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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Subsection 1

The Dual Space of C∞(Ω)
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

The Space E
′(Ω)

We use E (Ω) to denote the Fréchet space C∞(Ω) topologized by the
system of seminorms

pm,K (φ)= sup {|∂αφ(x)| : x ∈K , |α| ≤m},

where m ∈N0 and K runs through the compact subsets of Ω.

We have seen that:
DK is a closed subspace of E (Ω), for every compact set K ⊆Ω;
The topology defined on DK is the subspace topology inherited from
E (Ω).

Therefore, the identity map from DK to E (Ω) is continuous.

It follows that every continuous linear functional on E (Ω) is also a
continuous linear functional on DK .

Since this is true for every K ⊆Ω, every continuous linear function on
E (Ω) is a continuous linear functional on D(Ω).

So every element in E
′(Ω), the dual space of E (Ω), is a distribution.
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Characterization of E
′(Ω)

Theorem

For any open set Ω in Rn, E
′(Ω) is the subspace of D

′(Ω) consisting of
distributions with compact support.

We saw that every element of E
′(Ω) defines a distribution in D

′(Ω).

We now show that different elements in E
′(Ω) define different

distributions by showing that D(Ω) is a dense subspace of E (Ω).

Let (Ki) be an increasing sequence of compact subsets of Ω whose
union is Ω. Let (φi ) be a corresponding sequence in D(Ω), such that
φi = 1 on a neighborhood of Ki . Let ψ ∈ E (Ω). The function ψi =φiψ

is in D(Ω). The function ψi →ψ in E (Ω). Now, if T = 0 in D
′(Ω),

then T (φ)= 0, for all φ ∈D(Ω). We obtain T (ψ)= limT (ψi )= 0.

Hence, T = 0 in E
′(Ω).
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Characterization of E
′(Ω) (Cont’d)

Let T ∈ E
′(Ω). Then there is a bounded neighborhood of 0 in E (Ω)

which is mapped by T into the unit disc in C.

Thus, there is an integer m ∈N0, a compact set K ⊆Ω and a positive
number r , such that the neighborhood of 0 in E (Ω) defined by

U = {φ ∈ E (Ω) : pm,K (φ)< r }

satisfies |T (φ)| ≤ 1, for every φ ∈U .

Suppose φ ∈ E (Ω) and pm,K (φ)= 0.

Then λφ ∈U , for every λ> 0. So |T (λφ)| =λ|T (φ)| ≤ 1.

Hence, |T (φ)| ≤ 1
λ , for every λ> 0. This means that T (φ)= 0.

But pm,K (φ)= 0, for every φ ∈D(Ω−K ). Hence T = 0 on Ω−K .

That is, suppT ⊆K .
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Example

The sequence Tn =
∑n

k=1
akδk , with a> 0, converges in D

′(R), but
not in E

′(R).

Let φ ∈D(R). Then, there exists an integer m, such that φ= 0
outside [−m,m], and

〈Tn,φ〉 =
m∑

k=1

akφ(k), if n≥m.

Consequently, limn→∞ 〈Tn,φ〉 =
∑m

1 akφ(k) exists in D
′(R).

The sequence (Tn) also lies in E
′(R).

But it does not converge E
′(R).

Consider the test function φ(x)= a−x ∈ E (R). We get

〈Tn,φ〉 =
n∑
1

aka−k = n→∞.

Thus, the infinite sum
∑∞

1 akδk lies in D
′(R), but not in E

′(R).
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Zero Support and the Dirac Measure

Theorem

Every distribution whose support is {0} may be represented by a unique
finite linear combination of the derivatives of the Dirac measure δ.

Suppose T ∈D
′(Ω), 0 ∈Ω and suppT = {0}.

From a previous theorem, T has finite order, say m.

By the preceding theorem, T lies in E
′(Ω).

For any φ ∈ E (Ω), Taylor’s Formula gives

φ(x)=
∑

|α|≤m

1

α!
∂αφ(0)xα+Rm(x),

where Rm ∈ E (Ω) and ∂αRm(0)= 0, for all |α| ≤m.

Since ∂αRm is continuous at 0 for every α, the derivatives |∂αRm(x)|,
|α| ≤m can be made arbitrarily small by taking |x | small enough.

Thus, for every ε> 0, there is r > 0, such that |∂αRm(x)| < ε, when
x ∈B(0,r)= {x : |x | < r } and |α| ≤m.
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Zero Support and the Dirac Measure (Cont’d)

Using a previous result, we can choose ψr ∈D(Ω), such that
suppψr ⊆B(0,r) and ψr = 1 on B(0,

1
2
r).

The function φr =ψrRm lies in D(Ω).

By Leibniz’s formula, ∂αφr is a finite linear combination of products of
the form ∂α−βψr∂

βRm with β running through |β| ≤ |α| ≤m.

Now ∂α−βψr is bounded for all |α| ≤m.

So there is a constant M1 (which depends on r and m), such that, for
all x ∈Ω,

|∂αφr (x)| ≤ M1|∂βRm(x)| (|β| ≤ |α| ≤m)
≤ εM1.

With Rm =φr on a neighborhood of suppT , |T (Rm)| = |T (φr )|
≤M2|φr |m, for some constant M2, since T is of order m.

Thus, |T (Rm)| ≤ εM1M2.

Since ε> 0 was arbitrary, we conclude that T (Rm)= 0.
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Zero Support and the Dirac Measure (Conclusion)

Now we get back to

φ(x)=
∑

|α|≤m

1

α!
∂αφ(0)xα+Rm(x).

We can write

T (φ)=
∑

|α|≤m

1

α!
T (xα)∂αφ(0)=

∑

|α|≤m
cα∂

αδ(φ),

where cα = (−1)|α|
T (xα)
α! .

For uniqueness, assume
∑

|α|≤m cα∂
αδ(φ)= 0.

Then,for every φ ∈ E (Ω),
∑

|α|≤m(−1)|α|cα∂
αφ(0)= 0.

Choose φ(x)= xβ, |β| ≤m, to obtain

0=
∑

|α|≤m
(−1)|α|cα∂

αφ(0)= (−1)|β|cββ!.

Thus, cα = 0, for all |α| ≤m.
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Example

Let m be a positive integer and T be a distribution on R.

Claim: xmT = 0 if and only if T is a linear combination of
δ,δ′, . . . ,δ(m−1) with constant coefficients.

Suppose, first, that T =
∑

i<m ciδ
(i).

Then, for all φ ∈D(R),

xmT (φ) = T (xmφ)

=
∑

i<m ci 〈δ(i),xmφ〉
=

∑
i<m(−1)ici 〈δ,∂i(xmφ)〉

= 0.
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Example (Converse)

Conversely, let T (xmφ)= 0, for every φ ∈D(R).

Claim: suppT = {0}.

Let Ω be an open subset of R− {0} and ψ be in D(Ω). Define

φ(x)=
{ 1

xmψ, on suppψ
0, on R− suppψ

.

φ(x) lies in D(R). Moreover, T (ψ)=T (xmφ)= 0.

Hence, T vanishes on every open subset of R− {0}.

So it vanished on R− {0} itself. Therefore, suppT = {0}.

By the theorem, T may be represented by a finite sum of the form

T =
ℓ∑

k=0

ckδ
(k)

.
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Distributions with Compact Support and Convolutions The Dual Space of C∞(Ω)

Example (Cont’d)

Claim: ck = 0, for k ≥m.

We have the following properties:

〈δ(k),x jφ〉 = 0, when k < j ;
〈δ(k),xkφ〉 = (−1)kk!φ(0).

Suppose in T =
∑ℓ

k=0
ckδ

(k), cℓ 6= 0, for ℓ≥m.

Then for φ ∈D(R), such that φ(0) 6= 0, we have

0 = 〈xmT ,xℓ−mφ〉
= 〈T ,xℓφ〉
=

∑ℓ
k=0

〈ckδ(k),xℓφ〉
= cℓ(−1)ℓℓ!φ(0).

This gives a contradiction.

Thus ck = 0, for k ≥m.
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Distributions with Compact Support and Convolutions Tensor Product

Subsection 2

Tensor Product
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Distributions with Compact Support and Convolutions Tensor Product

Direct or Tensor Product

Let Ω1 be an open set in Rn1 and Ω2 be an open set in Rn2 .

The product
Ω1×Ω2 = {(x ,y) : x ∈Ω1,y ∈Ω2}

is an open set in the Euclidean space Rn1+n2 =Rn1 ×Rn2 .

Let f be a function on Ω1 and g a function on Ω2.

We define the direct, or tensor, product f ⊗g on Ω1×Ω2 by

(f ⊗g)(x ,y)= f (x)g(y).

Clearly (f ⊗g)(x ,y)= (g ⊗ f )(y ,x), for every pair (x ,y) ∈Ω1×Ω2.

C∞
0 (Ω1)×C∞

0 (Ω2) denotes the linear space of functions φ(x ,y) that
can be represented as finite sums of products of the form φ1(x)φ2(y)
with φi ∈C∞

0 (Ωi ), i = 1,2.

We show it is a dense subspace of the linear space C∞
0 (Ω1×Ω2).
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Distributions with Compact Support and Convolutions Tensor Product

Density of C∞
0 (R)×C∞

0 (R) in C∞
0 (R2)

Theorem

For φ(x ,y) ∈C∞
0 (Rm+n), there are φij(x) ∈C∞

0 (Rn) and ψij(y) ∈C∞
0 (Rm),

such that φi(x ,y)=
∑ki

j=1
φij (x)ψij (y) converges to φ in D(Rn+m).

We present an outline of the proof for n=m= 1.

Define

Φ(x ,y ,t)=





1

(2
p
πt)2

∫∞
−∞

∫∞
−∞φ(ξ,η)e−

(x−ξ)2+(y−η)2
4t dξdη, if t > 0

φ(x ,y), if t = 0
.

Changing variables ξ1 = ξ−x
2
p
t
, η1 =

η−y
2
p
t
, we get

Φ(x ,y ,t)=
1

(
p
π)2

∫∞

−∞

∫∞

−∞
φ(x +2ξ1

p
t,y +2η1

p
t)e−(xi

2
1+η

2
1)dξ1dη1.

