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Test Functions and Distributions The Space of Test Functions D

The Space C
∞
0 (Ω)

Recall Ω will denote a nonempty open subset of Rn.

Recall, also, that, for every compact subset K of Ω, there is defined a
linear space C∞

K
(Ω) and a topology which makes it into a Fréchet

space.

The union of the spaces C∞
K
(Ω) as K ranges over all compact subsets

of Ω, is denoted by C∞
0 (Ω).

Every function in C∞
0
(Ω) is infinitely differentiable on Ω and its

support is a compact subset of Ω.

The topology of C∞
K
(Ω) as a closed subspace of C∞(Ω) was defined

by the seminorms

pm(φ)= sup{|∂αφ(x)| : x ∈K , |α| ≤m}, m ∈N0,

with the sets Bm(r)= {φ ∈C∞
K
(Ω) : pm(φ)< r } as a local base.
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The Topology on C
∞
0 (Ω)

C∞
K
(Ω) is also a closed subspace of C∞

0 (Ω);

We define the topology of

C∞
0 (Ω)=

⋃

K⊆Ω
C∞
K (Ω)

to be the finest locally convex topology for which the identity map
C∞
K
(Ω)→C∞

0 (Ω) is continuous, for every K ⊆Ω.

Thus, a convex, balanced set U ⊆C∞
0 (Ω) is a neighborhood of 0 in

C∞
0 (Ω) if and only if U∩C∞

K
(Ω) is a neighborhood of 0 in C∞

K
(Ω), for

every K ⊆Ω.

The collection of all such neighborhoods U constitutes a local base for
the topology we have defined on C∞

0
(Ω).

C∞
0 (Ω) is known as the inductive limit of the topologies on C∞

K
(Ω).
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Properties of the Topology on C
∞
0 (Ω)

C∞
0 (Ω), with the inductive limit topology, is a locally convex space.

The original topology on C∞
K
(Ω), for any K ⊆Ω, is clearly the

topology that C∞
K
(Ω) inherits as a subspace of C∞

0 (Ω).

If Ω1 is an open subset of Ω, then C∞
0 (Ω1) is a subspace of C∞

0 (Ω).

This is because every function in C∞
0
(Ω1) may be extended as a C∞

0

function into Ω by defining it to be 0 on Ω−Ω1.
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Continuity of Linear Functionals on C
∞
0 (Ω)

Theorem

A linear functional on C∞
0 (Ω) is continuous if and only if its restriction to

C∞
K
(Ω) is continuous, for every compact subset K of Ω.

Let T be a linear functional on C∞
0 (Ω). By a previous theorem, T is

continuous if and only if it is continuous at 0∈C∞
0
(Ω).

Let K be a compact set in Ω, and TK the restriction of T to C∞
K
(Ω).

If V is any neighborhood of 0 ∈C, and T is continuous at 0, then
T−1(V ) is a neighborhood of 0 in C∞

0 (Ω).

So T−1(V )∩C∞
K
(Ω)=T−1

K
(V ) is a neighborhood of 0 in C∞

K
(Ω).

Conversely, suppose TK is continuous at 0, for every K .

Then T−1
K

(V )=T−1(V )∩C∞
K
(Ω) is a neighborhood of 0 in C∞

K
(Ω),

for every K ⊆Ω. Consequently, T−1(V ) is a neighborhood of 0 in
C∞

0 (Ω).
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The Space of Test Functions

The locally convex space C∞
0 (Ω), endowed with the inductive limit

topology, is called the space of test functions.

It is denoted by D(Ω), in accordance with Schwartz’s notation.

We use DK to denote the locally convex space C∞
K
(Ω), where K is a

compact subset of Ω.

For any φ ∈D(Ω), we define the norms

|φ|m = sup {|∂αφ(x)| : x ∈Ω, |α| ≤m}, m ∈N0.

When φ is in DK , |φ|m coincides with the seminorm pm(φ).
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Bounded Subsets of D(Ω)

Theorem

E is a bounded subset of D(Ω) if and only if the following two conditions
are satisfied:

(i) E ⊆DK , for some K ⊆Ω.

(ii) E is bounded in DK , in the sense that, for every nonnegative integer
m, there is a finite constant Mm, such that |φ|m ≤Mm, for all φ ∈E .

The sufficiency of (i) and (ii) is clear.

For necessity, let E be a subset of D(Ω), which lies in no DK .

Then, there is a sequence of functions φk ∈E and a sequence of
points xk ∈Ω, with no cluster point in Ω, such that φk(xk) 6= 0, k ∈N.

Let

U =
{

φ ∈D(Ω) : |φ(xk)| <
1

k
|φk(xk)|,k ∈N

}

.
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Bounded Subsets of D(Ω) (Cont’d)

We defined

U =
{

φ ∈D(Ω) : |φ(xk)| <
1

k
|φk(xk)|,k ∈N

}

.

Note that each K contains only a finite number of points of (xk).

So the intersection DK ∩U is a neighborhood of 0 in DK , for every K .

Hence, U is a neighborhood of 0 in D(Ω).

But φk 6∈ kU , for any k . So no multiple of U contains E .

Thus, E is unbounded.

Hence, if E is bounded in D(Ω), then condition (i) must hold.

Condition (ii) follows from the fact that the topology of DK is the
topology it inherits as a subspace of D(Ω).
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Convergence in D(Ω)

Theorem

A sequence of (φk) in D(Ω) converges to 0 if and only if the following two
conditions are satisfied:

(i) There is a compact subset K of Ω, such that suppφk ⊆K , for all k .

(ii) ∂αφk → 0 uniformly on K , for all α.

(⇐) Conditions (i) and (ii) imply that φk → 0 in DK . Since the identity
map from DK to D(Ω) is continuous, φk → 0 in D(Ω).

(⇒) Conversely, if φk → 0 in D(Ω), then (φk) is a bounded sequence in
D(Ω), as seen previously. From the preceding theorem, (φk) lies in
DK , for some K ⊆Ω. Condition (i) now follows. But then φk → 0 in
the subspace topology of DK . So Condition (ii) also follows.
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Non-Metrizability of the Topology of C∞
0 (Ω)

Claim: The topology defined on C∞
0 (Ω) is not metrizable.

Assume that d is a metric which defines the topology of D(Ω).

Let Ω=⋃

Kn, with Kn compact and Kn ⊆K ◦
n+1, for all n.

Choose φn ∈D(Ω), such that suppφn *Kn.

Multiplication by a constant is a continuous mapping from D(Ω) into
D(Ω).

So we can find λn > 0 small enough so that d(0,λnφn)< 1
n , for every n.

This means that the sequence λnφn → 0 in D(Ω).

This, however, is not possible, since supp(λnφn) cannot be contained
in a single compact subset of Ω.
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Topological Completeness of D(Ω)

Claim: D(Ω) is complete in the topological sense.

We know DK is complete in the topological sense.

If (φk) is a Cauchy sequence in D(Ω), it is bounded.

By a previous theorem, (φk) lies in DK , for some K ⊆Ω.

Since DK is complete, (φk) converges in DK .

Consequently, it converges in D(Ω).
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The Space D
m(Ω)

We can also define the topology of

Cm
0 (Ω)=

⋃

K⊆Ω
Cm
K (Ω)

to be the finest locally convex topology in which the identity map
from Cm

K
(Ω) to Cm

0 (Ω) is continuous for every compact set K ⊆Ω.

The resulting topological vector space will be denoted by D
m(Ω).

Corollary

A sequence (φk) in D
m(Ω) converges to 0 if and only if:

(i) There is a compact set K ⊆Ω, such that suppφk ⊆K , for all k ;

(ii) ∂αφk → 0 uniformly on K , for all |α| ≤m.
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Example

Consider the function α :Rn →R defined by

α(x)=
{

e
− 1

1−|x |2 , on |x | < 1
0, on |x | ≥ 1

.

It has as support the closed unit ball B(0,1) in Rn.

Clearly α lies in D(Rn).

The sequence αk = 1
k
α satisfies the conditions of the theorem.

So it converges to 0 in D(Rn).
Consider the sequence αk = 1

k
α◦ 1

k
defined by αk(x)= 1

k
α( x

k
), x ∈Rn.

αk does not converge in D(Rn), because suppαk =B(0,k) does not
satisfy Condition (i).

The sequence αk = 1
k
α◦k has a sequence of shrinking supports B(0,

1
k
).

However, the partial derivatives of αk do not converge to 0 on any
neighborhood of the origin.
So Condition (ii) of the theorem is violated and the sequence diverges.
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Subsection 2

Distributions
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Distributions on Ω

Definition

A distribution on Ω is a continuous linear functional on D(Ω).

We denote the linear space of all distributions on Ω by D
′(Ω), the

topological dual of D(Ω).

Theorem

A linear functional T on D(Ω) is a distribution if and only if, for every
compact set K ⊆Ω, there exists a nonnegative integer m and a finite
constant M, such that |T (φ)| ≤M |φ|m, for all φ ∈DK .

T is in D
′(Ω) iff T is continuous in D(Ω) iff, by a previous theorem,

Tk is continuous in DK (Ω), for every compact K ⊆Ω, iff, by a
previous theorem, Tk is bounded on DK , for every compact K ⊆Ω, iff,
by the topology of DK , the given condition holds.
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Lebesgue Integrable Functions

Denote the Lebesgue integral of the measurable function f over the
measurable set E ⊆Rn by

∫

E
f (x)dx .

It will sometimes be abbreviated to
∫

E fdx or
∫

E f , when the measure
function is clear from the context.

In this convention, E is often dropped when E =Rn.

L1(Ω) denotes the linear space of complex Lebesgue integrable
functions on Ω, i.e., all functions f :Ω→C whose integral

∫

Ω
|f (x)|dx

is finite.
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Locally Lebesgue Integrable Functions

The function f is locally integrable on Ω if
∫

E |f (x)|dx is finite on
every compact subset E of Ω.

