Introduction to the Theory of Distributions

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Theory of Distributions

January 2024 1 / 67

Locally Convex Spaces

- Preliminary Concepts
- Topological Vector Spaces
- Seminorms and Locally Convex Spaces
- Examples of Locally Convex Spaces 0

Subsection 1

Preliminary Concepts

Vector Spaces

- ${\, \bullet \, }$ Denote by ${\mathbb R}$ and ${\mathbb C}$ the fields of real and complex numbers.
- We use Φ to denote either of these two fields.
- A linear space, or a vector space, over Φ is a nonempty set X on which two operations, addition and scalar multiplication, are defined such that:
 - (a) X is an abelian group under addition, i.e., to every pair $x, y \in X$, the sum x + y is also in X, and we have for all $x, y, z \in X$:

(i)
$$x+y=y+x;$$

(ii)
$$x + (y + z) + (x + y) + z;$$

- (iii) There is a zero element $0 \in X$, such that x + 0 = x, for all x;
- (iv) For each $x \in X$, there is an element $-x \in X$, such that x + (-x) = 0.
- (b) For every pair a, x with $a \in \Phi$ and $x \in X$, the scalar product $a \cdot x$ is an element in X, and we have for all $a, b \in \Phi$ and $x, y \in X$:

(i)
$$1 \cdot x = x;$$

(ii) $a \cdot (b \cdot x) = (a \cdot b) \cdot x;$
(iii) $a \cdot (x + y) = a \cdot x + a \cdot y;$
(iv) $(a + b) \cdot x = a \cdot x + b \cdot x.$

Properties and Notation

- The zero element is unique.
- Every $x \in X$ has a unique additive inverse -x.
- $0 \cdot x = 0$ and $(-1) \cdot x = -x$, for every $x \in X$.
- $a \cdot 0 = 0$, for every $a \in \Phi$.
- The same symbol 0 is used to denote the zeros of both Φ and X.
- The dot symbol for the product is usually dropped.

Linear Independence, Basis and Dimension

- The elements of a vector space X are called vectors.
- The vectors $x_1, ..., x_n$ are **linearly independent** if the equation $a_1x_1 + \cdots + a_nx_n = 0$, with $a_k \in \Phi$, implies $a_k = 0$, for all k.
- Otherwise, they are linearly dependent.
- The set $\{x_1, ..., x_n\}$ of vectors in X is said to **span** the space X if any $x \in X$ can be represented by a linear combination of the form $x = a_1x_1 + \cdots + a_nx_n$, where $a_k \in \Phi$.
- Any (finite) set of linearly independent vectors {x₁,...,x_n} which spans X is called a **basis** of X.
- The **dimension** of X is then *n*, the number of elements in its basis.
- If no such basis exists, X is said to be infinite dimensional.
- In a linear space X with basis {x₁,...,x_n}, any vector x ∈ X has a unique representation of the form x = a₁x₁ + ··· + a_nx_n, in the sense that the scalar coefficients a_k are uniquely determined by x.

Subspaces

A nonempty subset M of a linear space X is called a (linear) subspace of X if whenever x, y ∈ M and a ∈ Φ,

 $x + y \in M$ and $ax \in M$.

- In that case *M* is a linear space in its own right.
- {0} is a subspace of every linear space.
- With $x \in X$, $\lambda \in \Phi$ and $A \subseteq X$, we use the notation

 $x + A = \{x + y : y \in A\}, \quad \lambda A = \{\lambda y : y \in A\}.$

- The "sum" A + B of two subsets of X denotes the set $\{x + y : x \in A, y \in B\}$;
- The "difference" A − B will be used to denote the set {x ∈ A : x ∉ B}, for any pair of sets A and B, i.e., the complement of B in A.

Subsets of a Vector Space

- We define three types of subsets of the linear space X:
 - (1) $E \subseteq X$ is **convex** if, whenever $x, y \in E$ and $0 \le \lambda \le 1$, then

$$\lambda x + (1 - \lambda)y \in E.$$

Thus, a convex set contains the "line segment" joining x and y whenever it contains x and y.

- (2) $E \subseteq X$ is **balanced** if, whenever $x \in E$ and $|\lambda| \le 1$, then $\lambda x \in E$. By choosing $\lambda = 0$, we see that every balanced set in X contains 0.
- (3) $E \subseteq X$ is **absorbing** if for every $x \in X$, there is a $\lambda > 0$, such that $x \in \lambda E$. Here again it is obvious that 0 is contained in every absorbing set.

n-Dimensional Euclidean Space

• The set \mathbb{R}^n whose elements are the *n*-tuples $(x_1, ..., x_n)$, with $x_k \in \mathbb{R}$, $1 \le k \le n$, is an *n*-dimensional linear space over \mathbb{R} under the operations

$$(x_1,...,x_n) + (y_1,...,y_n) = (x_1 + y_1,...,x_n + y_n) a(x_1,...,x_n) = (ax_1,...,ax_n).$$

• If we define the distance between any two vectors (points) $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ in \mathbb{R}^n by

$$|x-y| = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2},$$

then \mathbb{R}^n is called *n*-dimensional Euclidean space.

- In this space the set of points x, such that $|x| \le r$, for some positive number r, defines a **ball of radius** r **and center** 0.
- Such balls are convex, balanced and absorbing.

Topological Spaces

- A topological space is a nonempty set X in which a collection τ of subsets is defined, such that:
 - τ contains X and the empty set ϕ ;
 - The intersection of any pair in τ is in τ ;
 - The union of any collection in τ is in τ .
- The members of τ are known as **open sets**.
- τ is said to define a **topology** on X.
- Since different topologies may be defined on the same set X, the topological space should properly be denoted by the pair (X, τ), but we shall often use only X to denote the topological space.

Standard Terminology for Topological Spaces

- Let (X, τ) be a topological space.
- (1) A **neighborhood** of $x \in X$ is any subset of X which contains an open set containing x.
- (2) (X, τ) is a Hausdorff space if distinct points of X have disjoint neighborhoods.
- (3) Let τ and σ be two topologies on X.

We say that τ is **stronger** (finer) than σ , or that σ is **weaker** (coarser) than τ , if $\sigma \subseteq \tau$, i.e., if every open set in (X, σ) is open in (X, τ) .

(4) A collection $\sigma \subseteq \tau$ of open sets is a **base** for τ if every member of τ is a union of sets of σ .