George Voutsadakis (LSSU) Theory of Distributions January 2024 16 / 116



Distributions with Compact Support and Convolutions Tensor Product

Proof (Cont’d)

Recall that
∫∞
−∞

∫∞
−∞ e−(ξ

2
1+η

2
1)dξ1dη1 =π.

So we get

|Φ(x ,y ,t)−φ(x ,y)|

= 1
(
p
π)2

∫∞

−∞

∫∞

−∞
|φ(x +2ξ

p
t,y +2η

p
t)−φ(x ,y)|e−(ξ2+η2)dξdη

= 1
π

{Ï

ξ2+η2≥T 2
|φ(x +2ξ

p
t ,y +2η

p
t)−φ(x ,y)|e−(ξ2+η2)dξdη

+
Ï

ξ2+η2<T 2
|φ(x +2ξ

p
t ,y +2η

p
t)−φ(x ,y)|e−(ξ2+η2)dξdη

}
.

Now we can see that limt→0+ Φ(x ,y ,t)=φ(x ,y) uniformly in (x ,y):

φ is bounded and e−(ξ
2+η2) is integrable in R

2.
So the first term in the sum approaches 0 as T →∞.
The second term, for fixed T > 0, approaches 0 as t → 0+.
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Distributions with Compact Support and Convolutions Tensor Product

Proof (Cont’d)

Now consider

∂k+ℓΦ(x ,y ,t)

∂xk∂yℓ
=





∫∞
−∞

∫∞
−∞

1

(2
p
πt)2

∂k+ℓφ(ξ,η)

∂ξk∂ηℓ e−
(x−ξ)2+(y−η)2

4t dξdη, if t > 0

∂k+ℓφ(x ,y )

∂xk∂y ℓ , if t = 0
.

Reasoning as before, we obtain that, uniformly in (x ,y),

lim
t→0+

∂k+ℓΦ(x ,y ,t)

∂xk∂yℓ
=

∂k+ℓφ(x ,y)

∂xk∂yℓ
.

Now Φ(x ,y ,t), t > 0, may be extended to a holomorphic function of
complex x ,y , for |x | <∞ and |y | <∞.

So, for all ε> 0 and fixed t > 0, Φ(x ,y ,t) may be expanded into a
Taylor series

Φ(x ,y ,t)=
∞∑

k=0

k∑
s=0

cs(t)x
syk−s .
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Distributions with Compact Support and Convolutions Tensor Product

Proof (Cont’d)

We expanded into Taylor series to obtain

Φ(x ,y ,t)=
∞∑

k=0

k∑
s=0

cs(t)x
syk−s .

This is absolutely and uniformly convergent if |x | ≤ ε and |y | ≤ ε.

Differentiating term by term, we get

∂k+ℓΦ(x ,y ,t)

∂xk∂yℓ
=

∞∑

k1=0

k1∑
s=0

cs(t)
∂k+ℓxsyk1−s

∂xk∂yℓ
.

Take {ti }, with ti ≥ 0, ti → 0+.

Choose, for each i , a polynomial section Pi(x ,y) of the polynomial∑∞
k=0

∑k
s=0 cs(t)x

syk−s , such that limi→∞Pi(x ,y)=φ(x ,y) in E (R2).

Thus, for every compact K ⊆R2, limi→∞∂sPi(x ,y)= ∂sφ(x ,y)
uniformly on K , for all ∂s . Adopt u(x) ∈C∞

0 (R), v(y) ∈C∞
0 (R), such

that u(x)v(y)= 1 on supp(φ(x ,y)). Then φi (x ,y)= u(x)v(y)Pi (x ,y)
satisfy our requirements.
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Distributions with Compact Support and Convolutions Tensor Product

The Distributions T1 and T2

Ti will denote a distribution in Ωi .

For a fixed y ∈Ω2, the function φ(·,y) belongs to C∞
0 (Ω1);

So T1 maps φ(·,y) to the number T1(φ(·,y)), denoted T1(φ)(y).

Thus, T1(φ) is a function on Ω2.

Similarly, T2(φ) is a function on Ω1.

The next theorem shows that T1(φ) and T2(φ) preserve all the
smoothness properties of the test function space D.
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Distributions with Compact Support and Convolutions Tensor Product

Derivatives in the Product Space

Theorem

If φ(x ,y) ∈D(Ω1×Ω2) and T1 ∈D
′(Ω1), then T1(φ) ∈D(Ω2) and

∂
β
yT1(φ)=T1(∂

β
yφ), for all β ∈Nn2

0 .

For any point y ∈Ω2, let h be any nonzero real number such that
B(y ,2|h|)⊆Ω2. Let hk = (0, . . . ,h, . . . ,0) be the point in Rn2 , with all
coordinates 0 except the k-th.

Let φ ∈C∞
0 (Ω1×Ω2). But φ is differentiable with respect to y . So

φ(x ,y +hk)=φ(x ,y)+∂ykφ(x ,y)h+R(x ,y ,h),

where 1
h
|R(x ,y ,h)|→ 0 as h→ 0. Using the linearity and continuity of

T1, we see that T1(φ(x ,y)) has a k-th partial derivative, as a function
of y , and that ∂ykT1(φ(·,y))=T1(∂ykφ(·,y)).
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Distributions with Compact Support and Convolutions Tensor Product

Derivatives in the Product Space (Cont’d)

We saw that ∂ykT1(φ(·,y))=T1(∂ykφ(·,y)).

The formula ∂
β
yT1(φ)=T1(∂

β
yφ) follows by induction.

The assumption φ ∈C∞
0 (Ω1×Ω2) also implies that, for every x in a

compact subset of Ω1, the function ∂
β
yφ is continuous on Ω2.

Hence, by the continuity of T1, so is T1(∂
β
yφ).

But φ(x ,y) has compact support in Ω1×Ω2.

So the function T1(φ(·,y)) has compact support in Ω2.
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Distributions with Compact Support and Convolutions Tensor Product

Consequence for E and C∞

Corollary

If φ(x ,y) ∈ E (Ω1×Ω2) and T1 ∈ E
′(Ω1), then T1(φ) ∈ E (Ω2) and

∂
β
yT1(φ)=T1(∂

β
yφ), for all β ∈Nn2

0
.

This result may be proved by replacing φ by ψφ, where ψ ∈C∞
0 (Ω)

equals 1 on a neighborhood of suppT1 and using the theorem.

Corollary

If φ(x ,y) ∈C∞(Ω1×Ω2) has compact support as a function of x and y
separately, then:

(a) T1(φ)(y) ∈C∞(Ω2), for every T1 ∈D
′(Ω1);

(b) T2(φ)(x) ∈C∞(Ω1), for every T2 ∈D
′(Ω2).
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Distributions with Compact Support and Convolutions Tensor Product

Example

Let φ,ψ ∈D(R).

(a) The tensor product (φ⊗ψ)(x ,y) =φ(x)ψ(y) is in D(R2).
For any T ∈D

′(R), T (φ⊗ψ)=T (φ)ψ(y) is a function in D(R).
(b) The function φ(x +y) lies in C∞(R2).

However, it does not have compact support.
E.g., φ 6= 0 on the line x +y = c in R

2 whenever φ(c) 6= 0.
But, as a function of x and y separately, φ(x+y) has compact support.

We have

〈1x ,φ(x ,y)〉 =
∫

φ(x +y)dx =
∫

φ(ξ)dξ= constant.

This is a C∞(R) function in agreement with the last corollary.

We also have 〈δx ,φ(x +y)〉 =φ(y). This lies in C∞
0
(R).

This would seem to suggest that if Ti in the corollary is taken in
E
′(Ωi ), then Ti (φ) will have compact support.
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Distributions with Compact Support and Convolutions Tensor Product

Example (Cont’d)

Now let f ∈ L1
loc
(Ω1) and g ∈ L1

loc
(Ω2).

Then f ⊗g is clearly in L1
loc
(Ω1×Ω2).

Let φi ∈D(Ωi ), i = 1,2.

Then φ1⊗φ2 ∈D(Ω1×Ω2) and we have

〈f ⊗g ,φ1⊗φ2〉 =
∫
Ω1×Ω2

f (x)g(y)φ1(x)φ2(y)dxdy

=
∫
Ω1

f (x)φ1(x)dx
∫
Ω2

g(y)φ2(y)dy

= 〈f ,φ1〉〈g ,φ2〉.

The next theorem generalizes this result.
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Distributions with Compact Support and Convolutions Tensor Product

The Tensor Product Distribution

Theorem

If Ti ∈D
′(Ωi ), i = 1,2, then there is a unique T1⊗T2 ∈D

′(Ω1×Ω2),
defined by

(T1⊗T2)(φ1⊗φ2)=T1(φ1)T2(φ2),

for all tensor products φ1⊗φ2, where φi ∈D(Ωi ), and such that

(T1⊗T2)(φ)=T1(T2(φ))=T2(T1(φ)), φ ∈D(Ω1 ×Ω2).

Uniqueness follows from denseness of D(Ω1)×D(Ω2) in D(Ω1×Ω2).

We show that T1⊗T2 is a distribution of Ω1×Ω2.

Let Ki be a compact subset of Ωi .

By a previous theorem, there is a nonnegative integer mi , and a
nonnegative constant Mi , i = 1,2, such that, for all φi ∈DKi

,
|Ti(φi )| ≤Mi |φi |mi

.
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Distributions with Compact Support and Convolutions Tensor Product

The Tensor Product Distribution (Cont’d)

Let φ ∈DK , where K =K1×K2.

The preceding theorem implies that T2(φ) is in DK1
.

Therefore, T1(T2(φ)) is well defined.

Moreover, it satisfies

|T1(T2(φ))| ≤M1|T2(φ)|m1 .

We also have ∂αxT2(φ(x , ·))=T2(∂
α
xφ(x , ·)).

