Introduction to the Theory of Distributions

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Theory of Distributions

Test Functions and Distributions

- The Space of Test Functions D
- Distributions
- Differentiation of Distributions
- Convergence of Distributions
- Multiplication by Smooth Functions
- Local Properties of Distributions
- Distributions of Finite Order
- Distributions Defined by Powers of x

Subsection 1

The Space of Test Functions D

The Space $C_0^{\infty}(\Omega)$

- Recall Ω will denote a nonempty open subset of \mathbb{R}^n .
- Recall, also, that, for every compact subset K of Ω, there is defined a linear space C[∞]_K(Ω) and a topology which makes it into a Fréchet space.
- The union of the spaces C[∞]_K(Ω) as K ranges over all compact subsets of Ω, is denoted by C[∞]₀(Ω).
- Every function in $C_0^{\infty}(\Omega)$ is infinitely differentiable on Ω and its support is a compact subset of Ω .
- The topology of $C^\infty_K(\Omega)$ as a closed subspace of $C^\infty(\Omega)$ was defined by the seminorms

$$p_m(\phi) = \sup \{ |\partial^{\alpha} \phi(x)| : x \in K, |\alpha| \le m \}, \quad m \in \mathbb{N}_0,$$

with the sets $B_m(r) = \{\phi \in C^{\infty}_K(\Omega) : p_m(\phi) < r\}$ as a local base.

The Topology on $C_0^\infty(\Omega)$

- $C^{\infty}_{\mathcal{K}}(\Omega)$ is also a closed subspace of $C^{\infty}_{0}(\Omega)$;
- We define the topology of

$$C_0^{\infty}(\Omega) = \bigcup_{K \subseteq \Omega} C_K^{\infty}(\Omega)$$

to be the finest locally convex topology for which the identity map $C^{\infty}_{K}(\Omega) \to C^{\infty}_{0}(\Omega)$ is continuous, for every $K \subseteq \Omega$.

- Thus, a convex, balanced set $U \subseteq C_0^{\infty}(\Omega)$ is a neighborhood of 0 in $C_0^{\infty}(\Omega)$ if and only if $U \cap C_{\mathcal{K}}^{\infty}(\Omega)$ is a neighborhood of 0 in $C_{\mathcal{K}}^{\infty}(\Omega)$, for every $\mathcal{K} \subseteq \Omega$.
- The collection of all such neighborhoods U constitutes a local base for the topology we have defined on C₀[∞](Ω).
- $C_0^{\infty}(\Omega)$ is known as the **inductive limit** of the topologies on $C_K^{\infty}(\Omega)$.

Properties of the Topology on $C_0^{\infty}(\Omega)$

- $C_0^{\infty}(\Omega)$, with the inductive limit topology, is a locally convex space.
- The original topology on C[∞]_K(Ω), for any K ⊆ Ω, is clearly the topology that C[∞]_K(Ω) inherits as a subspace of C[∞]₀(Ω).
- If Ω₁ is an open subset of Ω, then C₀[∞](Ω₁) is a subspace of C₀[∞](Ω). This is because every function in C₀[∞](Ω₁) may be extended as a C₀[∞] function into Ω by defining it to be 0 on Ω − Ω₁.

Continuity of Linear Functionals on $C_0^{\infty}(\Omega)$

Theorem

A linear functional on $C_0^{\infty}(\Omega)$ is continuous if and only if its restriction to $C_K^{\infty}(\Omega)$ is continuous, for every compact subset K of Ω .

• Let T be a linear functional on $C_0^{\infty}(\Omega)$. By a previous theorem, T is continuous if and only if it is continuous at $0 \in C_0^{\infty}(\Omega)$. Let K be a compact set in Ω , and T_K the restriction of T to $C_K^{\infty}(\Omega)$. If V is any neighborhood of $0 \in \mathbb{C}$, and T is continuous at 0, then $T^{-1}(V)$ is a neighborhood of 0 in $C_0^{\infty}(\Omega)$. So $T^{-1}(V) \cap C^{\infty}_{\kappa}(\Omega) = T^{-1}_{\kappa}(V)$ is a neighborhood of 0 in $C^{\infty}_{\kappa}(\Omega)$. Conversely, suppose T_K is continuous at 0, for every K. Then $T_{\kappa}^{-1}(V) = T^{-1}(V) \cap C_{\kappa}^{\infty}(\Omega)$ is a neighborhood of 0 in $C_{\kappa}^{\infty}(\Omega)$, for every $K \subseteq \Omega$. Consequently, $T^{-1}(V)$ is a neighborhood of 0 in $C_0^{\infty}(\Omega).$

The Space of Test Functions

- The locally convex space C₀[∞](Ω), endowed with the inductive limit topology, is called the space of test functions.
- It is denoted by $\mathscr{D}(\Omega)$, in accordance with Schwartz's notation.
- We use D_K to denote the locally convex space C[∞]_K(Ω), where K is a compact subset of Ω.
- For any $\phi \in \mathscr{D}(\Omega)$, we define the norms

 $|\phi|_m = \sup \{ |\partial^{\alpha} \phi(x)| : x \in \Omega, |\alpha| \le m \}, \quad m \in \mathbb{N}_0.$

• When ϕ is in $\mathscr{D}_{\mathcal{K}}$, $|\phi|_m$ coincides with the seminorm $p_m(\phi)$.

Bounded Subsets of $\mathscr{D}(\Omega)$

Theorem

E is a bounded subset of $\mathcal{D}(\Omega)$ if and only if the following two conditions are satisfied:

- (i) $E \subseteq \mathscr{D}_K$, for some $K \subseteq \Omega$.
- (ii) *E* is bounded in \mathscr{D}_{K} , in the sense that, for every nonnegative integer *m*, there is a finite constant M_m , such that $|\phi|_m \leq M_m$, for all $\phi \in E$.
 - The sufficiency of (i) and (ii) is clear.
 For necessity, let E be a subset of D(Ω), which lies in no D_K.
 Then, there is a sequence of functions φ_k ∈ E and a sequence of points x_k ∈ Ω, with no cluster point in Ω, such that φ_k(x_k) ≠ 0, k ∈ N.
 Let

$$U = \left\{ \phi \in \mathscr{D}(\Omega) : |\phi(x_k)| < \frac{1}{k} |\phi_k(x_k)|, k \in \mathbb{N} \right\}.$$

Bounded Subsets of $\mathscr{D}(\Omega)$ (Cont'd)

We defined

$$U = \left\{ \phi \in \mathscr{D}(\Omega) : |\phi(x_k)| < \frac{1}{k} |\phi_k(x_k)|, k \in \mathbb{N} \right\}.$$

Note that each K contains only a finite number of points of (x_k) . So the intersection $\mathscr{D}_K \cap U$ is a neighborhood of 0 in \mathscr{D}_K , for every K. Hence, U is a neighborhood of 0 in $\mathscr{D}(\Omega)$. But $\phi_k \notin kU$, for any k. So no multiple of U contains E. Thus, E is unbounded. Hence, if E is bounded in $\mathscr{D}(\Omega)$, then condition (i) must hold. Condition (ii) follows from the fact that the topology of \mathscr{D}_K is the topology it inherits as a subspace of $\mathscr{D}(\Omega)$.

Convergence in $\mathscr{D}(\Omega)$

Theorem

A sequence of (ϕ_k) in $\mathscr{D}(\Omega)$ converges to 0 if and only if the following two conditions are satisfied:

- (i) There is a compact subset K of Ω , such that $supp\phi_k \subseteq K$, for all k.
- (ii) $\partial^{\alpha} \phi_k \to 0$ uniformly on *K*, for all α .
- (⇐) Conditions (i) and (ii) imply that φ_k → 0 in 𝔅_K. Since the identity map from 𝔅_K to 𝔅(Ω) is continuous, φ_k → 0 in 𝔅(Ω).
 (⇒) Conversely, if φ_k → 0 in 𝔅(Ω), then (φ_k) is a bounded sequence in 𝔅(Ω), as seen previously. From the preceding theorem, (φ_k) lies in
 - \mathscr{D}_{K} , for some $K \subseteq \Omega$. Condition (i) now follows. But then $\phi_{k} \to 0$ in the subspace topology of \mathscr{D}_{K} . So Condition (ii) also follows.

Non-Metrizability of the Topology of $C_0^{\infty}(\Omega)$

Claim: The topology defined on $C_0^{\infty}(\Omega)$ is not metrizable. Assume that d is a metric which defines the topology of $\mathscr{D}(\Omega)$. Let $\Omega = \bigcup K_n$, with K_n compact and $K_n \subseteq K_{n+1}^{\circ}$, for all n. Choose $\phi_n \in \mathscr{D}(\Omega)$, such that $\operatorname{supp} \phi_n \nsubseteq K_n$.

Multiplication by a constant is a continuous mapping from $\mathscr{D}(\Omega)$ into $\mathscr{D}(\Omega)$.

So we can find $\lambda_n > 0$ small enough so that $d(0, \lambda_n \phi_n) < \frac{1}{n}$, for every *n*. This means that the sequence $\lambda_n \phi_n \to 0$ in $\mathcal{D}(\Omega)$.

This, however, is not possible, since $supp(\lambda_n \phi_n)$ cannot be contained in a single compact subset of Ω .

Topological Completeness of $\mathscr{D}(\Omega)$

Claim: D(Ω) is complete in the topological sense.
We know D_K is complete in the topological sense.
If (φ_k) is a Cauchy sequence in D(Ω), it is bounded.
By a previous theorem, (φ_k) lies in D_K, for some K ⊆ Ω.
Since D_K is complete, (φ_k) converges in D_K.
Consequently, it converges in D(Ω).

The Space $\mathscr{D}^m(\Omega)$

• We can also define the topology of

$$C_0^m(\Omega) = \bigcup_{K \subseteq \Omega} C_K^m(\Omega)$$

to be the finest locally convex topology in which the identity map from C^m_K(Ω) to C^m₀(Ω) is continuous for every compact set K ⊆ Ω.
The resulting topological vector space will be denoted by D^m(Ω).

Corollary

A sequence (ϕ_k) in $\mathscr{D}^m(\Omega)$ converges to 0 if and only if:

(i) There is a compact set $K \subseteq \Omega$, such that $supp\phi_k \subseteq K$, for all k;

(ii)
$$\partial^{\alpha} \phi_k \to 0$$
 uniformly on *K*, for all $|\alpha| \le m$.

Example

• Consider the function $\alpha : \mathbb{R}^n \to \mathbb{R}$ defined by

$$\alpha(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}}, & \text{on } |x| < 1\\ 0, & \text{on } |x| \ge 1 \end{cases}$$

It has as support the closed unit ball $\overline{B}(0,1)$ in \mathbb{R}^n .

Clearly α lies in $\mathscr{D}(\mathbb{R}^n)$.

- The sequence $\alpha_k = \frac{1}{k}\alpha$ satisfies the conditions of the theorem. So it converges to 0 in $\mathscr{D}(\mathbb{R}^n)$.
- Consider the sequence $\alpha_k = \frac{1}{k}\alpha \circ \frac{1}{k}$ defined by $\alpha_k(x) = \frac{1}{k}\alpha(\frac{x}{k}), x \in \mathbb{R}^n$. α_k does not converge in $\mathscr{D}(\mathbb{R}^n)$, because $\operatorname{supp}\alpha_k = \overline{B}(0,k)$ does not satisfy Condition (i).
- The sequence $\alpha_k = \frac{1}{k} \alpha \circ k$ has a sequence of shrinking supports $\overline{B}(0, \frac{1}{k})$. However, the partial derivatives of α_k do not converge to 0 on any neighborhood of the origin.

So Condition (ii) of the theorem is violated and the sequence diverges.

Subsection 2

Distributions

Distributions on $\boldsymbol{\Omega}$

Definition

A distribution on Ω is a continuous linear functional on $\mathscr{D}(\Omega)$.

 We denote the linear space of all distributions on Ω by D'(Ω), the topological dual of D(Ω).

Theorem

A linear functional T on $\mathscr{D}(\Omega)$ is a distribution if and only if, for every compact set $K \subseteq \Omega$, there exists a nonnegative integer m and a finite constant M, such that $|T(\phi)| \le M |\phi|_m$, for all $\phi \in \mathscr{D}_K$.

 T is in D'(Ω) iff T is continuous in D(Ω) iff, by a previous theorem, T_k is continuous in D_K(Ω), for every compact K ⊆ Ω, iff, by a previous theorem, T_k is bounded on D_K, for every compact K ⊆ Ω, iff, by the topology of D_K, the given condition holds.

Lebesgue Integrable Functions

• Denote the Lebesgue integral of the measurable function f over the measurable set $E \subseteq \mathbb{R}^n$ by

$$\int_{E} f(x) dx.$$

- It will sometimes be abbreviated to $\int_E f dx$ or $\int_E f$, when the measure function is clear from the context.
- In this convention, *E* is often dropped when $E = \mathbb{R}^n$.
- L¹(Ω) denotes the linear space of complex Lebesgue integrable functions on Ω, i.e., all functions f: Ω → C whose integral ∫_Ω |f(x)|dx is finite.