Terminology on Topological Spaces II

- (5) The **product topology** on $X \times Y$, where Y is another topological space, is the topology which has as a base the collection of all sets of the form $U \times V$, where U is an open set in X and V is an open set in Y.
- (6) A collection σ of neighborhoods of $x \in X$ is a **local base** at x if every neighborhood of x contains a member of σ .

(7) A sequence (x_n : n ∈ N) in the topological space X converges to a limit x ∈ X, written lim x_n = x or x_n → x, if every neighborhood of x contains all but finitely many elements of the sequence.

A weaker requirement is to have an element of (x_n) , different from x, in every neighborhood of x, in which case x is called a **cluster point** of (x_n) .

In a Hausdorff space the limit of a sequence, if it exists, is unique.

Terminology on Topological Spaces III

- (8) The interior of a set E ⊆ X is the union of all open subsets of E.
 It is denoted by E° and is clearly an open set.
- (9) A subset E of X is closed if its complement in X, E^c = X E is open. The closure of E ⊆ X is the intersection of all closed sets which contain E.
 - The closure of E, denoted by \overline{E} , is always closed.
 - By De Morgan's law, its complement is the union of open subsets of E^c , and is therefore open.

We have

$$(\overline{E})^c = (\bigcap \{F : E \subseteq F, F \text{ closed}\})^c$$

= $\bigcup \{G : G \subseteq E^c, G \text{ open}\}$
= $(E^c)^\circ.$

Terminology on Topological Spaces IV

- (10) A subset E of X is dense in X if E = X.
 Even when E is not a subset of X, we still say that E is dense in X if E ∩ X is dense in X.
- (11) The **boundary** of $E \subseteq X$ is the set $\partial E = \overline{E} E^\circ$.

It is closed since it is the intersection of the closed sets \overline{E} and $(E^{\circ})^{c}$.

- (12) $E \subseteq X$ is compact if every collection of open sets of X whose union contains E has a finite subcollection whose union contains E.
- (13) If E ⊆ X and σ is the collection of sets E ∩ U, where U runs through the open sets in τ, then σ is a topology on E.
 With this inheritad topology any subset of X becomes a topological

With this **inherited topology** any subset of X becomes a topological space in its own right.

This topology is also referred to as the subspace topology of E in X.

Mappings I

- Consider a mapping, or a map, from a nonempty set X to a nonempty set Y, written T: X → Y.
- When $Y = \Phi$, the mapping T is usually referred to as a function from X to Y.
 - (i) The **image** of any $x \in X$ is denoted by $T(x) \in Y$.
 - If $A \subseteq X$, the set $T(A) = \{T(x) : x \in A\} \subseteq Y$ is the **image**, under T, of A. If $B \subseteq Y$, the set $T^{-1}(B) = \{x \in X : T(x) \in B\} \subseteq X$ is the **preimage**, under T, of B.

T is **injective** (or **one-to-one**) if $T(x_1) = T(x_2)$ implies $x_1 = x_2$, for any pair $x_1, x_2 \in X$.

T is surjective (or onto) if T(X) = Y.

When T is both injective and surjective it is called **bijective**.

In this case, the inverse mapping $T^{-1}: Y \to X$ is defined by

$$T^{-1}(y) = x$$
 if and only if $T(x) = y$.

A bijective map from X to Y is also referred to as a **bijection** or a **one-to-one correspondence** from X to Y.

George Voutsadakis (LSSU)

Linear Maps

(ii) If X and Y are linear spaces over Φ , then T is **linear** if

$$T(ax+by) = aT(x) + bT(y),$$

for every $a, b \in \Phi$ and $x, y \in X$.

• When T is linear it follows that:

- T(0) = 0;
- T(A) is a subspace of Y whenever A is a subspace of X;
- $T^{-1}(B)$ is a subspace of X whenever B is a subspace of Y.
- In particular the subspace T⁻¹({0}) ⊆ X is called the null space (or the kernel) of T and is denoted by N(T) = {x ∈ X : T(x) = 0}.
- When X is a linear space over Φ and $Y = \Phi$ the linear function T is called a **linear functional**.

Continuous Maps

(iii) If X and Y are topological spaces, then T is continuous at $x \in X$ if, for every neighborhood V of T(x), the set $T^{-1}(V)$ is a neighborhood of x.

T is **continuous** on X, or simply **continuous**, if it is continuous at every point in X.

Equivalently, T is continuous on X if and only if $T^{-1}(V)$ is an open set in X whenever V is an open set in Y.

By taking complements, T is continuous if and only if $T^{-1}(V)$ is a closed subset of X whenever V is a closed subset of Y.

Consequently, if $E \subseteq X$, then the identity mapping from E into X is continuous on E provided the topology of E is either the topology inherited from X or a stronger topology.

Homeomorphisms and Embeddings

• A homeomorphism from X to E is a continuous bijection from X to E whose inverse is continuous.

Thus, when there is a homeomorphism from X to Y, the image of an open set in X is an open set in Y, and the inverse image of an open set in Y is an open set in X.

The topologies on X and Y are therefore in a one-to-one correspondence, and the two spaces are said to be **homeomorphic**.

(iv) If X and Y are topological spaces and $T: X \to Y$ is an injective continuous mapping, then the mapping $S: X \to Z = T(X)$, defined by S(x) = T(x), for all $x \in X$, is clearly bijective. If S is a homeomorphism from X to Z, T is called a (topological)

embedding of X in Y.

- When X ⊆ Y the identity mapping from X to Y is always an embedding whenever the topology of X coincides with its subspace topology in Y.
- If X carries a stronger topology then we merely have a continuous injection of X into Y.

George Voutsadakis (LSSU)

Metric Spaces

- A metric space X is a topological space in which the topology is generated by a metric, or distance, function d : X × X → ℝ satisfying:
 - (i) $0 \le d(x,y) < \infty$; (ii) d(x,y) = 0 if and only if x = y; (iii) d(x,y) = d(y,x); (iv) d(x,y) = d(x,z) + d(z,y), for all $x, y, z \in X$.
- For any x ∈ X and r > 0, the set B(x,r) = {y ∈ X : d(x,y) < r} is called an open ball with center at x and radius r.
- By defining a subset of X to be open if and only if it is a (possibly empty) union of open balls, the axioms of open sets are satisfied and X becomes a topological space.
- Every metric space is Hausdorff.