So we obtain

|T2(φ(x , ·))|m1 = supx∈K1
{∂αxT2(φ(x , ·))| : |α| ≤m1}

= supx∈K1
{T2(∂

α
xφ(x , ·))| : |α| ≤m1}

≤ M2 sup|α|≤m1
x∈K1

|∂αxφ(x , ·)|m2

≤ M2 supx∈K1,y∈K2
{|∂αx ∂

β
yφ(x ,y)| : |α| ≤m1, |β| ≤m2}.
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Distributions with Compact Support and Convolutions Tensor Product

The Tensor Product Distribution (Cont’d)

Thus, using the displayed inequality, we obtain

|T1(T2(φ))| ≤M1M2 sup
|γ|≤m
x∈K

|∂γφ| =M1M2|φ|m,

where γ=α+β and m=m1+m2.

This inequality holds for all φ ∈DK and all K =K1×K2 ⊆Ω1×Ω2.

By a previous theorem, the linear functional defined on D(Ω1×Ω2) by
φ 7→T1(T2(φ)) is a distribution in Ω1×Ω2.

Similarly, the linear functional defined on D(Ω1×Ω2) by
φ 7→T2(T1(φ)) also lies in D

′(Ω1×Ω2).

Now T1(T2(φ1⊗φ2))=T1(φ1)T2(φ2)=T2(T1(φ1⊗φ2)), φi ∈D(Ωi ).

Hence, by uniqueness, T1(T2(φ))=T2(T1(φ)), for all φ ∈D(Ω1 ×Ω2).
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Distributions with Compact Support and Convolutions Tensor Product

The Direct or Tensor Product of Distributions

With Ti ∈D
′(Ωi ), the distribution T1⊗T2 =T2⊗T1 is called the

direct, or tensor, product of T1 and T2.

Strictly speaking, T1⊗T2 and T2⊗T1 act on two different spaces and
their equality should be understood as the equality of their images.

We finally show that supp(T1⊗T2)= (suppT1)× (suppT2).

Let suppTi =Ki , i = 1,2. Suppose φ 6∈K1×K2.

Then φ 6∈D(Ω1)×K2 or φ 6∈K1×D(Ω2).

Consequently, (T1⊗T2)(φ)= 0. I.e., φ 6∈ supp(T1⊗T2).

Hence, supp(T1⊗T2)⊆K1×K2.

Now (T1⊗T2)(φ1⊗φ2)=T1(φ1)T2(φ2), for all φi ∈D(Ωi ).

Hence, K1×K2 ⊆ supp(T1⊗T2).
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Example

Given ξ ∈Ω1 and η ∈Ω2, we have

suppδξ = {ξ};
supp(δξ⊗δη) = {(ξ,η)}.

This implies that δξ⊗δη = δ(ξ,η).
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Subsection 3

Convolution
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Problem with the Domain of a Convolution

We wish to extend the definition of the convolution of a C∞
0 function

with a locally integrable function.

We define (tentatively) the convolution of two distributions T1 and
T2 on Rn by setting, for all φ ∈D(Rn).

(T1∗T2)(φ)= (T1⊗T2)(φ(x +y))=T1(T2(φ(x +y))).

If φ is in D(Rn), ψ(x ,y)=φ(x +y) is a C∞ function in R2n.

The boundedness of suppφ does not guarantee the boundedness of
{(x ,y) ∈R2n : x +y ∈ suppφ}.

So φ(x +y) as a function of (x ,y) does not have compact support in
R2n.

Therefore, the right-hand side is not necessarily bounded unless
supp(T1⊗T2)= (suppT1)× (suppT2) intersects supp(φ(x +y)) in a
bounded set.
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Defining a Convolution

If K is the support of φ, then

supp(φ(x +y))= {(x ,y) ∈R2n : x +y ∈K }.

Suppose either T1 or T2 has compact support.

Then the intersection of (suppT1)× (suppT2) with supp(φ(x +y)) is
compact.

In fact, if either x or y is bounded and x +y is bounded, then both x

and y are bounded.

In that case the right-hand side in

(T1∗T2)(φ)= (T1⊗T2)(φ(x +y))=T1(T2(φ(x +y)))

is well defined.

Moreover, since T1⊗T2 =T2⊗T1, we have T1∗T2 =T2∗T1.

Thus, the equation defines the convolution of two distributions
T1,T2 ∈D(Rn) provided at least one of them has compact support.
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Definition of a Convolution

Let Ti be defined by fi ∈ L1
loc
(Rn), i = 1,2, and either f1 or f2 has

compact support.

Then
(T1∗T2)(φ) = T1(T2(φ(x +y)))

=
∫
f1(x)

∫
f2(y)φ(x +y)dydx

=
∫∫

f1(x −y)f2(y)φ(x)dydx

= 〈f1∗ f2,φ〉.

Here

(f1∗ f2)(x)=
∫
f1(x −y)f2(y)dy =

∫
f1(y)f2(x −y)dy

is a locally integrable function which represents the distribution
T1∗T2 and extends the definition of f1∗ f2.
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On the Necessity of Compact Support

Although the convolution of two distributions is always well defined
when one of them has compact support, this condition is not always
necessary.

Example: Let g be bounded (measurable), with M = sup|g |.
Let f ∈ L1(Rn).

Then ∫
f (y)g(x −y)dy ≤M‖f ‖1.

Thus, g may be convoluted with f

Naturally, this result holds if g is merely bounded almost everywhere
in Rn.
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Convolution by L∞(Ω)

The linear space of complex measurable functions on Ω which are
bounded almost everywhere is denoted by L∞(Ω).

L∞(Ω) becomes a normed linear space if we define the norm of
g ∈ L∞(Ω), called the essential supremum of g , by

‖g‖∞ = inf {M : |g(x)| ≤M a.e. in Ω}.

Thus, we can state that, if f ∈ L1(Rn) and g ∈ L∞(Rn), then

|f ∗g | ≤ ‖f ‖1‖g‖∞.

So, if f ∈ L1(Rn) and g ∈ L∞(Rn), then f ∗g ∈ L∞(Rn) and

‖f ∗g‖∞ ≤‖f ‖1‖g‖∞.

George Voutsadakis (LSSU) Theory of Distributions January 2024 36 / 116



Distributions with Compact Support and Convolutions Convolution

Convolution of L1(Rn) Functions

When f and g are both in L1(Rn) it is not obvious that their
convolution (f ∗g)(x)=

∫
f (x −y)g(y)dy exists.

E.g., at x = 0, if we take f (−y)= g(y), this integral may diverge, since
not every integrable function is square integrable.

We show that the function F (x)=
∫
f (x −y)g(y)dy exists for almost

all x in Rn by showing that F = f ∗g ∈ L1(Rn).

Let Fk(x)=
∫

|y |≤k
f (x −y)g(y)dy . So |Fk(x)| ≤

∫

|y |≤k
|f (x −y)g(y)|dy .

Now we get
∫
|Fk(x)|dx ≤

∫
[
∫
|y |≤k |f (x −y)g(y)|dy ]dx

=
∫
|y |≤k [

∫
|f (x −y)|dx ]|g(y)|dy

= ‖f ‖1

∫
|y |≤k |g(y)|dy

≤ ‖f ‖1‖g‖1.

In the limit as k →∞, we obtain ‖F‖1 = ‖f ∗g‖1 ≤ ‖f ‖1‖g‖1.
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Convolution of L1(Rn) and Lp(Rn), 1≤ p ≤∞

Let f ∈ L1(Rn) and g ∈ Lp(Rn), 1≤ p ≤∞.

We saw that, if p = 1,∞, f ∗g ∈ Lp(Rn) and

‖f ∗g‖p ≤‖f ‖1‖g‖p .

Now consider 1< p <∞.

Since g ∈ Lp(Rn), we get |g |p ∈ L1(Rn).

Hence, since f ∈ L1(Rn), we have a.e.
∫

|f (x −y)||g(y)|pdy <∞.

Therefore, as a function of y , the product |f (x −y)|1/p |g(y)| lies in
Lp(Rn), for almost all x .

Let q be such that 1
p + 1

q = 1.

Since |f | ∈ L1(Rn), we have (for almost all x) |f (x −y)|1/q ∈ Lq(Rn).
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Convolution of L1(Rn) and Lp(Rn), 1≤ p ≤∞

Now, by Hölder’s inequality, the function

|f (x −y)g(y)| = [|f (x −y)|1/p |g(y)|][|f (x −y)|1/q ]

lies in L1(Rn), for almost all x .

For such values of x , let h(x)=
∫
f (x −y)g(y)dy .

Hölder’s inequality then gives

|h(x)| ≤
∫
|f (x −y)||g(y)|dy

≤ [
∫
|f (x −y)||g(y)|pdy ]1/p [

∫
|f (x −y)|dy ]1/q ;

|h(x)|p ≤ [
∫
|f (x −y)||g(y)|pdy ]‖f ‖p/q

1
;∫

|h(x)|pdx ≤ ‖f ‖p/q1

∫∫
[|f (x −y)||g(y)|pdy ]dx

= ‖f ‖p/q
1

∫
[
∫
|f (x −y)|dx ]|g(y)|pdy

= ‖f ‖p/q
1

‖f ‖1‖g‖pp
= ‖f ‖p

1
‖g‖pp .

Thus, h= f ∗g ∈ Lp(Rn) and ‖f ∗g‖p ≤ ‖f ‖1‖g‖p.
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Example

Let T ∈D
′(Rn). Then, for any φ ∈D(Rn),

(δ∗T )(φ) = (δ⊗T )(φ(x +y))
= Ty (δ(φ(x +y)))
= Ty (φ(y))
= T (φ).

Thus, δ is the unit element of the product operation ∗.

Furthermore,

(∂αδ)∗T (φ) = Ty ((∂
αδ)xφ(x +y))

= Ty ((−1)|α|∂αφ(y))
= ∂αT (φ).

Therefore, (∂αδ)∗T = ∂αT = δ∗∂αT .
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Basic Property 1

1. supp(T1∗T2)⊆ suppT1+ suppT2.

Let suppTi =Ei , i = 1,2. Suppose, without loss of generality, that Ei is
compact and E2 is closed.