Locally Lebesgue Integrable Functions

- The function f is locally integrable on Ω if $\int_E |f(x)| dx$ is finite on every compact subset E of Ω .
- $L^1_{loc}(\Omega)$ denotes the space of locally integrable functions on Ω .
- All continuous functions on \mathbb{R}^n , for example, are locally integrable, although some of them, such as polynomials, are not integrable on \mathbb{R}^n .
- Clearly $L^1(\Omega) \subseteq L^1_{loc}(\Omega)$.

Distributions Defined by Locally Integrable Functions

• If $f \in L^1_{loc}(\Omega)$, then the linear functional \mathcal{T}_f , defined on $\mathscr{D}(\Omega)$ by

$$T_f(\phi) = \int_{\Omega} f(x)\phi(x)dx, \quad \phi \in \mathscr{D}(\Omega),$$

is bounded.

Let $K = \operatorname{supp}\phi$. Then

$$|T_f(\phi)| \leq \sup_{x \in \Omega} |\phi(x)| \int_{\mathcal{K}} |f(x)| x = |\phi|_0 \int_{\mathcal{K}} |f(x)| dx.$$

Therefore, $T_f \in \mathscr{D}'(\Omega)$.

• Sometimes we denote the distribution T_f simply by f and write

$$T_f(\phi) = \langle f, \phi \rangle = \int_{\Omega} f(x)\phi(x)dx, \quad \phi \in \mathscr{D}(\Omega).$$

Continuous functions on Ω are locally integrable.
So every f ∈ C⁰(Ω) defines a distribution T_f as above.

George Voutsadakis (LSSU)

The Order of a Distribution

• Compare with the framework developed in the preceding theorem, i.e., with

$$|T(\phi)| \le M |\phi|_m.$$

- Here $M = \int_{K} |f|$ clearly depends on K, but the integer m = 0 works for all K.
- T_f is then said to be of order 0.
- The **order** of the distribution *T* is the smallest *m* for which the inequality holds for all *K*.
- If no such m exists, T is of infinite order.

Example

• Let $f \in L^1_{loc}(\mathbb{R} - \{0\})$ satisfy $|f(x)| \le \frac{c}{|x|^m}$ on $|x| \le 1$, for some positive integer *m* and a positive constant *c*.

Claim: There is a distribution $T \in \mathcal{D}'(\mathbb{R})$ of order $\leq m$, such that $T = T_f$ on $\mathcal{D}(\mathbb{R} - \{0\})$.

Let $\phi \in \mathscr{D}(\mathbb{R})$ be arbitrary.

Then, there is a number a > 1, such that $\phi(x) = 0$ on |x| > a.

For any x, we can use Taylor's formula to write, for some $t \in (0,1)$,

$$\phi(x) = \phi(0) + x\phi'(0) + \dots + \frac{x^{m-1}}{(m-1)!}\phi^{(m-1)}(0) + \frac{x^m}{m!}\phi^{(m)}(tx).$$

Now we define

$$T(\phi) = \int_{|x|>1} f(x)\phi(x)dx + \int_{|x|\leq 1} f(x)[\phi(x) - \sum_{k=0}^{m-1} \frac{x^k}{k!}\phi^{(k)}(0)]dx$$

=
$$\int_{|x|>1} f(x)\phi(x)dx + \int_{|x|\leq 1} f(x)\frac{x^m}{m!}\phi^{(m)}(tx)dx$$

Example (Cont'd)

• We obtain, for some positive constants A and B,

$$\begin{aligned} |T(\phi)| &= \int_{|x|>1} f(x)\phi(x)dx + \int_{|x|\leq 1} f(x)\frac{x^m}{m!}\phi^{(m)}(tx)dx \\ &\leq |\phi|_0 \int_{1<|x|$$

Hence T is a distribution on \mathbb{R} of order $\leq m$. We show that T is represented by f on $\mathbb{R} - \{0\}$. Let $\phi \in \mathscr{D}(\mathbb{R})$ with $\operatorname{supp} \phi \subseteq \mathbb{R} - \{0\}$. Then $\phi^{(k)}(0) = 0$, for all k. Therefore,

$$T(\phi) = \int_{\mathbb{R}} f(x)\phi(x)dx = \langle f, \phi \rangle.$$

Regular versus Singular Distributions

• A distribution T is said to be **regular** if there is a locally integrable function f on Ω , such that

$$T(\phi) = \langle f, \phi \rangle = \int_{\Omega} f(x)\phi(x)dx, \quad \phi \in \mathscr{D}(\Omega).$$

• Otherwise, it is singular.

Example: The distribution corresponding to $f(x) = \frac{1}{x^m}$, $m \ge 1$, $x \ne 0$, is singular on \mathbb{R} , since f is not integrable on a neighborhood of 0.

The Dirac Distribution

• For any fixed point $\xi \in \Omega$, we define

$$T(\phi) = \phi(\xi), \quad \phi \in \mathscr{D}(\Omega).$$

T is clearly a linear functional on $\mathscr{D}(\Omega)$.

 \mathcal{T} is continuous, since $\phi \to 0$ in $\mathcal{D}(\Omega)$ implies that $\phi(\xi) \to 0$ in \mathbb{C} .

T is known as the **Dirac distribution** and is denoted by δ_{ξ} .

 δ_0 usually abbreviated to δ .

Thus, $\delta(\phi) = \phi(0)$, for all $\phi \in \mathscr{D}(\Omega)$.

This distribution obviously has zero order.

The Dirac Distribution: Singularity

• We show that δ_{ξ} is not regular. Let, for $\varepsilon > 0$ and every $x \in \mathbb{R}$,

$$\phi_{\varepsilon}(x) = \alpha\left(\frac{x}{\varepsilon}\right) = \begin{cases} e^{-\frac{\varepsilon^{2}}{\varepsilon^{2}-|x|^{2}}}, & |x| < \varepsilon\\ 0, & |x| \ge \varepsilon \end{cases}$$

 ϕ_{ε} is clearly in $\mathscr{D}(\mathbb{R})$ and $|\phi_{\varepsilon}(x)| \le \phi_{\varepsilon}(0) = \frac{1}{e}$. Suppose δ were regular. Then, for some $f \in L^{1}_{loc}(\mathbb{R})$,

$$\delta(\phi_{\varepsilon}) = \int f(x)\phi_{\varepsilon}(x)dx = \int_{|x|\leq\varepsilon} f(x)\phi_{\varepsilon}(x)dx.$$

Consequently,

$$\frac{1}{e} = \phi_{\varepsilon}(0) = \delta(\phi_{\varepsilon}) \leq \frac{1}{e} \int_{|x| \leq \varepsilon} |f(x)| dx \xrightarrow{\varepsilon \to 0} 0.$$

But this is impossible. Hence δ , and therefore δ_{ξ} , is singular.

The Dirac Distribution: Notation and Generalization

• Even though δ_{ξ} is singular, we write

$$\langle \delta_{\xi}, \phi \rangle := \delta_{\xi}(\phi) = \phi(\xi).$$

- In other words, the use of the bracket notation is not restricted to regular distributions.
- If Σ is a hypersurface in Rⁿ of dimension less than n, then for any locally integrable function f on Σ, we can define the distribution

$$T_f(\phi) = \int_{\Sigma} f\phi d\sigma, \quad \phi \in \mathcal{D}(\mathbb{R}^n).$$

- This is clearly a generalization of the Dirac distribution from the point 0 to the hypersurface Σ.
- T_f may be interpreted as a measure on \mathbb{R}^n supported by Σ with density f.

Distributions Generated by Borel Measures

• The Riesz Representation Theorem asserts that to each continuous linear functional T on $C_0^0(\Omega)$, there corresponds a unique complex, locally finite, regular Borel measure μ on Ω , such that

$$T(\phi) = \int_{\Omega} \phi d\mu, \quad \phi \in C_0^0(\Omega).$$

- Such a measure defines a continuous linear functional on $C_0^0(\Omega)$.
- So the correspondence between T and μ is bijective.
- The measure function corresponding to the regular distribution T_f is given by $\mu(E) = \int_E f$, for any measurable set $E \subseteq \mathbb{R}^n$.
- The Dirac distribution δ_{ξ} which is defined on $\mathscr{D}(\Omega)$ by $\langle \delta_{\xi}, \phi \rangle = \phi(\xi)$ is also continuous on $C_0^0(\Omega)$ and corresponds to the measure function

$$\mu(E) = \begin{cases} 1, & \text{if } \xi \in E \\ 0, & \text{if } \xi \notin E \end{cases}.$$

Non-Borel Measurable Distribution

- The mapping $T(\phi) = \phi'(0)$ defines a continuous linear functional on $\mathscr{D}(\mathbb{R})$. In fact, on $C_0^m(\mathbb{R})$, for $m \ge 1$, but not on $C_0^0(\mathbb{R})$.
- Thus, T is a distribution which is not a measure.
- In higher dimensions, the functional

$$T(\phi) = \partial_k \phi(0), \quad \phi \in \mathscr{D}(\mathbb{R}^n),$$

where $1 \le k \le n$, is a (singular) distribution in \mathbb{R}^n of order 1.

• More generally, the functional $\phi \mapsto \partial^{\alpha} \phi(0)$, for any $\alpha \in \mathbb{N}_{0}^{n}$, is a distribution in \mathbb{R}^{n} of order $|\alpha|$.

Example: The function $\begin{cases} \frac{1}{x}, & \text{if } x \in (0,\infty) \\ 0, & \text{otherwise} \end{cases}$ is not integrable on any neighborhood of 0, and does not define a distribution on \mathbb{R} . Its restriction to $(0,\infty)$, on the other hand, is continuous and therefore defines a regular distribution in $(0,\infty)$.

Subsection 3

Differentiation of Distributions

Derivative of a Distribution

- When $f \in C^1(\mathbb{R})$, it defines a distribution and has a derivative f' which is also a distribution.
- Viewing a distribution as a generalization of a function, it is desirable to define the distributional derivative of *f* so that it agrees with *f'*.
- Integration by parts gives the following result, where $\phi \in \mathscr{D}(\mathbb{R})$,

$$\begin{aligned} \langle f',\phi\rangle &= \int_{-\infty}^{\infty} f'(x)\phi(x)dx \\ &= f(x)\phi(x)\big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(x)\phi'(x)dx \\ &= -\langle f,\phi'\rangle. \end{aligned}$$

Definition

For any $T \in \mathscr{D}'(\Omega)$, we define

$$\partial_k T(\phi) = -T(\partial_k \phi), \quad \phi \in \mathscr{D}(\Omega).$$

George Voutsadakis (LSSU)

Higher Derivatives of Distributions

• By using induction, we obtain the more general formula

$$\partial^{\alpha} T(\phi) = (-1)^{|\alpha|} T(\partial^{\alpha} \phi), \quad \phi \in \mathscr{D}(\Omega), \ \alpha \in \mathbb{N}_{0}^{n}$$

or $\langle \partial^{\alpha} T, \phi \rangle = (-1)^{|\alpha|} \langle T, \partial^{\alpha} \phi \rangle.$

- The right-hand side is well defined for any multi-index α , because $\phi \in \mathscr{D}(\Omega)$, and represents a continuous linear functional on $\mathscr{D}(\Omega)$.
- Thus a distribution has derivatives, in the sense of the above definition, of all orders.
- Furthermore, $\partial^{\alpha}\partial^{\beta}T = \partial^{\beta}\partial^{\alpha}T$, for any $T \in \mathcal{D}'(\Omega)$.

$$\partial^{\alpha}\partial^{\beta}T(\phi) = (-1)^{|\alpha|}\partial^{\beta}T(\partial^{\alpha}\phi)$$

= $(-1)^{|\alpha|+|\beta|}T(\partial^{\beta}\partial^{\alpha}\phi)$
= $(-1)^{|\alpha|+|\beta|}T(\partial^{\alpha}\partial^{\beta}\phi)$
= $\partial^{\beta}\partial^{\alpha}T(\phi).$

Distributional vs. Ordinary Derivatives

 If f ∈ C^m(Ω), then the formula for integration by parts can be used to show that the distributional derivative of f coincides with its conventional, or classical, derivative in the sense that

$$\partial^{\alpha} T_f = T_{\partial^{\alpha} f}$$
, for all $|\alpha| \le m$.

 In general this relation does not hold, as may be seen from some of the following examples.

Example (Distributional vs. Ordinary Derivatives)

• Define
$$x_+ = \begin{cases} x, & x > 0 \\ 0, & x \le 0 \end{cases}$$
.

As a function x_+ is not differentiable at x = 0 in the classical sense. As a distribution, it can be differentiated by the preceding formula. Define the **Heaviside function** $H(x) = \begin{cases} 1, & x > 0 \\ 0, & x < 0 \end{cases}$

Then we have

$$\begin{aligned} \langle x'_{+}, \phi \rangle &= -\langle x_{+}, \phi' \rangle, \quad \phi \in \mathscr{D}(\mathbb{R}) \\ &= -\int_{0}^{\infty} x \phi'(x) dx \\ &= -x \phi(x) \big|_{0}^{\infty} + \int_{0}^{\infty} \phi(x) dx \\ &= 0 + \int_{-\infty}^{\infty} H(x) \phi(x) dx \\ &= \langle H, \phi \rangle. \end{aligned}$$

Similarly,

$$\langle x''_+, \phi \rangle = \langle H', \phi \rangle = - \langle H, \phi' \rangle = - \int_0^\infty \phi'(x) dx = \phi(0).$$

Therefore, $x''_{+} = H' = \delta$.