L1
loc
(Ω) denotes the space of locally integrable functions on Ω.

All continuous functions on Rn, for example, are locally integrable,
although some of them, such as polynomials, are not integrable on Rn.

Clearly L1(Ω)⊆ L1
loc
(Ω).
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Distributions Defined by Locally Integrable Functions

If f ∈ L1
loc
(Ω), then the linear functional Tf , defined on D(Ω) by

Tf (φ)=
∫

Ω

f (x)φ(x)dx , φ ∈D(Ω),

is bounded.

Let K = suppφ. Then

|Tf (φ)| ≤ sup
x∈Ω

|φ(x)|
∫

K
|f (x)|x = |φ|0

∫

K
|f (x)|dx .

Therefore, Tf ∈D
′(Ω).

Sometimes we denote the distribution Tf simply by f and write

Tf (φ)= 〈f ,φ〉 =
∫

Ω

f (x)φ(x)dx , φ ∈D(Ω).

Continuous functions on Ω are locally integrable.

So every f ∈C 0(Ω) defines a distribution Tf as above.
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The Order of a Distribution

Compare with the framework developed in the preceding theorem, i.e.,
with

|T (φ)| ≤M |φ|m.

Here M =
∫

K |f | clearly depends on K , but the integer m= 0 works for
all K .

Tf is then said to be of order 0.

The order of the distribution T is the smallest m for which the
inequality holds for all K .

If no such m exists, T is of infinite order.
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Example

Let f ∈ L1
loc
(R− {0}) satisfy |f (x)| ≤ c

|x |m on |x | ≤ 1, for some positive
integer m and a positive constant c .

Claim: There is a distribution T ∈D
′(R) of order ≤m, such that

T =Tf on D(R− {0}).

Let φ ∈D(R) be arbitrary.

Then, there is a number a> 1, such that φ(x)= 0 on |x | > a.

For any x , we can use Taylor’s formula to write, for some t ∈ (0,1),

φ(x)=φ(0)+xφ′(0)+·· ·+
xm−1

(m−1)!
φ(m−1)(0)+

xm

m!
φ(m)(tx).

Now we define

T (φ) =
∫

|x |>1 f (x)φ(x)dx +
∫

|x |≤1 f (x)[φ(x)−
∑m−1

k=0
xk

k!φ
(k)(0)]dx

=
∫

|x |>1 f (x)φ(x)dx +
∫

|x |≤1 f (x)
xm

m!φ
(m)(tx)dx
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Example (Cont’d)

We obtain, for some positive constants A and B ,

|T (φ)| =
∫

|x |>1 f (x)φ(x)dx +
∫

|x |≤1 f (x)
xm

m!φ
(m)(tx)dx

≤ |φ|0
∫

1<|x |<a |f (x)|dx +
∫

|x |≤1
c
m! |φ

(m)(tx)|dx
≤ A|φ|0+B |φ|m.

Hence T is a distribution on R of order ≤m.

We show that T is represented by f on R− {0}.

Let φ ∈D(R) with suppφ⊆R− {0}. Then φ(k)(0)= 0, for all k .

Therefore,

T (φ)=
∫

R

f (x)φ(x)dx = 〈f ,φ〉.
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Regular versus Singular Distributions

A distribution T is said to be regular if there is a locally integrable
function f on Ω, such that

T (φ)= 〈f ,φ〉 =
∫

Ω

f (x)φ(x)dx , φ ∈D(Ω).

Otherwise, it is singular.

Example: The distribution corresponding to f (x)= 1
xm , m≥ 1, x 6= 0, is

singular on R, since f is not integrable on a neighborhood of 0.
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The Dirac Distribution

For any fixed point ξ ∈Ω, we define

T (φ)=φ(ξ), φ ∈D(Ω).

T is clearly a linear functional on D(Ω).

T is continuous, since φ→ 0 in D(Ω) implies that φ(ξ)→ 0 in C.

T is known as the Dirac distribution and is denoted by δξ.

δ0 usually abbreviated to δ.

Thus, δ(φ)=φ(0), for all φ ∈D(Ω).

This distribution obviously has zero order.
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The Dirac Distribution: Singularity

We show that δξ is not regular.

Let, for ε> 0 and every x ∈R,

φε(x)=α
(x

ε

)

=
{

e
− ε2

ε2−|x |2 , |x | < ε

0, |x | ≥ ε
.

φε is clearly in D(R) and |φε(x)| ≤φε(0)= 1
e .

Suppose δ were regular. Then, for some f ∈ L1
loc
(R),

δ(φε)=
∫

f (x)φε(x)dx =
∫

|x |≤ε
f (x)φε(x)dx .

Consequently,

1

e
=φε(0)= δ(φε)≤

1

e

∫

|x |≤ε
|f (x)|dx ε→0−→ 0.

But this is impossible. Hence δ, and therefore δξ, is singular.
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The Dirac Distribution: Notation and Generalization

Even though δξ is singular, we write

〈δξ,φ〉 := δξ(φ)=φ(ξ).

In other words, the use of the bracket notation is not restricted to
regular distributions.

If Σ is a hypersurface in Rn of dimension less than n, then for any
locally integrable function f on Σ, we can define the distribution

Tf (φ)=
∫

Σ

f φdσ, φ ∈D(Rn).

This is clearly a generalization of the Dirac distribution from the point
0 to the hypersurface Σ.

Tf may be interpreted as a measure on Rn supported by Σ with
density f .
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Distributions Generated by Borel Measures

The Riesz Representation Theorem asserts that to each continuous
linear functional T on C 0

0 (Ω), there corresponds a unique complex,
locally finite, regular Borel measure µ on Ω, such that

T (φ)=
∫

Ω

φdµ, φ ∈C 0
0 (Ω).

Such a measure defines a continuous linear functional on C 0
0 (Ω).

So the correspondence between T and µ is bijective.

The measure function corresponding to the regular distribution Tf is
given by µ(E )=

∫

E f , for any measurable set E ⊆Rn.

The Dirac distribution δξ which is defined on D(Ω) by 〈δξ,φ〉 =φ(ξ) is
also continuous on C 0

0 (Ω) and corresponds to the measure function

µ(E )=
{

1, if ξ ∈E
0, if ξ 6∈E .
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Non-Borel Measurable Distribution

The mapping T (φ)=φ′(0) defines a continuous linear functional on
D(R). In fact, on Cm

0 (R), for m≥ 1, but not on C 0
0 (R).

Thus, T is a distribution which is not a measure.

In higher dimensions, the functional

T (φ)= ∂kφ(0), φ ∈D(Rn),

where 1≤ k ≤ n, is a (singular) distribution in Rn of order 1.

More generally, the functional φ 7→ ∂αφ(0), for any α ∈Nn
0 , is a

distribution in Rn of order |α|.

Example: The function

{ 1
x

, if x ∈ (0,∞)
0, otherwise

is not integrable on any

neighborhood of 0, and does not define a distribution on R.

Its restriction to (0,∞), on the other hand, is continuous and therefore
defines a regular distribution in (0,∞).

George Voutsadakis (LSSU) Theory of Distributions January 2024 29 / 122



Test Functions and Distributions Differentiation of Distributions

Subsection 3

Differentiation of Distributions
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Derivative of a Distribution

When f ∈C 1(R), it defines a distribution and has a derivative f ′

which is also a distribution.

Viewing a distribution as a generalization of a function, it is desirable
to define the distributional derivative of f so that it agrees with f ′.

Integration by parts gives the following result, where φ ∈D(R),

〈f ′,φ〉 =
∫∞
−∞ f ′(x)φ(x)dx

= f (x)φ(x)
∣

∣

∞
−∞−

∫∞
−∞ f (x)φ′(x)dx

= −〈f ,φ′〉.

Definition

For any T ∈D
′(Ω), we define

∂kT (φ)=−T (∂kφ), φ ∈D(Ω).
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Higher Derivatives of Distributions

By using induction, we obtain the more general formula

∂αT (φ)= (−1)|α|T (∂αφ), φ ∈D(Ω), α ∈Nn
0

or 〈∂αT ,φ〉 = (−1)|α|〈T ,∂αφ〉.
The right-hand side is well defined for any multi-index α, because
φ ∈D(Ω), and represents a continuous linear functional on D(Ω).

Thus a distribution has derivatives, in the sense of the above
definition, of all orders.

Furthermore, ∂α∂βT = ∂β∂αT , for any T ∈D
′(Ω).

∂α∂βT (φ) = (−1)|α|∂βT (∂αφ)

= (−1)|α|+|β|T (∂β∂αφ)

= (−1)|α|+|β|T (∂α∂βφ)

= ∂β∂αT (φ).
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Distributional vs. Ordinary Derivatives

If f ∈Cm(Ω), then the formula for integration by parts can be used to
show that the distributional derivative of f coincides with its
conventional, or classical, derivative in the sense that

∂αTf =T∂αf , for all |α| ≤m.

In general this relation does not hold, as may be seen from some of
the following examples.
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Example (Distributional vs. Ordinary Derivatives)

Define x+ =
{

x , x > 0
0, x ≤ 0

.

As a function x+ is not differentiable at x = 0 in the classical sense.

As a distribution, it can be differentiated by the preceding formula.

Define the Heaviside function H(x)=
{

1, x > 0
0, x < 0

.

Then we have

〈x ′+,φ〉 = −〈x+,φ′〉, φ ∈D(R)
= −

∫∞
0 xφ′(x)dx

= −xφ(x)
∣

∣

∞
0 +

∫∞
0 φ(x)dx

= 0+
∫∞
−∞H(x)φ(x)dx

= 〈H,φ〉.
Similarly,

〈x ′′+,φ〉 = 〈H ′
,φ〉 = −〈H,φ′〉 = −

∫∞

0
φ′(x)dx =φ(0).

Therefore, x ′′+ =H ′ = δ.
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Example (Cont’d)

We can go further:

〈x ′′′+ ,φ〉 = 〈δ′,φ〉 = −〈δ,φ′〉 = −φ′(0);
...

