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The Space C5°(Q)

o Recall Q will denote a nonempty open subset of IR".

o Recall, also, that, for every compact subset K of Q, there is defined a
linear space CR°(Q2) and a topology which makes it into a Fréchet
space.

© The union of the spaces Cp°(Q) as K ranges over all compact subsets
of Q, is denoted by C§°(Q).

o Every function in C§°(Q) is infinitely differentiable on Q and its
support is a compact subset of Q.

o The topology of C2°(Q) as a closed subspace of C*°(Q) was defined
by the seminorms

pm(¢) =sup{l0“p(x)l: x € K,lal <m}, me N,
with the sets Bp(r) = {p € C2(Q) : pm(p) <r} as a local base.
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The Topology on C§°(Q)

o C(Q) is also a closed subspace of C5°(Q);
o We define the topology of

@)= U ()

to be the finest locally convex topology for which the identity map
C(Q) — C§°(Q) is continuous, for every K < Q.

o Thus, a convex, balanced set U < C§°(Q) is a neighborhood of 0 in
C5°(Q) if and only if Un CR2(Q) is a neighborhood of 0 in CR2(Q), for
every K< Q.

o The collection of all such neighborhoods U constitutes a local base for
the topology we have defined on C5°(Q).

o C5°(Q) is known as the inductive limit of the topologies on C2°(Q).
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Properties of the Topology on C$°(Q2)

o C§°(Q), with the inductive limit topology, is a locally convex space.

o The original topology on C°(Q), for any K < Q, is clearly the
topology that CR°(Q) inherits as a subspace of C3°(Q).

o If Q; is an open subset of Q, then C5°(Q1) is a subspace of C§°(Q).

This is because every function in C§°(Q1) may be extended as a Cg°
function into Q by defining it to be 0 on Q—Qj.
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Continuity of Linear Functionals on C5°(Q2)

Theorem

A linear functional on C$°(Q) is continuous if and only if its restriction to
C(Q) is continuous, for every compact subset K of Q.

o Let T be a linear functional on C$°(€2). By a previous theorem, T is
continuous if and only if it is continuous at 0 € C§°(Q).

Let K be a compact set in Q, and Tk the restriction of T to C3(Q).
If V is any neighborhood of 0€ C, and T is continuous at 0, then
T~1(V) is a neighborhood of 0 in C$°(€Q).

So TH(V)nC2(Q) = T (V) is a neighborhood of 0 in C(Q).
Conversely, suppose Tk is continuous at 0, for every K.

Then T, 1(V) =T H(V)n C2(Q) is a neighborhood of 0 in CX(Q),
for every K Q. Consequently, T71(V) is a neighborhood of 0 in
Q).
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The Space of Test Functions

©

The locally convex space C§°(©2), endowed with the inductive limit
topology, is called the space of test functions.

©

It is denoted by 2(Q), in accordance with Schwartz's notation.

©

We use D to denote the locally convex space C2(Q2), where K is a
compact subset of Q.

For any ¢ € 2(Q), we define the norms

[plm =sup{l0“P(x)|: xe Q,lal < m}, meNy.

When ¢ is in Dk, ||, coincides with the seminorm pp, ().
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Bounded Subsets of 2(Q)

Theorem

E is a bounded subset of 2(Q) if and only if the following two conditions
are satisfied:

(1) E€ 9k, for some K< Q.

(1) E is bounded in 9, in the sense that, for every nonnegative integer
m, there is a finite constant M,,, such that |p|, < M., for all p€ E.

o The sufficiency of (i) and (ii) is clear.
For necessity, let E be a subset of 2(Q), which lies in no 2.

Then, there is a sequence of functions ¢y € E and a sequence of
points xx € Q, with no cluster point in Q, such that ¢x(xx) #0, ke IN.
Let

U= {(/)(—: 2(Q) : lp(xk)l < %I([)k(xk)l,k e ]N}.
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Bounded Subsets of 2(Q) (Cont'd)

o We defined
1
U= {¢>e@(g) I00)1 < 10k xe )l K e]N}.

Note that each K contains only a finite number of points of (x).

So the intersection @k N U is a neighborhood of 0 in Dk, for every K.
Hence, U is a neighborhood of 0 in 2(Q).

But ¢k & kU, for any k. So no multiple of U contains E.

Thus, E is unbounded.

Hence, if E is bounded in 2(Q), then condition (i) must hold.

Condition (ii) follows from the fact that the topology of 2 is the
topology it inherits as a subspace of 2(Q).
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Convergence in 2(Q)

Theorem

A sequence of (¢x) in 2(Q) converges to 0 if and only if the following two
conditions are satisfied:

(1) There is a compact subset K of Q, such that supp¢p, < K, for all k.
(1) 0%k — 0 uniformly on K, for all a.

(<) Conditions (i) and (ii) imply that ¢4 — 0 in Dx. Since the identity
map from 2 to 2(Q) is continuous, ¢, — 0 in 2(Q).

(=) Conversely, if ¢, — 0 in 2(Q), then (k) is a bounded sequence in
2(Q), as seen previously. From the preceding theorem, (¢x) lies in
P, for some K <Q. Condition (i) now follows. But then ¢, — 0 in
the subspace topology of 2. So Condition (ii) also follows.
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Non-Metrizability of the Topology of C5°(Q)

: The topology defined on C§°(Q) is not metrizable.
Assume that d is a metric which defines the topology of 2(Q).
Let Q=UK,, with K, compact and K, < K,
Choose ¢, € 2(Q), such that suppp, € K.
Multiplication by a constant is a continuous mapping from 2(Q) into
2(Q).

So we can find A, >0 small enough so that d(0, 1,¢,) < % for every n.
This means that the sequence Ap,¢p, — 0 in 2(Q).

This, however, is not possible, since supp(An¢,) cannot be contained
in a single compact subset of Q.

.1, forall n.
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Topological Completeness of 2(Q)

° : 2(Q) is complete in the topological sense.
We know @k is complete in the topological sense.
If (¢«) is a Cauchy sequence in 2(Q), it is bounded.
By a previous theorem, (¢x) lies in Dk, for some K < Q.
Since 9k is complete, () converges in Di.
Consequently, it converges in 2(Q).
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The Space 2"(Q)

o We can also define the topology of
G'(@)=U (@)
KcQ

to be the finest locally convex topology in which the identity map
from C7(Q) to Cf"(Q) is continuous for every compact set K < Q.

o The resulting topological vector space will be denoted by 2™(Q).

Corollary
A sequence (¢ ) in 2™(Q) converges to 0 if and only if:
(1) There is a compact set K =€ Q, such that supp¢y, < K, for all k;

(1) 8%py — 0 uniformly on K, for all |a| < m.
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Example

o Consider the function a:RR" — R defined by

1
a(x) = e -x2, on |x|<1
0, on |x|=1

It has as support the closed unit ball B(0,1) in R".
Clearly a lies in 2(R").

o The sequence ay = %a satisfies the conditions of the theorem.
So it converges to 0 in 9(]1{")

o Consider the sequence ay = kao L defined by ax(x)= a(f), xeR".

ay does not converge in 2(R"), because suppay = B(0, k) does not
satisfy Condition (i).

o The sequence ay = %aOk has a sequence of shrinking supports E(O, %)
However, the partial derivatives of ay do not converge to 0 on any
neighborhood of the origin.

So Condition (ii) of the theorem is violated and the sequence diverges.
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Distributions on Q

Definition
A distribution on Q is a continuous linear functional on 2(Q).

o We denote the linear space of all distributions on Q by 2'(Q), the
topological dual of 2(Q).