Example (Cont'd)

• We can go further:

$$\begin{array}{ll} \langle x_{+}^{\prime\prime\prime},\phi\rangle &=& \langle \delta^{\prime},\phi\rangle = -\langle \delta,\phi^{\prime}\rangle = -\phi^{\prime}(0); \\ \vdots \\ \langle x_{+}^{(k+2)},\phi\rangle &=& \langle \delta^{(k)},\phi\rangle = (-1)^{k}\phi^{(k)}(0). \end{array}$$

It is important to note in this example that x_+ and H are differentiated as distributions and not as functions.

- In the case of x₊ it makes no difference, since x'₊ = H almost everywhere (a.e.) in the classical sense as well.
- But the classical derivative of H is 0 a.e.. When we write $H' = \delta$ we really mean $T'_H = \delta$.

Derivative of Non-Continuously Differentiable Function

- As in the case of x₊, the distributional and the classical derivatives of a function may coincide even when the function is not continuously differentiable.
 - Example: Let f be a differentiable function on I = (a, b).
 - Suppose its (classical) derivative f' is integrable on I.
 - Such a function can be expressed as the integral of its derivative

$$f(x) = \int_c^x f'(t)dt + f(c), \quad x, c \in I.$$

The, for all $\phi \in \mathcal{D}(I)$, • $(f\phi)' = f'\phi + f\phi'$; • $\int_{I} (f\phi)' = 0$, because $f\phi$ vanishes outside a closed subinterval of *I*. Hence,

$$\int_{I} f' \phi + \int_{I} f \phi' = 0.$$
Example (Cont'd)

• Let T'_f be the distributional derivative of T_f . Then $T'(f) = T(f) = \int f(f) f(f) f(f) df$

$$T'_f(\phi) = -T_f(\phi') = -\int_I f\phi' = \int_I f'\phi = T_{f'}(\phi).$$

Therefore, $T'_f = T_{f'}$.

- More generally, suppose *f* is absolutely continuous on *I*. Then:
 - f' exists almost everywhere;
 - f' is integrable on I;
 - $f(x) = \int_{c}^{x} f'(t) dt + f(c), x, c \in I.$

The equality $T'_f = T_{f'}$, then follows by the same argument.

Example (Punctured Intervals)

• Let
$$c \in (a, b) = I$$
 and $f \in C^1(I - \{c\})$.

Suppose the left- and right-hand limits at c,

$$f(c^{-}) = \lim_{\substack{x \to c \\ x < c}} f(x) \text{ and } f(c^{+}) = \lim_{\substack{x \to c \\ x > c}} f(x)$$

are finite and f' is bounded in a neighborhood of c. Then the distributions $T_{f'}$ and T'_f in $\mathcal{D}'(I)$ are related by

$$T'_{f} = T_{f'} + [f(c^{+}) - f(c^{-})]\delta_{c}.$$

We show this in the next slide.

Example (Cont'd)

• Suppose ϕ is any function in $\mathcal{D}(I)$.

$$\begin{aligned} T'_{f}(\phi) &= -T_{f}(\phi') = -\int_{a}^{b} f(x)\phi'(x)dx \\ &= -\int_{a}^{c} f(x)\phi'(x)dx - \int_{c}^{b} f(x)\phi'(x)dx \\ &= -\lim_{\epsilon_{1}\to 0} \int_{a}^{c-\epsilon_{1}} f(x)\phi'(x)dx - \lim_{\epsilon_{2}\to 0} \int_{c+\epsilon_{2}}^{b} f(x)\phi'(x)dx \\ &= -\lim_{\epsilon_{1}\to 0} [f(x)\phi(x)]_{a}^{c-\epsilon_{1}} - \int_{a}^{c-\epsilon_{1}} f'(x)\phi(x)dx] \\ &\quad -\lim_{\epsilon_{2}\to 0} [f(x)\phi(x)]_{c+\epsilon_{2}}^{b} - \int_{c+\epsilon_{2}}^{b} f'(x)\phi(x)dx] \\ &= -f(c^{-})\phi(c) + f(c^{+})\phi(c) + \int_{a}^{b} f'(x)\phi(x)dx \\ &= \langle f', \phi \rangle + [f(c^{+}) - f(c^{-})] \langle \delta_{c}, \phi \rangle. \end{aligned}$$

In particular, when f is the Heaviside function, H' = 0 on $I - \{0\}$ and we obtain the expected result $T'_H = \delta$.

Notational Clarifications

- x_+ and H are functions defined on \mathbb{R} which represent distributions on $\mathscr{D}(\mathbb{R})$, since each is locally integrable.
- The classical derivative of *H* is the function which is 0 almost everywhere, and represents the zero distribution.
- But the distributional derivative of H is δ , which is not a function.
- In the sequel, derivatives will always be taken in the distributional sense.
- The pointwise notation H'(x) is meaningful only when it applies to the classical derivative, since we have no way of evaluating a distribution at a point.
- If it is interpreted properly, this notation can be useful when we wish to keep track of the point variable.
- It is convenient at times to write $H' = \delta$, $H'(x) = \delta(x)$, or $H'_x = \delta_x$, on \mathbb{R} , rather than the more accurate $T'_H = \delta$ on $\mathcal{D}(\mathbb{R})$.

Example (Characteristic Functions)

• For any subset E of \mathbb{R}^n , we define its characteristic function by

$$I_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \in \mathbb{R}^n - E \end{cases}$$

If E is a bounded open subset of \mathbb{R}^n , with a smooth boundary ∂E , then, using the Divergence Theorem,

$$\langle \partial_k I_E, \phi \rangle = - \langle I_E, \partial_k \phi \rangle = - \int_E \partial_k \phi(x) dx = - \int_{\partial E} \phi(x) \cos \theta_k d\sigma,$$

where:

- θ_k is the angle between the x_k -axis in \mathbb{R}^n and the outward normal to ∂E ;
- $d\sigma$ is the Euclidean measure on ∂E .

Thus, $\partial_k I_E$ is a measure of density $-\cos\theta_k$ on ∂E . For the special case when n = 1 and E = (a, b), we have:

•
$$I_E(x) = H(x-a) - H(x-b);$$

• $I'_E(x) = \delta(x-a) - \delta(x-b) = \delta_a - \delta_b$

Example (Regularization)

• $\log |x|$ is locally integrable on \mathbb{R} .

So it defines a distribution in $\mathscr{D}(\mathbb{R})$.

Its classical derivative $\frac{d}{dx} \log |x| = \frac{1}{x}$, $x \neq 0$, does not define a distribution as pointed out previously.

We explore the relation between the distributional derivative of $\log |x|$ and $\frac{1}{x}$.

$$\left\langle \frac{d}{dx} \log |x|, \phi \right\rangle = \left\langle \log |x|, \phi' \right\rangle = -\int_{-\infty}^{\infty} \log |x| \phi'(x) dx.$$

Now, with $\log |x| \phi'(x)$ integrable in the neighborhood of 0,

$$\left\langle \frac{d}{dx} \log |x|, \phi \right\rangle = -\lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \log |x| \phi'(x) dx.$$

Example (Regularization Cont'd)

• Since ϕ has compact support and is differentiable at x = 0,

$$\begin{aligned} \langle \frac{d}{dx} \log |x|, \phi \rangle &= -\lim_{\varepsilon \to 0} \Big[\log |x| \phi(x) \Big|_{\varepsilon}^{-\varepsilon} - \int_{|x| \ge \varepsilon} \frac{1}{x} \phi(x) dx \Big] \\ &= \lim_{\varepsilon \to 0} \Big[2\varepsilon \log \varepsilon \frac{\phi(\varepsilon) - \phi(-\varepsilon)}{2\varepsilon} + \int_{|x| \ge \varepsilon} \frac{1}{x} \phi(x) dx \Big] \\ &= \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{1}{x} \phi(x) dx. \end{aligned}$$

- lim_{ε→0} ∫_{|x|≥ε} 1/x φ(x)dx is called the Cauchy principal value of the divergent integral ∫[∞]_{-∞} 1/x φ(x)dx and is denoted by pv ∫[∞]_{-∞} 1/x φ(x)dx.
- Thus, the distributional derivative of $\log |x|$, which is not a function, denoted by $pv\frac{1}{x}$, is obtained from the divergent integral $\int_{-\infty}^{\infty} \frac{1}{x} \phi(x) dx$ by taking its principal value.
- This process is known as regularizing the integral.

Regularization of $T_{\partial^{\alpha} f}$

• If the function f is locally integrable but $\partial^{\alpha} f$ is not, then $\partial^{\alpha} T_{f}$ is called a **regularization** of $T_{\partial^{\alpha} f}$.

By the same token, ϕ' being differentiable at x = 0,

$$\begin{array}{lll} \langle \frac{d}{dx} \mathsf{pv} \frac{1}{x}, \phi \rangle &=& -\langle \mathsf{pv} \frac{1}{x}, \phi' \rangle \\ &=& -\lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{1}{x} \phi'(x) dx \\ &=& -\lim_{\varepsilon \to 0} [\log |x| \phi'(x)|_{\varepsilon}^{-\varepsilon} - \int_{|x| \ge \varepsilon} \log |x| \phi''(x) dx] \\ &=& \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \log |x| \phi''(x) dx. \end{array}$$

The last integral is well defined, since $\log |x|\phi''$ is integrable on \mathbb{R} , and represents the action of the distribution $\frac{d}{dx} pv \frac{1}{x}$ on ϕ .

Example

• Consider the differential operator $L = \frac{d^2}{dx^2} - 3\frac{d}{dx} + 2$ in \mathbb{R} . Let

$$h(x) = \begin{cases} e^x, & x \le 0\\ e^{2x}, & x > 0 \end{cases}$$

Let T_h be the distribution defined by the continuous function h. Claim: $LT_h = \delta$. For any $\phi \in \mathcal{D}(\mathbb{R})$, we have

$$LT_h(\phi) = \langle h'' - 3h' + 2h, \phi \rangle = \langle h, \phi'' \rangle + 3 \langle h, \phi' \rangle + 2 \langle h, \phi \rangle.$$

Now

$$\begin{aligned} \langle h, \phi'' \rangle &= \int_{-\infty}^{0} e^{x} \phi''(x) dx + \int_{0}^{\infty} e^{2x} \phi''(x) dx \\ &= [\phi'(0) - \int_{-\infty}^{0} e^{x} \phi'(x) dx] + [-\phi'(0) - 2\int_{0}^{\infty} e^{2x} \phi'(x) dx] \\ &= -[\phi(0) - \int_{-\infty}^{0} e^{x} \phi(x) dx] - 2[-\phi(0) - 2\int_{0}^{\infty} e^{2x} \phi(x) dx] \\ &= \phi(0) + \int_{-\infty}^{0} e^{x} \phi(x) dx + 4\int_{0}^{\infty} e^{2x} \phi(x) dx. \end{aligned}$$

Example (Cont'd)

We also have

Hence, $LT_h(\phi) = \phi(0)$, for every $\phi \in \mathscr{D}(\mathbb{R})$. So $LT_h = \delta$. Note that the function h, though continuous, has a jump discontinuity in its derivative at x = 0 given by

$$h'(0^+) - h'(0^-) = 2e^0 - e^0 = 1.$$

This accounts for the δ distribution when *h* is differentiated a second time.

On $\mathbb{R} - \{0\}$, the function *h* is twice differentiable and satisfies Lh = 0.

Generalizing the Differential Operator

Let

$$L = \frac{d^2}{dx^2} + a\frac{d}{dx} + b,$$

with $a, b \in \mathbb{R}$, be a differential operator in \mathbb{R} . Suppose that f_1 and f_2 are two C^2 solutions in \mathbb{R} of Lf = 0, satisfying

$$f_1(0) = f_2(0), \quad f'_2(0) - f'_1(0) = 1.$$

Let h be the continuous function defined by

$$h(x) = \begin{cases} f_1(x), & x \le 0\\ f_2(x), & x > 0 \end{cases}$$

Let T_h be the distribution defined by h. We can verify that $LT_h = \delta$. The solution x_+ of $T'' = \delta$ is in accordance with this construction.

The Laplacian Operator

• In \mathbb{R}^n the partial differential operator

$$\sum_{k=1}^n \partial_k^2$$

is known as the Laplacian operator, and will be denoted by Δ . Example: The function $\log |x|$ is locally integrable in \mathbb{R}^2 . We obtain its (distributional) Laplacian derivative

$$\Delta \log |x| = \left(\partial_1^2 + \partial_2^2\right) \log |x|.$$

By the differentiation formula, for all $\phi \in \mathscr{D}(\mathbb{R}^2)$,

$$\begin{aligned} \langle \Delta \log |x|, \phi \rangle &= \langle \log |x|, \Delta \phi \rangle \\ &= \int_{\mathbb{R}^2} \log |x| \Delta \phi(x) dx \\ &= \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \log |x| \Delta \phi(x) dx. \end{aligned}$$

Intermission: Green's First and Second Formulas

- Let Ω⊆ ℝⁿ be a bounded open set with sufficiently smooth boundary.
 Let u, v ∈ C²(Ω) be pair of functions.
- By the Divergence Theorem, we get Green's First Formula

$$\int_{\Omega} \left[u \Delta v + \sum_{k=1}^{n} (\partial_{k} u) (\partial_{k} v) \right] = \int_{\partial \Omega} u \partial_{\eta} v,$$

where ∂_{η} is the differential operator with respect to the outward normal η on $\partial\Omega$.