For any distinct pair $x, y \in X$, the open balls B(x, r) and B(y, r) are disjoint if $r < \frac{1}{2}d(x, y)$.

Sequences in Metric Spaces

- Every point of a metric space has a countable base of neighborhoods.
 One such choice is {B(x, ¹/_n) : n ∈ ℕ}.
- Using this property it can be shown that if f maps the metric space X into the topological space Y, then f is continuous at x ∈ X if and only if, for every sequence (x_n) in X which converges to x, the sequence (f(x_n)) converges to f(x) in Y.
- If *E* is a subset of *X* and *x* is a cluster point of *E*, then there is a sequence in *E* which converges to *x*.
- The set of cluster points of E is contained in its closure \overline{E} .
- *E* will be dense in *X* if every $x \in X$ is the limit of a sequence (x_n) in *E*.

Cauchy Sequences and Complete Metric Spaces

 In a metric space X the sequence (x_n) is called a Cauchy sequence if, for every ε > 0, there is a positive integer N, such that

 $d(x_n, x_m) < \varepsilon$, for all $n \ge N$ and $m \ge N$.

• X is said to be (sequentially) complete if every Cauchy sequence in X converges to a point in X.

Metrizable Spaces and Isometries

- Not every topological space (X, τ) is a metric space because it is not always possible to define a metric on X, with the above properties, which will generate the topology τ .
- When this is possible, we say that the topological space is **metrizable**, and that its topology can be **induced** or **generated** by a metric.
- A homeomorphism h from a metric space (X, d_1) to another (Y, d_2) is called an **isometry** if it preserves distances, in the sense that

$$d_2(h(x_1), h(x_2)) = d_1(x_1, x_2), \text{ for all } x_1, x_2 \in X.$$

Two metrics d₁ and d₂ on the same set X are said to be equivalent if the identity map from (X, d₁) onto (X, d₂) is a homeomorphism.
 This is equivalent to saying that a set is open with respect to one metric whenever it is open with respect to the other.

Subsection 2

Topological Vector Spaces

Topological Vector Spaces and Normed Spaces

- A topological vector space is a linear space X on which a topology τ is defined so that the operations of addition from X × X to X and scalar multiplication from Φ × X to X are continuous.
- A linear space X is a normed (linear) space if to every x ∈ X corresponds a real number ||x||, called the norm of x, such that:
 - (i) $||x|| \neq 0$, whenever $x \neq 0$;
 - (ii) ||cx|| = |c|||x||, for all $c \in \Phi$ and $x \in X$;
 - (iii) $||x+y|| \le ||x|| + ||y||$, for all $x, y \in X$.
- Property (iii) yields $|||x|| ||y||| \le ||x y||$.
- Thus, the norm of a vector is never negative.
- Property (ii) implies that the norm of the zero vector is zero.

Banach Spaces

- A normed space is also a metric space if we define d(x,y) = ||x−y||, as the distance from x to y.
- The normed space is called a Banach space if it is complete in this metric.
- The continuity of the operations (x, y) → x + y and (c, x) → cx is then a direct consequence of the above properties of the norm.
 Suppose x_n → x and y_n → y in X and c_n → c in Φ.
 Now we have

$$\begin{aligned} |(x_n + y_n) - (x + y)|| &\leq ||x_n - x|| + ||y_n - y||; \\ ||c_n x_n - cx|| &= ||c_n (x_n - x) + (c_n - c)x|| \\ &\leq |c_n||x_n - x|| + |c_n - c|||x||. \end{aligned}$$

Therefore, $x_n + y_n \rightarrow x + y$ and $c_n x_n \rightarrow cx$ in X. Example: The *n*-dimensional Euclidean space \mathbb{R}^n , with the usual Euclidean distance, is a finite dimensional Banach space.

George Voutsadakis (LSSU)

Theory of Distributions

Boundedness and Translations

- We say that a subset *E* of a topological vector space *X* is **bounded** if, with a suitable contraction, it can be contained in any neighborhood of 0.
- More precisely, $E \subseteq X$ is **bounded** if, for every neighborhood U of $0 \in X$, there is a number $\lambda > 0$, such that $E \subseteq \lambda U$.
- For any point x₀ in the topological vector space X, consider the translation from X onto X defined by x → x + x₀.
 - It is injective.
 - By assumption, it is continuous.
 - Its inverse $x \mapsto x x_0$ is also continuous.

Therefore translation by x_0 is a homeomorphism in X.

- In particular, the set U + x₀ = {x + x₀ : x ∈ U} is open whenever U is open.
- Consequently, τ is completely determined by any local base, which will always be taken at 0.

George Voutsadakis (LSSU)

Scalability

- For any nonzero $\lambda \in \Phi$, the mapping from X onto itself defined by $x \mapsto \lambda x$ is a homeomorphism.
- We can use the continuity of the mapping (λ, x) → λx to conclude that every neighborhood of 0 is absorbing and contains a balanced neighborhood of 0.
 - Suppose U is a neighborhood of 0 ∈ X. Let x is any (nonzero) point in X. The mapping λ → λx is continuous at λ = 0. So there is a neighborhood {λ ∈ Φ : |λ| < ε} of 0 ∈ Φ which is mapped into U. Hence, λx ∈ U, for all |λ| < ε. So x ∈ μU, for all |μ| > 1/ε.
 - The mapping (λ, x) → λx is continuous at (λ, x) = (0,0). So there is a neighborhood V of 0 ∈ X and a positive number ε, such that λV ⊆ U, whenever |λ| < ε. Thus, the set W = ∪_{|λ|<ε} λV is a balanced neighborhood of 0 which is contained in U.
- We conclude that every topological vector space X has a balanced, absorbing local base.

Types of Topological Vector Spaces

- A topological vector space X is called a:
 - (i) locally convex space if its topology has a local base whose members are convex sets;
 - ii) **locally bounded space** if 0 has a bounded neighborhood;
 - ii) Frechet space if it is locally convex, metrizable and complete;
 - (iv) **normable space** if a norm can be defined on X which is compatible with the topology of X, in the sense that it generates the topology.

Cauchy Sequences and Completeness

- Let \mathscr{B} is a local base for the topology of a topological vector space X.
- The sequence (x_n) in X is a **Cauchy sequence** if, to every $U \in \mathcal{B}$, corresponds an N, such that $x_n x_m \in U$, for all $n \ge N$ and $m \ge N$.
- A topological vector space X is **complete** if every Cauchy sequence in X converges to a point in X.
- We remark that the notion of *completeness* of a topological vector space X is more general than sequential completeness, and is defined in terms of *Cauchy filters* instead of Cauchy sequences.

