if x −y 6= 0, then there is pi , such that pi (x −y)= r > 0. Then,
the two neighborhoods x +Bi (

1
2
r) and y +Bi(

1
2
r) are disjoint.

If not, there exists z ∈X , with pi(z −x)< 1
2
r and pi(z −y)< 1

2
r .

Therefore,

pi(x −y)≤ pi (z −x)+pi (z −y)<
1

2
r +

1

2
r = r .

This gives a contradiction.
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Metrizability of Locally Convex Spaces

Theorem

A locally convex space X is metrizable if and only if it is Hausdorff and has
a countable local base.

Suppose X is metrizable, with metric d . The balls
{x ∈X : d(0,x)< 1

n
,n ∈N} are convex, balanced and absorbing and

form a countable base at 0 for a Hausdorff topology.

Suppose X is Hausdorff and has a countable local base B = {Bi }.

Its topology is generated by the countable, separating family of
seminorms P = {pi }, where pi , is the Minkowski functional of Bi .

We define d(x ,y)=
∑∞

i=1

2−ipi (x−y )
1+pi (x−y )

, for all x ,y ∈X .

In view of the inequality a
1+a

≤
b

1+b
, 0≤ a≤ b, we have

pi (x−y )
1+pi (x−y )

=
pi [(x−z)+(z−y )]

1+pi [(x−z)+(z−y )]
≤

pi (x−z)+pi (z−y )
1+pi (x−z)+pi (z−y )

≤
pi (x−z)

1+pi (x−z)
+

pi (z−y )
1+pi (z−y ).
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Locally Convex Spaces Seminorms and Locally Convex Spaces

Metrizability of Locally Convex Spaces (Cont’d)

Therefore d is subadditive.

Moreover, d(x ,y)= 0 implies x = y because P is separating.

So d is clearly a metric on X .

We have d(x +z ,y +z)= d(x ,y), for any x ∈X .

So the sets Un = {x ∈X : d(0,x)< 1
2n

} form a base of neighborhoods at
0 for the topology of (X ,d).

Now the series which defines d converges uniformly on X ×X and pi is
continuous on X . So d is continuous on X ×X and Un open in (X ,B).

If x 6∈Bn, then pn(x)≥ 1. So d(0,x)≥ 2−n
pn(x)

1+pn(x)
≥ 2−n−1.

Thus, Un+1 ⊆Bn. So {Un} is a local base for the topology of (X ,B).

Corollary

A countable, separating family of seminorms on a linear space X generates
a locally convex, metrizable topology on X .

George Voutsadakis (LSSU) Theory of Distributions January 2024 49 / 67
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Normable Locally Convex Hausdorff Spaces

Theorem

A locally convex, Hausdorff space X is normable if and only if its zero
vector has a bounded neighborhood.

Suppose X is normable. The open unit ball {x ∈X : ‖x‖ < 1} is a
bounded neighborhood of 0. Suppose U is a bounded neighborhood of
0 in the locally convex space (X ,τ). Then it contains a convex,
balanced and absorbing open set U0 which is also bounded.

Let p0 be the Minkowski functional of U0. If p0(x)= 0, then x ∈λU0,
for any λ> 0. But, since U0 is bounded, every neighborhood of 0
contains λU0, for some λ> 0. Hence, x = 0. So p0 is a norm on X .

The normed space (X ,p0) has a local base given by {λU0 :λ> 0}.

But each λU0 is an open set in τ on X . Moreover, every neighborhood
of 0 in (X ,τ) contains λU0, for some λ> 0. Thus, p0 generates τ.

We assume from now on that all locally convex spaces are Hausdorff.
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Remarks on Boundedness

Suppose X is a topological vector space.

Let E be a subset of X .

Let us say that E is topologically bounded if it is absorbable by any
neighborhood of 0.

Let us say that E is normally bounded if X is normable, with norm
‖ ·‖, and there exists a positive constant M, such that ‖x‖≤M, for all
x ∈E .