• By interchanging u and v, we get

$$\int_{\Omega} \left[v \Delta u + \sum_{k=1}^{n} (\partial_{k} u) (\partial_{k} v) \right] = \int_{\partial \Omega} v \partial_{\eta} u.$$

• By subtracting, we obtain Green's Second Formula

$$\int_{\Omega} (u\Delta v - v\Delta u) = \int_{\partial\Omega} (u\partial_{\eta}v - v\partial_{\eta}u).$$

The Laplacian Operator (Cont'd)

- Choose Ω so that it contains:
 - The support suppφ;
 - The closed ball <u>B</u>(0, ε), for some ε > 0.

By Green's Second Formula on $\Omega_{\varepsilon} = \Omega - \overline{B}(0, \varepsilon) = \{x \in \Omega : |x| > \varepsilon\}$, we obtain

$$\int_{\Omega_{\varepsilon}} \log |x| \Delta \phi(x) dx = \int_{\Omega_{\varepsilon}} \phi(x) \Delta \log |x| dx + \int_{\partial \Omega_{\varepsilon}} [\log |x| \partial_{\eta} \phi(x) - \phi(x) \partial_{\eta} \log |x|] d\sigma,$$

where η is the outward normal on $\partial\Omega_{arepsilon}.$

Since ϕ and $\partial_{\eta}\phi$ vanish on the boundary $\partial\Omega$, we have

$$\int_{|x| \ge \varepsilon} \log |x| \Delta \phi(x) dx = \int_{|x| \ge \varepsilon} \phi(x) \Delta \log |x| dx + \int_{|x| = \varepsilon} [\log |x| \partial_{\eta} \phi(x) - \phi(x) \partial_{\eta} \log |x|] d\sigma.$$

The Laplacian Operator (Cont'd)

• With $|x| = (x_1^2 + x_2^2)^{1/2} = r$, we have $\partial_{\eta} = -\partial_r$ on the circle $|x| = \varepsilon$. Moreover, for all $x \neq 0$, we also have

$$\begin{split} \Delta \log |x| &= \partial_1 \left(\frac{1}{|x|} \partial_1 |x| \right) + \partial_2 \left(\frac{1}{|x|} \partial_2 |x| \right) \\ &= \partial_1 \left(\frac{x_1}{|x|^2} \right) + \partial_2 \left(\frac{x_2}{|x|^2} \right) \\ &= \frac{x_2^2 - x_1^2}{|x|^4} + \frac{x_1^2 - x_2^2}{|x|^4} = 0. \end{split}$$

Thus, the first integral on the right side drops out, and we have

$$\begin{split} \int_{|x|\geq\varepsilon} \log |x| \Delta \phi(x) dx &= \int_{|x|=\varepsilon} \left[\log \varepsilon \partial_{\eta} \phi(x) - \phi(x) \frac{x_1^2 + x_2^2}{|x|^2} \right] d\sigma \\ &= \int_{|x|=\varepsilon} \left[\frac{1}{\varepsilon} \phi(x) - \log \varepsilon \partial_r \phi(x) \right] d\sigma. \end{split}$$

The Laplacian Operator (Conclusion)

• Now ϕ is in $C_0^{\infty}(\mathbb{R}^2)$.

So its derivative $\partial_r \phi$ is bounded on \mathbb{R}^2 by some constant, say M. Hence

$$|\log \varepsilon \int_{|x|=\varepsilon} \partial_r \phi(x) d\sigma| \leq 2\pi \varepsilon |\log \varepsilon| M \xrightarrow{\varepsilon \to 0} 0.$$

Moreover,

$$\frac{1}{\varepsilon}\int_{|x|=\varepsilon}\phi(x)d\sigma=\frac{1}{\varepsilon}\int_{|x|=\varepsilon}[\phi(x)-\phi(0)]d\sigma+\frac{1}{\varepsilon}\phi(0)\int_{|x|=\varepsilon}d\sigma.$$

 ϕ is continuous at x = 0. So $\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{|x|=\epsilon} [\phi(x) - \phi(0)] d\sigma = 0$. Therefore,

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{|x|=\varepsilon} \phi(x) d\sigma = 0 + 2\pi \phi(0).$$

Thus, $\langle \Delta \log | x |, \phi \rangle = 2\pi \phi(0)$, for all $\phi \in \mathscr{D}(\mathbb{R}^2)$, i.e., $\Delta \log |x| = 2\pi \delta$.

Example

• We determine $\Delta\left(\frac{1}{|x|}\right)$ in \mathbb{R}^3 . In \mathbb{R}^3 , $\frac{1}{|x|}$ is integrable in the neighborhood of 0. We have

$$\left\langle \Delta \frac{1}{|x|}, \phi \right\rangle = \left\langle \frac{1}{|x|}, \Delta \phi \right\rangle = \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{1}{|x|} \Delta \phi(x) dx.$$

We also have

$$\begin{split} \int_{|x|\geq\varepsilon} \frac{1}{|x|} \Delta \phi(x) dx &= \int_{|x|\geq\varepsilon} \phi(x) \Delta \left(\frac{1}{|x|}\right) dx \\ &+ \int_{|x|=\varepsilon} \left[\frac{1}{|x|} \partial_{\eta} \phi(x) - \phi(x) \partial_{\eta} \left(\frac{1}{|x|}\right)\right] d\sigma. \end{split}$$

Note that $\Delta\left(\frac{1}{|x|}\right) = (\partial_1^2 + \partial_2^2 + \partial_3^2)(x_1^2 + x_2^2 + x_3^2)^{-1/2} = 0$, when $x \neq 0$. So the first integral on the right-hand side vanishes. Therefore, with $\partial_\eta = -\partial_r$,

$$\int_{|x|\geq\varepsilon}\frac{1}{|x|}\Delta\phi(x)dx=-\frac{1}{\varepsilon}\int_{|x|=\varepsilon}\partial_{r}\phi(x)d\sigma-\frac{1}{\varepsilon^{2}}\int_{|x|=\varepsilon}\phi(x)d\sigma.$$

Example (Cont'd)

Now ∂_rφ is a bounded function in ℝ³.
 So there is a positive M such that |∂_rφ(x)| ≤ M, for all x ∈ ℝ³.
 Hence,

$$\left|\frac{1}{\varepsilon}\int_{|x|=\varepsilon}\partial_r\phi(x)d\sigma\right|\leq \frac{M}{\varepsilon}\int_{|x|=\varepsilon}d\sigma=4\pi\varepsilon M\stackrel{\varepsilon\to 0}{\longrightarrow}0.$$

We are left with

$$\frac{1}{\varepsilon^2}\int_{|x|=\varepsilon}\phi(x)dx = \frac{1}{\varepsilon^2}\int_{|x|=\varepsilon} [\phi(x) - \phi(0)]dx + \frac{1}{\varepsilon^2}\int_{|x|=\varepsilon}\phi(0)dx.$$

The first integral on the right-hand side tends to 0 as $\varepsilon \rightarrow 0$. The second is just $4\pi\phi(0)$.

Thus,
$$\left\langle \Delta \frac{1}{|x|}, \phi \right\rangle = -4\pi\phi(0)$$
, for every $\phi \in \mathscr{D}(\mathbb{R}^3)$
Therefore, $\Delta \frac{1}{|x|} = -4\pi\delta$.

Subsection 4

Convergence of Distributions

Weak Topology and Weak Convergence of Distributions

On the vector space D'(Ω), the weak topology is the locally convex topology defined by the family of seminorms

 $p_{\phi}(T) = |T(\phi)|, \quad \phi \in \mathcal{D}(\Omega), \ T \in \mathcal{D}'(\Omega).$

• This leads to the following definition of (weak) convergence in $\mathscr{D}'(\Omega)$.

Definition (Weak Convergence in $\mathscr{D}'(\Omega)$)

The sequence (T_k) in $\mathcal{D}'(\Omega)$ converges to 0 if and only if, for every $\phi \in \mathcal{D}(\Omega)$, the sequence $(T_k(\phi))$ converges to 0 in \mathbb{C} .

• This is "pointwise" convergence on $\mathscr{D}(\Omega)$.

• We write $T_k \to T$ in $\mathscr{D}'(\Omega)$ if the sequence $(T_k - T)$ converges to 0.

Strong Convergence of Distributions

- In the strong or uniform convergence in D'(Ω), T_k→0 is equivalent to T_k(φ)→0 uniformly on every bounded subset of D(Ω).
- Strong, or uniform, convergence implies weak convergence.
- Convergence in $\mathscr{D}'(\Omega)$ will be taken in the weak sense unless otherwise qualified.

Sequential Completeness

Theorem

The space of distributions $\mathscr{D}'(\Omega)$ is (sequentially) complete.

Suppose (T_k) is a Cauchy sequence in D'(Ω). Then it is bounded, i.e., there is a neighborhood U of 0 in D(Ω) and a positive number M, such that |T_k(φ)| ≤ M, for all φ ∈ U and k ∈ N. Also, (T_k(φ)) is a Cauchy sequence in C, for every φ ∈ D(Ω). Therefore its limit exists. Let T be defined by

$$T(\phi) = \lim T_k(\phi), \quad \phi \in \mathcal{D}(\Omega).$$

T is clearly linear.

For all $\phi \in U$, $|T(\phi)| = \lim |T_k(\phi)| \le M$. So T is bounded on U. Therefore, T is continuous on $\mathcal{D}(\Omega)$.

Limits and Derivatives

Corollary

If $T_k \in \mathcal{D}'(\Omega)$, for every $k \in \mathbb{N}$, and $\lim T_k = T$, then $\lim \partial^{\alpha} T_k = \partial^{\alpha} T$, for every multi-index $\alpha \in \mathbb{N}_0^n$.

• For any $\phi \in \mathscr{D}(\Omega)$, we have

li

$$\begin{split} \mathsf{m}(\partial^{\alpha} T_{k})(\phi) &= (-1)^{|\alpha|} \lim T_{k}(\partial^{\alpha} \phi) \\ &= (-1)^{|\alpha|} T(\partial^{\alpha} \phi) \\ &= \partial^{\alpha} T(\phi). \end{split}$$

Almost Everywhere Convergence vs Convergence in $\mathscr{D}'(\Omega)$

Theorem

If f_k is a sequence of functions in $L^1_{loc}(\Omega)$ which converges to f a.e. in Ω , and $|f_k| \leq g$, for some $g \in L^1_{loc}(\Omega)$, then $f_k \to f$ in $\mathscr{D}'(\Omega)$.

• For every $\phi \in \mathscr{D}(\Omega)$, we have

$$T_{f_k}(\phi) = \langle f_k, \phi \rangle = \int_{\Omega} f_k \phi \xrightarrow{k \to \infty} \int_{\Omega} f \phi,$$

by the Lebesgue Dominated Convergence Theorem. But, we have $\int_{\Omega} f\phi = T_f(\phi)$. Therefore, $T_{f_k} \to T_f$.

Convergence a.e. vs. Convergence in \mathscr{D}'

• Convergence a.e. for a sequence of locally integrable functions does not imply its convergence in \mathscr{D}' .

Example: Consider the sequence

$$f_k(x) = \begin{cases} k^2, & |x| < \frac{1}{k} \\ 0, & |x| \ge \frac{1}{k} \end{cases}$$

It converges to 0 a.e. Let $\phi \in \mathscr{D}(\mathbb{R})$ be such that $\phi = 1$ in (-1,1). Then $\langle f_k, \phi \rangle = 2k$. This does not converge.

Convergence in \mathcal{D}' vs. Pointwise Convergence

• Distributional convergence does not imply pointwise convergence. Example: Consider

 $(\sin kx).$

Then, we have, for every $\phi \in \mathscr{D}(\mathbb{R})$,

$$\begin{aligned} \langle \sin kx, \phi \rangle &= \int_{-\infty}^{\infty} \sin kx \phi(x) dx \\ &= \int_{-\infty}^{\infty} (-\frac{1}{k} \cos kx)' \phi(x) dx \\ &= -\frac{1}{k} \cos kx \phi(x) |_{-\infty}^{\infty} + \frac{1}{k} \int_{-\infty}^{\infty} \cos kx \phi'(x) dx \\ &= \frac{1}{k} \int_{-\infty}^{\infty} \cos kx \phi'(x) dx \xrightarrow{k \to \infty} 0. \end{aligned}$$

Clearly, $(\sin kx)$ does not converge pointwise.

Example (Convergence in $\mathscr{D}'(\mathbb{R})$)

Let

$$T_n = n\delta - \left(\sum_{1}^n \frac{1}{k}\right)\delta' - \left(\sum_{1}^n \delta_{1/k}\right).$$

To show that T_n converges in $\mathscr{D}'(\mathbb{R})$ we must show that $\lim T_n(\phi)$ exists, for every $\phi \in \mathscr{D}(\mathbb{R})$.