But, for our purposes, it suffices to consider sequential completeness.

Completeness and Boundedness

- If (x_n) is a Cauchy sequence in the topological vector space X, the sequence (x_n) is bounded in the sense that the set {x_n} is bounded.
 Let U be a neighborhood of 0.
 - Then there is an N, such that $x_k x_N \in U$, for all $k \ge N$.

Thus,
$$\{x_k : k \ge N\} \subseteq x_N + U$$
.

But $\lambda(x_N + U)$ may be contained in any neighborhood of 0 by a suitable choice of $\lambda > 0$.

Hence, the sequence (x_n) is bounded.

Bounded and Continuous Maps

- Let X and Y be topological vector spaces over the same field Φ .
- Let T be a linear map from X to Y.
- *T* is said to be **bounded** if *T*(*A*) is a bounded subset of *Y* for every bounded subset *A* of *X*.
- Since every bounded subset of X may be mapped homeomorphically into any neighborhood of $0 \in X$, T is bounded if and only if it is bounded on a neighborhood of 0.
- Similarly, T is continuous if and only if it is continuous at 0.
 Suppose T is continuous at 0. Then, for every neighborhood V of 0 ∈ Y, there is a neighborhood U of 0 ∈ X, such that T(U) ⊆ V.
 But then, for every x₀ ∈ X,

$$T(x_0+U)=T(x_0)+T(U)\subseteq T(x_0)+V.$$

Algebraic and Topological Dual

- An important class of linear mappings consists of those for which $Y = \Phi$, i.e., the linear functional on X.
- This class is denoted by X^* and called **algebraic dual** of X.
- With the definition

$$(aT+bS)(x) = aT(x) + bS(x),$$

for any $a, b \in \Phi$ and $x \in X$, X^* is a linear space over Φ .

- In the usual metric topology of Φ, the continuous linear functionals on X constitute a subspace X' of X*.
- X' is called the **topological dual** of X, or simply the **dual** of X.

Characterization of Continuity

Theorem

If T is a linear functional on a topological vector space X, then the following statements are equivalent:

- (i) T is continuous at 0.
- (ii) T is continuous.
- (iii) $T^{-1}(\{0\})$ is closed.
- (iv) *T* is bounded.

(i)⇔(ii) This equivalence as already been proved.
(ii)⇒(iii) Suppose T is continuous. But {0} is closed in Φ.
So T⁻¹({0}) = N(T) is closed in X.

Characterization of Continuity

(iii) \Rightarrow (iv) Suppose N(T) is closed. If T is identically zero, then it is bounded. Suppose T is not identically zero. Then there is a point $x_0 \in X - N(T)$, with $T(x_0) = 1$. Now N(T) is closed. So its complement X - N(T) is open. Thus, there is a balanced neighborhood U of 0, such that $x_0 + U \subseteq X - N(T)$. This implies that $(x_0 + U) \cap N(T) = \emptyset$. Suppose $|T(x)| \ge 1$, for some $x \in U$. Then $y = -\frac{x}{T(x)} \in U$ and $T(x_0 + y) = 1 - 1 = 0$. So $(x_0 + U) \cap N(T) \neq \emptyset$. This gives a contradiction. So |T(x)| < 1, for all $x \in U$. Thus, T is bounded. $(iv) \Rightarrow (i)$ Let T be bounded on some neighborhood U of 0. Then there is a number M > 0, such that |T(x)| < M, for every $x \in U$. For any $\varepsilon > 0$, we therefore have $|T(x)| < \varepsilon$, whenever x is in $\frac{\varepsilon}{M}U$. But $\frac{\varepsilon}{M}U$ is also a neighborhood of 0. So T is continuous at 0.

Subsection 3

Seminorms and Locally Convex Spaces

Seminorms

- Let X be a linear space over Φ .
- A seminorm on X is a real-valued function p satisfying, for all $x, y \in X$ and $\lambda \in \Phi$:
 - (i) $p(x+y) \le p(x) + p(y)$ (subadditivity);
 - (ii) $p(\lambda x) = |\lambda|p(x)$.
- For all $x, y \in X$,

$$p(x) = p(x-y+y) \le p(x-y) + p(y).$$

Interchanging x and y and using property (ii), we obtain

$$p(y) \le p(x-y) + p(x).$$

Therefore, we always have

$$|p(x) - p(y)| \le p(x - y).$$

Properties of Seminorms

- In particular, $p(x) \ge 0$, for all $x \in X$.
- The equality p(0) = 0 follows directly from (ii).
- However, it may happen that p(x) = 0, for some $x \neq 0$.
- When p(x) = 0 implies x = 0, then p is a norm on X.
- For any linear functional T on X the function p(x) = |T(x)| is an example of a seminorm on X.
- For r > 0, the set

$$B_p(r) := \{x \in X : p(x) < r\}$$

corresponds to the ball B(0,r) in a metric space with center 0 and radius r.

Seminorms and Balls

Theorem

In a linear space X equipped with a seminorm p, the p-ball $B_p(r) = \{x \in X : p(x) < r\}$ is convex, balanced and absorbing.

• Let $x, y \in B_p(r)$ and $0 \le \lambda \le 1$. Then we have

$$p(\lambda x + (1 - \lambda)y) \le \lambda p(x) + (1 - \lambda)p(y) < r.$$

So $B_p(r)$ is convex. Suppose $x \in B_p(r)$ and $|\lambda| \le 1$. Then $p(\lambda x) = |\lambda|p(x) < r$. Thus, $B_p(r)$ is balanced. Let $x \in X$ and $\lambda > p(x)$. Then $p(\frac{r}{\lambda}x) = \frac{p(x)}{\lambda}r < r$. Hence, $x \in \frac{\lambda}{r}B_p(r)$. So $B_p(r)$ is absorbing.

The Minkowski Functional

- Let *E* be an absorbing subset of the linear space *X*.
- Let x be any point of X.
- There is always a finite positive number λ , such that $\frac{1}{\lambda} x \in E$.
- The Minkowski functional μ_E of E is defined, for all $x \in X$, by

$$\mu_E(x) = \inf \left\{ \lambda > 0 : \frac{1}{\lambda} x \in E \right\}.$$

Properties of the Minkowski Functional

• $\mu_E(0) = 0.$

Every absorbing subset of X contains 0.