〈x(k+2)
+ ,φ〉 = 〈δ(k),φ〉 = (−1)kφ(k)(0).

It is important to note in this example that x+ and H are
differentiated as distributions and not as functions.

In the case of x+ it makes no difference, since x ′+ =H almost
everywhere (a.e.) in the classical sense as well.
But the classical derivative of H is 0 a.e..
When we write H ′ = δ we really mean T ′

H
= δ.
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Derivative of Non-Continuously Differentiable Function

As in the case of x+, the distributional and the classical derivatives of
a function may coincide even when the function is not continuously
differentiable.

Example: Let f be a differentiable function on I = (a,b).

Suppose its (classical) derivative f ′ is integrable on I .

Such a function can be expressed as the integral of its derivative

f (x)=
∫x

c
f ′(t)dt+ f (c), x ,c ∈ I .

The, for all φ ∈D(I ),
(f φ)′ = f ′φ+ f φ′;
∫

I (f φ)
′ = 0, because f φ vanishes outside a closed subinterval of I .

Hence,
∫

I
f ′φ+

∫

I
f φ′ = 0.
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Example (Cont’d)

Let T ′
f

be the distributional derivative of Tf .

Then

T ′
f (φ)= −Tf (φ

′)= −
∫

I
f φ′ =

∫

I
f ′φ=Tf ′(φ).

Therefore, T ′
f
=Tf ′.

More generally, suppose f is absolutely continuous on I .

Then:

f ′ exists almost everywhere;
f ′ is integrable on I ;
f (x)=

∫x
c f ′(t)dt + f (c), x ,c ∈ I .

The equality T ′
f
=Tf ′ , then follows by the same argument.
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Example (Punctured Intervals)

Let c ∈ (a,b)= I and f ∈C 1(I − {c}).

Suppose the left- and right-hand limits at c ,

f (c−)= lim
x→c
x<c

f (x) and f (c+)= lim
x→c
x>c

f (x)

are finite and f ′ is bounded in a neighborhood of c .

Then the distributions Tf ′ and T ′
f

in D
′(I ) are related by

T ′
f =Tf ′ + [f (c+)− f (c−)]δc .

We show this in the next slide.
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Test Functions and Distributions Differentiation of Distributions

Example (Cont’d)

Suppose φ is any function in D(I ).

T ′
f
(φ) = −Tf (φ

′)= −
∫b
a f (x)φ′(x)dx

= −
∫c
a f (x)φ′(x)dx −

∫b
c f (x)φ′(x)dx

= − lim
ε1→0

∫c−ε1
a f (x)φ′(x)dx − lim

ε2→0

∫b
c+ε2

f (x)φ′(x)dx

= − lim
ε1→0

[ f (x)φ(x)
∣

∣

c−ε1

a −
∫c−ε1
a f ′(x)φ(x)dx ]

− lim
ε2→0

[ f (x)φ(x)
∣

∣

b
c+ε2

−
∫b
c+ε2

f ′(x)φ(x)dx ]

= − f (c−)φ(c)+ f (c+)φ(c)+
∫b
a f ′(x)φ(x)dx

= 〈f ′,φ〉+ [f (c+)− f (c−)]〈δc ,φ〉.

In particular, when f is the Heaviside function, H ′ = 0 on I − {0} and
we obtain the expected result T ′

H
= δ.
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Notational Clarifications

x+ and H are functions defined on R which represent distributions on
D(R), since each is locally integrable.

The classical derivative of H is the function which is 0 almost
everywhere, and represents the zero distribution.

But the distributional derivative of H is δ, which is not a function.

In the sequel, derivatives will always be taken in the distributional
sense.

The pointwise notation H ′(x) is meaningful only when it applies to the
classical derivative, since we have no way of evaluating a distribution
at a point.

If it is interpreted properly, this notation can be useful when we wish
to keep track of the point variable.

It is convenient at times to write H ′ = δ, H ′(x)= δ(x), or H ′
x = δx , on

R, rather than the more accurate T ′
H
= δ on D(R).

George Voutsadakis (LSSU) Theory of Distributions January 2024 40 / 122



Test Functions and Distributions Differentiation of Distributions

Example (Characteristic Functions)

For any subset E of Rn, we define its characteristic function by

IE (x)=
{

1, x ∈E
0, x ∈Rn−E

.

If E is a bounded open subset of Rn, with a smooth boundary ∂E ,
then, using the Divergence Theorem,

〈∂k IE ,φ〉 = −〈IE ,∂kφ〉 = −
∫

E
∂kφ(x)dx = −

∫

∂E
φ(x)cosθkdσ,

where:
θk is the angle between the xk -axis in Rn and the outward normal to
∂E ;
dσ is the Euclidean measure on ∂E .

Thus, ∂k IE is a measure of density −cosθk on ∂E .
For the special case when n= 1 and E = (a,b), we have:

IE (x)=H(x −a)−H(x −b);
I ′
E
(x)= δ(x −a)−δ(x −b)= δa−δb.

George Voutsadakis (LSSU) Theory of Distributions January 2024 41 / 122



Test Functions and Distributions Differentiation of Distributions

Example (Regularization)

log |x | is locally integrable on R.

So it defines a distribution in D(R).

Its classical derivative d
dx

log |x | = 1
x
, x 6= 0, does not define a

distribution as pointed out previously.

We explore the relation between the distributional derivative of log |x |
and 1

x .

〈

d

dx
log |x |,φ

〉

= 〈log |x |,φ′〉 = −
∫∞

−∞
log |x |φ′(x)dx .

Now, with log |x |φ′(x) integrable in the neighborhood of 0,

〈

d

dx
log |x |,φ

〉

=−lim
ε→0

∫

|x |≥ε
log |x |φ′(x)dx .
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Test Functions and Distributions Differentiation of Distributions

Example (Regularization Cont’d)

Since φ has compact support and is differentiable at x = 0,

〈 d
dx

log |x |,φ〉 = − lim
ε→0

[

log |x |φ(x)
∣

∣

−ε
ε −

∫

|x |≥ε
1
x
φ(x)dx

]

= lim
ε→0

[

2ε logε
φ(ε)−φ(−ε)

2ε
+

∫

|x |≥ε
1
x
φ(x)dx

]

= lim
ε→0

∫

|x |≥ε
1
xφ(x)dx .

lim
ε→0

∫

|x |≥ε
1
x
φ(x)dx is called the Cauchy principal value of the

divergent integral
∫∞
−∞

1
xφ(x)dx and is denoted by pv

∫∞
−∞

1
xφ(x)dx .

Thus, the distributional derivative of log |x |, which is not a function,
denoted by pv 1

x , is obtained from the divergent integral
∫∞
−∞

1
xφ(x)dx

by taking its principal value.

This process is known as regularizing the integral.
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Test Functions and Distributions Differentiation of Distributions

Regularization of T∂αf

If the function f is locally integrable but ∂αf is not, then ∂αTf is
called a regularization of T∂αf .

By the same token, φ′ being differentiable at x = 0,

〈 d
dx pv 1

x ,φ〉 = −〈pv 1
x ,φ′〉

= − lim
ε→0

∫

|x |≥ε
1
xφ

′(x)dx

= − lim
ε→0

[ log |x |φ′(x)
∣

∣

−ε
ε −

∫

|x |≥ε log |x |φ
′′(x)dx ]

= lim
ε→0

∫

|x |≥ε log |x |φ′′(x)dx .

The last integral is well defined, since log |x |φ′′ is integrable on R, and
represents the action of the distribution d

dx
pv 1

x
on φ.
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Example

Consider the differential operator L= d2

dx2 −3 d
dx

+2 in R.

Let

h(x)=
{

ex , x ≤ 0
e2x , x > 0

.

Let Th be the distribution defined by the continuous function h.

Claim: LTh = δ.

For any φ ∈D(R), we have

LTh(φ)= 〈h′′−3h′+2h,φ〉 = 〈h,φ′′〉+3〈h,φ′〉+2〈h,φ〉.

Now

〈h,φ′′〉 =
∫0
−∞ exφ′′(x)dx +

∫∞
0 e2xφ′′(x)dx

= [φ′(0)−
∫0
−∞ exφ′(x)dx ]+ [−φ′(0)−2

∫∞
0 e2xφ′(x)dx ]

= − [φ(0)−
∫0
−∞ exφ(x)dx ]−2[−φ(0)−2

∫∞
0 e2xφ(x)dx ]

= φ(0)+
∫0
−∞ exφ(x)dx +4

∫∞
0 e2xφ(x)dx .
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Test Functions and Distributions Differentiation of Distributions

Example (Cont’d)

We also have

〈h,φ′〉 =
∫0
−∞ exφ′(x)dx +

∫∞
0 e2xφ′(x)dx

= −
∫0
−∞ exφ(x)dx −2

∫∞
0 e2xφ(x)dx ;

〈h,φ〉 =
∫0
−∞ exφ(x)dx +

∫∞
0 e2xφ(x)dx .

Hence, LTh(φ)=φ(0), for every φ ∈D(R). So LTh =δ.

Note that the function h, though continuous, has a jump discontinuity
in its derivative at x = 0 given by

h′(0+)−h′(0−)= 2e0−e0 = 1.

This accounts for the δ distribution when h is differentiated a second
time.

On R− {0}, the function h is twice differentiable and satisfies Lh = 0.
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Test Functions and Distributions Differentiation of Distributions

Generalizing the Differential Operator

Let

L=
d2

dx2
+a

d

dx
+b,

with a,b ∈R, be a differential operator in R.

Suppose that f1 and f2 are two C 2 solutions in R of Lf = 0, satisfying

f1(0)= f2(0), f ′2(0)− f ′1(0)= 1.

Let h be the continuous function defined by

h(x)=
{

f1(x), x ≤ 0
f2(x), x > 0

.

Let Th be the distribution defined by h.

We can verify that LTh = δ.