A linear functional T on 2(Q) is a distribution if and only if, for every
compact set K €, there exists a nonnegative integer m and a finite
constant M, such that | T(¢)l < M|plm, for all p € Dk.

o Tisin 2'(Q) iff T is continuous in 2(Q) iff, by a previous theorem,
Tk is continuous in Dk (Q), for every compact K < Q, iff, by a
previous theorem, T is bounded on %y, for every compact K < Q, iff,
by the topology of @k, the given condition holds.
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Lebesgue Integrable Functions

o Denote the Lebesgue integral of the measurable function f over the
measurable set E<R" by

fE f(x)dx.

o It will sometimes be abbreviated to [ fdx or [gf, when the measure
function is clear from the context.

o In this convention, E is often dropped when E =IR".

o L}(Q) denotes the linear space of complex Lebesgue integrable
functions on Q, i.e., all functions f : Q — C whose integral [, |f(x)ldx
is finite.
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Locally Lebesgue Integrable Functions

o The function f is locally integrable on Q if f¢|f(x)ldx is finite on
every compact subset E of Q.

o Ll (Q) denotes the space of locally integrable functions on Q.

o All continuous functions on R", for example, are locally integrable,
although some of them, such as polynomials, are not integrable on R".

o Clearly LY(Q) s L (Q).
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Distributions Defined by Locally Integrable Functions

o If feLl (Q), then the linear functional Ty, defined on 2(Q) by

Ti9)= | F)e(d 9eo(@)

is bounded.
Let K =supp¢. Then

I Te ()l S)S(légltb(X)llef(X)IX=IqblofKIf(x)ldx.

Therefore, Tre2'(Q).
@ Sometimes we denote the distribution T¢ simply by f and write

Ti(@)= .0 = [ F(0(dk, @e(@)

o Continuous functions on Q are locally integrable.
o So every f € CO(Q) defines a distribution Ty as above.

George Voutsadakis (LSSU) Theory of Distributions January 2024 20 /122



Test Functions and Distributions Distributions

The Order of a Distribution

o Compare with the framework developed in the preceding theorem, i.e.,

with
I T(¢)] < M|l m.
o Here M = [ |f| clearly depends on K, but the integer m=0 works for
all K.

o Ty is then said to be of order 0.

o The order of the distribution T is the smallest m for which the
inequality holds for all K.

o If no such m exists, T is of infinite order.
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Example

o Let fe L (R—{0}) satisfy |f(x)| < 57 on |x| <1, for some positive

[x]m
integer m and a positive constant c.

. There is a distribution T € 2'(R) of order = m, such that
T=Tr on 2(R-{0}).
Let ¢ € 2(R) be arbitrary.
Then, there is a number a> 1, such that ¢(x) =0 on |x| > a.
For any x, we can use Taylor's formula to write, for some t€(0,1),

Xm—l

B0x) = $(0)+x¢/(0) + -+ o570 m D (0) +5 ™ (o).
Now we define

T(@) = Jixs1F(I()dx+ fgar F(X)[(x) — XL g0 (0)]dx
= Jim1 F)P0)dx + [ <q F() S50 (2x) dx
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Example (Cont'd)

o We obtain, for some positive constants A and B,

IT(@) = fio1 F)G)dx + flyzq F(x) 570\ (1x)dx
< 1Plo Sfiixeal FONdX+ fiyay 1™ (£x)1dx
< Alplo+ Bldlm.

Hence T is a distribution on IR of order <m.

We show that T is represented by f on R —{0}.

Let ¢ € D(R) with suppg <R —1{0}. Then ¢(¥)(0) =0, for all k.
Therefore,

T(4)= | (090 = (F. ).
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Regular versus Singular Distributions

o A distribution T is said to be regular if there is a locally integrable
function f on Q, such that

T(4)= (0= [ FX)e(x)dx,  @e(@)

o Otherwise, it is singular.

: The distribution corresponding to f(x) =1, m=1, x#0, is

Xm 1
singular on R, since f is not integrable on a neighborhood of 0.
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The Dirac Distribution

o For any fixed point ¢ € Q, we define
T(9)=9(S), ¢e2(Q).

T is clearly a linear functional on 2(Q).

T is continuous, since ¢ — 0 in 2(Q) implies that ¢(&) — 0 in C.
T is known as the Dirac distribution and is denoted by d¢.

do usually abbreviated to 6.

Thus, 8(¢) = ¢(0), for all p € 2(Q).
This distribution obviously has zero order.
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The Dirac Distribution: Singularity

o We show that d¢ is not regular.
Let, for >0 and every xe R,

(X = e_ﬁ, IxI<e
#ex)=a(%) { ST, e
@e is clearly in 2(R) and [¢e(x)I = ¢(0) = L.

Suppose & were regular. Then, for some f € L} (R),

8(0e)= [ F)0el)ae= [ AOe()ak
Consequently,
1 1 —
L $e(0) = 6(he) < —f =t
e € Jix|<e
But this is impossible. Hence §, and therefore d¢, is singular.
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The Dirac Distribution: Notation and Generalization

o Even though & is singular, we write

O, ) :=6¢(¢) = p(¢).

o In other words, the use of the bracket notation is not restricted to
regular distributions.

o If X is a hypersurface in R" of dimension less than n, then for any
locally integrable function f on X, we can define the distribution

Te(¢) = fz fodo, ¢eD(RM).

o This is clearly a generalization of the Dirac distribution from the point
0 to the hypersurface X.

o Tf may be interpreted as a measure on R" supported by ¥ with
density f.
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Distributions Generated by Borel Measures

o The Riesz Representation Theorem asserts that to each continuous
linear functional T on CS(Q), there corresponds a unique complex,
locally finite, regular Borel measure p on Q, such that

T(9)= | gdu 9@

o Such a measure defines a continuous linear functional on CJ(€).

o So the correspondence between T and p is bijective.

o The measure function corresponding to the regular distribution Ty is
given by u(E) = [gf, for any measurable set E cRR".

o The Dirac distribution §; which is defined on 2(Q) by (5¢,¢) = p(¢) is
also continuous on CJ(Q) and corresponds to the measure function

(1, iféeE
”(E)‘{o, ifEgE
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Non-Borel Measurable Distribution

o The mapping T(¢)=¢'(0) defines a continuous linear functional on
2(R). In fact, on C["(R), for m=1, but not on CJ(R).

o Thus, T is a distribution which is not a measure.
@ In higher dimensions, the functional

T(¢) =0kp(0), ¢e2(R"),

where 1< k <n, is a (singular) distribution in R" of order 1.

o More generally, the functional ¢— 3%¢(0), for any a e IN[, is a
distribution in R" of order |a|.

1
: The function { o fixeiles) is not integrable on any

0, otherwise
neighborhood of 0, and does not define a distribution on R.

Its restriction to (0,00), on the other hand, is continuous and therefore
defines a regular distribution in (0,00).

George Voutsadakis (LSSU) Theory of Distributions January 2024 29 /122



Test Functions and Distributions [FDifferentiation of Distributions

Subsection 3

Differentiation of Distributions
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Derivative of a Distribution

o When f e C1(R), it defines a distribution and has a derivative f’
which is also a distribution.

o Viewing a distribution as a generalization of a function, it is desirable
to define the distributional derivative of f so that it agrees with f'.

o Integration by parts gives the following result, where ¢ € 2(R),

(FLd) =[S (x)(x)dx
F)D()| T = [0 F(X)' (x)dlx
—(f, ).

Definition
For any T € 2'(Q), we define

Ok T(¢)==T(0kp), ¢$e2(Q).
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Higher Derivatives of Distributions

o By using induction, we obtain the more general formula
T(p)=(-1)"T(0%), ¢e2(Q), aeNg

or (0T, = (=1)I%(T,8%).
o The right-hand side is well defined for any multi-index a, because
$€2(Q), and represents a continuous linear functional on 2(Q).

o Thus a distribution has derivatives, in the sense of the above
definition, of all orders.

o Furthermore, 0%08 T = 0P0% T, for any T € 2'(Q).
0%0P T (¢)

(~1) 0" T(0%)
(=1)+IAIT (8P 5% )
(=1)l+IBIT (5238 )
0h0% T ().
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Distributional vs. Ordinary Derivatives

o If fe C™(Q), then the formula for integration by parts can be used to
show that the distributional derivative of f coincides with its
conventional, or classical, derivative in the sense that

0%Tf = Tsay, for all [a] <m.

o In general this relation does not hold, as may be seen from some of
the following examples.
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Example (Distributional vs. Ordinary Derivatives)

x, x>0

0, x=<0°

As a function x; is not differentiable at x =0 in the classical sense.
As a distribution, it can be differentiated by the preceding formula.
1, x>0

0, x<0

o Define x; = {

Define the Heaviside function H(x) ={

Then we have

—x @), $eD(R)
= - X/ (x)dx

= x5+ S5 p(x)dx
= 0+ [ H(x)p(x)dx

= (H,¢).