First, we show that the set E1+E2 = {x +y : x ∈E1,y ∈E2} is closed.

Let (xk +yk), xk ∈E1, yk ∈E2, be a sequence converging to a point a.

Since E1 is compact, (xk) has a subsequence (x ′
k
), with xk → x ∈E1.

Now both (x ′
k
) and the corresponding subsequence (x ′

k
+y ′

k
) converge.

Since E2 is closed, their difference (y ′
k
) also converges to some y ∈E2.

Thus, a= x +y is in E1+E2. So E1+E2 is closed.

Thus, Ω=Rn− (E1+E2) is open.

Now for any (x ,y) ∈ supp(T1⊗T2)=E1×E2, we have x +y ∈E1+E2.

So supp(T1⊗T2) does not intersect supp(φ(x +y)), for any φ ∈D(Ω).

Hence T1∗T2 vanishes on D(Ω) and its support must be in E1+E2.

In particular, if T1 and T2 have compact support, so does T1∗T2.
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Basic Property 2

2. T1∗ (T2∗T3)= (T1∗T2)∗T3 =T1∗T2∗T3, for T1,T2,T3 ∈D(Rn)
and at least two of the three distributions have compact support.

Both T1∗T2 and T2∗T3 are in D
′(Rn).

The convolutions T1∗ (T2∗T3) and (T1∗T2)∗T3 are well defined.

To show that they are equal, note that, for any φ ∈D(Rn),

[T1∗ (T2∗T3)](φ) = [T1⊗ (T2 ∗T3)](φ(x +y ′))
= [T1⊗ (T2 ⊗T3)](φ(x +y +z))
= [(T1⊗T2)⊗T3](φ(x +y +z))
= [(T1∗T2)∗T3](φ).

This associative property of ∗, implies that the linear space E
′(Rn) is

a commutative and associative algebra under the convolution product,
with δ as its unit element.
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Basic Property 3

3. For T1 and T2, with at least one having compact support,

∂α(T1∗T2) = (∂αδ)∗ (T1 ∗T2)
= ((∂αδ)∗T1)∗T2

= (∂αT1)∗T2

= T1∗ (∂αT2).

This follows directly from equation

(∂αδ)∗T = ∂αT = δ∗∂αT

and the commutative and associative properties of ∗.
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Basic Property 4: Translations in Rn

4. Let f is a function on Rn and h is any point in Rn.

The translation τh of f by h is the function τhf defined on Rn by

τhf (x)= f (x −h).

We clearly have τhφ ∈C∞
0 (Rn), whenever φ ∈C∞

0 (Rn).

We define the translation of the distribution T ∈D
′(Rn) by

(τhT )(φ)=T (τ−hφ), φ ∈D(Rn).

which is again a distribution in Rn.

When the distribution T is defined by a locally integrable function
f (x), its translation τhT is clearly defined by f (x −h).

In the case of the Dirac measure, we have

τhδ(φ)= δ(τ−hφ)=φ(h)= δh(φ).

This implies that τhδ= δh.
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Translations in Rn (Cont’d)

More generally, for any T ∈D
′(Rn)

τhT (φ) = T (τ−hφ)
= Tx(φ(x +h))
= Tx(δh(φ(x +y)))
= (δh ∗T )(φ).

Therefore, τhT = δh ∗T , T ∈D
′(Rn).

If either T1 or T2 has compact support, this gives

τh(T1∗T2) = δh ∗ (T1∗T2) (preceding property)
= (δh ∗T1)∗T2 (associativiy)
= (τhT1)∗T2 (preceding property)
= T1∗ (τhT2). (commutativity)
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Convolutions of Multiple Distributions

Even though we can sometimes define the convolution product of
several distributions where more than one is without compact support,
such products may not satisfy all the properties listed above.

Example: Let 1 denote the distribution represented by the constant
function 1 on Rn. Then (H ∗δ′)∗1 and H ∗ (δ′ ∗1) are both well
defined distributions but they are not equal.

(H ∗δ′)∗1 = (H ′ ∗δ)∗1
= (δ∗δ)∗1
= δ∗1
= 1;

H ∗ (δ′∗1) = H ∗ (δ∗1′)
= H ∗0
= 0.
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Cancelations

The equality δ′∗1= 0 also shows that, if T1 and T2 are two nonzero
distributions, it may happen that T1∗T2 = 0.

In other words, the equality S1∗T = S2∗T , for some T 6= 0, does not
necessarily imply that S1 = S2.

On the positive side, suppose:
T ∈D

′(Rn);
S1,S2 ∈ E

′(Rn), such that

S1∗T = S2 ∗T = δ.

Then we have
S1 = δ∗S1

= (S2∗T )∗S1

= S2∗ (T ∗S1)
= S2∗δ

= S2.
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Convolutions in D
′
+(R)

Let D
′
+(R)= {T ∈D

′(R) : suppT ⊆ [0,∞)}.

If T ,S ∈D
′
+(R), we can still define the convolution of T and S by

〈S ∗T ,φ〉 = 〈Sx ,〈Ty ,φ(x +y)〉〉, φ ∈D(R).

For fixed x and φ ∈D(R), φ(x +y) has compact support in y .

So ψ(x)= 〈Ty ,φ(x +y)〉 is a well-defined function in C∞(R).

Moreover, suppψ is bounded from above.
Suppose y ∈ suppT and x +y ∈ suppφ⊆ [−M ,M ].
Then y ≥ 0 and |x +y | ≤M . Hence, x ≤ x +y ≤M .

Thus, suppS ⊆ [0,∞) intersects suppψ⊆ (−∞,M] in a bounded set.

So we can define 〈S ∗T ,φ〉 = 〈S ,ψ〉 as lim〈S ,φnψ〉, where φn is a C∞
0

function which equals 1 on [−n,n].

Note that supp(S ∗T )⊆ suppS + suppT ⊆ [0,∞).

Hence, S ∗T ∈D
′
+(R), i.e., D

′
+(R) is closed under the operation ∗.
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Inverse of a Distribution

Let T ∈D
′(Rn).

A distribution S ∈D
′(Rn) is called an inverse of T in D

′(Rn) with
respect to the binary operation ∗, and denoted by T−1, if

S ∗T = δ.

We saw that in E
′, if such an inverse exists, it is unique.

It is also unique in any subspace of D
′, where the convolution product

is a commutative and associative algebra, such as D
′
+.
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Examples of Inverse Distributions

We look at the possibility of inverting some simple distributions in R.
(i) Let S ∗H = δ. Then

δ′ = (S ∗H)′ = S ∗H ′ = S ∗δ= S .

Hence, H−1 = δ′.
Similarly, (δ′)−1 = S−1 =H .

(ii) Let S ∗ (δ′−λδ)= δ. Then

S ∗δ′−λS ∗δ= δ

(S ∗δ)′−λS ∗δ= δ

S ′−λS = δ.

Set S = eλxT . Then

S ′ =λeλxT +eλxT ′

eλxT ′ = S ′−λS = δ

T ′ = δ

T =H .

Therefore, (δ′−λδ)−1 = S = eλxH .
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Subsection 4

Regularization of Distributions
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The Reflection of a Function in 0

For any function f on Rn, we define its reflection in 0 as the function
f

̂
defined on Rn by

f

̂
(x)= f (−x).

We extend this definition to D
′(Rn) by duality,

T

̂
(φ)=T (φ

̂
), φ ∈D(Rn).
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Convolution of D
′(Rn) by C∞

0 (Rn)

Theorem

For all T ∈D
′(Rn) and all ψ ∈C∞

0 (Rn), the convolution (T ∗ψ)=T (τxψ

̂
)

is in C∞(Rn).

For any φ ∈D(R), we have

(T ∗ψ)(φ) = Tx(〈ψ(y),φ(x +y)〉);
〈ψ(y),φ(x +y)〉 =

∫
ψ(y)φ(x +y)dy

=
∫
ψ(ξ−x)φ(ξ)dξ

= 〈ψ(ξ−x),φ(ξ)〉
= 〈ψ

̂
(x −ξ),φ(ξ)〉

= 〈τξψ
̂
(x),φ(ξ)〉.

Hence, (T ∗ψ)(φ)=Tx(〈τξψ
̂
(x),φ(ξ)〉)= 〈T (τξψ

̂
),φ(ξ)〉.

Furthermore, (T ∗ψ)(x)=T (τxψ

̂
)=Ty (ψ(x −y)) is a C∞(Rn)

function, by a preceding corollary.
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Consequences

Corollary

T (φ)= (T ∗φ

̂
)(0), for every φ ∈D(Rn) and T ∈D

′(Rn).

As a consequence, if T ∗φ= 0, for every φ ∈D(Rn), then T = 0.

Corollary

Let T ∈ E
′(Rn).

(a) If ψ ∈C∞(Rn), then (T ∗ψ)=T (τxψ

̂
) is in C∞(Rn).

(b) If ψ ∈C∞
0
(Rn), then (T ∗ψ)(x) is in C∞

0
(Rn).

For Part (a) multiply ψ by a C∞
0 (Rn) function equal to 1 on suppT .

Part (b) follows from the fact supp(T ∗ψ)⊆ suppT + suppψ.
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Convolution of D
m′(Rn) by Cm

0 (Rn)

If T ∈D
m ′(Rn) and ψ ∈Cm

0 (Rn), (T ∗ψ)=T (τxψ

̂
) still holds and the

convolution T ∗ψ is then continuous in Rn.

Suppose (xi) is a sequence in Rn which converges to x .

lim(T ∗ψ)(xi ) = lim〈Ty ,ψ(xi −y)〉
= 〈Ty , limψ(xi −y)〉

(T continuous on D
m(Rn))

= 〈Ty ,ψ(x −y)〉
= (T ∗ψ)(x).

If T ∈D
m ′(Rn) has compact support, then we can take ψ in Cm(Rn)

and reach the same conclusion.