The solution x+ of T ′′ = δ is in accordance with this construction.
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Test Functions and Distributions Differentiation of Distributions

The Laplacian Operator

In Rn the partial differential operator

n
∑

k=1

∂2
k

is known as the Laplacian operator, and will be denoted by ∆.

Example: The function log |x | is locally integrable in R2.

We obtain its (distributional) Laplacian derivative

∆ log |x | = (∂2
1+∂2

2) log |x |.

By the differentiation formula, for all φ ∈D(R2),

〈∆ log |x |,φ〉 = 〈log |x |,∆φ〉
=

∫

R2 log |x |∆φ(x)dx
= lim

ε→0

∫

|x |≥ε log |x |∆φ(x)dx .
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Test Functions and Distributions Differentiation of Distributions

Intermission: Green’s First and Second Formulas

Let Ω⊆Rn be a bounded open set with sufficiently smooth boundary.

Let u,v ∈C 2(Ω) be pair of functions.

By the Divergence Theorem, we get Green’s First Formula
∫

Ω

[

u∆v +
n
∑

k=1

(∂ku)(∂kv)

]

=
∫

∂Ω
u∂ηv ,

where ∂η is the differential operator with respect to the outward
normal η on ∂Ω.

By interchanging u and v , we get
∫

Ω

[

v∆u+
n
∑

k=1

(∂ku)(∂kv)

]

=
∫

∂Ω
v∂ηu.

By subtracting, we obtain Green’s Second Formula
∫

Ω

(u∆v −v∆u)=
∫

∂Ω
(u∂ηv −v∂ηu).
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The Laplacian Operator (Cont’d)

Choose Ω so that it contains:

The support suppφ;
The closed ball B(0,ε), for some
ε> 0.

By Green’s Second Formula on Ωε =Ω−B(0,ε)= {x ∈Ω : |x | > ε}, we
obtain

∫

Ωε
log |x |∆φ(x)dx =

∫

Ωε
φ(x)∆ log |x |dx

+
∫

∂Ωε
[log |x |∂ηφ(x)−φ(x)∂η log |x |]dσ,

where η is the outward normal on ∂Ωε.

Since φ and ∂ηφ vanish on the boundary ∂Ω, we have
∫

|x |≥ε log |x |∆φ(x)dx =
∫

|x |≥εφ(x)∆ log |x |dx
+

∫

|x |=ε [log |x |∂ηφ(x)−φ(x)∂η log |x |]dσ.
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Test Functions and Distributions Differentiation of Distributions

The Laplacian Operator (Cont’d)

With |x | = (x2
1 +x2

2 )
1/2 = r , we have ∂η =−∂r on the circle |x | = ε.

Moreover, for all x 6= 0, we also have

∆ log |x | = ∂1

(

1
|x |∂1|x |

)

+∂2

(

1
|x |∂2|x |

)

= ∂1

(

x1

|x |2
)

+∂2

(

x2

|x |2
)

= x2
2−x

2
1

|x |4 + x2
1−x

2
2

|x |4 = 0.

Thus, the first integral on the right side drops out, and we have

∫

|x |≥ε log |x |∆φ(x)dx =
∫

|x |=ε

[

logε∂ηφ(x)−φ(x)
x2
1+x

2
2

|x |2
]

dσ

=
∫

|x |=ε
[

1
εφ(x)− logε∂rφ(x)

]

dσ.
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The Laplacian Operator (Conclusion)

Now φ is in C∞
0 (R2).

So its derivative ∂rφ is bounded on R2 by some constant, say M.

Hence

| logε
∫

|x |=ε
∂rφ(x)dσ| ≤ 2πε| logε|M ε→0−→ 0.

Moreover,

1

ε

∫

|x |=ε
φ(x)dσ=

1

ε

∫

|x |=ε
[φ(x)−φ(0)]dσ+

1

ε
φ(0)

∫

|x |=ε
dσ.

φ is continuous at x = 0. So limε→0
1
ε

∫

|x |=ε [φ(x)−φ(0)]dσ= 0.

Therefore,

lim
ε→0

1

ε

∫

|x |=ε
φ(x)dσ= 0+2πφ(0).

Thus, 〈∆ log |x |,φ〉 = 2πφ(0), for all φ ∈D(R2), i.e., ∆ log |x | = 2πδ.
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Example

We determine ∆

(

1
|x |

)

in R3.

In R3, 1
|x | is integrable in the neighborhood of 0. We have

〈

∆
1

|x |
,φ

〉

=
〈

1

|x |
,∆φ

〉

= lim
ε→0

∫

|x |≥ε

1

|x |
∆φ(x)dx .

We also have
∫

|x≥ε
1
|x |∆φ(x)dx =

∫

|x |≥εφ(x)∆
(

1
|x |

)

dx

+
∫

|x |=ε

[

1
|x |∂ηφ(x)−φ(x)∂η

(

1
|x |

)]

dσ.

Note that ∆

(

1
|x |

)

= (∂2
1+∂2

2+∂2
3)(x

2
1 +x2

2 +x2
3 )

−1/2 = 0, when x 6= 0.

So the first integral on the right-hand side vanishes.

Therefore, with ∂η =−∂r ,
∫

|x |≥ε

1

|x |
∆φ(x)dx =−

1

ε

∫

|x |=ε
∂rφ(x)dσ−

1

ε2

∫

|x |=ε
φ(x)dσ.
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Example (Cont’d)

Now ∂rφ is a bounded function in R3.

So there is a positive M such that |∂rφ(x)| ≤M, for all x ∈R3.

Hence,
∣

∣

∣

∣

1

ε

∫

|x |=ε
∂rφ(x)dσ

∣

∣

∣

∣

≤
M

ε

∫

|x |=ε
dσ= 4πεM

ε→0−→ 0.

We are left with

1

ε2

∫

|x |=ε
φ(x)dx =

1

ε2

∫

|x |=ε
[φ(x)−φ(0)]dx +

1

ε2

∫

|x |=ε
φ(0)dx .

The first integral on the right-hand side tends to 0 as ε→ 0.

The second is just 4πφ(0).

Thus,
〈

∆
1
|x | ,φ

〉

=−4πφ(0), for every φ ∈D(R3).

Therefore, ∆ 1
|x | =−4πδ.
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Subsection 4

Convergence of Distributions
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Test Functions and Distributions Convergence of Distributions

Weak Topology and Weak Convergence of Distributions

On the vector space D
′(Ω), the weak topology is the locally convex

topology defined by the family of seminorms

pφ(T )= |T (φ)|, φ ∈D(Ω), T ∈D
′(Ω).

This leads to the following definition of (weak) convergence in D
′(Ω).

Definition (Weak Convergence in D
′(Ω))

The sequence (Tk) in D
′(Ω) converges to 0 if and only if, for every

φ ∈D(Ω), the sequence (Tk(φ)) converges to 0 in C.

This is “pointwise” convergence on D(Ω).

We write Tk →T in D
′(Ω) if the sequence (Tk −T ) converges to 0.
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Strong Convergence of Distributions

In the strong or uniform convergence in D ′(Ω), Tk → 0 is
equivalent to Tk(φ)→ 0 uniformly on every bounded subset of D(Ω).

Strong, or uniform, convergence implies weak convergence.

Convergence in D
′(Ω) will be taken in the weak sense unless otherwise

qualified.
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Test Functions and Distributions Convergence of Distributions

Sequential Completeness

Theorem

The space of distributions D
′(Ω) is (sequentially) complete.

Suppose (Tk) is a Cauchy sequence in D
′(Ω).

Then it is bounded, i.e., there is a neighborhood U of 0 in D(Ω) and a
positive number M, such that |Tk(φ)| ≤M, for all φ ∈U and k ∈N.

Also, (Tk(φ)) is a Cauchy sequence in C, for every φ ∈D(Ω).

Therefore its limit exists. Let T be defined by

T (φ)= limTk(φ), φ ∈D(Ω).

T is clearly linear.

For all φ ∈U , |T (φ)| = lim |Tk(φ)| ≤M . So T is bounded on U .

Therefore, T is continuous on D(Ω).
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Limits and Derivatives

Corollary

If Tk ∈D
′(Ω), for every k ∈N, and limTk =T , then lim∂αTk = ∂αT , for

every multi-index α ∈Nn
0 .

For any φ ∈D(Ω), we have

lim(∂αTk)(φ) = (−1)|α| limTk(∂
αφ)

= (−1)|α|T (∂αφ)

= ∂αT (φ).
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Almost Everywhere Convergence vs Convergence in D
′(Ω)

Theorem

If fk is a sequence of functions in L1
loc
(Ω) which converges to f a.e. in Ω,

and |fk | ≤ g , for some g ∈ L1
loc
(Ω), then fk → f in D

′(Ω).

For every φ ∈D(Ω), we have

Tfk (φ)= 〈fk ,φ〉 =
∫

Ω

fkφ
k→∞−→

∫

Ω

f φ,

by the Lebesgue Dominated Convergence Theorem.

But, we have
∫

Ω
f φ=Tf (φ).

Therefore, Tfk →Tf .
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Convergence a.e. vs. Convergence in D
′

Convergence a.e. for a sequence of locally integrable functions does
not imply its convergence in D

′.

Example: Consider the sequence

fk(x)=
{

k2, |x | < 1
k

0, |x | ≥ 1
k

.

It converges to 0 a.e.

Let φ ∈D(R) be such that φ= 1 in (−1,1).

Then 〈fk ,φ〉 = 2k .

This does not converge.
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Convergence in D
′ vs. Pointwise Convergence

Distributional convergence does not imply pointwise convergence.

Example: Consider
(sinkx).

Then, we have, for every φ ∈D(R),

〈sinkx ,φ〉 =
∫∞
−∞ sinkxφ(x)dx

=
∫∞
−∞ (− 1

k coskx)
′φ(x)dx

= − 1
k coskxφ(x) |

∞
−∞ + 1

k

∫∞
−∞ coskxφ′(x)dx

= 1
k

∫∞
−∞ coskxφ′(x)dx

k→∞−→ 0.