(XL, )

Similarly, -
@) = (H ) = — (H, 'y = — fo ¢'(x)dx = §(0).

Therefore, xi/ =H'=6.
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Example (Cont'd)

o We can go further:

',y

0",y = = (6,¢"y = - ¢'(0);

oD gy = (509, = (~1)kp)(0).

It is important to note in this example that x, and H are
differentiated as distributions and not as functions.
o In the case of x; it makes no difference, since x} = H almost
everywhere (a.e.) in the classical sense as well.
o But the classical derivative of H is 0 a.e..
When we write H' =5 we really mean T}, =4.
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Derivative of Non-Continuously Differentiable Function

o As in the case of x;, the distributional and the classical derivatives of
a function may coincide even when the function is not continuously
differentiable.

. Let f be a differentiable function on / =(a,b).
Suppose its (classical) derivative f’ is integrable on /.
Such a function can be expressed as the integral of its derivative

f(x)=fx F(t)dt+F(c), xcel.
The, for all p € 2(1),
o (fg) =F'p+ g,

o [i(f¢)' =0, because f¢ vanishes outside a closed subinterval of /.

flf’¢>+flf¢>’:0.
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Example (Cont'd)

o Let T{ be the distributional derivative of Ty.
Then
TH9)=~Tr(@)=~ [ f¢'= [ Fo=To(o

Therefore, T; = Ty
o More generally, suppose f is absolutely continuous on /.
Then:

o f’ exists almost everywhere;
o f’is integrable on /;
f(x)=[2f'(t)dt+f(c), x,cel.

The equality T{ = T, then follows by the same argument.
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Example (Punctured Intervals)

o Let ce(a,b)=1and fe CH(I-{c}).
Suppose the left- and right-hand limits at c,

f(c7)=limf(x) and f(c")=limf(x)

Xx<c X>c

are finite and f’ is bounded in a neighborhood of c.
Then the distributions Ty and T7 in 2'(/) are related by

Ti=Tp+[f(c)-f(c)]bc.

We show this in the next slide.
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Example (Cont'd)

o Suppose ¢ is any function in 2(1).
= Tr(¢') = = [ F()@/ (x)dx
= JSFO)@ (x)dx = 2 F(x)¢' (x)dx
= Jim [ (@ ()b = lim 2, F(x) ' (x)dx
= lim [FO)@(NS™ = 55 F(x)9(x)x]
= Iim [FOIO(E.e, = fore, F()D(x)dN]

—f(c7)p(c)+f(c)p(c)+ fab f'(x)p(x)dx
(F,d) +[f(ct)—F(c7)|Bc, ).

TH(¢)

In particular, when f is the Heaviside function, H' =0 on / — {0} and
we obtain the expected result T/ = 0.

George Voutsadakis (LSSU) Theory of Distributions January 2024 39 /122



Test Functions and Distributions [FDifferentiation of Distributions

Notational Clarifications

o x; and H are defined on R which represent on
2(R), since each is locally integrable.

o The classical derivative of H is the which is 0 almost
everywhere, and represents the zero distribution.

o But the of H is 8, which is not a function.

o In the sequel, derivatives will always be taken in the distributional
sense.

o The pointwise notation H'(x) is meaningful only when it applies to the
classical derivative, since we have no way of evaluating a distribution
at a point.

o If it is interpreted properly, this notation can be useful when we wish
to keep track of the point variable.

o It is convenient at times to write H' =8, H'(x) =8(x), or H, =6, on
IR, rather than the more accurate T;, =6 on 2(R).
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Example (Characteristic Functions)

o For any subset E of R", we define its characteristic function by

1, xeE
’E(X)z{ 0, xeR"—E °

If E is a bounded open subset of R", with a smooth boundary 9E,
then, using the Divergence Theorem,

Okle, ) = — (g, 0y = —fEakqb(X)dX= —faE¢(X)C059kd0,

where:
o O is the angle between the xi-axis in R" and the outward normal to
O0E;
o do is the Euclidean measure on 9E.
Thus, 0y /g is a measure of density —cos6) on 9OE.
For the special case when n=1 and E =(a,b), we have:
o Ig(x)=H(x—a)—-H(x-b);
o Ip(x)=08(x—a)=06(x~b)=08a-0p.
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Example (Regularization)

o log|x| is locally integrable on R.
So it defines a distribution in 9(]R)

Its classical derivative < S loglxl =+, x#0, does not define a
distribution as pointed out prewously.

We explore the relation between the distributional derivative of log|x|
1

and =.
X

d / * /
<E log |X|,¢> = (log|x|,¢"y = —f_oolog Ix|¢'(x)dx.

Now, with log|x|¢’(x) integrable in the neighborhood of 0,

d : ,
<& Ioglxl,(p> = —melX|2£Iog Ix|¢p’ (x)dx.
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Example (Regularization Cont'd)

o Since ¢ has compact support and is differentiable at x =0,

(&loglxl, ¢y = - lim[log|x|¢>(x)|‘£— Sixize 29(x)dx]
= I|m [2.s|og£M +fX|>€qu(x)dx]
= Ilmfx|>£x ( ) X.
° Iime|>€X ¢(x)dx is called the Cauchy principal value of the
8—»

divergent integral [0 1¢(x)dx and is denoted by pv [ L¢(x)dx.

o Thus, the distributional derivative of log|x|, which is not a function,
denoted by pvL, is obtained from the divergent integral °3 1¢p(x)dx
by taking its prlncipal value.

o This process is known as regularizing the integral.

George Voutsadakis (LSSU) Theory of Distributions January 2024 43 /122



Test Functions and Distributions [FDifferentiation of Distributions

Regularization of Tjar

o If the function f is locally integrable but 0%f is not, then 0% T¢ is
called a regularization of Tjar.

By the same token, ¢’ being differentiable at x =0,

—(pvi ¢

= —Iin&flxle%W(x)dx

=~ lim[loglxI¢/(x)| = fiy=c log xI¢" (x)dx]
= !i_r}"(l)flxlzgloglxlqb”(x)dx.

(ZLpvi,¢)

The last integral is well defined, since log|x|¢” is integrable on R, and
represents the action of the distribution %pv% on ¢.

George Voutsadakis (LSSU) Theory of Distributions January 2024 44 /122



Test Functions and Distributions [FDifferentiation of Distributions

Example
o Consider the differential operator L = %22 —3(%( +2in R.
Let
e, x=0
)= % X3 -

Let T}, be the distribution defined by the continuous function h.
- LT, =6.
For any ¢ € 2(RR), we have
LTh(p) = (h"=3h +2h,p)y = (h,¢") +3(h,¢"y +2(h, ).
Now
(h, " SO e (x)dx + [$° 2" (x)dx
[6'(0) = /25 ¢/ (x)dx] + [~'(0) =2 [5° >/ (x) dx]
—[#(0) - /2, € (x)dx] — 2[~p(0) 2 [5° e**p(x) dx]
9(0)+ 2, X p(x)dx +4 52 2 p(x)dx.
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Test Functions and Distributions [FDifferentiation of Distributions

Example (Cont'd)

o We also have

(h,¢"y SO X (x)dx + [5° €2 ¢! (x) dx
— [2 e p(x)dx =2 [° > p(x)dx;

) =[O e p(x)dx+ [5° e p(x)dx.

Hence, LTx(¢p) = ¢(0), for every p € 2(R). So LTy =4.

Note that the function h, though continuous, has a jump discontinuity
in its derivative at x =0 given by

H(0T)—H(07)=2e e =1.

This accounts for the § distribution when h is differentiated a second
time.
On R - {0}, the function h is twice differentiable and satisfies Lh =0.
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Test Functions and Distributions [FDifferentiation of Distributions

Generalizing the Differential Operator

o Let 2
L= W arF a& arF b,
with a,be R, be a differential operator in R.