Corollary

If T ∈D
m ′(Rn) and ψ ∈Cm(Rn), then (T ∗ψ)(x)= 〈Ty ,ψ(x −y)〉 is a

continuous function in Rn, provided T or ψ has compact support.
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The Function βλ

Recall the definition of the C∞ function α(x)=
{

e
− 1

1−|x |2 , |x | < 1
0, |x | ≥ 1

that has support in B(0,1), with finite positive integral over Rn.

Recall, also, the definition β(x)= α(x)∫
α(x)dx

, another C∞ function with

support B(0,1), satisfying
∫
β(x)dx = 1.

Finally, recall the function

βλ(x)=
1

λn
β

(x
λ

)
, for λ> 0.

We have βλ ∈D(Rn), supp(βλ)=B(0,λ) and

∫
βλ(x)dx =

∫
β(x)dx = 1.
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The Convolution T ∗βλ

Theorem

For any T ∈D
′(Rn) the C∞(Rn) function T ∗βλ converges strongly to T

as λ→ 0, i.e., (T ∗βλ)(φ) converges to T (φ) uniformly on every bounded
subset of D(Rn).

T ∗βλ is in C∞(Rn) by the preceding theorem.

Let E be any bounded subset of D(Rn). By previous theorems:

There is a compact K in Rn, such that E is bounded in DK (R
n);

For every φ ∈E , the support of βλ∗φ lies in a λ-neighborhood of K .

If λ ∈ (0,1), then there is a compact K0, such that K ⊆K0 ⊆Rn and
supp(βλ∗φ)⊆K0, for all φ ∈ E .

Let m be any nonnegative integer. ∂αφ(x) ∈DK (R
n), |α| ≤m. So

there is ε= ε(m)> 0, such that ∂αφ(x −y) ∈DK0
(Rn), y ∈B(0,ε).

The function ∂αφ(x −y)
y→0−→ ∂αφ(x) uniformly on K0, |α| ≤m.
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The Convolution T ∗βλ (Cont’d)

We also have

|(βλ ∗∂αφ−∂αφ)(x)| =
∣∣∫βλ(y)[∂

αφ(x −y)−∂αφ(x)]dy
∣∣

≤
∫
βλ(y)|∂αφ(x −y)−∂αφ(x)|dy .

For all values of λ in (0,ε), suppβλ ⊆B(0,ε).

So the integration may be performed over B(0,ε).

Thus, the left-hand side tends to 0 uniformly as λ→ 0, for all x in K

and all |α| ≤m.

Using a preceding corollary,

(T ∗βλ−T )(φ) = (T ∗βλ)∗φ

̂
(0)− (T ∗φ

̂
)(0)

= T ∗ (βλ ∗φ

̂
−φ

̂
)(0)

= T (βλ ∗φ−φ).

For the last equality, βλ∗φ

̂
=βλ

̂
∗φ

̂
=βλ∗φ

à
, since βλ is even.
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The Convolution T ∗βλ (Conclusion)

As λ→ 0, βλ∗φ→φ uniformly for all φ ∈E .

Therefore, T ∗βλ−T converges to 0 uniformly on E .

Corollary

If T ∈ E
′(Rn), then T ∗βλ converges uniformly to T on every bounded

subset of E (Rn).

George Voutsadakis (LSSU) Theory of Distributions January 2024 59 / 116



Distributions with Compact Support and Convolutions Regularization of Distributions

Regularization

Example: By setting T = δ in the theorem, we see that βλ converges
strongly to δ in both D

′(Rn) and E
′(Rn).

Previously, the convolution of a locally integrable function f with βλ

was called a regularization of f .

Extending the notion to distributions, we call

T ∗β1/k =T ∗γk

a regularizing sequence of functions for the distribution T ∈D
′(Rn).

Example: γk is a regularizing sequence for δ.

In consequence, if T ∗φ= 0, for every φ ∈D(Rn), then

T =T ∗δ= limT ∗γk = 0.
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Vanishing Derivative on R

We reestablish that T ′ vanishes in R only if T is a constant (a.e.).

Let T ∈D
′(R) satisfy T ′ = 0.

Let γk be a regularizing sequence for δ.

The C∞ function T ∗γk satisfies (T ∗γk)
′ =T ′∗γk = 0 in R, for

every k .

So T ∗γk = ck , for some constant ck .

Now ck =T ∗γk →T in D
′.

We show that the sequence of constants ck also converges in C.

Let φ ∈D(R), such that
∫
φ(x)dx = 1.

The sequence ck = 〈ck ,φ〉 converges in C because ck converges in D
′.

Hence, its limit, the constant limck , coincides with T .
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Vanishing Derivative on R (Remark)

In general, the convergence of a sequence of functions fk to f in D
′

does not imply that its pointwise limit is f , or that it is even a
function (recall the sequence sinkx which converges to 0 in D

′).

However, when fk is constant, we have just shown that both assertions
can be made.
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Linearity of a Distribution

The result leads to the conclusion that, if T (k) = 0, then T is (almost
everywhere) a polynomial of degree less than k .

When k = 2, we can use a regularization process, which can be
generalized from R to Rn.

Example: If T ∈D
′(R) satisfies T ′′ = 0, we shall show that T is a

linear function a.e.

For any φ ∈D(R), we know that T ∗φ is a C∞ function and that

(T ∗φ)′′ =T ′′∗φ= 0.

Therefore, T ∗φ is a linear function of the form (T ∗φ)(x)= ax +b.
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Linearity of a Distribution (Cont’d)

We saw that, for all φ ∈D(R), (T ∗φ)(x) is of he form ax +b.

Let h(x)= ax +b, x ∈R.

Now β is a C∞ function supported in [−1,1], with
∫
β(x)dx = 1.

So we obtain

(h∗β)(x) =
∫∞
−∞h(x −y)β(y)dy

=
∫∞
−∞ [a(x −y)+b]β(y)dy

= ax +b,

since
∫∞
−∞yβ(y)dy = 0, the integrand being an odd function.

Thus, h∗β= h.

Let β1/k ∈D(R) be the regularizing sequence defined previously.

Then, taking into account what was shown above,

(T ∗β)∗β1/k = (T ∗β1/k)∗β=T ∗β1/k .

In the limit as k →∞, we obtain T =T ∗β a.e.

Since T ∗β is a linear function, so is the distribution T (a.e.).
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Characterization of Convolutions by D(Rn)

Theorem

For any T ∈D
′(Rn), the linear map L from D(Rn) to E (Rn) defined by

L(φ)=T ∗φ is continuous and commutes with the translation τh, h ∈Rn.
Conversely, if L is a continuous linear map from D

′(Rn) to E (Rn) which
commutes with τh, then there is a unique T ∈D

′(Rn), such that
L(φ)=T ∗φ, φ ∈D(Rn).

(i) For any sequence φk →φ in DK , we have

lim(T ∗φk)(x)= limT (τxφ

̂
k)=T (τxφ

̂
)= (T ∗φ)(x).

The second equality because both T and τx are continuous.

If T ∈D
′(Rn), then, by a previous theorem, for all φ ∈D(Rn),

(T ∗τhφ)(x) = T (τx (τhφ

̂
))=T (τxτ−hφ

̂
)

= T (τx−hφ

̂
)= (T ∗φ)(x −h)= τh(T ∗φ)(x).

Thus, Lτh = τhL.
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Characterization of Convolutions by D(Rn) (Cont’d)

(ii) Suppose L is a continuous linear map from D(Rn) to E (Rn) which
commutes with τh. Then the map

φ 7→ L(φ

̂
)(0)

is a continuous linear function on D(Rn). So there is T ∈D
′(Rn),

such that
L(φ

̂
)(0)=T (φ), φ ∈D(Rn).

Now we have

L(φ)(x) = τ−xL(φ)(0)= L(τ−xφ)(0)

= T (τ−xφ

�
)=T (τxφ

̂
)= (T ∗φ)(x).

The uniqueness of T follows from the observation that T ∗φ= 0, for
all φ ∈D(Rn), implies that T = 0.
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Subsection 5

Local Structure of Distributions
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Distributions as Derivatives of Continuous Functions

We saw that the Dirac distribution on R is the second derivative of
the continuous function x+ = xH(x).

From a previous theorem, we conclude that every distribution on R

with support {0} is a finite linear combination of derivatives of x+.

More generally, we can show that every distribution is, locally, a
derivative of some continuous function.

In this sense distributions are the natural generalization of continuous
functions, achieved by supplementing these functions with their
(distributional) derivatives of all orders.
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Notation

For x ∈Rn and k ∈N, we define

(xi )
k
+ = xk

i
H(xi ), i = 1, . . . ,n;

xk = xk1 x
k
2 · · ·xkn ;

xk+ = (x1)
k
+(x2)

k
+ · · ·(xn)k+;

∂k = ∂k1∂
k
2 · · ·∂

k
n .

For all i = 1, . . . ,n, 1
(k−1)!∂

k
i
(xi)

k−1
+ =δ is the Dirac measure on R.

So in Rn,
∂kEk =δ,

where

Ek = 1
[(k−1)!]n

xk−1
+ is in C k−2(Rn);

δ is the Dirac measure on Rn, which is the tensor product of δ ∈D
′(R)

with itself n times.
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Local Representation of a Distribution

Theorem

If T ∈D
′(Rn) and K is a compact subset of Rn, then there is a continuous

function f on Rn and a multi-index α ∈Nn
0, such that

T (φ)= 〈∂αf ,φ〉 = (−1)|α|〈f ,∂αφ〉, φ ∈DK .

Let ψ ∈C∞
0 (Rn) and ψ= 1 on a neighborhood of K .

The distribution ψT equals T on K and has compact support.

Therefore it is of finite order, say m. We can now write

ψT = δ∗ψT = (∂m+2Em+2)∗ψT = ∂m+2(Em+2∗ψT ).

Now Em+2 ∈Cm(Rn). The distribution ψT being of order m, may be
extended to a continuous linear functional on Cm

0 (Rn) in the topology
of D

m(Rn). Since ψT has compact support, by a previous theorem,
the convolution Em+2∗ψ is a continuous function on Rn. Em+2∗ψ

represents the desired function f .
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The Case of Compact Support

When T has compact support this result takes a global form.