Clearly, (sinkx) does not converge pointwise.
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Example (Convergence in D
′(R))

Let

Tn = nδ−
( n
∑

1

1

k

)

δ′−
( n
∑

1

δ1/k

)

.

To show that Tn converges in D
′(R) we must show that limTn(φ)

exists, for every φ ∈D(R).

We have

Tn(φ)= nφ(0)+
( n
∑

1

1

k

)

φ′(0)−
n

∑

1

φ

(

1

k

)

.

By Taylor’s Formula, we can write

φ(x)=φ(0)+xφ′(0)+x2ψ(x),

where ψ is a C∞ function which is bounded by some constant, say M.
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Example (Convergence in D
′(R) Cont’d)

Now we obtain

Tn(φ) = nφ(0)+
(

∑n
1

1
k

)

φ′(0)−
∑n

1 φ
(

1
k

)

= nφ(0)+
(

∑n
1

1
k

)

φ′(0)−
∑n

1

[

φ(0)+ 1
kφ

′(0)+ 1
k2ψ

(

1
k

)

]

= −
∑n

1
1
k2ψ(

1
k ).

Therefore, for m< n,

|Tn(φ)−Tm(φ)| ≤M
n
∑

m

1

k2
.

So (Tn(φ)) is a Cauchy sequence in C.

So its limit exists.
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Example: Delta-Convergent Sequences

Even when the sequence of functions fk converges a.e. and in D
′, the

two limits may not be equal.

Example: Consider

fk(x)=
{

k , if |x | < 1
2k

0, if |x | ≥ 1
2k

.

Clearly,
∫

fk(x)dx = 1. Moreover, fk → 0 a.e. on R.

For any function φ in D(R), by the continuity of φ at 0,

〈fk ,φ〉 =φ(0)+k

∫1/2k

−1/2k
[φ(x)−φ(0)]dx

k→∞−→ φ(0).

Hence, lim fk =δ.

A sequence of functions, such as (fk), which converges to δ in D
′(Ω)

is called a delta-convergent sequence.
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Construction of Delta-Convergent Sequences

Theorem

Let f be a nonnegative integrable function on Rn with
∫

f (x)dx = 1 and

fλ(x)=
1

λn
f

(x

λ

)

=
1

λn
f

(x1

λ
, . . . ,

xn

λ

)

, λ> 0.

Then fλ → δ in D
′(Rn) as λ→ 0.

Note that
∫

fλ(x)dx =
∫

f
(x

λ

) 1

λn
dx =

∫

f (ξ)dξ= 1.

Therefore,

limλ→0 〈fλ,φ〉 = limλ→0

∫

fλ(x)φ(x)dx

= φ(0)+ limλ→0

∫

fλ(x)[φ(x)−φ(0)]dx .
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Test Functions and Distributions Convergence of Distributions

Construction of Delta-Convergent Sequences (Cont’d)

We also have
∣

∣

∫

fλ(x)[φ(x)−φ(0)]dx
∣

∣ ≤
∫

|x |≤r
∣

∣fλ(x)[φ(x)−φ(0)]
∣

∣dx

+
∫

|x |≥r
∣

∣fλ(x)[φ(x)−φ(0)]
∣

∣dx

≤ sup|x |≤r |φ(x)−φ(0)|
∫

|x |≤r fλ(x)dx

+ sup|x |≥r |φ(x)−φ(0)|
∫

|x |≥r fλ(x)dx

≤ sup|x |≤r |φ(x)−φ(0)| +M
∫

|ξ|≥r/λ f (ξ)dξ,

where M is the max of |φ(x)−φ(0)| on Rn.

Let ε> 0 be arbitrary.

Because φ is continuous at 0, we can make the first term less than 1
2
ε

by choosing r small enough.

Because f is integrable on Rn, we can choose λ small enough so that
the second term is less than 1

2
ε.
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Test Functions and Distributions Convergence of Distributions

Example

Recall the equality
∫∞
−∞

dx
1+x2 =π.

Define

f (x)=
1

π(1+x2)
.

Then
∫∞

−∞

1

π(1+x2)
= 1.

Let

fλ(x)=
1

λ
f

(x

λ

)

=
1

λ

1

π[1+ (x
λ
)2]

=
λ

π(x2+λ2)
.

By the previous theorem, in D
′(R),

fλ
λ→0−→ δ.
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Test Functions and Distributions Convergence of Distributions

Example

Recall the equality
∫∞
−∞ e−x

2
dx =

p
π.

We obtain
∫

Rn e−|x |
2
dx =

∫

Rn

∏n
k=1

e−x
2
k dxk

=
∏n

k=1

∫∞
−∞ e−x

2
k dxk

=
p
π
n

.

Replacing the parameter λ> 0 in the previous theorem by
p
λ, we

obtain the following function defined on Rn, for all positive values of
λ,

fλ(x)=
1

p
πλ

n e
−|x |2/λ

.

By the theorem,

fλ
λ→0−→ δ.
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Subsection 5

Multiplication by Smooth Functions
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Test Functions and Distributions Multiplication by Smooth Functions

The Product of a C
∞ Function with a Distribution

For any T ∈D
′(Ω) and f ∈C∞(Ω), we define fT as the linear

functional
(fT )(φ)=T (f φ), φ ∈D(Ω).

The product fT is well defined.

Note that the product f φ is in D(Ω).

The product fT is in D
′(Ω).

Suppose the sequence φk converges to 0 in D(Ω).

Then the sequence f φk also converges to 0 in D(Ω).

Therefore,
(fT )(φk)=T (f φk)→ 0.

So fT is a continuous linear functional on D(Ω).
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Test Functions and Distributions Multiplication by Smooth Functions

Regularity of the Product

Let T ∈D
′(Ω) and f ∈C∞(Ω).

Suppose T is a regular distribution.

Let g be a locally integrable function, such that, for all φ ∈D(Ω),

Tφ= 〈g ,φ〉.

Note that fg is also locally integrable.

So we obtain

(fTg )(φ)=Tg (f φ)= 〈g , f φ〉 =
∫

gf φ= 〈fg ,φ〉.

Thus, fTg =Tfg and fT is also regular.
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Test Functions and Distributions Multiplication by Smooth Functions

Differentiation of a Product

The ordinary rules of differentiating a product of two functions apply
to fT when f ∈C∞(Ω) and T ∈D

′(Ω).

Indeed we have, for all φ ∈D(Ω)

∂k(fT )(φ) = − fT (∂kφ)

= −T (f ∂kφ)

= −T (∂k(f φ)− (∂k f )φ)

= −T (∂k(f φ))−T ((∂k f )φ)

= ∂kT (f φ)− (∂k f )T (φ)

= f ∂kT (φ)+ (∂k f )T (φ).

Therefore,
∂k(fT )= (∂k f )T + f ∂kT .
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Test Functions and Distributions Multiplication by Smooth Functions

Differentiation of a Product: Leibniz Formula

Let f ∈C∞(Ω) and T ∈D
′(Ω).

We can use induction to show that Leibniz’s formula

∂α(fT )=
α
∑

β=0

α!

β!(α−β)!
(∂βf )(∂(α−β)T ), α ∈Nn

0

remains valid, were the summation is over the multi-indices from
(0, . . . ,0) to (α1, . . . ,αn).
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Test Functions and Distributions Multiplication by Smooth Functions

Example

The product sinxδ is the distribution defined on D(R) by

〈sinx δ,φ〉 = 〈δ,sinx φ〉 = sin0 φ(0)= 0.

On the other hand, sinxδ′ is given by

〈sinx δ′,φ〉 = 〈δ′,sinx φ〉
= −〈δ,(sinx φ)′〉
= −〈δ,cosx φ+ sinx φ′〉
= − (cos0 φ(0)+ sin0 φ′(0))
= −φ(0).
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Subsection 6

Local Properties of Distributions
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Test Functions and Distributions Local Properties of Distributions

Zero Distributions

It does not make sense to assign a value to a distribution at a given
point in Ω, but we can define what it means for a distribution to
vanish on an open subset of Ω.

Definition

For any T ∈D
′(Ω) and any open subset G of Ω, we say that T = 0 on G if

T (φ)= 0, for every φ ∈D(G ).

We can now say that T ∈D
′(Ω) is zero if T = 0 on Ω.

We also say that T1,T2 ∈D
′(Ω) are equal if T1−T2 = 0 on Ω.
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Test Functions and Distributions Local Properties of Distributions

Examples

We saw that, for all φ ∈D(R),

〈sinx δ,φ〉 = 0.

We conclude that sinx δ= 0 on R.

We also saw that, for all φ ∈D(R),

〈sinx δ′,φ〉 =−φ(0)=−〈δ,φ〉.

We conclude that sinx δ′ =−δ on R.

Earlier on, we interpreted the equality T =Tf on D(R− {0}) to mean
that T is represented by f on R− {0}, i.e. that T =Tf on R− {0}.
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Test Functions and Distributions Local Properties of Distributions

Example

Let I = (a,b) be any interval in R, including R itself.

Suppose T ∈D
′(I ) is such that T ′ = 0.

Then T must be a constant.

By hypothesis, for all φ ∈D(I ), T (φ′)= −T ′(φ)= 0.

Thus, T vanishes at every test function which can be expressed as the
derivative of some function in D(I ).

Let D0(I ) be the subspace of D(I ) characterized by the condition that
φ ∈D0(I ) if and only if there exists a ψ ∈D(I ), such that φ=ψ′.

Claim: φ ∈D0(I ) if and only if
∫b
a φ(x)dx = 0.

This condition is clearly necessary.

Suppose the condition is satisfied.

Define ψ(x)=
∫x
a φ(t)dt.

Then ψ ∈D(I ) and ψ′ =φ.
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Test Functions and Distributions Local Properties of Distributions

Example (Cont’d)

T (φ)= 0, by hypothesis, for every φ ∈D0(I ).

