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Subsection 1

The Dual Space of C*(Q)
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The Space &§'(Q)

o We use &(Q) to denote the Fréchet space C*°(Q) topologized by the
system of seminorms

Pm.k(®) =sup{ld®dp(x)l: x e K,lal < m},

where me Ny and K runs through the compact subsets of Q.
o We have seen that:
o P is a closed subspace of &(Q), for every compact set K < Q;
o The topology defined on @ is the subspace topology inherited from
&(Q).
o Therefore, the identity map from 2k to &(Q) is continuous.

o It follows that every continuous linear functional on &(Q) is also a
continuous linear functional on 2.

@ Since this is true for every K € Q, every continuous linear function on
&(Q) is a continuous linear functional on 2(Q).

o So every element in &'(Q), the dual space of &(Q), is a distribution.
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Characterization of &'(Q)

Theorem

For any open set Q in R”, &'(Q) is the subspace of 2'(Q) consisting of
distributions with compact support.

o We saw that every element of &'(Q) defines a distribution in 2'(Q).

We now show that different elements in &'(Q) define different
distributions by showing that 2(Q) is a dense subspace of &(Q).

Let (K;) be an increasing sequence of compact subsets of Q whose
union is Q. Let (¢p;) be a corresponding sequence in 2(Q), such that
¢i =1 on a neighborhood of K;. Let € &(Q). The function y; = ¢,y
is in 2(Q). The function y¥; — v in &(Q). Now, if T=0in 2'(Q),
then T(¢) =0, for all p € 2(Q). We obtain T(y)=Ilim T(w;)=0.
Hence, T =0 in &'(Q).
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Characterization of &'(Q) (Cont'd)

o Let Te&'(Q). Then there is a bounded neighborhood of 0 in £(Q)
which is mapped by T into the unit disc in C.

Thus, there is an integer me INg, a compact set K <Q and a positive
number r, such that the neighborhood of 0 in &(Q) defined by

U={pe&(Q): pmr(P)<r}

satisfies | T(¢p)| < 1, for every ¢p € U.

Suppose ¢ € &(Q) and pm k(¢p) =0.

Then A¢p e U, for every A>0. So |T(Ap)l=AIT(¢)l < 1.

Hence, | T(¢)| < 1, for every A >0. This means that T(¢) =0.
But pm k(¢) =0, for every p € 2(Q—K). Hence T=0o0n Q—-K.
That is, suppT € K.
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Example

o The sequence T,=Y}_, a8k, with a>0, converges in 2'(R), but
not in &'(R).
Let p € 2(R). Then, there exists an integer m, such that ¢ =0
outside [-m, m], and

m

(Tody =Y akp(k), if n=m.
k=1

Consequently, limp_co (T, ) =X akp(k) exists in 2'(R).
The sequence (T,) also lies in &'(R).

But it does not converge &'(R).

Consider the test function ¢(x) =a > e &(R). We get

n
(To ) =Y a*a™ = n— oo
1

Thus, the infinite sum Y5°a%8 lies in 2'(R), but not in &'(R).
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Zero Support and the Dirac Measure

Theorem

Every distribution whose support is {0} may be represented by a unique
finite linear combination of the derivatives of the Dirac measure §.

o Suppose T €2'(Q), 0€ Q and supp T = {0}.
From a previous theorem, T has finite order, say m.
By the preceding theorem, T lies in &'(Q).
For any ¢ € £(Q), Taylor's Formula gives

9= T —3"GO)x" + R(),
lal<=m @
where R, € £(Q) and 0%*R,(0) =0, for all || < m.
Since 0% Ry, is continuous at 0 for every a, the derivatives [0% Rp,(x)],
lal < m can be made arbitrarily small by taking |x| small enough.
Thus, for every € >0, there is r >0, such that [0%R,(x)| <&, when
xeB(0,r)={x:|x|<r} and |al < m.
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Zero Support and the Dirac Measure (Cont'd)

o Using a previous result, we can choose v, € 2(Q), such that
suppy, < B(0,r) and y, =1 on B(0,3r).
The function ¢, =y, Ry, lies in 2(Q).
By Leibniz's formula, 0%¢, is a finite linear combination of products of
the form 8% Py ,0P R, with B running through |B| < |a| < m.
Now 0% P, is bounded for all |a| < m.
So there is a constant M; (which depends on r and m), such that, for
all xe Q,

M110PRn(x)l (1Bl <lal< m)
£M1.