When the topological vector space X is normable, then a subset E of
X is topologically bounded if and only if it is normally bounded in X .

In general, these two notions of boundedness are not equivalent.
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Subsection 4

Examples of Locally Convex Spaces
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Locally Convex Spaces Examples of Locally Convex Spaces

Notation for Functions on Rn

In the calculus of n variables we use the n-tuple α= (α1, . . . ,αn) of
nonnegative integers αi as a multi-index and define:

|α| =α1+·· ·+αn;
α!=α1! · · ·αn!.

With x = (x1, . . . ,xn) ∈R
n, we use the notation:

xα = x
α1
1

· · ·xαn
n ;

∂= (∂1, . . . ,∂n)= ( ∂
∂x1

, · · · ,
∂

∂xn
);

∂α = ∂
α1
1

· · ·∂
αn
n = ∂|α|

∂α1x1···∂αnxn
.
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Locally Convex Spaces Examples of Locally Convex Spaces

Functions on Rn and Support

Our functions will, in general, be complex-valued and defined on an
open subset Ω of Rn, with the usual Euclidean topology on Rn.

The support of a function φ :Ω→C, denoted by suppφ, is defined to
be the closure of the set {x ∈Ω :φ(x) 6= 0} in the topological space Ω,
i.e., the smallest closed set containing {x ∈Ω :φ(x) 6= 0}.
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Examples of Function Spaces

(i) Cm(Ω) denotes the set of (complex-valued) functions defined on Ω

with continuous derivatives of order m, where m<∞, i.e., ∂αφ is
continuous on Ω, for every α, with |α| ≤m.

When m= 0, we have the set C 0(Ω) of continuous functions on Ω.

Clearly, Cm(Ω)⊆Cm−1(Ω)⊆ ·· · ⊆C 0(Ω).

(ii) C∞(Ω)=
⋂

m≥0C
m(Ω) is the set of functions on Ω with continuous

derivatives of all orders.

(iii) Cm
K
(Ω) is the set of functions in Cm(Ω) with support in K , where K

will always denote a compact subset of Ω.

(iv) C∞

K
is the set of functions in C∞(Ω) with support in K .
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Comments on the Definitions

Clearly Cm(Ω) is a linear space over C, for m≤∞, by the usual
definition of addition of functions and multiplication by complex
numbers

(φ+ψ)(x)=φ(x)+ψ(x), (cφ)(x)= cφ(x).

Cm
K
(Ω) is a subspace of Cm(Ω), for every m.

A well-known example of a C∞(Rn) function of compact support is
given by

α(x)=

{

e
−

1
1−|x |2 , on |x | < 1

0, on |x | ≥ 1
.

It has support in the unit ball {x ∈Rn : |x | ≤ 1}.
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Topology on C
0(Ω)

Since any open subset of Rn may be expressed as a countable union of
compact sets in Rn, we can write Ω=

⋃

Ki , where Ki is a compact
subset of Rn for all i ∈N.

Without loss of generality, we may choose K1 ⊆K2 ⊆K3 ⊆ ·· · .
For any φ ∈C 0(Ω), we define the seminorm

pi(φ)= sup {|φ(x)| : x ∈Ki }, i ∈N.

Note that the increasing sequence (pi ) is clearly separating.

The sets

Bi(r)= {φ ∈C 0(Ω) : pi(φ)< r }, i ∈N, r > 0,

form a convex local topological base for C 0(Ω).

The resulting topology is compatible with the metric

d(φ,ψ)=
∞
∑

i=1

2−i
pi (φ−ψ)

1+pi (φ−ψ)
.
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Topology on C
0(Ω) (Cont’d)

Since convergence in this metric is uniform on every compact subset
of Ω, the limit of every Cauchy sequence is always a continuous
function on Ω.

Thus the metric space C 0(Ω) is complete and is therefore a Fréchet
space (locally convex, metrizable and complete).

But C 0(Ω) is not normable because in every Bi(r) we can always find
a function φ for which pi+1(φ) is as large as we please, so that no
Bi(r) can be bounded.