Suppose that f; and f are two C? solutions in R of Lf =0, satisfying
f(0)=£(0), £(0)-£(0)=1.
Let h be the continuous function defined by
[ A(x), x=<0
h(x) = { f(x), x>0~

Let T}, be the distribution defined by h.
We can verify that LT, =4.
The solution x; of T"” =6 is in accordance with this construction.
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Test Functions and Distributions [FDifferentiation of Distributions

The Laplacian Operator

o In R" the partial differential operator
- 2
2. 0

k=1

is known as the Laplacian operator, and will be denoted by A.
. The function log|x| is locally integrable in R?.
We obtain its (distributional) Laplacian derivative

Alog|x| = (02 +83)log|xI.
By the differentiation formula, for all ¢ € 2(RR?),

(Aloglx|, ) = (loglx|,A¢p)
= JgrelogIx|Ap(x)dx
= li_'fg)flxlze log Ix|A¢p(x)dx.
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Test Functions and Distributions [FDifferentiation of Distributions

Intermission: Green's First and Second Formulas

o Let Q< R” be a bounded open set with sufficiently smooth boundary.
o Let u,ve C?(Q) be pair of functions.

o By the Divergence Theorem, we get Green’s First Formula

= uopv,
I, fia0r

where 0, is the differential operator with respect to the outward
normal 1 on 4Q).

o By interchanging v and v, we get

= vOpU.
I, favor

o By subtracting, we obtain Green’s Second Formula

fg(uAv—vAu):faQ(uanv—vanu).

Theory of Distributions

ulv+ i (0ku)(0kv)
k=1

n

VAu+ Z (0ku)(0kv)
k=1
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The Laplacian Operator (Cont'd)

o Choose Q so that it contains:

o The support supp¢;
o The closed ball B(0,¢), for some
e>0.

/'/,//

[x|=¢

By Green's Second Formula on Q. = Q—E(O,e) ={xeQ:|x|>e¢}, we
obtain

Jo, logIxIAp(x)dx = [, P(x)Aloglx|dx
+ faQE [log [x10,¢(x) — ¢(x)0, log|xl]do,

where 7 is the outward normal on 0€Q,.
Since ¢ and 9;¢ vanish on the boundary Q, we have

SixizelogIxIAP(x)dx = [ 1o P(x)Aloglx|dx
+ [ixj=e [l0g X105 ¢(x) — ¢(x)0, log|xI]do.
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Test Functions and Distributions [FDifferentiation of Distributions

The Laplacian Operator (Cont'd)

o With |x| = (x1 +x2)1/2 =r, we have 0, = —0, on the circle x| =¢.

Moreover, for all x #0, we also have

Alog x|

01 (&011x1) + 02 (L0211

= 61(|X|2)+62(Ix|2)

X X X—X
2 1 1 2
et e =0

Thus, the first integral on the right side drops out, and we have

Xl +X2

Jixi= £[|°g£an¢(x) é(x) X
Jixi=e [£9(x) —loged, p(x)] do.

Sixi=e 108 1xIAD(x)dx
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Test Functions and Distributions [FDifferentiation of Distributions

The Laplacian Operator (Conclusion)

o Now ¢ is in C°(R?).
So its derivative d,¢ is bounded on R? by some constant, say M.

Hence
| Iogef 0,p(x)do| < 2me| IogeIME—_)? 0.
|x|=€

Moreover,

1 1 1

| etdo=—[ #()-¢@)do+9(0) [ do.

€ J|x|=¢ € J|x|=¢ & |x|=¢
¢ is continuous at x=0. So lim._o 1 [ ,_. [¢(x) - ¢(0)]do =0.
Therefore,

im= [ ¢(x)do =0+27(0).

€—0 € Jix|=¢

Thus, (Alog|xl|,®) = 2¢p(0), for all p € D(R?), i.e., Alog|x| =276.
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Example

o We determine A(ﬁ) in R3.
In R3, |—)1<| is integrable in the neighborhood of 0. We have

()= (29) =Im ot

We also have

Sicze BT = fme (A () o
+ fige [ 1000 (0) ~ (x)0 ()| do
Note that A (ﬁ) = (02 +02+02)(x? +x2 +x2)71/2=0, when x #0.

So the first integral on the right-hand side vanishes.
Therefore, with 8, = -d,,

[ tetdc=—c [ otdo- [ e(do.

|x|=¢
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Test Functions and Distributions [FDifferentiation of Distributions

Example (Cont'd)

o Now 0,¢ is a bounded function in R3.
So there is a positive M such that 10,¢(x)l < M, for all x € R3.

Hence,

1
: le|=£6r(p(x)da

&

st da=4n£M£—_)90.
€ J|x|=¢

We are left with

1

2 e d(x)dx

1
8000 5 [ o(@)a

B 5_2 [x]
The first integral on the right-hand side tends to 0 as € — 0.
The second is just 47¢(0).

Thus, <Aﬁ,¢)> = —4n¢(0), for every ¢ € D(R3).

Therefore, Aﬁ =—476.
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Test Functions and Distributions [~ Convergence of Distributions

Subsection 4

Convergence of Distributions
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Test Functions and Distributions [~ Convergence of Distributions

Weak Topology and Weak Convergence of Distributions

o On the vector space 2'(Q), the weak topology is the locally convex
topology defined by the family of seminorms

po(T)=1T()l, ¢e2(Q), Te2'(Q).
o This leads to the following definition of (weak) convergence in 2'(Q).

Definition (Weak Convergence in 2'(Q))

The sequence (Tk) in 2'(Q) converges to 0 if and only if, for every
P €2(Q), the sequence (T(¢p)) converges to 0 in C.

o This is “pointwise” convergence on 2(Q).
o We write Ty — T in 2'(Q) if the sequence (Tx— T) converges to 0.
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Test Functions and Distributions [~ Convergence of Distributions

Strong Convergence of Distributions

o In the strong or uniform convergence in D'(Q), Ty —0is
equivalent to Ty (¢) — 0 uniformly on every bounded subset of 2(Q).

o Strong, or uniform, convergence implies weak convergence.

o Convergence in 2'(Q) will be taken in the weak sense unless otherwise
qualified.
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Test Functions and Distributions [~ Convergence of Distributions

Sequential Completeness

The space of distributions 2'(Q) is (sequentially) complete.

o Suppose (Tk) is a Cauchy sequence in 2'(Q).
Then it is bounded, i.e., there is a neighborhood U of 0 in 2(Q) and a
positive number M, such that | Tx(¢)l < M, for all ¢p€ U and ke IN.

Also, (Tk(¢)) is a Cauchy sequence in C, for every ¢ € 2(Q).
Therefore its limit exists. Let T be defined by

T(¢)=limTi(¢), ¢e2(Q).

T is clearly linear.
For all pe U, |T(¢p)l = lim|Tx(¢p)l <M. So T is bounded on U.

Therefore, T is continuous on 2(Q).
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Limits and Derivatives

Corollary

If Tx€2'(Q), for every ke N, and lim T, =T, then limd* T, =0*T, for
every multi-index a € INJ.

o For any ¢ € 2(Q), we have

lim (0% T )(¢)

(=) lim T (0%)
(-D)*T(0%9)
= 0°T(¢).
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Almost Everywhere Convergence vs Convergence in 2'(Q)

If f is a sequence of functions in L (Q) which converges to f a.e. in Q,
and |fi| < g, for some g€ L (Q), then fy —f in 2'(Q).

o For every ¢ € 2(Q), we have

Tu(9)= o) = [ 0" [ o,

by the Lebesgue Dominated Convergence Theorem.
But, we have [, f¢ = T¢().
Therefore, Ty, — Tr.
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Convergence a.e. vs. Convergence in &'

o Convergence a.e. for a sequence of locally integrable functions does
not imply its convergence in 2.

: Consider the sequence

K2, Ixl<1
fk(X)z{ 0, |X|2%

It converges to 0 a.e.

Let ¢ € 2(R) be such that ¢ =1 in (-1,1).
Then (fy, ) =2k.

This does not converge.
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Convergence in @' vs. Pointwise Convergence

o Distributional convergence does not imply pointwise convergence.

: Consider
(sinkx).