With R, = ¢, on a neighborhood of suppT, | T(Rm)I =T (o)l
< Ms|p,|m, for some constant My, since T is of order m.
ThUS, |T(Rm)| = £M1M2.

Since € >0 was arbitrary, we conclude that T(R;,)=0.

0%, (x)]

=
=
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Zero Support and the Dirac Measure (Conclusion)

o Now we get back to

D)= X 0 GO + Rn().

lal=sm %

We can write

T(9)= ¥ —T"0%(0)= Y coda(®),

lalsm ** lal=m

where ¢, = (-1)! %.

For uniqueness, assume Y |4<m ca0%5(¢p) =0.
Then,for every ¢p € E(Q), ¥ jaj=m(—1)"*'cd%¢(0) = 0.
Choose ¢(x) = xP |Bl < m, to obtain
0= 3 (~1)"ced¢(0) = (-1)"cppl.
lal=m
Thus, ¢, =0, for all |a| <= m.
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Example

o Let m be a positive integer and T be a distribution on R.

: x™T =0if and only if T is a linear combination of
5,8,...,8(m1) with constant coefficients.

Suppose, first, that T =Y., ¢;6().
Then, for all p € 2(R),

xTT(p) = T(x")
= Zi<m Ci<5(i)’xm¢>
= Yiem(-1) ci(6,0'(x™p))
= 0.
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Example (Converse)

o Conversely, let T(x™¢) =0, for every p € 2(R).
: supp T ={0}.
Let Q be an open subset of R —{0} and ¥ be in 2(Q). Define

1
_ | s%w, on suppy
cp(x)—{ 0, on R—suppy °
¢(x) lies in 2(R). Moreover, T(y)=T(x"¢)=0.
Hence, T vanishes on every open subset of IR —{0}.
So it vanished on R —{0} itself. Therefore, supp T = {0}.
By the theorem, T may be represented by a finite sum of the form

14
T = Z Ckﬁ(k).
k=0
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Example (Cont'd)

c ¢ =0, for k=m.
We have the following properties:
° (6(k),xj(,b) =0, when k <j;
o (8K, xkpy = (=1)kKk1¢(0).

Suppose in T = Z£=0 c6(K), ¢, #0, for £=m.
Then for ¢ € 2(R), such that ¢(0) #0, we have

0 = x"T,xI"M¢)
= (T.x¢)
= X o(ad®,xl )
= c(=1)"0'¢(0).
This gives a contradiction.
Thus ¢, =0, for k=m.

George Voutsadakis (LSSU) Theory of Distributions January 2024 13 /116



Distributions with Compact Support and Convolutions Tensor Product

Subsection 2

Tensor Product
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Direct or Tensor Product

o Let Q; be an open set in R™ and Q, be an open set in R"2.
o The product
Q1 x Qo ={(x,y) :x€Qq,y € Qo}
is an open set in the Euclidean space R™*"2 = R™ x R"2.
o Let f be a function on Q; and g a function on Q5.
o We define the direct, or tensor, product f ® g on Q1 x Q5 by

(feg)(xy)="f(x)g(y)

o Clearly (feg)(x,y) =(g®f)(y,x), for every pair (x,y) € Q1 x Qa.

o C§°(Q1) x C§°(Q2) denptes the linear space of functions ¢(x,y) that
can be represented as finite sums of products of the form ¢1(x)p2(y)
with ¢; € CSO(Q,'), i=1,2.

@ We show it is a dense subspace of the linear space C§°(Q1 x Q2).
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Tensor Product

Density of C°(R) x C°(R) in C5°(R?)