- $\mu_E: X \to [0,\infty).$
- If, besides being absorbing, E is convex, then for each $x \in X$, the set

$$M_E(x) = \left\{ \lambda > 0 : \frac{1}{\lambda} x \in E \right\} = \left\{ \lambda > 0 : x \in \lambda E \right\}$$

is convex and unbounded.

 $M_E(x)$ is the semi-infinite interval whose left endpoint is $\mu_E(x)$.

The Minkowski Functional as a Seminorm

Theorem

In a linear space X the Minkowski functional of a convex, balanced and absorbing set is a seminorm on X.

• Let *E* be a convex and absorbing subset of *X*. For any $x, y \in X$, we choose λ_1 and λ_2 so that $\mu_E(x) < \lambda_1$, $\mu_E(y) < \lambda_2$. Since *E* is convex, it then follows that $\frac{1}{\lambda_1} x \in E$, $\frac{1}{\lambda_2} y \in E$. Moreover,

$$\frac{1}{\lambda_1 + \lambda_2}(x + y) = \frac{\lambda_1}{\lambda_1 + \lambda_2} \frac{1}{\lambda_1} x + \frac{\lambda_2}{\lambda_1 + \lambda_2} \frac{1}{\lambda_2} y$$

is in *E*. Thus, $\mu_E(x+y) \leq \lambda_1 + \lambda_2$. Since λ_1 and λ_2 can be taken arbitrarily close to $\mu_E(x)$ and $\mu_E(y)$, respectively, we conclude that $\mu_E(x+y) \leq \mu_E(x) + \mu_E(y)$. The relation $\mu_E(cx) = |c|\mu_E(x)$ is always true for c > 0. When *E* is balanced, it is also true for |c| = 1. Thus, $\mu_E(cx) = |c|\mu_E(x)$, for any $c \in \Phi$.

Continuity of the Minkowski Functional

• The definition of μ_E implies that

 $\{x \in X : \mu_E(x) < 1\} \subseteq E \subseteq \{x \in X : \mu_E(x) \le 1\}$

for any convex (and absorbing) subset E of the linear space X.

• If, moreover, X is a topological vector space, then E is a neighborhood of 0 if and only if μ_E is continuous.

Suppose, first, that *E* is a neighborhood of 0. Then the inequality $|\mu_E(x) - \mu_E(y)| \le \mu_E(x - y)$, which follows from the subadditive property of μ_E , shows that it suffices to prove continuity at 0. But, by definition, for any $\varepsilon > 0$, if $x \in \varepsilon E$, then $\mu_E(x) \le \varepsilon$. Conversely, suppose μ_E is continuous. Then $\{x \in X : \mu_E(x) < 1\}$ is an open set which contains 0 and is contained in *E*. Indeed, in this case:

- $\{x \in X : \mu_E(x) < 1\}$ is the interior E° of E;
- $\{x \in X : \mu_E(x) \le 1\}$ is the closure \overline{E} of E.

The Topology Induced by a Collection of Seminorms

Theorem

Given any set $\{p_i : i \in I\}$ of seminorms on a linear space X, there is a topology on X, compatible with its algebraic structure, in which every seminorm p_i , is continuous. Under this topology X is a locally convex topological space.

Let P = {p_i : i ∈ l}. For each i ∈ l, r > 0, B_i(r) = {x ∈ X : p_i(x) < r} is convex, balanced and absorbing, according to a previous theorem. We take B_i(r) to be an open neighborhood of 0. For any finite l' ⊆ l, let P' = {p_i : i ∈ l'} be the corresponding finite subset of P. Define B' = ∩_{i∈l'} B_i(1). Clearly B' is a convex, balanced and absorbing set. The collection B = {rB' : P' ⊆ P, r > 0}, where P' runs through the finite subsets of P, satisfies the properties of a base of neighborhoods of the origin. So (X, B) is a locally convex space.

The Topology Induced by Seminorms (Cont'd)

 In this topology, every p_i is continuous because every B_i(r) is a neighborhood of 0.

It remains to show that the algebraic operations on X are also continuous. For any pair $x, y \in X$ and any B in \mathcal{B} , we have, using the convexity of B,

$$\left(x+\frac{1}{2}B\right)+\left(y+\frac{1}{2}B\right)=(x+y)+B.$$

So addition is continuous on (X, \mathscr{B}) . For scalar multiplication, let $x \in X$, $\lambda \in \Phi$ and $B \in \mathscr{B}$. Note that $\mu y - \lambda x = \mu(y - x) + (\mu - \lambda)x$. So, if $\mu(y - x) \in \frac{1}{2}B$ and $(\mu - \lambda)x \in \frac{1}{2}B$, then $\mu y - \lambda x$ is in B. Pick ε small enough so that $\varepsilon x \in \frac{1}{2}B$.

- The first condition is satisfied by choosing $y \in x + \frac{1}{2(|\lambda| + \epsilon)}B$;
- The second condition is satisfied by taking $|\mu \lambda| < \varepsilon$.

The Separation Axiom

• The topology defined on X in this proof is the weakest topology in which every seminorm p, is continuous.

It is referred to as the topology generated by the family of seminorms $\{p_i\}$.

 Even though p(x) = 0 does not guarantee that x = 0, if enough seminorms vanished at x, then, presumably, we may safely conclude that x = 0.

Definition

A family \mathscr{P} of seminorms on the linear space X satisfies the **separation** axiom, or is **separating**, if, for every $x \neq 0$ in X, there is a seminorm $p \in \mathscr{P}$, such that $p(x) \neq 0$.

Separation and Locally Convex Hausdorff Spaces

Proposition

A linear space with a separating family of seminorms may be topologized to produce a locally convex Hausdorff space in which each seminorm is continuous. Conversely, any locally convex Hausdorff space X is a topological vector space in which the topolology is generated by a separating family of continuous seminorms defined by the Minkowski functionals of the convex local base of X.

• In any locally convex topological vector space X, let \mathscr{B} be a convex and balanced local base in X. For each $B \in \mathscr{B}$, which is always absorbing, a previous theorem shows that the Minkowski functional μ_B is a seminorm on X. If X is Hausdorff then, for any nonzero vector x in X, there is $B \in \mathscr{B}$, such that $x \notin \mathscr{B}$. Consequently, $\mu_B(x) \ge 1$. Thus, $\{\mu_B : B \in \mathscr{B}\}$ is a separating family of seminorms in X.