Then, we have, for every ¢ € 2(R),

(sinkx,) =[50 sinkxp(x)dx
— [ (~Feosk)p(x)de

= —fcoskxp(x) [ +% [ cos kxp' (x)dx

= 1% coskx¢'(x)dx ==

Clearly, (sinkx) does not converge pointwise.
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Example (Convergence in 2'(RR))

o Let

e 8- ).

1

To show that T, converges in 2'(R) we must show that lim T,(¢)
exists, for every ¢ € 2(R).

We have
1

n 1 n
Tn(®) =nep(0 ~1¢'(0) - —1.
(@)=n0(0)+(2 1 Jo'@ - Lo ;]
By Taylor's Formula, we can write

¢(x) = $(0) +x¢'(0) + x*y(x),

where  is a C* function which is bounded by some constant, say M.
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Example (Convergence in 2'(R) Cont'd)

o Now we obtain
Ta(¢) = ng(0)+(X03)¢'(0)-X7¢(%)
ng(0)+ (27 1) ¢/(0) X7 [4(0) + 2'(0) + v ()]
= -XI&v(3).

Therefore, for m < n,

ITo(@)= (@) =M 25

So (Th(¢)) is a Cauchy sequence in C.
So its limit exists.
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Example: Delta-Convergent Sequences

o Even when the sequence of functions f, converges a.e. and in &', the
two limits may not be equal.

: Consider

ko ifIxI<
f"(x)‘{o, if x| = o

Clearly, [fx(x)dx =1. Moreover, fx —0 a.e. on R.
For any function ¢ in 2(R), by the continuity of ¢ at 0,

1/2k -
ot =00) k[ [00) ~9(0)lee = 4(0).

Hence, limf, =90.

o A sequence of functions, such as (fx), which converges to § in 2'(Q)
is called a delta-convergent sequence.
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Construction of Delta-Convergent Sequences

Theorem
Let f be a nonnegative integrable function on R” with [ f(x)dx =1 and

fi(x) = %f(%) = %f(%%) 1>0.

Then £ — 6 in 2'(R") as A — 0.

o Note that
ff,l(x)dxzf al —dx ff )dé=1.
Therefore,
limy_o(fi, @) = limy_g [ fi(x)p(x)dx

@(0) +lima_o [ T2 (x)[¢(x) - $(0)]dx.
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Construction of Delta-Convergent Sequences (Cont'd)

o We also have

|/ () [p(x) - p(0)]dx|

IA

Sisi=r [ C)[P(x) — p(0)]| dx
+ fixizr [ (X)[B(x) = (0)]| dx

SUP|x|<r |([)(X) - (P(0)| ./ixlsr fA(X)dX
+ SUP|x|=r |¢)(X) - ¢(0)| flxlzr f/l(X)dX

S sup< l9(x) = PO) + M g, )2 F(E)dE

where M is the max of |¢p(x)—¢(0)| on R".
Let € >0 be arbitrary.

IA

Because ¢ is continuous at 0, we can make the first term less than %e
by choosing r small enough.

Because f is integrable on R", we can choose A small enough so that
the second term is less than %6.
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Example
o Recall the equality [0 125 =
Define 1
flx) = a(l+x2)
Then
[
o (1 +x2)
et 1 1 1 A
x
Al = Xf(I) T AAl+(3)?] T a(x2+A2)

By the previous theorem, in 2'(R),

226
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Example

o Recall the equality /% e’ dx = V7.
We obtain

fRn HZ:]. e_X‘3 ka
iy /o e~ dxk
= V'
Replacing the parameter A >0 in the previous theorem by v/A, we

obtain the following function defined on R", for all positive values of
A‘y

f]Rn e_lxlde

1
f/l(x)= / Ane |x|2//1.
T

By the theorem,

729
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Subsection 5

Multiplication by Smooth Functions
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Test Functions and Distributions [FMultiplication by Smooth Functions

The Product of a C* Function with a Distribution

o Forany Te2'(Q) and f € C*®°(Q), we define fT as the linear
functional

(FT)(@)=T(f¢), de2(Q).
o The product T is well defined.
Note that the product ¢ is in 2(Q).
o The product fT is in 2'(Q).
Suppose the sequence ¢y converges to 0 in 2(Q).
Then the sequence f¢y also converges to 0 in 2(Q).
Therefore,

(fT)(¢k) = T(fpx) — 0.

So fT is a continuous linear functional on 2(Q).
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Test Functions and Distributions Multiplication by Smooth Functions

Regularity of the Product

&

Let Te2'(Q) and f e C®(Q).

Suppose T is a regular distribution.

©

©

Let g be a locally integrable function, such that, for all ¢ € 2(Q),

T¢: & P).

©

Note that fg is also locally integrable.

So we obtain

©

(FT)(@) = TelFo) = . ) = [ efo= (e,

©

Thus, fTg = Tgz and T is also regular.
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Test Functions and Distributions Multiplication by Smooth Functions

Differentiation of a Product

o The ordinary rules of differentiating a product of two functions apply
to fT when fe C®(Q) and T € 2'(Q).

Indeed we have, for all ¢ € 2(Q)

0k(T)(¢) —fT(0x)
= —T(fokp)
= —T(0k(f¢p)—(0kf)®)
= —T(0k(f¢))— T((0kf)p)
= 0k T(f¢p)—(0kf)T(¢)
= fokT(p)+(0kf) T ().

Therefore,
ak(fT) = (akf) T+ fak T.
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Test Functions and Distributions Multiplication by Smooth Functions

Differentiation of a Product: Leibniz Formula

o Let fe C®(Q) and T €2'(Q).
o We can use induction to show that Leibniz's formula

a

0%(fT)= 3.

B0 @AT), ael?
Oﬁl(a )(a O AT), ael

remains valid, were the summation is over the multi-indices from
(0,...,0) to (ai,..., an).
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Test Functions and Distributions Multiplication by Smooth Functions

Example

o The product sinx§ is the distribution defined on 2(R) by
(sinx 8,¢) =(8,sinx ¢)=sin0 ¢(0) =0.
On the other hand, sinx§’ is given by

(sinx &', ¢)

(6',sinx ¢)

=  —(5,(sinx ¢)"

= —(b,cosx ¢p+sinx ¢

= —(cos0 ¢(0)+sin0 ¢'(0))
= —¢(0).
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Subsection 6

Local Properties of Distributions
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Zero Distributions

o It does not make sense to assign a value to a distribution at a given
point in Q, but we can define what it means for a distribution to
vanish on an open subset of Q.

For any T € 2'(Q) and any open subset G of Q, we say that T=0 on G if
T(¢) =0, for every p € 2(G).

o We can now say that T € 2'(Q) is zero if T =0 on Q.
o We also say that Ty, T, € 2'(Q) are equal if T3 — T, =0o0n Q.
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Test Functions and Distributions Local Properties of Distributions

Examples

o We saw that, for all p € 2(R),
(sinx 6,¢) =0.

We conclude that sinx § =0 on R.
o We also saw that, for all ¢ € 2(R),

(sinx &', = —p(0) = —(5, ).

We conclude that sinx 6’ = -6 on R.

o Earlier on, we interpreted the equality T = Tr on 2(R —{0}) to mean
that T is represented by f on R—{0}, i.e. that T = T¢ on R—{0}.
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Test Functions and Distributions Local Properties of Distributions

Example

o Let / =(a,b) be any interval in R, including R itself.
Suppose T € 2'(/) is such that T'=0.
Then T must be a constant.
By hypothesis, for all € 2(1), T(¢')= - T'(¢) =0.
Thus, T vanishes at every test function which can be expressed as the
derivative of some function in 2(/).

Let 9p(/) be the subspace of 2(/) characterized by the condition that
P eD(l) if and only if there exists a ¢ € 2(1), such that ¢ =y
: pePy(l) if and only if fabcp(x)dx:O.
This condition is clearly necessary.
Suppose the condition is satisfied.
Define y(x) = [ ¢(t)dt.
Then we2(/) and v’ = ¢.
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Test Functions and Distributions Local Properties of Distributions

Example (Cont'd)

o T(¢)=0, by hypothesis, for every ¢ € Zy(/).
Let ¢po be a fixed function in 2(/), such that fab¢>0(x)dx= 1.
Given any ¢ € 2(1), the function <p—(fab<p(x)dx)<p0 lies in 2o(1).
Therefore,

T(<p—<p0fab¢>(x)dx) =0.