Let φ0 be a fixed function in D(I ), such that
∫b
a φ0(x)dx = 1.

Given any φ ∈D(I ), the function φ− (
∫b
a φ(x)dx)φ0 lies in D0(I ).

Therefore,

T

(

φ−φ0

∫b

a
φ(x)dx

)

= 0.

This gives T (φ)= c
∫b
a φ(x)dx , where c is the constant T (φ0).

This equation implies that T is the constant function c .

Suppose T ∈D
′(I ) satisfies T ′ = c1, for some constant c1.

Define S ∈D
′(I ) by S = c1x . Then (T −S)′ = 0.

Therefore, T = c1x +c2, for some constant c2.

If T (m) = 0, we can use induction to show T is a polynomial of degree
≤m−1.
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Test Functions and Distributions Local Properties of Distributions

The Convolution

Definition

For any f ∈ L1
loc
(Rn) and φ ∈C∞

K
(Rn), where K is a compact subset of Rn,

we define the convolution of f and φ as the function

∫

f (x −y)φ(y)dy =
∫

f (y)φ(x −y)dy

which will be denoted by (f ∗φ)(x).

Note that f ∗φ is also defined if φ is merely continuous with compact
support in Rn.

f ∗φ is not necessarily defined when suppφ is not compact, unless, of
course, suppf is compact.
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The Distribution βλ

Consider the C∞ function

α(x)=
{

e
− 1

1−|x |2 , on |x | < 1
0, on |x | ≥ 1

.

It has support in the closed unit ball B(0,1).
Its integral over Rn is a finite positive number.

Consider the function β(x)= α(x)
∫

α(x)dx
.

It is another C∞ function with support in B(0,1).
Moreover, it satisfies

∫

β(x)dx = 1.

Let, for any positive number λ,

βλ(x)=
1

λn
β

(x

λ

)

.

βλ ∈D(Rn), with supp(βλ)=B(0,λ).
Moreover,

∫

βλ(x)dx =
∫

β(x)dx = 1.
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Test Functions and Distributions Local Properties of Distributions

Properties of βλ

Theorem

(i) If f ∈ L1
loc
(Rn), then f ∗βλ ∈C∞(Rn).

(ii) If f ∈ L1(Rn) with compact support K , then supp(f ∗βλ) is contained
in a neighborhood of K defined by Kλ =

⋃

x∈K B(x ,λ)=K +B(0,λ).

(iii) If f ∈C 0(Rn), then, f ∗βλ
λ→0−→ f uniformly on every compact subset of

Rn.

(i) (f ∗βλ)(x)=
∫

f (y)βλ(x −y)dy =
∫

B(x ,λ) f (y)βλ(x −y)dy .

But B(x ,λ) is bounded and βλ is infinitely differentiable.

Hence, f ∗βλ ∈C∞(Rn).

(ii) Suppose x 6∈Kλ. Then d(x ,K )= infy∈K |x −y | >λ. So βλ(x −y)= 0,
for all y ∈K . Consequently,

(f ∗βλ)(x)=
∫

K
f (y)βλ(x −y)dy = 0.
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Test Functions and Distributions Local Properties of Distributions

Properties of βλ Part (iii)

(iii) Since f is continuous on Rn, it is uniformly continuous on any
compact subset E of Rn. So, given ε> 0, there is a δ> 0, such that,
for all x ∈E and all y ∈B(0,δ),

|f (x −y)− f (x)| < ε.

Then, for all x ∈E and all λ≤ δ,

|(f ∗βλ)(x)− f (x)| = |
∫

[f (x −y)− f (x)]βλ(y)dy |
≤

∫

B(0,λ) |f (x −y)− f (x)|βλ(y)dy

< ε.

In this proof the only properties of βλ that were used are:

βλ ∈C∞
0 (Rn), suppβλ ⊆B(0,λ),

∫

βλ(x)dx = 1.

Hence βλ may be replaced in the statement of the theorem by any
function with these properties.
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Regularizing Sequence or Regularization

The theorem indicates that the convolution of f with βλ smoothes out
the discontinuities in f while preserving its general shape.

For that reason the sequence of functions

fk = f ∗β1/k

is called a regularizing sequence, or a regularization, of f .
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Property of Compact Subsets of Ω

Corollary

If K is a compact subset of Ω⊆Rn, then there is a φ ∈D(Ω), such that
0≤φ≤ 1 and φ= 1 on K .

There is no loss of generality in taking Ω to be bounded.

Let Kδ be the δ-neighborhood of K , where δ= 1
3
d(K ,∂Ω).

Let IKδ
be the characteristic function of Kδ.

Consider the C∞ function

φ(x)= (IKδ
∗βδ)(x)=

∫

Kδ

βδ(x −y)dy .

φ= 1 on K ;
0≤φ≤ 1 on K2δ;
φ= 0 outside K2δ.
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Density of D(Rn) in C
0
0 (R

n)

Corollary

D(Rn) is a dense subspace of C 0
0 (R

n) with the identity map from D(Rn)
to C 0

0 (R
n) continuous.

Suppose φk converges in D(Rn) to φ.

Then there is a compact set K ⊆Rn, such that:

suppφk ⊆K , for all k ;
φk converges uniformly to φ on K .

But that implies φk →φ in C 0
0 (R

n).

Hence, the identity map from D(Rn) to C 0
0 is continuous.

Next, let φ be any function in C 0
0 (R

n), with suppφ=K .

Then the sequence φk =φ∗β1/k is supported in K +B(0,1).

By the theorem, φk converges uniformly to φ on K +B(0,1).
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Open Cover and Partition of Unity

Theorem

If {Gα :α ∈A} is a collection of open subsets of Ω, and T ∈D
′(Ω) is zero on

every Gα, then T is zero on the union
⋃

α∈AGα.

Let G =⋃

Gα and φ be in D(G ) with suppφ=K .

The collection {Gα} is an open covering of the compact set K .

It contains a finite subcovering of K , say, after relabeling, G1, . . . ,Gm.
For every k ∈ {1, . . . ,m}, we choose:

A compact set Kk ⊆Gk so that K ⊆⋃m
k=1

K ◦
k
;

φk ∈D(Gk ) so that 0≤φk ≤ 1 and φk = 1 on Kk .

Now let
ψ1 =φ1, ψk =φk(1−φ1) · · ·(1−φk−1), k = 2, . . . ,m.

For k ∈ {1, . . . ,m}, ψk ∈D(Gk), 0≤ψk ≤ 1. Moreover,
∑m

k=1
ψk = 1 on

a neighborhood of K . So φ=
∑m

k=1
φψk . But φψk ∈D(Gk) and T = 0

on Gk . So T (φ)=
∑m

k=1
T (πψk)= 0.
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Partition of Unity Subordinate to an Open Cover

Suppose {Gα :α ∈A} is a collection of open subsets of Ω.

The set of functions {ψ1, . . . ,ψm}, constructed in the theorem, is called
a C∞ partition of unity subordinate to the open cover {G1, . . . ,Gm} of
K .
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The Support of a Distribution

Definition

The support of T ∈D
′(Ω) is the complement in Ω of the largest open

subset of Ω where T = 0.

Example: Consider δ ∈D
′(Ω).

We know that 〈δ,φ〉 = 0, for every φ in D(Ω− {0}).

So the support of δ is {0}.

Note that, if T is a distribution and f is a C∞ function which vanishes
on suppT , it does not necessarily follow that fT = 0.

Example: We have seen that xδ′ =−δ.

On the other hand, if f vanishes on a neighborhood of suppT , then
we may conclude that fT = 0.
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Compact Support and Finite Order

Theorem

Every distribution with compact support is of finite order.

Suppose T ∈D
′(Ω) and suppT is compact.

There is ψ ∈D(Ω), with ψ= 1 on some open set containing suppT .

For any φ ∈D(Ω), the support of φ−ψφ does not intersect suppT :

supp(φ−ψφ)⊆Ω− suppT . So T (φ−ψφ)= 0. I.e., T (φ)=T (ψφ).

Let K = suppψ. By a previous theorem, there is a nonnegative integer
m and a constant M1, such that T (φ)≤M1|φ|m, for all φ ∈DK .

By the Leibniz Formula for the derivative of ψφ, there is a constant
M2, such that |ψφ|m ≤M2|φ|m, for all φ ∈D(Ω).

For this choice of ψ and for every φ ∈D(Ω), we have

|T (φ)| = |T (ψφ)| ≤M1|ψφ|m ≤M1M2|φ|m.

George Voutsadakis (LSSU) Theory of Distributions January 2024 91 / 122



Test Functions and Distributions Local Properties of Distributions

Finite Order and Compact Support

A distribution of finite order does not necessarily have compact
support.

Example: Any locally integrable function defines a distribution of order
0.

Example: Consider
∞
∑

k=0

δ
(k)

k
.

This is an example of a distribution of infinite order.
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Linear Combinations of Derivatives of Delta

Consider a linear combination of derivatives of the Dirac measure on
Rn

T =
∑

|α|≤m
cα∂

αδ.

It has support {0};
For all φ ∈D(Rn), T (φ)=

∑

|α|≤m
cα(−1)|α|∂αφ(0).

Note that
|T (φ)| ≤

∑

|α|≤m
|cα∂αφ(0)|

≤ Mmnmax
|α|≤m

|∂αφ(0)|

≤ Mmn|φ|m.

Here Mmn is a positive constant which depends on m and n.

This implies that the order of T is m.

We will see later that every distribution with support {0} is a finite
linear combination of derivatives of δ.
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D(Ω) as a Subspace of Lp(Ω)

The space Lp(I ), where I = (a,b) and 1≤ p <∞, is the completion of
C 0

0 (I ) in the norm

f 7→ ‖f ‖p =
[
∫

I
|f (x)|pdx

]1/p

.