We have

$$T_n(\phi) = n\phi(0) + \left(\sum_{1}^n \frac{1}{k}\right)\phi'(0) - \sum_{1}^n \phi\left(\frac{1}{k}\right).$$

By Taylor's Formula, we can write

$$\phi(x) = \phi(0) + x\phi'(0) + x^2\psi(x),$$

where ψ is a C^{∞} function which is bounded by some constant, say M.

Example (Convergence in $\mathscr{D}'(\mathbb{R})$ Cont'd)

Now we obtain

$$\begin{aligned} \Gamma_n(\phi) &= n\phi(0) + \left(\sum_{1=1}^n \frac{1}{k}\right)\phi'(0) - \sum_{1=1}^n \phi\left(\frac{1}{k}\right) \\ &= n\phi(0) + \left(\sum_{1=1}^n \frac{1}{k}\right)\phi'(0) - \sum_{1=1}^n \left[\phi(0) + \frac{1}{k}\phi'(0) + \frac{1}{k^2}\psi\left(\frac{1}{k}\right)\right] \\ &= -\sum_{1=1}^n \frac{1}{k^2}\psi(\frac{1}{k}). \end{aligned}$$

Therefore, for m < n,

$$|T_n(\phi) - T_m(\phi)| \le M \sum_m^n \frac{1}{k^2}.$$

So $(T_n(\phi))$ is a Cauchy sequence in C. So its limit exists.

George Voutsadakis (LSSU)

Example: Delta-Convergent Sequences

• Even when the sequence of functions f_k converges a.e. and in \mathcal{D}' , the two limits may not be equal.

Example: Consider

$$f_k(x) = \begin{cases} k, & \text{if } |x| < \frac{1}{2k} \\ 0, & \text{if } |x| \ge \frac{1}{2k} \end{cases}$$

Clearly, $\int f_k(x) dx = 1$. Moreover, $f_k \to 0$ a.e. on \mathbb{R} . For any function ϕ in $\mathcal{D}(\mathbb{R})$, by the continuity of ϕ at 0,

$$\langle f_k, \phi \rangle = \phi(0) + k \int_{-1/2k}^{1/2k} [\phi(x) - \phi(0)] dx \xrightarrow{k \to \infty} \phi(0).$$

Hence, $\lim f_k = \delta$.

A sequence of functions, such as (f_k), which converges to δ in D'(Ω) is called a delta-convergent sequence.

George Voutsadakis (LSSU)

Theory of Distributions

Construction of Delta-Convergent Sequences

Theorem

Let f be a nonnegative integrable function on \mathbb{R}^n with $\int f(x) dx = 1$ and

$$f_{\lambda}(x) = \frac{1}{\lambda^n} f\left(\frac{x}{\lambda}\right) = \frac{1}{\lambda^n} f\left(\frac{x_1}{\lambda}, \dots, \frac{x_n}{\lambda}\right), \quad \lambda > 0.$$

Then $f_{\lambda} \to \delta$ in $\mathscr{D}'(\mathbb{R}^n)$ as $\lambda \to 0$.

Note that

$$\int f_{\lambda}(x)dx = \int f\left(\frac{x}{\lambda}\right)\frac{1}{\lambda^{n}}dx = \int f(\xi)d\xi = 1.$$

Therefore,

$$\lim_{\lambda \to 0} \langle f_{\lambda}, \phi \rangle = \lim_{\lambda \to 0} \int f_{\lambda}(x) \phi(x) dx$$

= $\phi(0) + \lim_{\lambda \to 0} \int f_{\lambda}(x) [\phi(x) - \phi(0)] dx.$

Construction of Delta-Convergent Sequences (Cont'd)

We also have

$$\int f_{\lambda}(x)[\phi(x) - \phi(0)]dx | \leq \int_{|x| \leq r} \left| f_{\lambda}(x)[\phi(x) - \phi(0)] \right| dx$$

$$+ \int_{|x| \geq r} \left| f_{\lambda}(x)[\phi(x) - \phi(0)] \right| dx$$

$$\leq \sup_{|x| \leq r} |\phi(x) - \phi(0)| \int_{|x| \leq r} f_{\lambda}(x) dx + \sup_{|x| \geq r} |\phi(x) - \phi(0)| \int_{|x| \geq r} f_{\lambda}(x) dx$$

$$\leq \sup_{|x|\leq r} |\phi(x) - \phi(0)| + M \int_{|\xi|\geq r/\lambda} f(\xi) d\xi,$$

where *M* is the max of $|\phi(x) - \phi(0)|$ on \mathbb{R}^n .

Let $\varepsilon > 0$ be arbitrary.

Because ϕ is continuous at 0, we can make the first term less than $\frac{1}{2}\varepsilon$ by choosing *r* small enough.

Because f is integrable on \mathbb{R}^n , we can choose λ small enough so that the second term is less than $\frac{1}{2}\varepsilon$.

Example

• Recall the equality
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \pi$$
.
Define
 $f(x) = \frac{1}{\pi(1+x^2)}$.

$$\int_{-\infty}^{\infty} \frac{1}{\pi(1+x^2)} = 1.$$

Let

$$f_{\lambda}(x) = \frac{1}{\lambda} f\left(\frac{x}{\lambda}\right) = \frac{1}{\lambda} \frac{1}{\pi [1 + (\frac{x}{\lambda})^2]} = \frac{\lambda}{\pi (x^2 + \lambda^2)}.$$

By the previous theorem, in $\mathscr{D}'(\mathbb{R})$,

$$f_{\lambda} \xrightarrow{\lambda \to 0} \delta$$

Example

• Recall the equality $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$. We obtain

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \int_{\mathbb{R}^n} \prod_{k=1}^n e^{-x_k^2} dx_k$$
$$= \prod_{k=1}^n \int_{-\infty}^\infty e^{-x_k^2} dx_k$$
$$= \sqrt{\pi}^n.$$

Replacing the parameter $\lambda > 0$ in the previous theorem by $\sqrt{\lambda}$, we obtain the following function defined on \mathbb{R}^n , for all positive values of λ ,

$$f_{\lambda}(x) = \frac{1}{\sqrt{\pi\lambda}^n} e^{-|x|^2/\lambda}.$$

By the theorem,

$$f_{\lambda} \xrightarrow{\lambda \to 0} \delta$$

Subsection 5

Multiplication by Smooth Functions

The Product of a C^{∞} Function with a Distribution

• For any $T \in \mathscr{D}'(\Omega)$ and $f \in C^{\infty}(\Omega)$, we define fT as the linear functional

$$(fT)(\phi) = T(f\phi), \quad \phi \in \mathscr{D}(\Omega).$$

- The product *fT* is well defined.
 Note that the product *fφ* is in D(Ω).
- The product fT is in $\mathcal{D}'(\Omega)$.

Suppose the sequence ϕ_k converges to 0 in $\mathcal{D}(\Omega)$.

Then the sequence $f\phi_k$ also converges to 0 in $\mathscr{D}(\Omega)$.

Therefore,

$$(fT)(\phi_k) = T(f\phi_k) \to 0.$$

So fT is a continuous linear functional on $\mathcal{D}(\Omega)$.

Regularity of the Product

- Let $T \in \mathscr{D}'(\Omega)$ and $f \in C^{\infty}(\Omega)$.
- Suppose T is a regular distribution.
- Let g be a locally integrable function, such that, for all $\phi \in \mathscr{D}(\Omega)$,

$$T\phi = \langle g, \phi \rangle.$$

- Note that fg is also locally integrable.
- So we obtain

$$(fT_g)(\phi) = T_g(f\phi) = \langle g, f\phi \rangle = \int gf\phi = \langle fg, \phi \rangle.$$

• Thus, $fT_g = T_{fg}$ and fT is also regular.
Differentiation of a Product

The ordinary rules of differentiating a product of two functions apply to *fT* when *f* ∈ C[∞](Ω) and *T* ∈ D'(Ω).
 Indeed we have, for all φ∈ D(Ω)

$$\partial_{k}(fT)(\phi) = -fT(\partial_{k}\phi)$$

$$= -T(f\partial_{k}\phi)$$

$$= -T(\partial_{k}(f\phi) - (\partial_{k}f)\phi)$$

$$= -T(\partial_{k}(f\phi)) - T((\partial_{k}f)\phi)$$

$$= \partial_{k}T(f\phi) - (\partial_{k}f)T(\phi)$$

$$= f\partial_{k}T(\phi) + (\partial_{k}f)T(\phi).$$

Therefore,

$$\partial_k(fT) = \left(\partial_k f\right)T + f\partial_k T.$$

Differentiation of a Product: Leibniz Formula

- Let $f \in C^{\infty}(\Omega)$ and $T \in \mathscr{D}'(\Omega)$.
- We can use induction to show that Leibniz's formula

$$\partial^{\alpha}(fT) = \sum_{\beta=0}^{\alpha} \frac{\alpha!}{\beta!(\alpha-\beta)!} (\partial^{\beta}f)(\partial^{(\alpha-\beta)}T), \quad \alpha \in \mathbb{N}_{0}^{n}$$

remains valid, were the summation is over the multi-indices from (0,...,0) to $(\alpha_1,...,\alpha_n)$.

Example

• The product $\sin x\delta$ is the distribution defined on $\mathscr{D}(\mathbb{R})$ by

$$\langle \sin x \ \delta, \phi \rangle = \langle \delta, \sin x \ \phi \rangle = \sin 0 \ \phi(0) = 0.$$

On the other hand, $\sin x \delta'$ is given by

$$\langle \sin x \ \delta', \phi \rangle = \langle \delta', \sin x \ \phi \rangle = - \langle \delta, (\sin x \ \phi)' \rangle = - \langle \delta, \cos x \ \phi + \sin x \ \phi' \rangle = - (\cos 0 \ \phi(0) + \sin 0 \ \phi'(0)) = - \phi(0).$$

Subsection 6

Local Properties of Distributions

Zero Distributions

• It does not make sense to assign a value to a distribution at a given point in Ω , but we can define what it means for a distribution to vanish on an open subset of Ω .

Definition

For any $T \in \mathscr{D}'(\Omega)$ and any open subset G of Ω , we say that T = 0 on G if $T(\phi) = 0$, for every $\phi \in \mathscr{D}(G)$.

- We can now say that $T \in \mathcal{D}'(\Omega)$ is zero if T = 0 on Ω .
- We also say that $T_1, T_2 \in \mathscr{D}'(\Omega)$ are equal if $T_1 T_2 = 0$ on Ω .

Examples

• We saw that, for all $\phi \in \mathscr{D}(\mathbb{R})$,

 $\langle \sin x \ \delta, \phi \rangle = 0.$

We conclude that $\sin x \ \delta = 0$ on \mathbb{R} .

• We also saw that, for all $\phi \in \mathscr{D}(\mathbb{R})$,

$$\langle \sin x \ \delta', \phi \rangle = -\phi(0) = -\langle \delta, \phi \rangle.$$

We conclude that $\sin x \ \delta' = -\delta$ on \mathbb{R} .

Earlier on, we interpreted the equality T = T_f on D(ℝ - {0}) to mean that T is represented by f on ℝ - {0}, i.e. that T = T_f on ℝ - {0}.

Example

• Let I = (a, b) be any interval in \mathbb{R} , including \mathbb{R} itself.

Suppose $T \in \mathcal{D}'(I)$ is such that T' = 0.

Then T must be a constant.

By hypothesis, for all $\phi \in \mathcal{D}(I)$, $T(\phi') = -T'(\phi) = 0$.

Thus, T vanishes at every test function which can be expressed as the derivative of some function in $\mathcal{D}(I)$.

Let $\mathcal{D}_0(I)$ be the subspace of $\mathcal{D}(I)$ characterized by the condition that $\phi \in \mathcal{D}_0(I)$ if and only if there exists a $\psi \in \mathcal{D}(I)$, such that $\phi = \psi'$.

Claim: $\phi \in \mathcal{D}_0(I)$ if and only if $\int_a^b \phi(x) dx = 0$.

This condition is clearly necessary.

Suppose the condition is satisfied.

Define $\psi(x) = \int_a^x \phi(t) dt$. Then $\psi \in \mathcal{D}(I)$ and $\psi' = \phi$.

Example (Cont'd)

T(φ) = 0, by hypothesis, for every φ∈ D₀(I).
 Let φ₀ be a fixed function in D(I), such that ∫_a^bφ₀(x)dx = 1.
 Given any φ∈ D(I), the function φ - (∫_a^bφ(x)dx)φ₀ lies in D₀(I).
 Therefore,

$$T\left(\phi-\phi_0\int_a^b\phi(x)dx\right)=0.$$

This gives $T(\phi) = c \int_a^b \phi(x) dx$, where c is the constant $T(\phi_0)$. This equation implies that T is the constant function c.

- Suppose T∈ D'(I) satisfies T' = c₁, for some constant c₁. Define S∈ D'(I) by S = c₁x. Then (T − S)' = 0. Therefore, T = c₁x + c₂, for some constant c₂.
- If $T^{(m)} = 0$, we can use induction to show T is a polynomial of degree $\leq m 1$.