This gives T(¢) = cfab¢>(x)dx, where ¢ is the constant T (¢y).
This equation implies that T is the constant function c.

o Suppose T € 2'(/) satisfies T’ = ¢1, for some constant ¢;.
Define Se2'(l) by S=cix. Then (T-S)' =0.
Therefore, T = c1x + ¢, for some constant c,.

o If T(M =0, we can use induction to show T is a polynomial of degree
=m-1.
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Test Functions and Distributions Local Properties of Distributions

The Convolution

For any fe Li (R") and ¢pe C2(R"), where K is a compact subset of R”,
we define the convolution of f and ¢ as the function

f f(x-y)p(y)dy = f f(y)p(x—y)dy

which will be denoted by (f * ¢)(x).

o Note that f % ¢ is also defined if ¢ is merely continuous with compact
support in R".

o f ¢ is not necessarily defined when supp¢ is not compact, unless, of
course, suppf is compact.
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The Distribution 83

o Consider the C® function

1
a(x)={ € T, onld<l
0, on |x|=1

o It has support in the closed unit ball B(0,1).
o Its integral over R" is a finite positive number.

o Consider the function B(x) = f(;xg))dx'

o It is another C* function with support in B(0,1).
o Moreover, it satisfies [ B(x)dx =1.

o Let, for any positive number A,

) =350 5)

o Bre2(R"), with supp(B,) = B(0,A).
o Moreover, [Ba(x)dx = [B(x)dx =1.
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Test Functions and Distributions Local Properties of Distributions

Properties of 8,

Theorem

(i) If fe LL (R"), then f * 3 € C®(R").

(1) If fe [}(R™) with compact support K, then supp(f * 1) is contained
in a neighborhood of K defined by Kj =Uxek B(x,A) = K+ B(0,1).

(i) If fe CO(R"), then, f*ﬁ,l/llg f uniformly on every compact subset of
R".
() (F*Ba)(x) = [f(¥)Ba(x—y)dy = [g(xa) F(¥)Ba(x—y)dy.
But B(x,A) is bounded and B, is infinitely differentiable.
Hence, f )€ C®(R").
(i) Suppose x ¢ Kj. Then d(x,K) =infyexIx—yl>A. So Ba(x—y)=0,
for all y € K. Consequently,

(F * B2)(x f F(y)Ba(x—y)dy =0.
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Properties of B, Part (iii)

(111} Since f is continuous on R", it is uniformly continuous on any
compact subset E of R". So, given € >0, there is a § >0, such that,
for all x€ E and all y € B(0,9),

If(x—y)-f(x)l<e.
Then, for all xe E and all A <6,
I(f * B2)(x) = F(x)]

|[Tf(x=y) = f(x)1Ba(y)dy]
Jaon) If(x=y) = f(x)IBa(y)dy
< e

IA

o In this proof the only properties of §, that were used are:

Bre C(R"), suppBar < B(0,1), fﬁ,l(x)dx =1.

Hence B, may be replaced in the statement of the theorem by any
function with these properties.
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Regularizing Sequence or Regularization

o The theorem indicates that the convolution of f with 8, smoothes out
the discontinuities in f while preserving its general shape.

o For that reason the sequence of functions

fk:f*ﬂl/k

is called a regularizing sequence, or a regularization, of f.
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Property of Compact Subsets of Q

Corollary

If K is a compact subset of Q< R”, then there is a ¢ € 2(Q), such that
O<s¢p<land p=1on K.

o There is no loss of generality in taking Q to be bounded.
Let K be the 5-neighborhood of K, where 6 = 2d(K,0Q).
Let Ik, be the characteristic function of Kj.

Consider the C* function

#0)= (b B)() = [ Bolx=y)ay.

o ¢=1on K;
o 0=¢p=1on Kys;
o ¢ =0 outside Kos.
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Density of 2(R") in C¥(R")

Corollary

P(R") is a dense subspace of CJ(R") with the identity map from 2(R")
to CJ(R") continuous.

o Suppose ¢y converges in 2(R") to ¢.
Then there is a compact set K <IR", such that:

o suppdk € K, for all k;
o ¢y converges uniformly to ¢ on K.

But that implies ¢4 — ¢ in CO(R").

Hence, the identity map from 2(R") to C{ is continuous.
Next, let ¢ be any function in CJ(R"), with supp¢ = K.
Then the sequence ¢y = ¢ * By is supported in K+§(0,1).
By the theorem, ¢ converges uniformly to ¢ on K + B(0,1).
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Open Cover and Partition of Unity

Theorem

If {Gq: @€ A} is a collection of open subsets of Q, and T € 2'(Q) is zero on
every Gy, then T is zero on the union Ugea Gg-

o Let G=UG, and ¢ be in 2(G) with suppp = K.
The collection {G,} is an open covering of the compact set K.

It contains a finite subcovering of K, say, after relabeling, Gy, ..., G,.
For every ke {l1,...,m}, we choose:

o A compact set Ky < Gy so that K<U]” | K};

o PpreD(Gy) sothat 0=y <1 and ¢px =1 on K.
Now let

vi=¢1, Yk=¢k(1-¢p1)-(1-pk-1), k=2,....m
For ke {l,...,m}, wx € D(Gk), 0=y, <1. Moreover, X" =1 on

a neighborhood of K. So ¢ =X dy,. But ¢y €@(Gk) and T=0
on Gi. So T(¢p) =X, T(myy)=0.
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Partition of Unity Subordinate to an Open Cover

o Suppose {G,: a € A} is a collection of open subsets of Q.

o The set of functions {y1,...,¥m}, constructed in the theorem, is called
a C® partition of unity subordinate to the open cover {Gj,..., G} of
K.
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The Support of a Distribution

The support of T € 2'(Q) is the complement in Q of the largest open
subset of Q where T =0.

: Consider § € 2'(Q).
We know that (§,¢) =0, for every ¢ in 2(Q—{0}).
So the support of § is {0}.

o Note that, if T is a distribution and f is a C* function which vanishes
on supp T, it does not necessarily follow that T =0.

: We have seen that xé6' = —6.

@ On the other hand, if f vanishes on a neighborhood of supp T, then
we may conclude that fT =0.
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Compact Support and Finite Order

Every distribution with compact support is of finite order.

o Suppose T €2'(Q) and suppT is compact.
There is ¥ € 2(Q), with ¥ =1 on some open set containing suppT.
For any ¢ € 2(Q), the support of ¢ —w¢ does not intersect supp T:
supp(¢—yP) < Q—suppT. So T(¢p-y¢p)=0. lLe., T(})=T(y¢).

Let K =suppw. By a previous theorem, there is a nonnegative integer
m and a constant My, such that T(¢) < M|l for all ¢ € D.

By the Leibniz Formula for the derivative of y¢, there is a constant
M, such that [@¢l, < Malplm, for all ¢ € 2(Q).

For this choice of ¥ and for every ¢ € 2(Q), we have

I T(P)l =T (wep)l < Milyplm < My Mo|p|m.
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Finite Order and Compact Support

o A distribution of finite order does not necessarily have compact

support.
: Any locally integrable function defines a distribution of order
0.
: Consider -
(k)
kX::OG i

This is an example of a distribution of infinite order.
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Linear Combinations of Derivatives of Delta

o Consider a linear combination of derivatives of the Dirac measure on
Rn
T= ) cu0%.

lal=m

o It has support {0};
o Forall pe2(R"), T(p)= Y ca(~1)"3%(0).

lal<=m
Note that
IT(@) = X 1cad“¢p(0)]
lal=m
< Mpymax|0%p(0)]
lal=m
< Mpnldplm.