More generally, for any open set Ω⊆Rn, we can also define Lp(Ω) to
be the completion of C 0

0 (Ω) in the norm ‖·‖p, with I replaced by Ω.

It is a standard result of real analysis that this definition is equivalent
to the usual definition of Lp(Ω) as the linear space of measurable
functions on Ω with finite norm ‖·‖p.
Since convergence in C 0

0 (Ω) implies convergence in Lp(Ω), and in view
of a previous corollary, we have

Theorem

D(Ω) is a dense subspace of Lp(Ω), for 1≤ p <∞, with the identity map
from D(Ω) to Lp(Ω) continuous.
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Approximation of an L
p Function in D

Next, we show, given an Lp function, how to construct the
approximating sequence in D.

We use (γk) to denote the sequence (β1/k).

Let u ∈ Lp(Rn).

We carry out the following steps:

First, we show that

‖u∗γk‖p ≤ ‖u‖p , 1≤ p <∞;

We, then, conclude that, in Lp(Rn), for u ∈ Lp(Rn),

u∗γk → u.
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Approximation of an L
p Function in D (Part (i))

(i) Suppose, first, 1< p <∞. Then

‖u∗γk‖
p
p =

∫
∣

∣

∣

∣

∫

γk(y)u(x −y)dy

∣

∣

∣

∣

p

dx .

We can write uγk = (uγ
1/p

k
)(γ

1/q

k
), where 1

p
+ 1

q
= 1.

Now use Hölder’s Inequality to obtain
∫

γk(y)|u(x −y)|dy ≤
[
∫

γk(y)|u(x −y)|pdy
]1/p [

∫

γk(y)dy

]1/q

.

Taking into account
∫

γk(y)dy = 1, we get

‖u∗γk‖
p
p ≤

∫∫

γk(y)|u(x −y)|pdydx
=

∫

γk(y)[
∫

|u(x −y)|pdx ]dy (Fubini’s Theorem)

=
∫

γk(y)‖u‖
p
pdy

= ‖u‖pp.
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Approximation of an L
p Function in D (Part (i) Cont’d)

If p = 1,
‖u∗γk‖1 ≤

∫∫

γk(y)|u(x −y)|dydx
=

∫

γk(y)[
∫

|u(x −y)|dx ]dy
= ‖u‖1.

Hence, for all p ∈ [1,∞),

‖u∗γk‖p ≤ ‖u‖p.
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Approximation of an L
p Function in D (Part (ii))

(ii) Let u ∈ Lp(Rn) and ε> 0 be arbitrary.

Since C 0
0 is dense in Lp, choose φ ∈C 0

0 (R
n), such that ‖u−φ‖p < ε.

Then, by Part (i),

‖u∗γk −φ∗γk‖p = ‖(u−φ)∗γk‖p ≤ ‖u−φ‖p < ε.

Now we take into account the fact that:
φ∗γk and φ are supported in the compact set K = suppφ+B(0,1);
φ∗γk →φ uniformly on K .

So we can write, for k large enough,

‖φ∗γk −φ‖p = [
∫

K |(φ∗γk)(x)−φ(x)|pdx ]1/p

≤ supx∈K |(φ∗γk )(x)−φ(x)|[
∫

K dx ]1/p

< ε.

Thus,

‖u∗γk −u‖p ≤ ‖u∗γk −φ∗γk‖p +‖φ∗γk −φ‖p +‖φ−u‖p < 3ε.
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Approximation of an L
p

loc
Function in D

Let u ∈ Lp
loc
(Rn) and K be any compact set in Rn.

Let IK be the characteristic function of K .

The function v = uIK lies in Lp(Rn).

The sequence v ∗γk converges to v in Lp(Rn).

I.e., u∗γk → u in the Lp norm on every compact subset of Rn.

With this convergence in L
p

loc
(Rn), D(Rn) is also dense in L

p

loc
(Rn).
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Zero Distributions and Functions Zero a.e.

Recall that every locally integrable function f defines a distribution Tf .

If f = g a.e., then clearly Tf =Tg .

We show that, conversely, if Tf =Tg , for two locally integrable
functions f and g , then f = g a.e..

Suppose f ∈ L1
loc
(Rn), such that Tf = 0 in D

′(Rn).

We prove that f = 0 a.e.
(i) Suppose, first, that f ∈ L1(Rn).

Take into account that:
γk (x −y) lies in D(Rn), for every fixed x ;

Tf = 0 on D(Rn).

So we have

(f ∗γk)(x)=
∫

f (y)γk(x −y)dy = 0.

Hence, in L1(Rn),
f = lim(f ∗γk)= 0.

This means that f = 0 a.e..
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Zero Distributions and Functions Zero a.e. (Cont’d)

(ii) Now let f ∈ L1
loc

(Rn) and K be a compact set in Rn.
Choose ψ ∈D(Rn), such that 0≤ψ≤ 1 and ψ= 1 on K .
This is always possible by a previous corollary.
Thus, ψf ∈ L1(Rn).
If φ ∈D(Rn), then, by hypothesis,

Tψf (φ)=Tf (ψφ)= 0.

By Part (i), we conclude that ψf = 0 a.e. in Rn.
This implies that f = 0 a.e. on K .
K being arbitrary, this means that f = 0 a.e..

The proof depends essentially on D(Rn) being dense in L1
loc
(Rn).

George Voutsadakis (LSSU) Theory of Distributions January 2024 101 / 122



Test Functions and Distributions Distributions of Finite Order

Subsection 7

Distributions of Finite Order
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The Space D
m′(Ω)

Recall that D
m(Ω), m ∈N0, is the linear space Cm

0 (Ω) equipped with
the inductive limit topology of {Cm

K
(Ω) :K ⊆Ω}.

This is the locally convex topology in which a set is open if and only if
its intersection with Cm

K
(Ω) is open, for every compact K ⊆Ω.

In turn, Cm
K
(Ω) carries its natural locally convex topology defined by

the seminorms

pi(φ)= sup {|∂αφ(x)| : x ∈K , |α| ≤ i }, 0≤ i ≤m≤∞.

This topology on D
m(Ω) is weaker than the topology of D(Ω).

Thus, the inclusion D(Ω)⊆D
m(Ω) is in fact a continuous injection.

Consequently, the dual space D
m′(Ω) is a subspace of D

′(Ω).
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Characterization of D
m′(Ω) as a Subspace of D

′(Ω)

Theorem

D
m ′(Ω) consists of all the distributions in D

′(Ω) of order ≤m.

Suppose T ∈D
m′(Ω). Then, by definition, there is a constant M, such

that |T (φ)| ≤M |φ|m, for all φ ∈D
m(Ω). The restriction of T to D(Ω)

is therefore a distribution of order ≤m.

Conversely, suppose T ∈D
′(Ω) is of order m.

So there is a constant M, such that |T (φ)| ≤M |φ|m, for all φ ∈D(Ω).

Now D(Ω)⊆D
m(Ω)⊆D

0(Ω).

Moreover, by a previous corollary, D(Ω) is dense in D
0(Ω)=C 0

0 (Ω).

Hence, D(Ω) is dense in D
m(Ω).

Thus, the continuous linear functional T may be extended by
continuity to D

m(Ω), with the inequality |T (φ)| ≤M |φ|m still valid.

It follows that T ∈D
m ′(Ω).
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DF (Ω) and the Projective Limit Topology

Let DF (Ω) be the set
⋂∞
m=0

Cm
0 (Ω)=C∞

0
(Ω) equipped with the

weakest topology in which the identity map im :DF (Ω)→D
m(Ω) is

continuous for every m ∈N0.

This is a locally convex topology which is induced by the topologies of
D

m(Ω) under the inverse maps i−1
m .

If Um is a base of 0-neighborhoods in D
m(Ω), the finite intersections

of the sets i−1
m (Um), where Um ∈Um and m ∈N0, form a base of

0-neighborhoods for the topology of DF .

This topology on DF is called the projective limit of the topologies
of {Dm(Ω)}.

This is a dual topology to the inductive limit.
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Comparing DF (Ω) with D(Ω)

Although DF (Ω) and D(Ω) represent the same set, namely C∞
0 (Ω),

they are different topological spaces.

Claim: The topology of D(Ω) is stronger than that of DF (Ω).

Consider any sequence φk in D(Ω) which converges to φ.

By a previous theorem, there is a compact set K ⊆Ω which contains
suppφk , for all k , and |φk −φ|m → 0, for all m.

This implies that φk →φ in D
m(Ω), for every m.

Hence, φk →φ in DF (Ω).

Thus, the identity map from D(Ω) to DF (Ω) is continuous.

So the corresponding dual spaces D
′
F
(Ω) and D

′(Ω) are related by the
(proper) inclusion D

′
F
(Ω)⊆D

′(Ω).
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Characterization of D
′
F
(Ω)

Theorem

D
′
F
(Ω) consists of all the distributions in D

′(Ω) of finite order. In other
words, D

′
F
(Ω)=⋃∞

m=0
D

m ′(Ω).

Suppose T ∈D
′(Ω) is of finite order, say m.

Then, by the preceding theorem, T ∈D
m ′(Ω).

Its restriction to C∞
0 (Ω) is continuous in the topology of D

′
F
(Ω).

Hence, T ∈D
′
F
(Ω).

Now let T ∈D
′
F
(Ω). Then, there is a neighborhood U of 0 ∈DF (Ω),

such that, for all φ ∈U ,
|T (φ)| ≤M .

But U contains a neighborhood of the form U1∩·· ·∩Uk ∩C∞
0 (Ω),

where Ui is a neighborhood of 0 ∈D
mi (Ω), i.e., of form

{φ ∈C∞
0 (Ω) : |φ|mi

≤ εi }.
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Characterization of D
′
F
(Ω) (Cont’d)

Let ε=min {ε1, . . . ,εk } and m=max {m1, . . . ,mk }.

Then

{φ ∈C∞
0 (Ω) : |φ|m ≤ ε} ⊆ {φ ∈C∞

0 (Ω) : |φ|mi
≤ εi } ⊆U .