Corollary

If T ∈ E
′(Rn), then there is a continuous function f on Rn and a multi-

index α, such that T = ∂αf .

If suppT =K is compact, then T is of finite order, say m.

By the theorem, T = ∂m+2f , where f =Em+2∗T ∈C 0(Rn).
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An Example on Compact Support

Let T ∈ E
′(R) be a distribution of compact support.

As a consequence, T has finite order, say m.

We have
Em+2 = 1

(m+1)!
xm+1
+ ∈Cm(R);

E
(m+2)
m+1

= δ.

Suppose f =T ∗Em+2. Then

T =T ∗δ=T ∗E (m+2)
m+2

= f (m+2)
.

But T ∈ E
′(R) is of order m.

So it can be extended to a bounded linear functional on Cm(R).

Hence, using equation (T ∗ψ)(x)=T (τxψ

̂
), we can write

f (x)= 〈Ty ,Em+2(x −y)〉,

which is clearly continuous.
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An Example on Compact Support (Remarks)

In the example, even though T has compact support, the continuous
function f which satisfies T = f (m+2) may not have compact support.

In fact, when T = δ, then f =Em+2, which has support [0,∞).

Note, also, the relation between the order of differentiation of f which
is needed to represent T , namely m+2, and the order of T .
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Remarks on the Order of the Derivative and the Domain

The representation T = ∂αf in the statement of both the theorem and
its corollary is not unique.

The choice α= (α1, . . . ,αn)= (m+2, . . . ,m+2) always works when f is
chosen to be Em+2∗T , but obviously there are other possibilities.

The second point worth noting is that this representation remains
valid whether K is taken in Rn or in any of its open subsets.

Hence the theorem and its corollary still hold if Rn is replaced by Ω.

The corollary remains valid if the distribution T is merely of finite
order, as we will next show.
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Locally Finite Partitions of Unity

Let Ω be any open set in Rn.

An open covering {Ωi : i ∈N} of Ω is called locally finite if every
compact subset of Ω intersects at most a finite number of Ωi .

Following a procedure outlined previously, we can construct a sequence
of functions ψi , in C∞

0
(Ω), such that, for each i ∈N, suppψi ⊆Ωi ,

0≤ψi ≤ 1, and
∞∑

i=1

ψi (x)= 1, for every x ∈Ω.

Since any x ∈Ω lies in at most a finite number of the sets Ωi , this sum
has only a finite number of nonzero terms.

The collection {ψi } is called a locally finite partition of unity in Ω

subordinate to the cover {Ωi }.
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Finite Order and Global Derivative Representation

Theorem

If T ∈D
′(Ω) is of finite order, then there exists a continuous function f in

Ω and a multi-index α, such that T = ∂αf in Ω.

Suppose T ∈D
′(Ω) is of order m.

Let {ψi } be a locally finite partition of Ω subordinate to the cover {Ωi }.

Then T =
∑
ψiT =

∑
Ti , where: Ti :=ψiT is a distribution:

with compact support in Ωi ;
of order mi ≤m, since its order cannot exceed the order of T .

By the corollary to the theorem, it is represented in Ω by

Ti = ∂mi+2(Emi+2∗Ti )= ∂m+2(Em+2∗Ti ),

where the convolution of Em+2 and T is well defined because
Ti =ψiT can be extended as 0 into Rn−Ωi .
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Finite Order and Global Derivative Representation (Cont’d)

Now Em+2∗Ti = fi is a continuous function in Ω.

Moreover, T is represented by the sum

T =
∑

i

Ti =
∑

i

∂m+2fi = ∂m+2
∑

i

fi .

Since any compact set in Ω intersects the supports of at most a finite
number of the functions fi , this sum over f is finite.

Therefore, the function g =
∑

i fi is continuous in Ω.
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Another Global Version

If the distribution T is not of finite order, the representation

T =
∑

∂m+2fi

is still valid.

So we obtain a global version of the theorem.

Corollary

For every T ∈D
′(Ω), there exist continuous functions fi in Ω and

multi-indices αi ∈Nn
0 , such that T =

∑
∂αi fi , in the sense that

〈T ,φ〉 =
N∑

i=1

(−1)|αi |〈fi ,∂αiφ〉, for all φ ∈D(Ω),

where the (finite) integer N depends on suppφ.
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Subsection 6

Applications to Differential Equations
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Existence of Primitive Distributions in R

Recall, for a given T ∈D
′(Ω), the distribution S which satisfies

∂kS(φ)=T (φ), for every φ ∈D(Ω), is called a primitive of T .

Theorem

Any distribution in D
′(R) has a primitive distribution which is unique up to

an additive constant.

Let T ∈D
′(R). We wish to determine a distribution S , such that

S ′(φ)=−S(φ′)=T (φ), φ ∈D(R).

This determines S on the space

D0(R)= {ψ ∈D(R) :ψ=φ′
, for some φ ∈D(R)}.

We have already seen that ψ ∈D0(R) if and only if
∫∞
−∞ψ(x)dx = 0.

Let φ0 be a fixed function in D(R), such that 〈1,φ0〉 = 1.
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Existence of Primitive Distributions in R (Cont’d)

For any φ ∈D(R), we can write

φ(x)=φ(x)−〈1,φ〉φ0(x)+〈1,φ〉φ0(x)= ψ(x)︸ ︷︷ ︸
∈D0(R)

+ 〈1,φ〉φ0(x)︸ ︷︷ ︸
∈D(R)−D0(R)

.

We first define S on D0(R) by

S(ψ)=−T (χ), where χ(x)=
∫x

−∞
ψ(t)dt ∈D(R).

Then we extend the definition to D(R) by

S(φ)=−T (χ)+〈c ,φ〉,

where c is an arbitrary complex constant.

If S is a distribution, then, for all φ ∈D(R),

S ′(φ)= −S(φ′)= −
[
−T

(∫x

−∞
φ′(t)dt

)
+〈c ,φ′〉

]
=T (φ)+0.

This means that S is a primitive of T .
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Existence of Primitive Distributions in R (Cont’d)

Claim: S is in D
′(R).

Let (φk) be any sequence in D(R) which converges to 0.

This implies that:

suppφk is in some fixed compact set K ⊆R, for all k ;
∂αφk → 0 uniformly on K .

So 〈1,φk 〉→ 0. Therefore, in D(R),

ψk(x) = φk(x)−〈1,φk 〉φ0(x)→ 0;

χk(x) =
∫x
−∞ψk(t)dt → 0.

Hence,
S(φk)= −T (χk )+〈c ,φk 〉→ 0.

This proves that S is a distribution in R.
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Existence of Primitive Distributions in R (Conclusion)

Claim Uniqueness.

Suppose S1 and S2 are two primitives of T .

Then for any φ ∈D(R),

(S1−S2)
′(φ)= S ′

1(φ)−S ′
2(φ)=T (φ)−T (φ)= 0.

By a preceding result, we conclude that S1−S2 must be a constant.
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Linear Partial Differential Equations of Order m

Let L be a linear partial differential operator of order m≥ 1 of the
form

L=
∑

|α|≤m
cα(x)∂

α
,

where α ∈Nn
0 and cα are C∞ functions on Rn.

L clearly maps D
′(Ω) into D

′(Ω).

The corresponding equation

Lu = f

where f is generally given as a distribution in Ω⊆Rn, is called a
linear partial differential equation of order m.

The restriction to linear differential equations is necessary because we
cannot define multiplication in D

′ as a natural extension of
multiplication of functions.
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Strong and Weak Solutions of a Differential Equation

In the classical theory, by a “solution” to the differential equation
Lu = f in Ω we mean a function which is differentiable up to order m
in Ω and satisfies the equation in the sense of equality of functions.

We demand here a little more smoothness.

We call u a strong solution of Lu = f in Ω if u ∈Cm(Ω) and the
(continuous) function Lu equals f in Ω.

A weak solution of Lu = f is a distribution u ∈D
′(Ω) which satisfies

Lu = f in the sense of distributions, i.e., in the sense that

〈Lu,φ〉 = 〈f ,φ〉, for all φ ∈D(Ω).

Every strong solution of Lu = f is also a weak solution.
Any continuous function defines a distribution in D

′;
All its continuous derivatives coincide with its corresponding
distributional derivatives.

We ask whether there are weak solutions of the equation Lu = f which
are not strong solutions.
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Example

Consider the ordinary differential equation xu′ = 0 on R.

It has the strong solution u = c1.

The function u(x)= c2H(x) satisfies the equation as a distribution.

u′ = c2H
′ = c2δ.

So, for all φ ∈D(R),

〈xu′
,φ〉 = c2〈xδ,φ〉 = c2〈δ,xφ〉 = 0.

Hence, u = c1+c2H is a weak solution of xu′ = 0.

This solution violates the (classical) rule that an ordinary differential
equation of order 1 has a general solution with one arbitrary constant.

It would seem that this “rule” no longer holds when distributions are
admitted to the class of solutions.
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Characterization of Strong Solutions

Theorem

Let L be a linear differential operator of order m and u be a weak solution
of Lu = f in Ω. If u ∈Cm(Ω) and f ∈C 0(Ω), then u is also a strong
solution of the equation.

A weak solution of Lu = f , u satisfies 〈Lu,φ〉 = 〈f ,φ〉, for φ ∈D(Ω).

Equivalently,
∫
Ω
(Lu− f )φ= 0, for all φ ∈D(Ω).

We must show Lu− f = 0 on Ω. If not, there exists x ∈Ω, where
Lu(x)− f (x) 6= 0. But Lu− f is continuous.

So there is a neighborhood U of x , where Lu− f does not vanish.

Now we can choose φ ∈D(Ω) to be a positive function supported in U .

For such a choice, we would have
∫

Ω

(Lu− f )φ=
∫

U
(Lu− f )φ 6= 0

in contradiction to the equality above.
George Voutsadakis (LSSU) Theory of Distributions January 2024 87 / 116



Distributions with Compact Support and Convolutions Applications to Differential Equations

Example

Suppose f and g are continuous functions on I = (a,b).