Separation and Locally Convex Hausdorff Spaces (Cont'd)

Conversely, suppose the seminorms {p_i} on the linear space X are separating. Then the topology which they generate on X, according to the previous theorem is Hausdorff. This follows from the observation that if x - y ≠ 0, then there is p_i, such that p_i(x - y) = r > 0. Then, the two neighborhoods x + B_i(½r) and y + B_i(½r) are disjoint. If not, there exists z ∈ X, with p_i(z - x) < ½r and p_i(z - y) < ½r. Therefore,

$$p_i(x-y) \le p_i(z-x) + p_i(z-y) < \frac{1}{2}r + \frac{1}{2}r = r.$$

This gives a contradiction.

Metrizability of Locally Convex Spaces

Theorem

A locally convex space X is metrizable if and only if it is Hausdorff and has a countable local base.

 Suppose X is metrizable, with metric d. The balls $\{x \in X : d(0,x) < \frac{1}{n}, n \in \mathbb{N}\}$ are convex, balanced and absorbing and form a countable base at 0 for a Hausdorff topology. Suppose X is Hausdorff and has a countable local base $\mathscr{B} = \{B_i\}$. Its topology is generated by the countable, separating family of seminorms $\mathcal{P} = \{p_i\}$, where p_i , is the Minkowski functional of B_i . We define $d(x,y) = \sum_{i=1}^{\infty} \frac{2^{-i} p_i(x-y)}{1+p_i(x-y)}$, for all $x, y \in X$. In view of the inequality $\frac{a}{1+a} \leq \frac{b}{1+b}$, $0 \leq a \leq b$, we have $\frac{p_i(x-y)}{1+p_i(x-y)} = \frac{p_i[(x-z)+(z-y)]}{1+p_i[(x-z)+(z-y)]} \le \frac{p_i(x-z)+p_i(z-y)}{1+p_i(x-z)+p_i(z-y)}$

$$\leq \frac{p_i(x-z)}{1+p_i(x-z)} + \frac{p_i(z-y)}{1+p_i(z-y)}.$$

Metrizability of Locally Convex Spaces (Cont'd)

• Therefore *d* is subadditive.

Moreover, d(x,y) = 0 implies x = y because \mathscr{P} is separating. So d is clearly a metric on X. We have d(x+z,y+z) = d(x,y), for any $x \in X$. So the sets $U_n = \{x \in X : d(0,x) < \frac{1}{2^n}\}$ form a base of neighborhoods at 0 for the topology of (X, d).

Now the series which defines *d* converges uniformly on $X \times X$ and p_i is continuous on *X*. So *d* is continuous on $X \times X$ and U_n open in (X, \mathscr{B}) .

If $x \notin B_n$, then $p_n(x) \ge 1$. So $d(0,x) \ge 2^{-n} \frac{p_n(x)}{1+p_n(x)} \ge 2^{-n-1}$.

Thus, $U_{n+1} \subseteq B_n$. So $\{U_n\}$ is a local base for the topology of (X, \mathscr{B}) .

Corollary

A countable, separating family of seminorms on a linear space X generates a locally convex, metrizable topology on X.

Normable Locally Convex Hausdorff Spaces

Theorem

A locally convex, Hausdorff space X is normable if and only if its zero vector has a bounded neighborhood.

• Suppose X is normable. The open unit ball $\{x \in X : ||x|| < 1\}$ is a bounded neighborhood of 0. Suppose U is a bounded neighborhood of 0 in the locally convex space (X, τ) . Then it contains a convex, balanced and absorbing open set U_0 which is also bounded. Let p_0 be the Minkowski functional of U_0 . If $p_0(x) = 0$, then $x \in \lambda U_0$, for any $\lambda > 0$. But, since U_0 is bounded, every neighborhood of 0 contains λU_0 , for some $\lambda > 0$. Hence, x = 0. So p_0 is a norm on X. The normed space (X, p_0) has a local base given by $\{\lambda U_0 : \lambda > 0\}$. But each λU_0 is an open set in τ on X. Moreover, every neighborhood of 0 in (X,τ) contains λU_0 , for some $\lambda > 0$. Thus, p_0 generates τ . • We assume from now on that all locally convex spaces are Hausdorff.

Remarks on Boundedness

- Suppose X is a topological vector space.
- Let *E* be a subset of *X*.
- Let us say that *E* is *topologically bounded* if it is absorbable by any neighborhood of 0.
- Let us say that *E* is *normally bounded* if *X* is normable, with norm $\|\cdot\|$, and there exists a positive constant *M*, such that $\|x\| \le M$, for all $x \in E$.
- When the topological vector space X is normable, then a subset E of X is topologically bounded if and only if it is normally bounded in X.
- In general, these two notions of boundedness are not equivalent.

Subsection 4

Examples of Locally Convex Spaces

Notation for Functions on \mathbb{R}^n

 In the calculus of n variables we use the n-tuple α = (α₁,..., α_n) of nonnegative integers α_i as a multi-index and define:

•
$$|\alpha| = \alpha_1 + \dots + \alpha_n;$$

•
$$\alpha! = \alpha_1! \cdots \alpha_n!$$
.

• With $x = (x_1, ..., x_n) \in \mathbb{R}^n$, we use the notation:

•
$$x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n};$$

• $\partial = (\partial_1, \dots, \partial_n) = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n});$
• $\partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n} = \frac{\partial^{|\alpha|}}{\partial^{\alpha_1} x_1 \cdots \partial^{\alpha_n} x_n}.$

Functions on \mathbb{R}^n and Support

- Our functions will, in general, be complex-valued and defined on an open subset Ω of ℝⁿ, with the usual Euclidean topology on ℝⁿ.
- The support of a function φ: Ω → C, denoted by suppφ, is defined to be the closure of the set {x ∈ Ω: φ(x) ≠ 0} in the topological space Ω, i.e., the smallest closed set containing {x ∈ Ω: φ(x) ≠ 0}.

Examples of Function Spaces

(i) C^m(Ω) denotes the set of (complex-valued) functions defined on Ω with continuous derivatives of order m, where m < ∞, i.e., ∂^αφ is continuous on Ω, for every α, with |α| ≤ m.

When m = 0, we have the set $C^{0}(\Omega)$ of continuous functions on Ω . Clearly, $C^{m}(\Omega) \subseteq C^{m-1}(\Omega) \subseteq \cdots \subseteq C^{0}(\Omega)$.