The Convolution

Definition

For any $f \in L^1_{loc}(\mathbb{R}^n)$ and $\phi \in C^{\infty}_{K}(\mathbb{R}^n)$, where K is a compact subset of \mathbb{R}^n , we define the **convolution** of f and ϕ as the function

$$\int f(x-y)\phi(y)dy = \int f(y)\phi(x-y)dy$$

which will be denoted by $(f * \phi)(x)$.

- Note that f * φ is also defined if φ is merely continuous with compact support in Rⁿ.
- $f * \phi$ is not necessarily defined when supp ϕ is not compact, unless, of course, suppf is compact.

The Distribution β_{λ}

• Consider the C^{∞} function

$$\alpha(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}}, & \text{on } |x| < 1\\ 0, & \text{on } |x| \ge 1 \end{cases}$$

- It has support in the closed unit ball $\overline{B}(0,1)$.
- Its integral over \mathbb{R}^n is a finite positive number.
- Consider the function $\beta(x) = \frac{\alpha(x)}{\int \alpha(x) dx}$.
 - It is another C^{∞} function with support in $\overline{B}(0,1)$.
 - Moreover, it satisfies $\int \beta(x) dx = 1$.
- Let, for any positive number λ ,

$$\beta_{\lambda}(x) = \frac{1}{\lambda^n} \beta\left(\frac{x}{\lambda}\right).$$

• $\beta_{\lambda} \in \mathcal{D}(\mathbb{R}^n)$, with supp $(\beta_{\lambda}) = \overline{B}(0, \lambda)$. • Moreover, $\int \beta_{\lambda}(x) dx = \int \beta(x) dx = 1$.

Properties of β_{λ}

Theorem

(i) If
$$f \in L^1_{\text{loc}}(\mathbb{R}^n)$$
, then $f * \beta_{\lambda} \in C^{\infty}(\mathbb{R}^n)$.

- (ii) If $f \in L^1(\mathbb{R}^n)$ with compact support K, then $\operatorname{supp}(f * \beta_{\lambda})$ is contained in a neighborhood of K defined by $K_{\lambda} = \bigcup_{x \in K} \overline{B}(x, \lambda) = K + \overline{B}(0, \lambda)$.
- (iii) If $f \in C^0(\mathbb{R}^n)$, then, $f * \beta_\lambda \xrightarrow{\lambda \to 0} f$ uniformly on every compact subset of \mathbb{R}^n .
 - (i) $(f * \beta_{\lambda})(x) = \int f(y)\beta_{\lambda}(x-y)dy = \int_{B(x,\lambda)} f(y)\beta_{\lambda}(x-y)dy$. But $B(x,\lambda)$ is bounded and β_{λ} is infinitely differentiable. Hence, $f * \beta_{\lambda} \in C^{\infty}(\mathbb{R}^{n})$.
- (ii) Suppose $x \notin K_{\lambda}$. Then $d(x, K) = \inf_{y \in K} |x y| > \lambda$. So $\beta_{\lambda}(x y) = 0$, for all $y \in K$. Consequently,

$$(f * \beta_{\lambda})(x) = \int_{\mathcal{K}} f(y)\beta_{\lambda}(x-y)dy = 0.$$

Properties of β_{λ} Part (iii)

(iii) Since f is continuous on ℝⁿ, it is uniformly continuous on any compact subset E of ℝⁿ. So, given ε > 0, there is a δ > 0, such that, for all x ∈ E and all y ∈ B(0,δ),

$$|f(x-y)-f(x)|<\varepsilon.$$

Then, for all $x \in E$ and all $\lambda \leq \delta$,

$$\begin{aligned} |(f * \beta_{\lambda})(x) - f(x)| &= |\int [f(x - y) - f(x)] \beta_{\lambda}(y) dy| \\ &\leq \int_{B(0,\lambda)} |f(x - y) - f(x)| \beta_{\lambda}(y) dy \\ &< \varepsilon. \end{aligned}$$

• In this proof the only properties of β_{λ} that were used are:

$$\beta_{\lambda} \in C_0^{\infty}(\mathbb{R}^n), \quad \operatorname{supp} \beta_{\lambda} \subseteq \overline{B}(0,\lambda), \quad \int \beta_{\lambda}(x) dx = 1.$$

Hence β_{λ} may be replaced in the statement of the theorem by any function with these properties.

George Voutsadakis (LSSU)

Regularizing Sequence or Regularization

- The theorem indicates that the convolution of f with β_λ smoothes out the discontinuities in f while preserving its general shape.
- For that reason the sequence of functions

$$f_k = f * \beta_{1/k}$$

is called a regularizing sequence, or a regularization, of f.

Property of Compact Subsets of Ω

Corollary

If K is a compact subset of $\Omega \subseteq \mathbb{R}^n$, then there is a $\phi \in \mathcal{D}(\Omega)$, such that $0 \le \phi \le 1$ and $\phi = 1$ on K.

There is no loss of generality in taking Ω to be bounded.
 Let K_δ be the δ-neighborhood of K, where δ = ¹/₃d(K,∂Ω).
 Let I_{K_δ} be the characteristic function of K_δ.
 Consider the C[∞] function

$$\phi(x) = (I_{K_{\delta}} * \beta_{\delta})(x) = \int_{K_{\delta}} \beta_{\delta}(x-y) dy.$$

• $\phi = 1$ on K; • $0 \le \phi \le 1$ on $K_{2\delta}$; • $\phi = 0$ outside $K_{2\delta}$.

Density of $\mathscr{D}(\mathbb{R}^n)$ in $C^0_0(\mathbb{R}^n)$

Corollary

 $\mathscr{D}(\mathbb{R}^n)$ is a dense subspace of $C_0^0(\mathbb{R}^n)$ with the identity map from $\mathscr{D}(\mathbb{R}^n)$ to $C_0^0(\mathbb{R}^n)$ continuous.

- Suppose φ_k converges in D(ℝⁿ) to φ.
 Then there is a compact set K ⊆ ℝⁿ, such that:
 - supp $\phi_k \subseteq K$, for all k;
 - ϕ_k converges uniformly to ϕ on K.

But that implies $\phi_k \to \phi$ in $C_0^0(\mathbb{R}^n)$. Hence, the identity map from $\mathscr{D}(\mathbb{R}^n)$ to C_0^0 is continuous. Next, let ϕ be any function in $C_0^0(\mathbb{R}^n)$, with $\operatorname{supp}\phi = K$. Then the sequence $\phi_k = \phi * \beta_{1/k}$ is supported in $K + \overline{B}(0, 1)$. By the theorem, ϕ_k converges uniformly to ϕ on $K + \overline{B}(0, 1)$.

Open Cover and Partition of Unity

Theorem

If $\{G_{\alpha} : \alpha \in A\}$ is a collection of open subsets of Ω , and $T \in \mathcal{D}'(\Omega)$ is zero on every G_{α} , then T is zero on the union $\bigcup_{\alpha \in A} G_{\alpha}$.

- Let G = ∪ G_α and φ be in D(G) with suppφ = K. The collection {G_α} is an open covering of the compact set K. It contains a finite subcovering of K, say, after relabeling, G₁,..., G_m. For every k ∈ {1,...,m}, we choose:
 - A compact set $K_k \subseteq G_k$ so that $K \subseteq \bigcup_{k=1}^m K_k^\circ$;
 - $\phi_k \in \mathcal{D}(G_k)$ so that $0 \le \phi_k \le 1$ and $\phi_k = \overline{1}$ on K_k .

Now let

$$\psi_1 = \phi_1, \quad \psi_k = \phi_k (1 - \phi_1) \cdots (1 - \phi_{k-1}), \ k = 2, \dots, m.$$

For $k \in \{1, ..., m\}$, $\psi_k \in \mathcal{D}(G_k)$, $0 \le \psi_k \le 1$. Moreover, $\sum_{k=1}^m \psi_k = 1$ on a neighborhood of K. So $\phi = \sum_{k=1}^m \phi \psi_k$. But $\phi \psi_k \in \mathcal{D}(G_k)$ and T = 0on G_k . So $T(\phi) = \sum_{k=1}^m T(\pi \psi_k) = 0$.

Partition of Unity Subordinate to an Open Cover

- Suppose $\{G_{\alpha} : \alpha \in A\}$ is a collection of open subsets of Ω .
- The set of functions {ψ₁,...,ψ_m}, constructed in the theorem, is called a C[∞] partition of unity subordinate to the open cover {G₁,..., G_m} of K.

The Support of a Distribution

Definition

The support of $T \in \mathscr{D}'(\Omega)$ is the complement in Ω of the largest open subset of Ω where T = 0.

Example: Consider $\delta \in \mathcal{D}'(\Omega)$.

We know that $\langle \delta, \phi \rangle = 0$, for every ϕ in $\mathcal{D}(\Omega - \{0\})$.

So the support of δ is {0}.

- Note that, if T is a distribution and f is a C[∞] function which vanishes on supp T, it does not necessarily follow that fT = 0.
 Example: We have seen that xδ' = −δ.
- On the other hand, if f vanishes on a neighborhood of supp T, then we may conclude that fT = 0.

Compact Support and Finite Order

Theorem

Every distribution with compact support is of finite order.

• Suppose $T \in \mathcal{D}'(\Omega)$ and supp T is compact. There is $\psi \in \mathcal{D}(\Omega)$, with $\psi = 1$ on some open set containing supp T. For any $\phi \in \mathcal{D}(\Omega)$, the support of $\phi - \psi \phi$ does not intersect supp T: $\operatorname{supp}(\phi - \psi \phi) \subseteq \Omega - \operatorname{supp} T$. So $T(\phi - \psi \phi) = 0$. I.e., $T(\phi) = T(\psi \phi)$. Let $K = \operatorname{supp} \psi$. By a previous theorem, there is a nonnegative integer m and a constant M_1 , such that $T(\phi) \leq M_1 |\phi|_m$, for all $\phi \in \mathcal{D}_K$. By the Leibniz Formula for the derivative of $\psi\phi$, there is a constant M_2 , such that $|\psi\phi|_m \leq M_2 |\phi|_m$, for all $\phi \in \mathcal{D}(\Omega)$. For this choice of ψ and for every $\phi \in \mathcal{D}(\Omega)$, we have

 $|T(\phi)| = |T(\psi\phi)| \le M_1 |\psi\phi|_m \le M_1 M_2 |\phi|_m.$

Finite Order and Compact Support

• A distribution of finite order does not necessarily have compact support.

Example: Any locally integrable function defines a distribution of order 0.

Example: Consider

$$\sum_{k=0}^{\infty} \delta_k^{(k)}.$$

This is an example of a distribution of infinite order.

Linear Combinations of Derivatives of Delta

• Consider a linear combination of derivatives of the Dirac measure on \mathbb{R}^n

$$T=\sum_{|\alpha|\leq m}c_{\alpha}\partial^{\alpha}\delta.$$

• For all
$$\phi \in \mathscr{D}(\mathbb{R}^n)$$
, $T(\phi) = \sum_{|\alpha| \le m} c_{\alpha}(-1)^{|\alpha|} \partial^{\alpha} \phi(0)$.

Note that

$$\begin{aligned} |T(\phi)| &\leq \sum_{|\alpha| \leq m} |c_{\alpha} \partial^{\alpha} \phi(0)| \\ &\leq M_{mn} \max_{|\alpha| \leq m} |\partial^{\alpha} \phi(0)| \\ &\leq M_{mn} |\phi|_{m}. \end{aligned}$$

Here M_{mn} is a positive constant which depends on m and n. This implies that the order of T is m.

 We will see later that every distribution with support {0} is a finite linear combination of derivatives of δ.

George Voutsadakis (LSSU)

Theory of Distributions

$\mathscr{D}(\Omega)$ as a Subspace of $L^p(\Omega)$

• The space $L^p(I)$, where I = (a, b) and $1 \le p < \infty$, is the completion of $C_0^0(I)$ in the norm

$$f \mapsto \|f\|_p = \left[\int_I |f(x)|^p dx\right]^{1/p}$$

- More generally, for any open set Ω ⊆ ℝⁿ, we can also define L^p(Ω) to be the completion of C⁰₀(Ω) in the norm ||·||_p, with I replaced by Ω.
- It is a standard result of real analysis that this definition is equivalent to the usual definition of L^p(Ω) as the linear space of measurable functions on Ω with finite norm ||·||_p.
- Since convergence in $C_0^0(\Omega)$ implies convergence in $L^p(\Omega)$, and in view of a previous corollary, we have

Theorem

 $\mathscr{D}(\Omega)$ is a dense subspace of $L^{p}(\Omega)$, for $1 \leq p < \infty$, with the identity map from $\mathscr{D}(\Omega)$ to $L^{p}(\Omega)$ continuous.

George Voutsadakis (LSSU)

Approximation of an L^p Function in \mathcal{D}

- Next, we show, given an L^p function, how to construct the approximating sequence in \mathcal{D} .
- We use (γ_k) to denote the sequence $(\beta_{1/k})$. Let $u \in L^p(\mathbb{R}^n)$.