Suppose T is a distribution satisfying the differential equation

T ′+ fT = g .

We show that T is a C 1 function which, consequently, is a strong
solution of the equation.

Choose a function φ ∈C 1(I ), such that φ′ = f .

The function u(x)= ce−φ(x), c constant, satisfies u′+ fu = 0.

Using the method of variation of parameters to construct a solution of
u′+ fu = g , we now assume that c is a function of x .

Then the equation u′+ fu = g is satisfied if

c ′e−φ−ce−φφ′+ce−φf = g

c ′e−φ = g

c(x)=
∫x
x0
eφ(t)g(t)dt , x0 fixed in (a,b).
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Example (Cont’d)

Since c ∈C 1(I ), u(x)= c(x)e−φ(x) is in C 1(I ) and u′+ fu = g .

Let T be a distribution on (a,b), such that T ′+ fT = g .

With φ′ = f , the distribution S = eφ(T −u) satisfies

S ′ = [eφ(T −u)]′

= eφφ′(T −u)+eφ(T ′−u′)

= eφ[(T ′+ fT )− (u′+ fu)]

= 0.

Therefore, S is a constant, say λ.

Hence, T = u+λe−φ ∈C 1(I ) is a strong solution of T ′+ fT = g .
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Example

Consider the differential operator in R with constant coefficients

L=
dm

dxm
+c1

dm−1

dxm−1
+·· ·+cm−1

d

dx
+cm.

Let λ1, . . . ,λm be the roots of P(x)= xm+c1x
m−1+·· ·+cm−1x +cm.

We show that
u =Heλ1x ∗Heλ2x ∗·· ·∗Heλmx

is a solution of the ordinary differential equation Lu = δ.

We have
P(x)= (x −λ1)(x −λ2) · · ·(x −λm).

So

L=
(
d

dx
−λ1

)(
d

dx
−λ2

)
· · ·

(
d

dx
−λm

)
.
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Example (Cont’d)

It now follows that

Lδ = ( d
dx −λ1)(

d
dx −λ2) · · ·( d

dx −λm)δ

= ( d
dx

−λ1)(
d
dx

−λ2) · · ·( d
dx

−λm)δ∗δ∗·· · ∗δ

= ( d
dx

−λ1)δ∗ ( d
dx

−λ2)δ∗·· · ∗ · · ·( d
dx

−λm)δ

= (δ′−λ1δ)(δ
′−λ2δ) · · · (δ′−λmδ).

Write
Lu = Lu∗δ= u∗Lδ.

Then u satisfies Lu =δ if u∗Lδ= δ.

So Lu =δ if u = (Lδ)−1.
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Example (Cont’d)

We saw Lu = δ if u = (Lδ)−1.

Now we rely on the following two facts, the first of which was
established in a previous example.

(δ′−λδ)−1 = eλxH ;
(v ∗w)−1 = v−1 ∗w−1.

Then we can compute

u = [(δ′−λ1δ)∗ (δ′−λ2δ)∗·· · ∗ (δ′−λmδ)]−1

= (δ′−λ1δ)
−1∗ (δ′−λ2δ)

−1∗·· ·∗ (δ′−λmδ)−1

= Heλ1x ∗Heλ2x ∗·· ·∗Heλmx .

George Voutsadakis (LSSU) Theory of Distributions January 2024 92 / 116



Distributions with Compact Support and Convolutions Applications to Differential Equations

A Special Case

When c1 = c2 = ·· · = cm = 0, then λ1 =λ2 = ·· · =λm = 0.

So we retrieve the solution of dm

dxm u = δ as given by

H ∗H ∗·· ·∗H =
1

(m−1)!
xm−1
+ =

1

(m−1)!
Hxm−1

.

Suppose v is another solution of Lu = δ.

Then dm

dxm (v −u)= 0.

By a previous example, v −u is a polynomial of degree ≤m−1.

Hence,

u =
1

(m−1)!
xm−1+b1x

m−1+b2x
m−2+·· ·+bm

is the general solution of dmu
dxm = δ, where b1, . . . ,bm are arbitrary

constants.

These constants may be evaluated by imposing conditions on u and its
derivatives at one or more points in R.
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Example of a Second-Order Differential Equation

Let E ∈D
′(R) satisfy the differential equation

d2

dx2
E =δ,

where δ is the Dirac distribution on R.

We found that one solution to the equation is given by x+ = xH(x).

Any other solution E will satisfy the homogeneous equation

d2

dx2
[E −xH(x)]= 0

It must, therefore, have the form

E (x)= xH(x)+ax +b,

which is a continuous function on R.

The arbitrary constants a and b may be determined by imposing
boundary conditions on E .
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Example of a Second-Order Differential Equation

Consider the differential equation u′′ = f , for given f ∈ L1(0,1).

Its solution in (0,1) may be constructed by using the result of the
previous example.

If f is extended into R by setting f = 0 outside (0,1), then f ∈ L1(R).

We have
(f ∗E )′′ = f ∗E ′′ = f ∗δ= f .

Thus, one solution of the equation is given by

u(x) = (f ∗E )(x)
=

∫1
0 (x −ξ)H(x −ξ)f (ξ)dξ

=
∫x
0 (x −ξ)f (ξ)dξ, 0≤ x ≤ 1.

The general solution is therefore

u(x)=
∫x

0
(x −ξ)f (ξ)dξ+ax +b.
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Example (Fundamental Solutions)

The requirement that f be integrable on (0,1) in u′′ = f is, of course,
not necessary.

It was only made in order to allow us to express the convolution f ∗g
as an integral.

We could have assumed that f is a distribution on (0,1) which can be
extended to a distribution in R with compact support in [0,1].

In fact, equation d2

dx2E =δ is really a special case of equation u′′ = f ,
where we chose f to be δ.

The resulting solution E is called a fundamental solution of the
differential operator d2

dx2 .

The function Heλ1x ∗·· ·∗Heλmx shown to satisfy the m-th order
equation ( dm

dxm +c1
dm−1

dxm−1 +·· ·+cm−1
d
dx

+cm)u = δ is a fundamental

solution of the operator dm

dxm +c1
dm−1

dxm−1 +·· ·+cm−1
d
dx +cm.
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Fundamental Solutions of a Differential Operator

Recall the linear partial differential operator of order m≥ 1

L=
∑

|α|≤m
cα(x)∂

α
,

where α ∈Nn
0 and cα are C∞ functions on Rn.

E is a fundamental solution of the operator L, if E ∈D
′(Rn) and

LE = δ.

The importance of the fundamental solution lies in the fact that it
allows solving the more general equation Lu = f .

If E is a fundamental solution of L and f is a distribution with
compact support in Ω⊆Rn, then

L(f ∗E )= f ∗LE = f ∗δ= f .

So f ∗E is a solution of the differential equation Lu = f .
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Example

Consider the operator

L=
d2

dx2
+ω2

,

where ω is a (nonzero) constant.

We determine its fundamental solution.

The solution of Lu = 0 is a linear combination of cosωx and sinωx .

Let f1 = acosωx and f2 = b sinωx .

Based on the work of a previous example, we assume that one solution
of LE =δ is given by

E (x)=
{

acosωx , x ≤ 0
b sinωx , x > 0

.

Continuity of E at x = 0 gives f1(0)= f2(0), i.e., a= 0.

For E ′ to have a unit jump discontinuity at x = 0, we must have
f ′2(0)− f ′1(0)= 1, or bω= 1. Therefore, E (x)= 1

ω
H(x)sinωx .
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Example (Cont’d)

The solution of the differential equation Lu = f , where f ∈ E
′(R), is

now given by u = f ∗E .

When suppf ⊆ [0,1] and f is integrable, we can write

u(x) =
1

ω

∫1

0
f (ξ)H(x −ξ)sinω(x −ξ)dξ

=
1

ω

∫x

0
f (ξ)sinω(x −ξ)dξ, 0≤ x ≤ 1.

The general solution of Lu = f is therefore

u(x)=
1

ω

∫x

0
f (ξ)sin(x −ξ)dξ+c1 cosωx +c2 sinωx ,

where c1 and c2 are arbitrary constants which may be determined by
imposing appropriate boundary conditions on u.
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Example

The general linear ordinary differential operator of order 2 with
constant coefficients is given by

L= c1
d2

dx2
+c2

d

dx
+c3, c1 6= 0.

From the classical theory are C∞ functions, we can find two linearly
independent solutions of Lu = 0, say w1 and w2.

Assume that a fundamental solution of L has the form

E (x)=
{

aw1(x), x ≤ 0
bw2(x), x > 0

.

We see that in order to satisfy LE =δ, we must have

bw2(0)−aw1(0)= 0, bw ′
2(0)−aw ′

1(0)=
1

c1
.
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Example (Cont’d)

We must have

{
bw2(0) − aw1(0) = 0
bw ′

2(0) − aw ′
1(0) = 1

c1

}

Let
W (x)=w1(x)w

′
2(x)−w ′

1(x)w2(x).

be the Wronskian of the solutions w1 and w2 of Lu = 0.

Since w1 and w2 are independent, W (x) 6= 0.

So we have

a=
w2(0)

c1W (0)
, b =

w1(0)

c1W (0)
.
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Formal Adjoints

Let L be the general linear differential operator

L=
∑

|α|≤m
cα(x)∂

α
,

where α ∈Nn
0 and cα are C∞ functions on Rn.

Then we have, for all T ∈D
′(Ω),

〈LT ,φ〉 = 〈
∑

|α|≤m cα(x)∂
αT ,φ〉, φ ∈D(Ω)

= 〈T ,
∑

|α|≤m(−1)|α|∂α(cα(x)φ)〉
= 〈T ,L∗φ〉.

The operator L∗, defined by

L∗φ=
∑

|α|≤m
(−1)|α|∂α(cα(x)φ)

is known as the formal adjoint of L.

We always have (L∗)∗ = L.

When L∗ = L, we say that L is formally self-adjoint.
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Formal Self-Adjointness: Ordinary of Order 2

Consider the general linear ordinary differential operator of order 2

L= c1(x)
d2

dx2
+c2(x)

d

dx
+c3.