- (ii) $C^{\infty}(\Omega) = \bigcap_{m \ge 0} C^{m}(\Omega)$ is the set of functions on Ω with continuous derivatives of all orders.
- (iii) $C_{K}^{m}(\Omega)$ is the set of functions in $C^{m}(\Omega)$ with support in K, where K will always denote a compact subset of Ω .
- (iv) C_{κ}^{∞} is the set of functions in $C^{\infty}(\Omega)$ with support in K.

Comments on the Definitions

Clearly C^m(Ω) is a linear space over C, for m ≤∞, by the usual definition of addition of functions and multiplication by complex numbers

$$(\phi + \psi)(x) = \phi(x) + \psi(x), \quad (c\phi)(x) = c\phi(x).$$

- $C_{\mathcal{K}}^{m}(\Omega)$ is a subspace of $C^{m}(\Omega)$, for every m.
- A well-known example of a C[∞](ℝⁿ) function of compact support is given by

$$\alpha(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}}, & \text{on } |x| < 1\\ 0, & \text{on } |x| \ge 1 \end{cases}$$

It has support in the unit ball $\{x \in \mathbb{R}^n : |x| \le 1\}$.

Topology on $C^0(\Omega)$

Since any open subset of ℝⁿ may be expressed as a countable union of compact sets in ℝⁿ, we can write Ω = ∪K_i, where K_i is a compact subset of ℝⁿ for all i ∈ ℝ.

Without loss of generality, we may choose $K_1 \subseteq K_2 \subseteq K_3 \subseteq \cdots$. For any $\phi \in C^0(\Omega)$, we define the seminorm

 $p_i(\phi) = \sup \{ |\phi(x)| : x \in K_i \}, \quad i \in \mathbb{N}.$

Note that the increasing sequence (p_i) is clearly separating. The sets

 $B_i(r) = \{\phi \in C^0(\Omega) : p_i(\phi) < r\}, \quad i \in \mathbb{N}, \ r > 0,$

form a convex local topological base for $C^0(\Omega)$. The resulting topology is compatible with the metric

$$d(\phi,\psi)=\sum_{i=1}^{\infty}2^{-i}\frac{p_i(\phi-\psi)}{1+p_i(\phi-\psi)}.$$

Topology on $C^0(\Omega)$ (Cont'd)

 Since convergence in this metric is uniform on every compact subset of Ω, the limit of every Cauchy sequence is always a continuous function on Ω.

Thus the metric space $C^0(\Omega)$ is complete and is therefore a Fréchet space (locally convex, metrizable and complete).

But $C^0(\Omega)$ is not normable because in every $B_i(r)$ we can always find a function ϕ for which $p_{i+1}(\phi)$ is as large as we please, so that no $B_i(r)$ can be bounded.

Note, however, that every $B_i(r)$ is bounded in the metric d.

In fact the whole space $C^0(\Omega)$ is bounded in this metric.

Topology on $C^m(\Omega)$

• Assume again that Ω is the union of a sequence of compact sets $K_1 \subseteq K_2 \subseteq \cdots$.

For any $\phi \in C^m(\Omega)$, with $1 \le m < \infty$, we define the separating countable family of seminorms

$$p_{i,m}(\phi) = \sup \{ |\partial^{\alpha} \phi(x)| : x \in K_i, |\alpha| \le m \}.$$

The corresponding balls

$$B_{i,m}(r) = \{\phi \in C^m(\Omega) : p_{i,m}(\phi) < r\}$$

provide a base for a topology on $C^m(\Omega)$ which makes it into a locally convex, metrizable space.

The convergence of (ϕ_k) in $C^m(\Omega)$ is equivalent to the uniform convergence of $(\partial^{\alpha}\phi_k)$ on every compact subset of Ω , for all $|\alpha| \leq m$.

Topology on $C^m(\Omega)$ (Cont'd)

• The topology of $C^m(\Omega)$ is the weakest in which the linear map $\partial^{\alpha}: C^m(\Omega) \to C^0(\Omega), \ |\alpha| \le m$, is continuous, where $C^0(\Omega)$ carries its natural topology of uniform convergence.

So a sequence (ϕ_k) converges to ϕ in $C^m(\Omega)$ if and only if the sequence $(\partial^{\alpha}\phi_k)$ converges to $\partial^{\alpha}\phi$ in $C^0(\Omega)$, for all $|\alpha| \leq m$.

This is equivalent to the uniform convergence of $\partial^{\alpha}\phi_k$ to $\partial^{\alpha}\phi$ on every compact subset of Ω .

It implies the uniform convergence of (ϕ_k) to ϕ in $C^0(\Omega)$.

So the topology of $C^m(\Omega)$ is stronger than its subspace topology in $C^0(\Omega)$.

More generally, the topology of $C^{\ell}(\Omega)$ is stronger than its subspace topology in $C^{m}(\Omega)$ whenever $\ell \geq m \geq 0$.

So the identity map from $C^{\ell}(\Omega)$ into $C^{m}(\Omega)$ is continuous.

Completeness of $C^m(\Omega)$

Theorem

The locally convex space $C^m(\Omega)$ is complete.

- Let (ϕ_k) be a Cauchy sequence in $C^m(\Omega)$. So it is a Cauchy sequence in $C^0(\Omega)$. Since $C^0(\Omega)$ is complete, $\phi_k \to \phi \in C^0(\Omega)$. The sequence $(\partial^{\alpha}\phi_k)$ is also a Cauchy sequence in $C^0(\Omega)$, for every α satisfying $|\alpha| \le m$. Therefore, $\partial^{\alpha}\phi_k \to \phi_{\alpha} \in C^0(\Omega)$. But the operator $\partial_{\alpha}: C^m(\Omega) \to C^0(\Omega)$ is continuous. So $\partial^{\alpha}\phi = \partial^{\alpha}(\lim \phi_k) = \lim \partial^{\alpha}\phi_k = \phi_{\alpha}$ is in $C^0(\Omega)$. Hence, ϕ is in $C^m(\Omega)$.
- This theorem shows that $C^m(\Omega)$ is a Fréchet space.
- It is not normable because, as before, every neighborhood of 0 is unbounded.

Topology on $C^{\infty}(\Omega)$

We write Ω as the union of an increasing sequence of compact sets (K_i).