For ¢(x,y) € CS°(R™*"), there are ¢;i(x) € C°(R") and wj;(y) € Cg°(R™),
such that ¢(x,y) = Zj'il(pij(X)l//ij(y) converges to ¢ in 2(R"™™).

o We present an outline of the proof for n=m=1
o Define
. _ =92+ (y-m)? .
(I)(X,y, t): Wf—oof—ooqb(g!n)e at dédn, if t>0 .
(P(X’}/)» if t=0

Changing variables &1 = g;\/); N1 2\[, we get

O(x,y,t)= f f x+2§1 y+2n1\/_)e X’1+’71)d§1dnl
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Proof (Cont'd)

o Recall that [ [0 e G dédny = 7.
So we get
1@(x,y,t) = p(x,y)l
= vy f f Ip(x +26VE,y +20vE) = p(x,y)le” 1) dedn

- %{ff |¢>(x+2f\/f,y+2n\/f)—<p(x,y)|e_(52+’72)d€dn
E4n?=T?
+[f |<P(x+2€\/f,y+2n\/f)—¢>(X,y)|e—(52+n2)d€dn}.
E24n2< T2

Now we can see that lim¢_q+ ®(x,y,t) = ¢(x,y) uniformly in (x,y):

o ¢ is bounded and e (%) i integrable in R2.
So the first term in the sum approaches 0 as T — co.
o The second term, for fixed T >0, approaches 0 as t — 0*.
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Proof (Cont'd)

o Now consider

00 bt # .
I a(xy,t) | Sl p \/1—)2%6(;"% = gedn, if t>0
oxkay" L), if t=0

Reasoning as before, we obtain that, uniformly in (x,y),

Ok”q)(x,y, t) Ok”gb(x,y)
i = .
t—0*  dxkay’ axkoy?!

Now ®(x,y,t), t>0, may be extended to a holomorphic function of
complex x, y, for |x] <oo and |y| < co.

So, for all €>0 and fixed t >0, ®(x,y,t) may be expanded into a
Taylor series

D(x,y,t) Z Z cs(t)xy =z
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Proof (Cont'd)

o We expanded into Taylor series to obtain

D(x,y,t) Z Z cs(£)xSy ks,

This is absolutely and unlformly convergent if |[x| <¢ and |y|<e.
Differentiating term by term, we get

ak+€q) ot o) ak+€ s, ki—s
k(x 24 ) Z Z s(t) e Xy
oxkayt ky=05= oxkay?

Take {t;}, with t;=0, t;—0".

Choose, for each i, a polynomial section P;j(x,y) of the polynomial
j’(‘;ozg cs(t)xSy k=5, such that lim;_ Pi(x,y) = ¢(x,y) in &(R?).

Thus, for every compact K € R?, lim;_,0°P;(x,y) = 0°}(x,y)

uniformly on K, for all 8°. Adopt u(x) € C5°(R), v(y) € C5°(RR), such

that u(x)v(y) =1 on supp(¢(x,y)). Then ¢;i(x,y) = u(x)v(y)Pi(x,y)

satisfy our requirements.
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The Distributions T; and T,

&
&
&

T; will denote a distribution in Q;.

For a fixed y € Qy, the function ¢(:,y) belongs to C§°(Q1);

So T1 maps ¢(-,y) to the number T1(¢(-,y)), denoted T1(¢p)(y).
Thus, Ti(¢) is a function on Qj.

o Similarly, T2(¢) is a function on Q;.

o The next theorem shows that T1(¢) and T»(¢p) preserve all the
smoothness properties of the test function space 2.
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Derivatives in the Product Space

Theorem
If p(x,y) € 2(Q1 xQ2) and T1 € 2'(Q1), then T1(p) € 2(Q2) and

B Ti(¢) = TL(3p), for all e N,

o For any point y € Qy, let h be any nonzero real number such that
B(y,2lhl) = Qa. Let hy =(0,...,h,...,0) be the point in R™, with all
coordinates 0 except the k-th.