Thus, for all φ ∈C∞
0 (Ω), such that |φ|m ≤ ε, the linear functional T

satisfies
|T (φ)| ≤M .

This means that T is a continuous linear functional on C∞
0
(Ω) in the

topology induced by D
m(Ω).

Therefore, T is a distribution of order m.
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Projective and Inductive Limits and Dual Spaces

With D
′
F
(Ω)=⋃

D
m′(Ω), we can also define a topology on D

′
F
(Ω)

through the inductive limit of the topologies of {Dm ′(Ω)}.

It turns out that this topology coincides with the one that we have
already defined on D

′
F
(Ω) as the dual of DF (Ω).

Since the topology of DF (Ω) is the projective limit of the topologies
of {Dm(Ω)}, we see that these two methods of defining a topology are
naturally suited to dual spaces, in this case DF (Ω) and D

′
F
(Ω).
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Distributions and Measures on Open Sets

A Radon measure on an open set Ω⊆Rn is an element of D
0′(Ω).

That is, a Radon measure on an open set Ω⊆Rn is a continuous
linear functional on D

0(Ω)=C 0
0 (Ω), or a distribution of order 0.

As a continuous linear functional on D
0(Ω), it is also represented,

according to the Riesz Representation Theorem, by a regular Borel
measure on Ω.
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Positivity of a Real Linear Functional

Definition

A real linear functional T on a real linear space of functions F is said to be
positive if T (f )≥ 0, whenever f ∈ F , f ≥ 0.

If T is positive on C 0
0 (Ω), we show that T is continuous on C 0

0 (Ω).

Hence, it defines a (positive) Radon measure on Ω.

By a previous corollary, it suffices to prove that:

If φk ∈C 0
0 (Ω), with suppφk contained in some compact set K ⊆Ω and

|φk |0 = supx∈K |φk(x)|
k→∞−→ 0, then T (φk)

k→∞−→ 0.

Choose ψ ∈C 0
0 (Ω), such that 0≤ψ≤ 1 and ψ= 1 on K .

Then |φk | ≤ |φk |0ψ. Therefore, −|φk |0ψ≤φk ≤ |φk |0ψ.

Since T is positive, −|φk |0T (ψ)≤T (φk)≤ |φk |0T (ψ).

Hence, limT (φk)= 0.

Using the definition, we say T ∈D
′(Ω) is positive, and write T ≥ 0, if

T (φ)≥ 0, for all φ≥ 0 in D(Ω).
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Example

Let T be a positive distribution on Ω.

To show that T is a Radon measure on Ω:

First extend T from D(Ω) to D
0(Ω);

Then prove that it is continuous as a linear functional on D
0(Ω).

Let φ ∈D
0(Ω) be arbitrary. By a preceding corollary, there is a

sequence φk ∈D(Ω), such that φk →φ in D
0(Ω).

According to another corollary, suppφk is contained in some compact
set K ⊆Ω and |φk −φ|0 → 0 on K .

Choose ψ ∈D(Ω), such that 0≤ψ≤ 1 in Ω and ψ= 1 on K .

Now |φj (x)−φk (x)| ≤ |φj −φk |0ψ(x).

But T ≥ 0 and |φj −φk |
j ,k→∞−→ 0.

Hence, |T (φj )−T (φk )| ≤ |φj −φk |0T (ψ)
j ,k→∞−→ 0.

Therefore, limT (φk) exists and we denote it by T (φ).
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Example (Cont’d)

If ψk ∈D(Ω) is another sequence which tends to φ in D
0(Ω), the

above argument implies that T (φk)−T (ψk )
k→∞−→ 0.

Therefore the limit T (φ) does not depend on the particular choice of
the sequence φk , and we have shown that T has an extension to
D

0(Ω), which is clearly linear.

To show that T is continuous on D
0(Ω), it suffices to show (by work

immediately preceding) that T is positive on D
0(Ω).

Let φ be any function in C 0
0 (Ω) and φ≥ 0.

Then, for k large enough,

φ∗γk ∈D(Ω);
φ∗γk ≥ 0.

Hence, T (φ∗γk)≥ 0.

Now φ∗γk
k→∞−→ φ in D

0(Ω) and T (φ)= limT (φ∗γk )≥ 0.
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Subsection 8

Distributions Defined by Powers of x
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Analyticity of Distributions

Let λ 7→Tλ be a mapping from C to D
′(Ω).

We say Tλ is analytic in Λ if the function λ 7→ 〈Tλ,φ〉 is analytic in
Λ, for every φ ∈D(Ω).

This definition extends the usual meaning of the analytic dependence
of a function on a complex variable λ:

lim
λ→λ0

〈Tλ,φ〉−〈Tλ0
,φ〉

λ−λ0
=

〈

lim
λ→λ0

Tλ−Tλ0

λ−λ0
,φ

〉

, φ ∈D(Ω).

Thus, when Tλ is a function of λ which is differentiable at λ0, 〈Tλ,φ〉
is differentiable at λ0.

When the limit in the equation exists, it defines a distribution which is
denoted by (∂λT )λ0

.
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Extending Analyticity in the Distributional Sense

Let Tλ be the regular distribution defined by |x |λ = eλ log |x |.

The function |x |λ is locally integrable when Reλ>−1.

So Tλ is analytic in λ on Reλ>−1.

We will exploit the above definition of analyticity in the distributional
sense to extend |x |λ as a distribution beyond Reλ>−1.

This is done by continuing the function 〈|x |λ,φ〉 analytically, for every
φ ∈D(R), to a larger connected subset of the complex λ-plane.
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Example

Consider the function

xλ+ =
{

xλ, x > 0
0, x ≤ 0

.

It is a locally integrable function for Reλ>−1.

It determines the distribution

〈xλ+ ,φ〉 =
∫∞

0
xλφ(x)dx , φ ∈D(R).

The right-hand side is analytic in Reλ>−1, for every φ ∈D(R).

So the distribution xλ+ is also analytic in Reλ>−1.
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Example

If Reλ>−1 and φ ∈D(R), we can write

∫∞
0 xλφ(x)dx =

∫∞
0 xλφ(x)dx −φ(0)

∫∞
0 xλH(1−x)dx +φ(0)

∫1
0 xλdx

=
∫∞
0 xλ[φ(x)−φ(0)H(1−x)]dx +φ(0)

∫1
0 xλdx

=
∫1
0 xλ[φ(x)−φ(0)]dx +

∫∞
1 xλφ(x)dx + 1

λ+1
φ(0).

The first integral on the right is convergent if Reλ>−2.
Note that φ is differentiable at 0.

So xλ[φ(x)−φ(0)]= x1+λ φ(x)−φ(0)
x

is integrable on [0,1].
The second integral is finite for all λ∈C.
The third term is finite for all λ 6= −1.

Therefore, xλ can be continued analytically to

Λ= {λ ∈C :Reλ>−2,λ 6= −1}.
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Example (Cont’d)

The subtraction of φ(0)H(1−x) from φ(x) is designed to reduce the
order of the singularity of xλ at x = 0 while still preserving compact
support for the integrand.

This process can be repeated with higher order terms from the Taylor
expansion of φ at x = 0. In the m-th step,

〈xλ+ ,φ〉 =
∫∞

0
xλ

[

φ(x)− {φ(0)+·· · + xm−1

(m−1)!
φ(m−1)(0)}H(1−x)

]

dx

+
m
∑

k=1

φ(k−1)(0)

∫1

0

xλ+k−1

(k−1)!dx

=
∫1

0
xλ

[

φ(x)−φ(0)−xφ′(0)−·· ·− xm−1

(m−1)!φ
(m−1)(0)

]

dx

+
∫∞

1
xλφ(x)dx +

m
∑

k=1

1
(λ+k)(k−1)!

φ(k−1)(0).
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Example (Conclusion)

The first integral on the right converges for Reλ>−m−1.

φ(x)−
∑m

k=1 x
k−1 φ(k−1)(0)

(k−1)!
is of order xm in the neighborhood of 0.

When it is multiplied by xλ, with Reλ>−m−1, the resulting function
is integrable in the neighborhood of x = 0.
The third term on the right-hand side has simple poles at
λ=−1,−2, . . . ,−m.

So the distribution xλ+ may be continued analytically into
Reλ>−m−1,λ 6= −1,−2, . . . ,−m.

Since m is arbitrary, xλ+ is defined for all λ ∈C−Z−, where Z− is the
set of negative integers.
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Example

Consider the function

xλ− =
{

(−x)λ, x < 0
0, x ≥ 0

.

It is locally integrable for Reλ>−1.

It is also in D
′(R) and analytic for Reλ>−1.

It can be continued analytically into Reλ>−m−1, λ 6= −1, . . . ,−m, by

〈xλ,φ〉 =
∫0
−∞ (−x)λφ(x)dx

=
∫∞
0 xλφ(−x)dx

=
∫1

0
xλ

[

φ(−x)−
m
∑

k=1

(−x)k−1

(k−1)! φ
(k−1)(0)

]

dx

+
∫∞

1
xλφ(−x)dx +

m
∑

k=1

(−1)k−1

(λ+k)(k−1)!φ
(k−1)(0).

Hence, the distribution xλ− is also defined for all λ ∈C−Z−.
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Primitives

Given a distribution T ∈D
′(R), any distribution S which satisfies

S ′(φ)=T (φ), for every φ ∈D(R), is called a primitive of T .

The extension of the function xλ+ as a distribution outside Reλ>−1
should not be confused with the function xλ+ which is well defined on
R− {0} for all values of λ.

The distribution xλ+ and the function xλ+ are quite different when
Reλ<−1.
The more we have to change the integral

∫

xλφ(x)dx to arrive at a
definition of 〈xλ,φ〉, the more the resulting distribution will deviate
from the function xλ.

Some books use the notation [xλ+ ] or pfxλ+, the “pseudo-function” xλ+,
to designate the distribution xλ+.
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