We define the seminorms

$$p_i(\phi) = \sup \{ |\partial^{\alpha} \phi(x)| : x \in K_i, |\alpha| \le i \}, \quad \phi \in C^{\infty}(\Omega).$$

The balls $B_i(r) = \{\phi \in C^{\infty}(\Omega) : p_i(\phi) < r\}$ form a local base for the topology of $C^{\infty}(\Omega)$.

The same argument as before shows that, with this topology, $C^{\infty}(\Omega)$ is a Fréchet space which is not normable.

It is the weakest topology which makes, for all $m \ge 0$, the linear map $\partial^{\alpha} : C^{\infty}(\Omega) \to C^{m}(\Omega)$ continuous, where $C^{m}(\Omega)$ carries its natural topology.

Bounded Subsets of $C^{\infty}(\Omega)$

Theorem

A subset *E* of $C^{\infty}(\Omega)$ is bounded if and only if, for all $m \in \mathbb{N}_0 = \{0, 1, 2, ...\}$ and every compact set $K \subseteq \Omega$, there is a positive constant *M*, which depends on *m* and *K*, such that $|\partial^{\alpha} \phi(x)| \leq M$, whenever $|\alpha| \leq m, x \in K$ and $\phi \in E$.

 Suppose the elements of E satisfy the given inequality. Let U be a neighborhood of 0 ∈ C[∞](Ω). Any such neighborhood contains the balls B_i = {φ ∈ C[∞](Ω) : p_i(φ) < 1/i}, for all values of i greater than some positive integer. Choose i large enough so that i ≥ m and K_i ⊇ K. If we now choose λ, such that 0 < λ < 1/M(i+1), we obtain

$$\lambda E = \left\{ \phi \in E : |\partial^{\alpha} \phi(x)| \leq \frac{1}{i+1}, x \in K, |\alpha| \leq m \right\} \subseteq B_{i+1} \subseteq U.$$

This means that E is bounded.

Bounded Subsets of $C^{\infty}(\Omega)$ (Converse)

• Conversely, suppose *E* is bounded.

By a suitable choice of the positive number λ , the set λE may be contained in any neighborhood of 0.

In particular, for every B_i , there is a $\lambda_i > 0$, such that $\lambda_i E \subseteq B_i$.

This means that

$$p_i(\phi) < \frac{1}{i\lambda_i}, \quad \phi \in E.$$

Assume $m \in \mathbb{N}_0$ and $K \subseteq \Omega$ compact are given.

We can choose *i* so that $i \ge m$ and $K_i \supseteq K$.

Then the inequality of the hypothesis follows by choosing $M = \frac{1}{i\lambda}$.

• Note that, according to this theorem, no *B_i* can be bounded for any finite integer *i*.

More on the Topology of of $C^{\infty}(\Omega)$

The system of seminorms that we have used to define the topology of C[∞](Ω) is equivalently given by

$$p_{i,K}(\phi) = \sup\{|\partial^{\alpha}\phi(x)| : x \in K, |\alpha| \le i\},\$$

as i runs through the nonnegative integers and K through the compact subsets of $\Omega.$

The preceding theorem may then be restated as follows:

 $E \subseteq C^{\infty}(\Omega)$ is bounded if and only if, for every $m \in \mathbb{N}_0$ and every compact $K \subseteq \Omega$, there is an M > 0, such that $p_{m,K}(\phi) \leq M$, for every $\phi \in E$.

Furthermore, the set $\{\phi \in C^{\infty}(\Omega) : p_{m,K}(\phi) < r\}$ is a neighborhood of 0, for every $m \in \mathbb{N}_0$, $K \subseteq \Omega$ and r > 0.

The convergence of (ϕ_k) in $C^{\infty}(\Omega)$ is equivalent to the uniform convergence of $(\partial^{\alpha}\phi_k)$, for every multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$, on every compact subset of Ω .

Topology on $C_{\kappa}^{m}(\Omega)$, for $m \leq \infty$

Claim: $C_{K}^{m}(\Omega)$ is a closed subspace of $C^{m}(\Omega)$, for $m \leq \infty$. Note that, for any $x \in \Omega$, the linear mapping T_{x} from $C^{m}(\Omega)$ to \mathbb{C} defined by $T_{x}(\phi) = \phi(x)$ is continuous. So its null space $N(T_{x}) = \{\phi \in C^{m}(\Omega) : \phi(x) = 0\}$ is closed, by a previous theorem, for every $x \in \Omega$. But $C_{K}^{m}(\Omega) = \bigcap_{x \in \Omega - K} N(T_{x})$. Hence, C_{K}^{m} is closed in $C^{m}(\Omega)$. It follows that $C_{K}^{m}(\Omega)$ is also a Fréchet space. For $m \leq \infty$, the seminorms on $C_{K}^{m}(\Omega)$ are given, for all $0 \leq i \leq m$, by

$$p_i(\phi) = \sup \{ |\partial^{\alpha} \phi(x)| : x \in K, |\alpha| \le i \}.$$

The local base they define is the collection of balls $B_i(r) = \{\phi \in C_K^m(\Omega) : p_i(\phi) < r\}.$

These seminorms, in contrast to those of the previous examples, actually define norms on $C_{\mathcal{K}}^m(\Omega)$, since $p_i(\phi) = 0$, for any $i \in \mathbb{N}_0$, $i \leq m$, implies $\phi = 0$.

Normability of $C_{\mathcal{K}}^m(\Omega)$, for $m \leq \infty$

If E is a bounded subset of C[∞]_K(Ω), then, by definition, for every B_i, there is a positive number λ_i, such that E ⊆ λ_iB_i.

This is equivalent to saying that, for every nonnegative integer i, there is a constant M_i , such that

 $\sup \{ |\partial^{\alpha} \phi(x)| : \phi \in E, x \in K, |\alpha| \le i \} \le M_i.$

- Every B_i is therefore unbounded because it contains a ϕ for which $p_{i+1}(\phi)$ is arbitrarily large. Hence $C_{\mathcal{K}}^{\infty}(\Omega)$ is not normable.
- When m <∞ the largest of the seminorms, i.e., p_m, which is actually a norm, makes C^m_K(Ω) into a Banach space.
- If K₁ ⊆ K₂ ⊆ Ω, then C^m_{K1}(Ω) is a closed subspace of C^m_{K2}(Ω), m ≤ ∞. The topology on C^m_{K1}(Ω) is the topology it inherits as a subspace of C^m_{K2}(Ω).