Here M, is a positive constant which depends on m and n.
This implies that the order of T is m.
o We will see later that every distribution with support {0} is a finite

linear combination of derivatives of 6.
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2(Q) as a Subspace of LP(Q)

o The space LP(/), where [ =(a,b) and 1< p <oo, is the completion of
CQ(/) in the norm

1/p
f—INflp=

fllf(x)lpdx

o More generally, for any open set Q < R”, we can also define LP(Q) to
be the completion of CJ(Q) in the norm |-ll, with / replaced by Q.

o It is a standard result of real analysis that this definition is equivalent
to the usual definition of LP(Q) as the linear space of measurable
functions on Q with finite norm |-l .

o Since convergence in CJ(Q) implies convergence in LP(Q), and in view
of a previous corollary, we have

2(Q) is a dense subspace of LP(Q), for 1 < p < oo, with the identity map
from 2(Q) to LP(Q) continuous.
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Approximation of an LP Function in 9

o Next, we show, given an LP function, how to construct the
approximating sequence in 9.

o We use (yx) to denote the sequence (B1/x).
Let ue LP(R").
We carry out the following steps:
o First, we show that

luxyelp<llullp, 1<p<oo;
o We, then, conclude that, in LP(R"), for ue LP(R"),

uxyp—u.
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Approximation of an LP Function in @2 (Part (i))

(1) Suppose, first, 1 < p<oo. Then

uu*ym5=j'f7Ayﬁmx—yﬁw

P
dx.

We can write uyy = (uy}(/p)(yll(/q), where L +1 =1,

pPaq
Now use Hdlder's Inequality to obtain

1/
[ty = [ [ mate-nray| | [ e
Taking into account [yk(y)dy =1, we get
JJri()lu(x—y)IPdydx

SY)[flu(x=y)IPdx]dy (Fubini's Theorem)

Sye(y)llulpdy
lulle.

1/q

IA

luxyil?
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Approximation of an LP Function in @ (Part (i) Cont'd)

o If p=1,

IA

S Jyi(y)lu(x—y)ldydx
Sy Tu(x —y)ldx]|dy
llully.

Ty il

Hence, for all pe[1,00),

lu*yillp=<llullp.
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Approximation of an LP Function in 2 (Part (ii))

(1) Let ue LP(R") and &€ >0 be arbitrary.
Since ) is dense in LP, choose ¢p€ C)(R"), such that [u—dll, <e.
Then, by Part (i),

luxyk=p*yillp=I(u—¢)*yillp<llu=-dlp<e.

Now we take into account the fact that:
o ¢* 7y, and ¢ are supported in the compact set K = supp¢ + B(0,1);
o ¢* 7y, — ¢ uniformly on K.

So we can write, for k large enough,

lpxyik—pllp = [fic 1 % 71) (x) = p(x)IPdx] /P
< supyex (0 * ¥k )(x) = p(x)I [, dx]*/P

Thus,
lusyr—ulp=luxyr—p*yillp+Ip*yi—plp+lp—ulp<3e.
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. . p . .
Approximation of an L. Function in 9

o Let ue LI';C(IR”) and K be any compact set in R".
Let /i be the characteristic function of K.
The function v = ulk lies in LP(R").
The sequence v *yy converges to v in LP(R").
l.e., ux7yy— uin the LP norm on every compact subset of R".
With this convergence in L (R"), 2(R") is also dense in L (R").
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Zero Distributions and Functions Zero a.e.

o Recall that every locally integrable function f defines a distribution T¢.
o If f=g a.e, then clearly T¢=T,.
o We show that, conversely, if T¢= Tg, for two locally integrable
functions f and g, then f =g a.e..
o Suppose fe Ll (R"), such that Tf=0 in 2'(R").
We prove that f =0 a.e.
(i) Suppose, first, that f € L1(R").
Take into account that:
o vi(x—y) lies in 2(R"), for every fixed x;
o T/=0o0n 2(R").
So we have
(F270() = [ Frulx=y)dy =0.
Hence, in L1(R"),
f=lim(f*y,)=0.

This means that f=0 a.e..
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Zero Distributions and Functions Zero a.e. (Cont'd)

(1) Now let fe L1 (R") and K be a compact set in R".
Choose we@(IR") such that 0sw<1and w=1on K.
This is always possible by a previous corollary.

Thus, wf e LY(R").
If € 2(R"), then, by hypothesis,

Tyr(P) = Tr(weg) =0.

By Part (i), we conclude that wf =0 a.e. in R".
This implies that f =0 a.e. on K.
K being arbitrary, this means that ¥ =0 a.e..

o The proof depends essentially on 2(IR") being dense in LL (R").
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Subsection 7

Distributions of Finite Order
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The Space 2™(Q)

o Recall that 2™(Q), me Ny, is the linear space C["(Q) equipped with
the inductive limit topology of {C;7(Q): K < Q}.

o This is the locally convex topology in which a set is open if and only if
its intersection with C;7(Q) is open, for every compact K < Q.

o In turn, CZ(Q) carries its natural locally convex topology defined by
the seminorms

pi(¢) =sup{lo®p(x):xe K,lal<i}, 0<i<m<=<oo.

o This topology on 2™(Q) is weaker than the topology of 2(Q).
o Thus, the inclusion 2(Q) =c2™(Q) is in fact a continuous injection.

o Consequently, the dual space 2™'(Q) is a subspace of 2'(Q).
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Characterization of 2™'(Q) as a Subspace of 2'(Q)

2™ (Q) consists of all the distributions in 2'(Q) of order < m.

o Suppose T €2™(Q). Then, by definition, there is a constant M, such
that | T ()l < M|, for all p € 2™(Q). The restriction of T to 2(Q)
is therefore a distribution of order < m.

Conversely, suppose T € 2'(Q) is of order m.

So there is a constant M, such that | T(¢)| < M|, for all p € 2(Q).
Now 2(Q) c2™(Q) < 2°(Q).

Moreover, by a previous corollary, 2(Q) is dense in 2°(Q) = CQ(Q).
Hence, 2(Q) is dense in 2™(Q).

Thus, the continuous linear functional T may be extended by
continuity to 2™(Q), with the inequality | T(¢)l < M|l still valid.

It follows that T € 2™'(Q).
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2£(Q) and the Projective Limit Topology

o Let 2r(Q) be the set N°_, Ci"(Q) = C§°(Q) equipped with the
weakest topology in which the identity map i, : 2£(Q) — 2™(Q) is
continuous for every me INg.

o This is a locally convex topology which is induced by the topologies of
2™(Q) under the inverse maps i !

o If %p, is a base of 0-neighborhoods in 2™(Q), the finite intersections
of the sets i} (Un), where Uy, € %, and meINg, form a base of
0-neighborhoods for the topology of 2F.

o This topology on @F is called the projective limit of the topologies
of {2™(Q)}.

o This is a dual topology to the inductive limit.
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Comparing 2£(Q) with 2(Q)

o Although 2£(Q) and 2(Q) represent the same set, namely C5°(Q),
they are different topological spaces.

: The topology of 2(Q) is stronger than that of 2£(Q).
Consider any sequence ¢y in 2(Q) which converges to ¢.

By a previous theorem, there is a compact set K <€ Q which contains
supp¢y, for all k, and |y — Pl — 0, for all m.

This implies that ¢, — ¢ in 2™(Q), for every m.
Hence, ¢y — ¢ in 2£(Q).
o Thus, the identity map from 2(Q) to 2£(Q) is continuous.

@ So the corresponding dual spaces 2-(Q) and 2'(Q) are related by the
(proper) inclusion 2(Q) € 2'(Q).
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Characterization of 2(Q)

Theorem

2(Q) consists of all the distributions in 2'(Q) of finite order. In other
words, 21(Q) =U%2_, 2™ (Q).

o Suppose T € 2'(Q) is of finite order, say m.
Then, by the preceding theorem, T € 2™'(Q).
Its restriction to C§°(Q) is continuous in the topology of 2}.(Q).
Hence, T € 2(Q).
Now let T €2 (Q). Then, there is a neighborhood U of 0€ 2£(Q),
such that, for all p€ U,
IT()l =M.
But U contains a neighborhood of the form Uy n---n U n C§°(Q),
where U is a neighborhood of 0€ 2™ (Q), i.e., of form

pe CP(Q) : 1Pl <&
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Characterization of 2(Q) (Cont'd)

o Let e=miniey,...,ex} and m=max{my,...,my}.
Then

{pe 5P (Q): lplm=elcipe G5°(Q) : [plm, <€} s U.