For self-adjointness, we must have, for every test function φ,

(c1φ)
′′− (c2φ)

′+c3φ= c1φ
′′+c2φ

′+c3φ.

This equality is satisfied if and only if c2 = c ′1.

Thus, we arrive at

L = c1
d2

dx2 +c ′1
d
dx +c3

= d
dx
(c1

d
dx
)+c3.

Therefore, the general formally self-adjoint linear differential operator
of order 2 on R is given by

L=
d

dx

(
p
d

dx

)
+q, p 6= 0, q are C∞ on R.
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Formal Self-Adjointness: Ordinary of Order 2 (Cont’d)

Let w1 and w2 be two linearly independent solutions of the
homogeneous differential equation

Lu = (pu′)′+qu = 0.

Then a fundamental solution of L can still be represented by

E (x) =
{

aw1(x), x ≤ 0
bw2(x), x > 0

= aw1(x)+ [bw2(x)−aw1(x)]H(x).

George Voutsadakis (LSSU) Theory of Distributions January 2024 104 / 116



Distributions with Compact Support and Convolutions Applications to Differential Equations

Formal Self-Adjointness: The Case of Order 2 (Cont’d)

If we assume in

E (x)=
{

aw1(x), x ≤ 0
bw2(x), x > 0

= aw1(x)+ [bw2(x)−aw1(x)]H(x).

that aw1(0)= bw2(0), we get

pE ′ = p[aw ′
1+ (bw2 −aw1)

′H + (bw2 −aw1)δ]
= p[aw ′

1+ (bw ′
2 −aw ′

1)H].

With Lw1 = Lw2 = 0, we have

LE = (pE ′)′+qE

= a(pw ′
1)

′+aqw1+ [p(bw ′
2−aw ′

1)H]′+q(bw2−aw1)H
= a(pw ′

1)
′+aqw1+p′(bw ′

2 −aw ′
1)H

+p(bw ′′
2 −aw ′′

1 )H +p(bw ′
2 −aw ′

1)δ+q(bw2 −aw1)H
= a[(pw ′

1)
′+qw1]−a[(pw ′

1)
′+qw1]H

+b[(pw ′
2)

′+qw2]+p(bw ′
2−aw ′

1)δ
= p(0)[bw ′

2(0)−aw ′
1(0)]δ.
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Formal Self-Adjointness: The Case of Order 2 (Cont’d)

We found
LE = p(0)[bw ′

2(0)−aw ′
1(0)]δ.

Thus, if E is to be a fundamental solution, a and b must also satisfy

p(0)[bw ′
2(0)−aw ′

1(0)]= 1.

I.e., a and b must be the solutions of

{
aw1(0) − bw2(0) = 0

−aw ′
1(0) + bw ′

2(0) = 1
p(0)

}
.

Consequently,

a=
w2(0)

p(0)W (0)
, b =

w1(0)

p(0)W (0)
.
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Formal Self-Adjointness: The Case of Order 2 (Conclusion)

Since a= w2(0)
p(0)W (0)

,b = w1(0)
p(0)W (0)

,

E (x)=
1

p(0)W (0)

{
w2(0)w1(x)+ [w1(0)w2(x)−w2(0)w1(x)]H(x)

}
.

The general solution in (0,1) of the differential equation
(pu′)′+qu = f with f integrable on (0,1), is therefore

u(x) = f ∗E (x)+c1w1(x)+c2w2(x)
= 1

p(0)W (0) [w1(0)
∫x
0 f (ξ)w2(x −ξ)dξ

+w2(0)
∫1
x f (ξ)w1(x −ξ)dξ]

+c1w1(x)+c2w2(x), 0≤ x ≤ 1.

c1 and c2 may be determined from the boundary conditions on u.
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The Case of PDEs

The method that we have used for constructing a solution to the
differential equation Lu = f by taking the convolution of f with a
fundamental solution of L works equally well when L is a partial
differential operator.

Recall the following previously obtained results

∆ log |x | = (∂2
1+∂2

2) log |x | = 2πδ,

∆
1

|x |
= (∂2

1+∂2
2+∂2

3)




1√
x2
1
+x2

2
+x2

3


=−4πδ.

We may conclude, concerning the operator ∆, that:

A fundamental solution of ∆ in R
2 is 1

2π log |x |;
A fundamental solution of ∆ in R3 is − 1

4π|x | .
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Example: The Poisson Equation

Consider in R3 the partial differential equation ∆u = f , known as the
nonhomogenous Laplace, or Poisson, equation.

It has a solution which is given by

u = f ∗
(
−

1

4π|x |

)
,

when this convolution is well defined.

The solution may be interpreted as the potential generated by f .

When f is an integrable function with compact support, u is
represented by the function

u(x)=−
1

4π

∫

R3

f (ξ)

|x −ξ|
dξ.

Clearly u(x)→ 0 as |x |→∞, i.e., away from the mass distribution.

If u is to satisfy other boundary conditions, the solution has to be
supplemented by a solution of ∆u = 0.
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Example: The Heat Equation

The temperature distribution u on a slender, infinite conducting bar as
a function of time t and position x may be described by

∂tu = ∂2
xu, (x ,t) ∈ (−∞,∞)× (0,∞),

u(x ,0) = g(x), x ∈ (−∞,∞).

The equation governs the heat flow along the bar for all t > 0;
g describes the initial temperature distribution at t = 0.

The “fundamental solution” that we need to construct u = f ∗E , would
have to satisfy

(∂t −∂2
x )E (x ,t) = 0, (x ,t) ∈ (−∞,∞)× (0,∞);
E (x ,0) = δ(x ,0), t = 0, −∞< x <∞.

Such an E is given by E (x ,t)= 1p
4πt

e−
x2

4t .

Note that the first equation above is satisfied.
To satisfy the second, it suffices to show that E (x ,t) is a
delta-convergent sequence as t → 0+.
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Example: The Heat Equation (Cont’d)

Recall hat we have shown fλ = 1p
πλ

e−x
2/λ λ→0−→ δ.

Setting λ= 4t, we get E (x ,t)= 1p
4πt

e−
x2

4t
t→0+
−→ δ.

In its dependence on x , E (x ,t) is a C∞ function which decays
exponentially as |x |→∞, for every t > 0.

So the convolution

u(x ,t)= (g ∗E )(x ,t)=
1

p
4πt

∫∞

−∞
g(ξ)e−

(x−ξ)2
4t dξ

is well defined for a wide class of functions, including all locally
integrable functions g(x) whose growth as |x |→∞ is no faster than
some power of x .

It represents the temperature distribution u in (−∞,∞)× (0,∞).

It is clear that u→ 0 as t →∞ or as |x | →∞.

George Voutsadakis (LSSU) Theory of Distributions January 2024 111 / 116



Distributions with Compact Support and Convolutions Applications to Differential Equations

Example: The Wave Equation

The motion of an infinite vibrating string is described by the wave

equation

∂2
tu = ∂2

xu, −∞< x <∞, 0< t <∞.

If the string is released with initial shape u0 and initial velocity u1 then
we have the initial conditions

u = u0, t = 0, −∞< x <∞;
∂tu = u1, t = 0, −∞< x <∞.

Let
E0 = 1

2
[H(x + t)−H(x − t)],

E1 = ∂tE0 = 1
2
[δ(x + t)+δ(x − t)].

Then the following differential equations hold in the upper half-plane
t > 0, −∞< x <∞,

(∂2
t −∂2

x )E0 = 0;
(∂2

t −∂2
x )E1 = 0.
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Example: The Wave Equation

When t = 0, we have
E0 = 0;
E1 = δ;

∂tE1 = 0.

Consequently, a solution of the boundary value problem is given by

u = u0∗E1+u1∗E0,

where the convolution is taken with respect to x .
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Example: The Wave Equation (Cont’d)

We found u = u0∗E1+u1∗E0, where

E0 = 1
2
[H(x + t)−H(x − t)],

E1 = ∂tE0 = 1
2
[δ(x + t)+δ(x − t)].

When w0 ∈C 2(R) and u1 ∈C 1(R)∩L1(R), we can write this in the
form

u(x ,t) = 1
2
[u0(x − t)+u0(x + t)]

+ 1
2

∫∞
−∞u1(ξ)[H(x + t −ξ)−H(x − t−ξ)]dξ

= 1
2
[u0(x − t)+u0(x + t)]+ 1

2

∫x+t
x−t u1(ξ)dξ.

It is straightforward to verify that this expression satisfies the wave
equation and that u(x ,t)→ u0(x) and ∂tu(x ,t)→ ut(x) as t → 0+.

If the string is released from rest then u1 = 0.

In that case, the solution is the average of the two traveling waves
u0(x − t) and u0(x + t), both having the same shape u0 but traveling
in opposite directions with velocities ±1.
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Classification of the Applications

Second order partial differential equations with constant coefficients
are classified as

elliptic;
parabolic;
hyperbolic.

Typical examples of these are:

The Poisson equation for elliptic ones;
The heat equation for parabolic ones;
The wave equation for hyperbolic ones.

In fact, in its homogeneous form, any second order partial differential
equation with constant coefficients may be transformed, by an
appropriate change of coordinates, to one of the following forms (∆
the Laplacian in Rn):

∆u = 0; (Laplace’s Equation)
(∂t −∆)u = 0; (Heat Equation)
(∂2

t −∆)u = 0. (Wave Equation)
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Classification: The Names

Consider the three equations:

∆u = 0; (Laplace’s Equation)
(∂t −∆)u = 0; (Heat Equation)
(∂2

t −∆)u = 0. (Wave Equation)

Replace ∂t by τ and ∂k by ξk in the above operators.

The Laplacian ∆ becomes a polynomial in ξ1, . . . ,ξn whose level
surfaces are spherical or, up to a change of scale, elliptical.

From this it follows that:

The Laplace operator corresponds to an elliptic surface |ξ|2 = 0;
The heat operator corresponds to the parabolic surface τ−|ξ|2 = 0;
The wave operator to the hyperbolic surface τ2−|ξ|2 = 0.
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