Note, however, that every Bi(r) is bounded in the metric d .

In fact the whole space C 0(Ω) is bounded in this metric.
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Topology on C
m(Ω)

Assume again that Ω is the union of a sequence of compact sets
K1 ⊆K2 ⊆ ·· · .

For any φ ∈Cm(Ω), with 1≤m<∞, we define the separating
countable family of seminorms

pi ,m(φ)= sup{|∂αφ(x)| : x ∈Ki , |α| ≤m}.

The corresponding balls

Bi ,m(r)= {φ ∈Cm(Ω) : pi ,m(φ)< r }

provide a base for a topology on Cm(Ω) which makes it into a locally
convex, metrizable space.

The convergence of (φk) in Cm(Ω) is equivalent to the uniform
convergence of (∂αφk) on every compact subset of Ω, for all |α| ≤m.
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Topology on C
m(Ω) (Cont’d)

The topology of Cm(Ω) is the weakest in which the linear map
∂α :Cm(Ω)→C 0(Ω), |α| ≤m, is continuous, where C 0(Ω) carries its
natural topology of uniform convergence.

So a sequence (φk) converges to φ in Cm(Ω) if and only if the
sequence (∂αφk) converges to ∂αφ in C 0(Ω), for all |α| ≤m.

This is equivalent to the uniform convergence of ∂αφk to ∂αφ on
every compact subset of Ω.

It implies the uniform convergence of (φk) to φ in C 0(Ω).

So the topology of Cm(Ω) is stronger than its subspace topology in
C 0(Ω).

More generally, the topology of Cℓ(Ω) is stronger than its subspace
topology in Cm(Ω) whenever ℓ≥m≥ 0.

So the identity map from Cℓ(Ω) into Cm(Ω) is continuous.
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Completeness of Cm(Ω)

Theorem

The locally convex space Cm(Ω) is complete.

Let (φk) be a Cauchy sequence in Cm(Ω). So it is a Cauchy sequence
in C 0(Ω). Since C 0(Ω) is complete, φk →φ ∈C 0(Ω). The sequence
(∂αφk) is also a Cauchy sequence in C 0(Ω), for every α satisfying
|α| ≤m. Therefore, ∂αφk →φα ∈C 0(Ω). But the operator
∂α :C

m(Ω)→C 0(Ω) is continuous. So ∂αφ= ∂α(limφk)= lim∂αφk =

φα is in C 0(Ω). Hence, φ is in Cm(Ω).

This theorem shows that Cm(Ω) is a Fréchet space.

It is not normable because, as before, every neighborhood of 0 is
unbounded.
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Topology on C
∞(Ω)

We write Ω as the union of an increasing sequence of compact sets
(Ki ).

We define the seminorms

pi(φ)= sup {|∂αφ(x)| : x ∈Ki , |α| ≤ i }, φ ∈C∞(Ω).

The balls Bi(r)= {φ ∈C∞(Ω) : pi(φ)< r } form a local base for the
topology of C∞(Ω).

The same argument as before shows that, with this topology, C∞(Ω)
is a Fréchet space which is not normable.

It is the weakest topology which makes, for all m≥ 0, the linear map
∂α :C∞(Ω)→Cm(Ω) continuous, where Cm(Ω) carries its natural
topology.
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Bounded Subsets of C∞(Ω)

Theorem

A subset E of C∞(Ω) is bounded if and only if, for all m ∈N0 = {0,1,2, . . .}

and every compact set K ⊆Ω, there is a positive constant M, which
depends on m and K , such that |∂αφ(x)| ≤M, whenever |α| ≤m, x ∈K

and φ ∈E .

Suppose the elements of E satisfy the given inequality.