Let ¢ € C5°(Q1 x Qo). But ¢ is differentiable with respect to y. So

d(x,y +he) =d(x,y) + 0y, P(x,y)h+ R(x,y, h),

where %IR(x,y, h)| — 0 as h— 0. Using the linearity and continuity of
T1, we see that T1(¢p(x,y)) has a k-th partial derivative, as a function
of y, and that dy, T1(¢(-,y)) = T1(3y,$(-y))-
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Derivatives in the Product Space (Cont'd)

o We saw that 0y, T1(¢(,y)) = T1(dy, ¢(-,y)).
The formula 65 Ti(¢) = Tl(a’j(p) follows by induction.
The assumption ¢ € C5°(Q x Q) also implies that, for every x in a
compact subset of Q1, the function 65¢> is continuous on Qj.
Hence, by the continuity of Ty, so is Tl(affqb).
But ¢(x,y) has compact support in Q1 x Q.
So the function T1(¢(+,y)) has compact support in Q.
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Consequence for & and C*®

Corollary
If ¢(x,y)€&E(Q1 x Q) and T; €8'(Q1), then T1(¢p) € £(Q2) and

b Ti(p) = T1(059), for all e N2,

o This result may be proved by replacing ¢ by w¢, where y € C§°(Q)
equals 1 on a neighborhood of suppT; and using the theorem.

Corollary

If ¢(x,y) € C®(Q1 x Q) has compact support as a function of x and y
separately, then:

(a) T1(¢p)(y) € C=(Q2), for every T1 €2'(Q1);
(b) Ta(d)(x) € C®(Q1), for every Tr € 2'(Qp).
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Example

o Let ¢,y € 2(R).

(2) The tensor product (p®w)(x,y) = p(x)w(y) is in 2(R?).
For any Te2'(R), T(¢pew)=T(p)w(y) is a function in 2(R).
(b) The function ¢(x +y) lies in C®°(R?).
However, it does not have compact support.
E.g., ¢ #0 on the line x+y = c in %2 whenever ¢(c) #0.
But, as a function of x and y separately, ¢(x+y) has compact support.

We have
(1, p(x,y)) = f¢(x+y)dx = f(b(f)df = constant.

This is a C*°(R) function in agreement with the last corollary.
We also have (0x,¢(x+y))=¢p(y). This lies in C°(R).

This would seem to suggest that if T; in the corollary is taken in
&'(Q;), then T;(¢) will have compact support.
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Example (Cont'd)

o Now let feLl (Q1)and gell (Q).

loc

Then f®g is clearly in LLC(Ql x Q7).

Let ¢; €2(Q;), i=1,2.
Then ¢1 ® P2 € 2(Q1 x Qp) and we have

(feg,pr18d2) = Jo q, (X)8(y)P1(x)p2(y)dxdy
Jo, F(x)p1(x)dx [o, &(y)b2(y)dy
(f,p1){g, P2).

o The next theorem generalizes this result.

25 /116
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The Tensor Product Distribution

If Ti€2'(Q;), i=1,2, then there is a unique T1 ® T € 2'(Q1 x Qy),
defined by

(Tr@ T2)(Pp1®p2) = T1(¢p1) To(h2),
for all tensor products ¢1 ® 2, where ¢; € 2(Q;), and such that

(Tre T2)(¢) = Ti(T2(¢)) = T2(Te(¢)), ¢$€D(Qx D).

o Uniqueness follows from denseness of 2(Q1) x 2(Q2) in 2(Q1 x Q).
We show that T; ® T» is a distribution of Q; x Q».
Let K; be a compact subset of Q;.
By a previous theorem, there is a nonnegative integer m;, and a
nonnegative constant M;, i =1,2, such that, for all ¢; € D,
I Ti(pi)l < Milpilm;-
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The Tensor Product Distribution (Cont'd)

o Let pe Dk, where K= Kj x K.
The preceding theorem implies that To(¢) is in Dk, .
Therefore, T1(T2(¢)) is well defined.
Moreover, it satisfies

I T1(T2(P))1 = Mil T2(¢) I m, -

We also have 3% To(o(x,-)) = T2(0%¢p(x,-)).
So we obtain

I T2(p(x,)lmy

SUPxek, (0% T2(p(x,-))l: larl < my}
= SUPyek, {T2(05D(x, )l lal < my}

< Masupjajm, 105¢(X, ) m,
X€K1
< Mosupyer,yek, 10205 0(x,y)l : lal < my, |l < ma}.
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The Tensor Product Distribution (Cont'd)

o Thus, using the displayed inequality, we obtain

I T1(T2())l < M1M2|S|UP 107 | = My M3 |l m,
Ylsm
xeK

where y=a+f and m=my + ms.
This inequality holds for all ¢p € 2k and all K=K x K, €Qp x Qp.