We carry out the following steps:

• First, we show that

$$\|u * \gamma_k\|_p \le \|u\|_p, \quad 1 \le p < \infty;$$

• We, then, conclude that, in $L^{p}(\mathbb{R}^{n})$, for $u \in L^{p}(\mathbb{R}^{n})$,

$$u * \gamma_k \rightarrow u.$$

Approximation of an L^p Function in \mathscr{D} (Part (i))

(i) Suppose, first, 1 . Then

$$\|u*\gamma_k\|_p^p = \int \left|\int \gamma_k(y)u(x-y)dy\right|^p dx.$$

We can write $u\gamma_k = (u\gamma_k^{1/p})(\gamma_k^{1/q})$, where $\frac{1}{p} + \frac{1}{q} = 1$. Now use Hölder's Inequality to obtain

$$\int \gamma_k(y) |u(x-y)| dy \leq \left[\int \gamma_k(y) |u(x-y)|^p dy \right]^{1/p} \left[\int \gamma_k(y) dy \right]^{1/q}$$

Taking into account $\int \gamma_k(y) dy = 1$, we get

$$\begin{aligned} \|u * \gamma_k\|_p^p &\leq \int \int \gamma_k(y) |u(x-y)|^p dy dx \\ &= \int \gamma_k(y) [\int |u(x-y)|^p dx] dy \quad (\text{Fubini's Theorem}) \\ &= \int \gamma_k(y) \|u\|_p^p dy \\ &= \|u\|_p^p. \end{aligned}$$

Approximation of an L^p Function in \mathcal{D} (Part (i) Cont'd)

• If
$$p = 1$$
,

$$\|u * \gamma_k\|_1 \leq \int \int \gamma_k(y) |u(x - y)| dy dx$$

$$= \int \gamma_k(y) [\int |u(x - y)| dx] dy$$

$$= \|u\|_1.$$
Hence, for all $p \in [1, \infty)$,

 $\|u*\gamma_k\|_p\leq\|u\|_p.$

George Voutsadakis (LSSU)

Approximation of an L^{p} Function in \mathcal{D} (Part (ii))

(ii) Let $u \in L^{p}(\mathbb{R}^{n})$ and $\varepsilon > 0$ be arbitrary. Since C_{0}^{0} is dense in L^{p} , choose $\phi \in C_{0}^{0}(\mathbb{R}^{n})$, such that $||u - \phi||_{p} < \varepsilon$. Then, by Part (i),

$$\|u*\gamma_k-\phi*\gamma_k\|_p=\|(u-\phi)*\gamma_k\|_p\leq\|u-\phi\|_p<\varepsilon.$$

Now we take into account the fact that:

• $\phi * \gamma_k$ and ϕ are supported in the compact set $K = \text{supp}\phi + \overline{B}(0,1)$; • $\phi * \gamma_k \rightarrow \phi$ uniformly on K.

So we can write, for k large enough,

$$\begin{aligned} \|\phi * \gamma_k - \phi\|_p &= \left[\int_{\mathcal{K}} |(\phi * \gamma_k)(x) - \phi(x)|^p dx\right]^{1/p} \\ &\leq \sup_{x \in \mathcal{K}} |(\phi * \gamma_k)(x) - \phi(x)| [\int_{\mathcal{K}} dx]^{1/p} \\ &< \varepsilon. \end{aligned}$$

Thus,

$$\|u*\gamma_k-u\|_p\leq \|u*\gamma_k-\phi*\gamma_k\|_p+\|\phi*\gamma_k-\phi\|_p+\|\phi-u\|_p<3\varepsilon.$$

Approximation of an L^p_{loc} Function in \mathscr{D}

Let u ∈ L^p_{loc}(ℝⁿ) and K be any compact set in ℝⁿ.
Let I_K be the characteristic function of K.
The function v = uI_K lies in L^p(ℝⁿ).
The sequence v * γ_k converges to v in L^p(ℝⁿ).
I.e., u * γ_k → u in the L^p norm on every compact subset of ℝⁿ.
With this convergence in L^p_{loc}(ℝⁿ), D(ℝⁿ) is also dense in L^p_{loc}(ℝⁿ).

Zero Distributions and Functions Zero a.e.

• Recall that every locally integrable function f defines a distribution T_f .

• If
$$f = g$$
 a.e., then clearly $T_f = T_g$.

- We show that, conversely, if $T_f = T_g$, for two locally integrable functions f and g, then f = g a.e..
- Suppose $f \in L^1_{loc}(\mathbb{R}^n)$, such that $T_f = 0$ in $\mathscr{D}'(\mathbb{R}^n)$. We prove that f = 0 a.e.

(i) Suppose, first, that
$$f \in L^1(\mathbb{R}^n)$$
.
Take into account that:

•
$$\gamma_k(x-y)$$
 lies in $\mathscr{D}(\mathbb{R}^n)$, for every fixed x;

•
$$T_f = 0$$
 on $\mathscr{D}(\mathbb{R}^n)$.

So we have

$$(f*\gamma_k)(x)=\int f(y)\gamma_k(x-y)dy=0.$$

Hence, in $L^1(\mathbb{R}^n)$,

$$f = \lim \left(f * \gamma_k \right) = 0.$$

This means that f = 0 a.e..

Zero Distributions and Functions Zero a.e. (Cont'd)

(ii) Now let f ∈ L¹_{loc}(ℝⁿ) and K be a compact set in ℝⁿ. Choose ψ ∈ 𝔅(ℝⁿ), such that 0 ≤ ψ ≤ 1 and ψ = 1 on K. This is always possible by a previous corollary. Thus, ψf ∈ L¹(ℝⁿ). If φ ∈ 𝔅(ℝⁿ), then, by hypothesis,

$$T_{\psi f}(\phi) = T_f(\psi \phi) = 0.$$

By Part (i), we conclude that $\psi f = 0$ a.e. in \mathbb{R}^n . This implies that f = 0 a.e. on K. K being arbitrary, this means that f = 0 a.e..

• The proof depends essentially on $\mathscr{D}(\mathbb{R}^n)$ being dense in $\mathcal{L}^1_{loc}(\mathbb{R}^n)$.

Subsection 7

Distributions of Finite Order

The Space $\mathscr{D}^{m'}(\Omega)$

- Recall that D^m(Ω), m∈ N₀, is the linear space C^m₀(Ω) equipped with the inductive limit topology of {C^m_K(Ω) : K ⊆ Ω}.
- This is the locally convex topology in which a set is open if and only if its intersection with C^m_K(Ω) is open, for every compact K ⊆ Ω.
- In turn, $C_{K}^{m}(\Omega)$ carries its natural locally convex topology defined by the seminorms

$$p_i(\phi) = \sup \{ |\partial^{\alpha} \phi(x)| : x \in K, |\alpha| \le i \}, \quad 0 \le i \le m \le \infty.$$

- This topology on $\mathscr{D}^m(\Omega)$ is weaker than the topology of $\mathscr{D}(\Omega)$.
- Thus, the inclusion $\mathscr{D}(\Omega) \subseteq \mathscr{D}^m(\Omega)$ is in fact a continuous injection.
- Consequently, the dual space $\mathscr{D}^{m'}(\Omega)$ is a subspace of $\mathscr{D}'(\Omega)$.

Characterization of $\mathscr{D}^{m'}(\Omega)$ as a Subspace of $\mathscr{D}'(\Omega)$

Theorem

 $\mathscr{D}^{m'}(\Omega)$ consists of all the distributions in $\mathscr{D}'(\Omega)$ of order $\leq m$.

• Suppose $T \in \mathcal{D}^{m'}(\Omega)$. Then, by definition, there is a constant M, such that $|T(\phi)| \leq M |\phi|_m$, for all $\phi \in \mathcal{D}^m(\Omega)$. The restriction of T to $\mathcal{D}(\Omega)$ is therefore a distribution of order $\leq m$.

Conversely, suppose $T \in \mathscr{D}'(\Omega)$ is of order *m*.

So there is a constant M, such that $|T(\phi)| \leq M |\phi|_m$, for all $\phi \in \mathscr{D}(\Omega)$. Now $\mathscr{D}(\Omega) \subseteq \mathscr{D}^m(\Omega) \subseteq \mathscr{D}^0(\Omega)$.

Moreover, by a previous corollary, $\mathscr{D}(\Omega)$ is dense in $\mathscr{D}^{0}(\Omega) = C_{0}^{0}(\Omega)$. Hence, $\mathscr{D}(\Omega)$ is dense in $\mathscr{D}^{m}(\Omega)$.

Thus, the continuous linear functional T may be extended by continuity to $\mathscr{D}^m(\Omega)$, with the inequality $|T(\phi)| \le M |\phi|_m$ still valid. It follows that $T \in \mathscr{D}^{m'}(\Omega)$.

$\mathscr{D}_{F}(\Omega)$ and the Projective Limit Topology

- Let $\mathscr{D}_F(\Omega)$ be the set $\bigcap_{m=0}^{\infty} C_0^m(\Omega) = C_0^{\infty}(\Omega)$ equipped with the weakest topology in which the identity map $i_m : \mathscr{D}_F(\Omega) \to \mathscr{D}^m(\Omega)$ is continuous for every $m \in \mathbb{N}_0$.
- This is a locally convex topology which is induced by the topologies of $\mathscr{D}^m(\Omega)$ under the inverse maps i_m^{-1} .
- If \mathscr{U}_m is a base of 0-neighborhoods in $\mathscr{D}^m(\Omega)$, the finite intersections of the sets $i_m^{-1}(U_m)$, where $U_m \in \mathscr{U}_m$ and $m \in \mathbb{N}_0$, form a base of 0-neighborhoods for the topology of \mathscr{D}_F .
- This topology on D_F is called the projective limit of the topologies of {D^m(Ω)}.
- This is a dual topology to the inductive limit.

Comparing $\mathscr{D}_F(\Omega)$ with $\mathscr{D}(\Omega)$

• Although $\mathscr{D}_F(\Omega)$ and $\mathscr{D}(\Omega)$ represent the same set, namely $C_0^{\infty}(\Omega)$, they are different topological spaces.

Claim: The topology of $\mathscr{D}(\Omega)$ is stronger than that of $\mathscr{D}_{F}(\Omega)$.

Consider any sequence ϕ_k in $\mathscr{D}(\Omega)$ which converges to ϕ .

By a previous theorem, there is a compact set $K \subseteq \Omega$ which contains $\operatorname{supp} \phi_k$, for all k, and $|\phi_k - \phi|_m \to 0$, for all m.

This implies that $\phi_k \to \phi$ in $\mathscr{D}^m(\Omega)$, for every *m*.

Hence, $\phi_k \rightarrow \phi$ in $\mathscr{D}_F(\Omega)$.

- Thus, the identity map from $\mathscr{D}(\Omega)$ to $\mathscr{D}_F(\Omega)$ is continuous.
- So the corresponding dual spaces $\mathscr{D}'_{F}(\Omega)$ and $\mathscr{D}'(\Omega)$ are related by the (proper) inclusion $\mathscr{D}'_{F}(\Omega) \subseteq \mathscr{D}'(\Omega)$.

Characterization of $\mathscr{D}'_{\mathcal{F}}(\Omega)$

Theorem

 $\mathscr{D}'_{\mathcal{F}}(\Omega)$ consists of all the distributions in $\mathscr{D}'(\Omega)$ of finite order. In other words, $\mathscr{D}'_{\mathcal{F}}(\Omega) = \bigcup_{m=0}^{\infty} \mathscr{D}^{m'}(\Omega).$

Suppose T∈ D'(Ω) is of finite order, say m. Then, by the preceding theorem, T∈ D^{m'}(Ω). Its restriction to C₀[∞](Ω) is continuous in the topology of D'_F(Ω). Hence, T∈ D'_F(Ω). Now let T∈ D'_F(Ω). Then, there is a neighborhood U of 0∈ D_F(Ω), such that, for all φ∈ U,

$$|T(\phi)| \le M.$$

But U contains a neighborhood of the form $U_1 \cap \cdots \cap U_k \cap C_0^{\infty}(\Omega)$, where U_i is a neighborhood of $0 \in \mathcal{D}^{m_i}(\Omega)$, i.e., of form

 $\{\phi \in C_0^\infty(\Omega) : |\phi|_{m_i} \le \varepsilon_i\}.$

Characterization of $\mathscr{D}'_{F}(\Omega)$ (Cont'd)

• Let $\varepsilon = \min \{\varepsilon_1, \dots, \varepsilon_k\}$ and $m = \max \{m_1, \dots, m_k\}$. Then

$$\{\phi \in C_0^{\infty}(\Omega) : |\phi|_m \le \varepsilon\} \subseteq \{\phi \in C_0^{\infty}(\Omega) : |\phi|_{m_i} \le \varepsilon_i\} \subseteq U.$$

Thus, for all $\phi \in C_0^{\infty}(\Omega)$, such that $|\phi|_m \le \varepsilon$, the linear functional T satisfies

 $|T(\phi)| \le M.$

This means that T is a continuous linear functional on $C_0^{\infty}(\Omega)$ in the topology induced by $\mathscr{D}^m(\Omega)$.