Let U be a neighborhood of 0 ∈C∞(Ω). Any such neighborhood
contains the balls Bi = {φ ∈C∞(Ω) : pi(φ)<

1
i

}, for all values of i
greater than some positive integer. Choose i large enough so that
i ≥m and Ki ⊇K . If we now choose λ, such that 0<λ<

1
M(i+1)

, we

obtain

λE =

{

φ ∈E : |∂αφ(x)| ≤
1

i +1
,x ∈K , |α| ≤m

}

⊆Bi+1 ⊆U .

This means that E is bounded.
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Bounded Subsets of C∞(Ω) (Converse)

Conversely, suppose E is bounded.

By a suitable choice of the positive number λ, the set λE may be
contained in any neighborhood of 0.

In particular, for every Bi , there is a λi > 0, such that λiE ⊆Bi .

This means that

pi(φ)<
1

iλi

, φ ∈E .

Assume m ∈N0 and K ⊆Ω compact are given.

We can choose i so that i ≥m and Ki ⊇K .

Then the inequality of the hypothesis follows by choosing M =
1
iλi

.

Note that, according to this theorem, no Bi can be bounded for any
finite integer i .
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More on the Topology of of C∞(Ω)

The system of seminorms that we have used to define the topology of
C∞(Ω) is equivalently given by

pi ,K (φ)= sup{|∂αφ(x)| : x ∈K , |α| ≤ i },

as i runs through the nonnegative integers and K through the
compact subsets of Ω.

The preceding theorem may then be restated as follows:
E ⊆C∞(Ω) is bounded if and only if, for every m ∈N0 and every
compact K ⊆Ω, there is an M > 0, such that pm,K (φ)≤M , for every
φ ∈E .

Furthermore, the set {φ ∈C∞(Ω) : pm,K (φ)< r } is a neighborhood of
0, for every m ∈N0, K ⊆Ω and r > 0.

The convergence of (φk) in C∞(Ω) is equivalent to the uniform
convergence of (∂αφk), for every multi-index α= (α1, . . . ,αn), on every
compact subset of Ω.
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Topology on C
m
K
(Ω), for m≤∞

Claim: Cm
K
(Ω) is a closed subspace of Cm(Ω), for m≤∞.

Note that, for any x ∈Ω, the linear mapping Tx from Cm(Ω) to C

defined by Tx(φ)=φ(x) is continuous.

So its null space N(Tx )= {φ ∈Cm(Ω) :φ(x)= 0} is closed, by a
previous theorem, for every x ∈Ω.

But Cm
K
(Ω)=

⋂

x∈Ω−K N(Tx ). Hence, Cm
K

is closed in Cm(Ω).

It follows that Cm
K
(Ω) is also a Fréchet space.

For m≤∞, the seminorms on Cm
K
(Ω) are given, for all 0≤ i ≤m, by

pi(φ)= sup{|∂αφ(x)| : x ∈K , |α| ≤ i }.

The local base they define is the collection of balls
Bi(r)= {φ ∈Cm

K
(Ω) : pi(φ)< r }.

These seminorms, in contrast to those of the previous examples,
actually define norms on Cm

K
(Ω), since pi (φ)= 0, for any i ∈N0,

i ≤m, implies φ= 0.
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Normability of Cm
K
(Ω), for m≤∞

If E is a bounded subset of C∞

K
(Ω), then, by definition, for every Bi ,

there is a positive number λi , such that E ⊆λiBi .

This is equivalent to saying that, for every nonnegative integer i , there
is a constant Mi , such that

sup {|∂αφ(x)| :φ ∈E ,x ∈K , |α| ≤ i }≤Mi .

Every Bi is therefore unbounded because it contains a φ for which
pi+1(φ) is arbitrarily large. Hence C∞

K
(Ω) is not normable.

When m<∞ the largest of the seminorms, i.e., pm, which is actually a
norm, makes Cm

K
(Ω) into a Banach space.

If K1 ⊆K2 ⊆Ω, then Cm
K1
(Ω) is a closed subspace of Cm

K2
(Ω), m≤∞.

The topology on Cm
K1
(Ω) is the topology it inherits as a subspace of

Cm
K2
(Ω).
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