Thus, for all ¢ € C§°(Q2), such that |¢|, <&, the linear functional T

satisfies
IT(p)l <M.

This means that T is a continuous linear functional on C$°(Q) in the
topology induced by 2™(Q).
Therefore, T is a distribution of order m.
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Projective and Inductive Limits and Dual Spaces

o With 2,.(Q) =U2™'(Q), we can also define a topology on 2,(Q)
through the inductive limit of the topologies of {2™'(Q)}.

o It turns out that this topology coincides with the one that we have
already defined on 2(Q) as the dual of 2£(Q).

o Since the topology of 2£(Q) is the projective limit of the topologies
of {2™(Q)}, we see that these two methods of defining a topology are
naturally suited to dual spaces, in this case 2£(Q) and 2(Q).
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Distributions and Measures on Open Sets

o A Radon measure on an open set Q< R” is an element of 2°'(Q).

o That is, a Radon measure on an open set Q <IR" is a continuous
linear functional on 2°(Q) = C9(Q), or a distribution of order 0.

o As a continuous linear functional on 2°(Q), it is also represented,
according to the Riesz Representation Theorem, by a regular Borel
measure on .
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Positivity of a Real Linear Functional

A real linear functional T on a real linear space of functions F is said to be
positive if T(f) =0, whenever f € F, f =0.

o If T is positive on CJ(Q), we show that T is continuous on CJ(€).
Hence, it defines a (positive) Radon measure on Q.
By a previous corollary, it suffices to prove that:
If i € C(Q), with supp¢y contained in some compact set K <Q and

k—o0

Ipxlo = supyek Ik (x)1 =20, then T () “==0.
Choose y € CJ(Q), such that 0=y <1 and y=1on K.
Then [Pkl < |dklow. Therefore, —|dxlow < Pk < Prlo.
Since T is positive, —|¢xlo T(y) < T(¢k) <l T (v).
Hence, lim T (¢4) =0.
o Using the definition, we say T € 2'(Q) is positive, and write T =0, if
T(¢)=0, for all =0 in 2(Q).
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Example

o Let T be a positive distribution on Q.
To show that T is a Radon measure on Q:

o First extend T from 2(Q) to 2°(Q);
o Then prove that it is continuous as a linear functional on 2°(Q).

Let ¢ € 2°(Q) be arbitrary. By a preceding corollary, there is a
sequence ¢y € 2(Q), such that ¢, — ¢ in 2°(Q).

According to another corollary, supp¢y is contained in some compact
set K< Q and [¢px —¢plo— 0 on K.

Choose ¢ € 2(Q), such that 0sw<1in Qand =1 on K.
Now [¢p(x) = Pi(x)I = I¢pj — Prlow(x).

Jjyk—oo

But T=0 and |¢; —¢pi|”"— 0.

Hence, [T ()~ T(¢i)l = Iy = dlo T(w) =0,
Therefore, lim T(¢) exists and we denote it by T(¢).
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Example (Cont'd)

o If yx € 2(Q) is another sequence which tends to ¢ in 2°(Q), the
k—o0

above argument implies that T(¢x)— T(wx) — 0.

Therefore the limit T(¢) does not depend on the particular choice of
the sequence ¢, and we have shown that T has an extension to
2°(Q), which is clearly linear.

To show that T is continuous on 2°(Q), it suffices to show (by work
immediately preceding) that T is positive on 2°(Q).
Let ¢ be any function in C2(Q) and ¢ =0.
Then, for k large enough,
o Pp*ryreED(Q);
o ¢pxy,=0.
Hence, T(¢p=*7yy)=0.

Now ¢ * kl()»o(p in 2°(Q) and T(¢) =limT(¢p*7yx)=0.
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Subsection 8

Distributions Defined by Powers of x
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Analyticity of Distributions

o Let A— T, be a mapping from C to 2'(Q).
o We say T, is analytic in A if the function A +— (Ty,¢) is analytic in
A, for every ¢p € 2(Q).

o This definition extends the usual meaning of the analytic dependence
of a function on a complex variable A:

lim =

. Ta=Ty,
lim ——
A—2Ao A—=Ag

A—=d A—Ag

4). $e2()

o Thus, when T, is a function of A which is differentiable at Ag, (T, )
is differentiable at Ag.

o When the limit in the equation exists, it defines a distribution which is
denoted by (04 T)y,-
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Extending Analyticity in the Distributional Sense

o Let T be the regular distribution defined by |x|* = e*loglx|.
o The function |x|* is locally integrable when ReA > —1.
@ So T is analytic in A on Red > —1.

o We will exploit the above definition of analyticity in the distributional
sense to extend |x|* as a distribution beyond ReA > —1.

o This is done by continuing the function (le’l,gb) analytically, for every
P €2(R), to a larger connected subset of the complex A-plane.
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Example

o Consider the function

A x} x>0
**T10, x=0"

It is a locally integrable function for ReA > —1.

It determines the distribution
(x} ¢y = fooxkqb(x)dx, Ppe2(R).
0

The right-hand side is analytic in ReAd > -1, for every ¢ € 2(R).

So the distribution x? is also analytic in Red > —1.
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Example

o If ReA>-1 and p € 2(R), we can write

S’ox’l(p(x)dx

22 xAep(x)dx — p(0) f° x}H(1 - x)dx +p(0) [ x}dx
J57XM[p(x) = p(O)H(L ~x)]dx +p(0) fy x*dx
Jo XM [#(x) = $(O)] e + [ X p(x) e + 711 6(0).

o The first integral on the right is convergent if Red > —2.
Note that ¢ is differentiable at 0.
So x*[p(x) - p(0)] =X1+AM is integrable on [0,1].
o The second integral is finite for all 1€ C.
o The third term is finite for all A # —1.

A

Therefore, x* can be continued analytically to

A={AeC:Redl>-2,1#-1}.
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Example (Cont'd)

o The subtraction of ¢p(0)H(1-x) from ¢(x) is designed to reduce the
order of the singularity of x* at x =0 while still preserving compact
support for the integrand.

This process can be repeated with higher order terms from the Taylor
expansion of ¢ at x=0. In the m-th step,

A o _ oo XML p(m-1) -
oddy = [T 000~ 9(0)+++ oI H(1-x)]

+ 3 040 f o
1 -1
= [ [¢09-9(0)-x¢'(0) =+~ Eetm D (0)] e

+‘/]‘. X/l(/)(X)dX + kz m(j)(k—l) (0)
=1
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Example (Conclusion)

o The first integral on the right converges for ReA > —-m—1.

o(x) —kazlxk_l (pé:‘_lig?) is of order x™ in the neighborhood of 0.

When it is multiplied by x*, with ReA > —m—1, the resulting function
is integrable in the neighborhood of x =0.
o The third term on the right-hand side has simple poles at
A=-1,-2,...,—m.
So the distribution x! may be continued analytically into
ReA>-m-1,1#-1,-2,...,—m.

Since m is arbitrary, xﬂ is defined for all Ae C—7Z", where Z~ is the
set of negative integers.
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Example

o Consider the function

o (—x)’l, x<0
10, x=0 "~

It is locally integrable for ReAd > —1.
It is also in 2'(R) and analytic for ReA > —1.
It can be continued analytically into ReA>-m—-1, A#-1,...,—m, by

ot ) S (=) p(x) b
Jo° X p(—x)dx

[x ¢(—x)—f“kx_’§;?¢<k-l><0) o
k=1
+ [t p(-xde z e o)

Hence, the distribution x* is also defined for all A e C—7Z".
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Primitives

o Given a distribution T € 2'(R), any distribution S which satisfies

S'(¢p) = T(o), for every p € 2(R), is called a primitive of T.

o The extension of the function x? as a distribution outside ReA > —1

should not be confused with the function x} which is well defined on
R —{0} for all values of A.
A

o The distribution x} and the function x} are quite different when
Reld < -1.

o The more we have to change the integral [ x*¢(x)dx to arrive at a
definition of (x*,¢), the more the resulting distribution will deviate
from the function x*.

o Some books use the notation [x}] or pfx}, the “pseudo-function” x?,

to designate the distribution x?.
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