Therefore, T is a distribution of order m.
Projective and Inductive Limits and Dual Spaces

- With D'_F(Ω) = ∪D^{m'}(Ω), we can also define a topology on D'_F(Ω) through the inductive limit of the topologies of {D^{m'}(Ω)}.
- It turns out that this topology coincides with the one that we have already defined on $\mathscr{D}'_F(\Omega)$ as the dual of $\mathscr{D}_F(\Omega)$.
- Since the topology of 𝔅_F(Ω) is the projective limit of the topologies of {𝔅^m(Ω)}, we see that these two methods of defining a topology are naturally suited to dual spaces, in this case 𝔅_F(Ω) and 𝔅'_F(Ω).

Distributions and Measures on Open Sets

- A Radon measure on an open set $\Omega \subseteq \mathbb{R}^n$ is an element of $\mathscr{D}^{0'}(\Omega)$.
- That is, a Radon measure on an open set Ω ⊆ ℝⁿ is a continuous linear functional on D⁰(Ω) = C⁰₀(Ω), or a distribution of order 0.
- As a continuous linear functional on D⁰(Ω), it is also represented, according to the Riesz Representation Theorem, by a regular Borel measure on Ω.

Positivity of a Real Linear Functional

Definition

A real linear functional T on a real linear space of functions F is said to be **positive** if $T(f) \ge 0$, whenever $f \in F$, $f \ge 0$.

- If *T* is positive on $C_0^0(\Omega)$, we show that *T* is continuous on $C_0^0(\Omega)$. Hence, it defines a (positive) Radon measure on Ω . By a previous corollary, it suffices to prove that: If $\phi_k \in C_0^0(\Omega)$, with $\operatorname{supp}\phi_k$ contained in some compact set $K \subseteq \Omega$ and $|\phi_k|_0 = \sup_{x \in K} |\phi_k(x)| \xrightarrow{k \to \infty} 0$, then $T(\phi_k) \xrightarrow{k \to \infty} 0$. Choose $\psi \in C_0^0(\Omega)$, such that $0 \le \psi \le 1$ and $\psi = 1$ on *K*. Then $|\phi_k| \le |\phi_k|_0 \psi$. Therefore, $-|\phi_k|_0 \psi \le \phi_k \le |\phi_k|_0 \psi$. Since *T* is positive, $-|\phi_k|_0 T(\psi) \le T(\phi_k) \le |\phi_k|_0 T(\psi)$. Hence, $\lim T(\phi_k) = 0$.
- Using the definition, we say $T \in \mathscr{D}'(\Omega)$ is **positive**, and write $T \ge 0$, if $T(\phi) \ge 0$, for all $\phi \ge 0$ in $\mathscr{D}(\Omega)$.

George Voutsadakis (LSSU)

• Let T be a positive distribution on Ω .

To show that T is a Radon measure on Ω :

- First extend T from $\mathscr{D}(\Omega)$ to $\mathscr{D}^{0}(\Omega)$;
- Then prove that it is continuous as a linear functional on $\mathscr{D}^0(\Omega)$.

Let $\phi \in \mathscr{D}^0(\Omega)$ be arbitrary. By a preceding corollary, there is a sequence $\phi_k \in \mathscr{D}(\Omega)$, such that $\phi_k \to \phi$ in $\mathscr{D}^0(\Omega)$.

According to another corollary, $\operatorname{supp} \phi_k$ is contained in some compact set $K \subseteq \Omega$ and $|\phi_k - \phi|_0 \to 0$ on K.

Choose $\psi \in \mathcal{D}(\Omega)$, such that $0 \le \psi \le 1$ in Ω and $\psi = 1$ on K.

Now $|\phi_j(x) - \phi_k(x)| \le |\phi_j - \phi_k|_0 \psi(x)$.

But $T \ge 0$ and $|\phi_j - \phi_k| \xrightarrow{j,k \to \infty} 0$.

Hence, $|T(\phi_j) - T(\phi_k)| \le |\phi_j - \phi_k|_0 T(\psi) \xrightarrow{j,k \to \infty} 0.$

Therefore, $\lim T(\phi_k)$ exists and we denote it by $T(\phi)$.

Example (Cont'd)

If ψ_k ∈ D(Ω) is another sequence which tends to φ in D⁰(Ω), the above argument implies that T(φ_k) - T(ψ_k) → 0.

Therefore the limit $T(\phi)$ does not depend on the particular choice of the sequence ϕ_k , and we have shown that T has an extension to $\mathscr{D}^0(\Omega)$, which is clearly linear.

To show that T is continuous on $\mathcal{D}^0(\Omega)$, it suffices to show (by work immediately preceding) that T is positive on $\mathcal{D}^0(\Omega)$.

Let ϕ be any function in $C_0^0(\Omega)$ and $\phi \ge 0$.

Then, for k large enough,

• $\phi * \gamma_k \in \mathscr{D}(\Omega);$ • $\phi * \gamma_k \ge 0.$

Hence, $T(\phi * \gamma_k) \ge 0$.

Now $\phi * \gamma_k \xrightarrow{k \to \infty} \phi$ in $\mathscr{D}^0(\Omega)$ and $T(\phi) = \lim T(\phi * \gamma_k) \ge 0$.

Subsection 8

Distributions Defined by Powers of x

Analyticity of Distributions

- Let $\lambda \mapsto T_{\lambda}$ be a mapping from \mathbb{C} to $\mathscr{D}'(\Omega)$.
- We say T_{λ} is **analytic in** Λ if the function $\lambda \mapsto \langle T_{\lambda}, \phi \rangle$ is analytic in Λ , for every $\phi \in \mathcal{D}(\Omega)$.
- This definition extends the usual meaning of the analytic dependence of a function on a complex variable λ:

$$\lim_{\lambda \to \lambda_0} \frac{\langle T_{\lambda}, \phi \rangle - \langle T_{\lambda_0}, \phi \rangle}{\lambda - \lambda_0} = \left\langle \lim_{\lambda \to \lambda_0} \frac{T_{\lambda} - T_{\lambda_0}}{\lambda - \lambda_0}, \phi \right\rangle, \quad \phi \in \mathscr{D}(\Omega).$$

- Thus, when T_{λ} is a function of λ which is differentiable at λ_0 , $\langle T_{\lambda}, \phi \rangle$ is differentiable at λ_0 .
- When the limit in the equation exists, it defines a distribution which is denoted by $(\partial_{\lambda} T)_{\lambda_0}$.

Extending Analyticity in the Distributional Sense

- Let T_{λ} be the regular distribution defined by $|x|^{\lambda} = e^{\lambda \log |x|}$.
- The function $|x|^{\lambda}$ is locally integrable when $\text{Re}\lambda > -1$.
- So T_{λ} is analytic in λ on $\text{Re}\lambda > -1$.
- We will exploit the above definition of analyticity in the distributional sense to extend $|x|^{\lambda}$ as a distribution beyond $\text{Re}\lambda > -1$.
- This is done by continuing the function $\langle |x|^{\lambda}, \phi \rangle$ analytically, for every $\phi \in \mathscr{D}(\mathbb{R})$, to a larger connected subset of the complex λ -plane.

Consider the function

$$x_{+}^{\lambda} = \begin{cases} x^{\lambda}, & x > 0\\ 0, & x \le 0 \end{cases}$$

It is a locally integrable function for $\text{Re}\lambda > -1$. It determines the distribution

$$\langle x_+^{\lambda}, \phi \rangle = \int_0^\infty x^{\lambda} \phi(x) dx, \quad \phi \in \mathcal{D}(\mathbb{R}).$$

The right-hand side is analytic in $\operatorname{Re}\lambda > -1$, for every $\phi \in \mathscr{D}(\mathbb{R})$. So the distribution x_{+}^{λ} is also analytic in $\operatorname{Re}\lambda > -1$.

• If $\operatorname{Re}\lambda > -1$ and $\phi \in \mathscr{D}(\mathbb{R})$, we can write

$$\begin{aligned} \int_0^\infty x^\lambda \phi(x) dx &= \int_0^\infty x^\lambda \phi(x) dx - \phi(0) \int_0^\infty x^\lambda H(1-x) dx + \phi(0) \int_0^1 x^\lambda dx \\ &= \int_0^\infty x^\lambda [\phi(x) - \phi(0) H(1-x)] dx + \phi(0) \int_0^1 x^\lambda dx \\ &= \int_0^1 x^\lambda [\phi(x) - \phi(0)] dx + \int_1^\infty x^\lambda \phi(x) dx + \frac{1}{\lambda + 1} \phi(0). \end{aligned}$$

- The first integral on the right is convergent if Reλ > -2. Note that φ is differentiable at 0. So x^λ[φ(x) - φ(0)] = x^{1+λ} φ(x)-φ(0)/x is integrable on [0,1].
- The second integral is finite for all $\lambda \in \mathbb{C}$.
- The third term is finite for all $\lambda \neq -1$.

Therefore, x^{λ} can be continued analytically to

$$\Lambda = \{\lambda \in \mathbb{C} : \operatorname{Re}\lambda > -2, \lambda \neq -1\}.$$

Example (Cont'd)

The subtraction of φ(0)H(1-x) from φ(x) is designed to reduce the order of the singularity of x^λ at x = 0 while still preserving compact support for the integrand.

This process can be repeated with higher order terms from the Taylor expansion of ϕ at x = 0. In the *m*-th step,

$$\begin{aligned} \langle x_{+}^{\lambda}, \phi \rangle &= \int_{0}^{\infty} x^{\lambda} \left[\phi(x) - \{ \phi(0) + \dots + \frac{x^{m-1}}{(m-1)!} \phi^{(m-1)}(0) \} H(1-x) \right] dx \\ &+ \sum_{k=1}^{m} \phi^{(k-1)}(0) \int_{0}^{1} \frac{x^{\lambda+k-1}}{(k-1)!} dx \\ &= \int_{0}^{1} x^{\lambda} \left[\phi(x) - \phi(0) - x \phi'(0) - \dots - \frac{x^{m-1}}{(m-1)!} \phi^{(m-1)}(0) \right] dx \\ &+ \int_{1}^{\infty} x^{\lambda} \phi(x) dx + \sum_{k=1}^{m} \frac{1}{(\lambda+k)(k-1)!} \phi^{(k-1)}(0). \end{aligned}$$

Example (Conclusion)

- The first integral on the right converges for $\operatorname{Re}\lambda > -m-1$. $\phi(x) - \sum_{k=1}^{m} x^{k-1} \frac{\phi^{(k-1)}(0)}{(k-1)!}$ is of order x^m in the neighborhood of 0. When it is multiplied by x^{λ} , with $\operatorname{Re}\lambda > -m-1$, the resulting function is integrable in the neighborhood of x = 0.
- The third term on the right-hand side has simple poles at $\lambda = -1, -2, ..., -m$.

So the distribution x_{+}^{λ} may be continued analytically into $\operatorname{Re} \lambda > -m - 1, \lambda \neq -1, -2, \dots, -m.$

Since *m* is arbitrary, x_+^{λ} is defined for all $\lambda \in \mathbb{C} - \mathbb{Z}^-$, where \mathbb{Z}^- is the set of negative integers.

Consider the function

$$x_{-}^{\lambda} = \begin{cases} (-x)^{\lambda}, & x < 0\\ 0, & x \ge 0 \end{cases}$$

It is locally integrable for $\operatorname{Re} \lambda > -1$. It is also in $\mathscr{D}'(\mathbb{R})$ and analytic for $\operatorname{Re} \lambda > -1$. It can be continued analytically into $\operatorname{Re} \lambda > -m-1$, $\lambda \neq -1, \ldots, -m$, by

$$\begin{aligned} \langle x^{\lambda}, \phi \rangle &= \int_{-\infty}^{0} (-x)^{\lambda} \phi(x) dx \\ &= \int_{0}^{\infty} x^{\lambda} \phi(-x) dx \\ &= \int_{0}^{1} x^{\lambda} \left[\phi(-x) - \sum_{k=1}^{m} \frac{(-x)^{k-1}}{(k-1)!} \phi^{(k-1)}(0) \right] dx \\ &+ \int_{1}^{\infty} x^{\lambda} \phi(-x) dx + \sum_{k=1}^{m} \frac{(-1)^{k-1}}{(\lambda+k)(k-1)!} \phi^{(k-1)}(0). \end{aligned}$$

Hence, the distribution x_{-}^{λ} is also defined for all $\lambda \in \mathbb{C} - \mathbb{Z}^{-}$.

George Voutsadakis (LSSU)

Primitives

- Given a distribution $T \in \mathscr{D}'(\mathbb{R})$, any distribution S which satisfies $S'(\phi) = T(\phi)$, for every $\phi \in \mathscr{D}(R)$, is called a **primitive** of T.
- The extension of the function x_{+}^{λ} as a distribution outside $\text{Re}\lambda > -1$ should not be confused with the function x_{+}^{λ} which is well defined on $\mathbb{R} - \{0\}$ for all values of λ .
 - The distribution x_+^λ and the function x_+^λ are quite different when ${\rm Re}\lambda<-1.$
 - The more we have to change the integral $\int x^{\lambda} \phi(x) dx$ to arrive at a definition of $\langle x^{\lambda}, \phi \rangle$, the more the resulting distribution will deviate from the function x^{λ} .
- Some books use the notation $[x_{+}^{\lambda}]$ or pfx_{+}^{λ} , the "pseudo-function" x_{+}^{λ} , to designate the distribution x_{+}^{λ} .