By a previous theorem, the linear functional defined on 2(Q; x Q) by
¢— T1(Ta()) is a distribution in Q3 x Qp.

Similarly, the linear functional defined on 2(Q; x Q) by
¢ — To(T1(9)) also lies in 2'(Q1 x Qp).

Now T1(T2(¢1®¢2)) = Ta(1) To(2) = To(T1(p1®¢2)). pi € 2(Qi).
Hence, by uniqueness, T1(T2(¢)) = Ta(T1(¢p)), for all p € 2(Q1 x Q2).
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The Direct or Tensor Product of Distributions

o With T; € 2'(Q;), the distribution T;® T, = T, ® T; is called the
direct, or tensor, product of T; and T5.

o Strictly speaking, T; ® T> and T>® T; act on two different spaces and
their equality should be understood as the equality of their images.

o We finally show that supp(T1 ® T2) = (supp T1) x (supp T2).
Let suppT; = Kj, i=1,2. Suppose ¢ ¢ K1 x K>.
Then ¢ €2(Q1) x Ky or ¢ & K1 x 2(Q2).
Consequently, (T3 ® T2)(¢p) =0. l.e., ¢p&supp(T1® T2).
Hence, supp(T1® T2) < Ky x Ka.
Now (T1® T2)(p1®p2) = T1(h1) T2(¢p2), for all ¢; € 2(Q;).
Hence, K1 x Ky Ssupp(Ty ® Tp).
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Example

o Given £€Qq and neQp, we have

ik
(&

suppd¢
supp(0¢ ®6;)

This implies that §¢ ® 6 = (¢ )
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Subsection 3

Convolution
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Problem with the Domain of a Convolution

o We wish to extend the definition of the convolution of a C§° function
with a locally integrable function.

o We define (tentatively) the convolution of two distributions T; and
T> on R" by setting, for all € 2(R").

(T1x T2)(p) = (T ® T2)(p(x +y)) = Ta(Ta2(p(x +y)))

o If ¢ isin 2(R"), w(x,y)=d(x+y) is a C* function in R2".

o The boundedness of supp¢ does not guarantee the boundedness of
{(x,y) €R?": x +y € suppep}.

o So ¢p(x+y) as a function of (x,y) does not have compact support in
R?".

o Therefore, the right-hand side is not necessarily bounded unless

supp(T1® T2) = (suppT1) x (supp T2) intersects supp(¢p(x+y)) in a
bounded set.
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Defining a Convolution

o If K is the support of ¢, then

supp(p(x +y)) ={(xy) eR*": x +y € K}.

o Suppose either T; or T, has compact support.

o Then the intersection of (supp T1) x (supp T2) with supp(¢(x+y)) is
compact.

In fact, if either x or y is bounded and x +y is bounded, then both x
and y are bounded.

o In that case the right-hand side in

(T1* T2)(¢) = (T @ T2)(Pp(x +y)) = Ti(T2(Pp(x +y)))
is well defined.
@ Moreover, since T1® To = To® T1, we have Ty * To = To * T7.
@ Thus, the equation defines the convolution of two distributions
T1, T € 2(RR"™) provided at least one of them has compact support.
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Definition of a Convolution

o Let T; be defined by f; € Llloc(IR”), i=1,2, and either f; or f has
compact support.

T R T0) = T(Ta(y)
= [H(x) [ (y)d(x+y)dydx
= [[h(x=y)R(y)d(x)dydx
= (firhe).

o Here

(f+ £)() = [ Alx=y)a0)dy = [ A()alx=y)dy

is a locally integrable function which represents the distribution
T1 = Ty and extends the definition of f; * f5.
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On the Necessity of Compact Support

o Although the convolution of two distributions is always well defined
when one of them has compact support, this condition is not always
necessary.

. Let g be bounded (measurable), with M = sup|g].
Let fe LY(R").
Then
[ F0)0x=y)dty < M.

Thus, g may be convoluted with f

o Naturally, this result holds if g is merely bounded almost everywhere
in R".
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Convolution by L*(Q)

o The linear space of complex measurable functions on Q which are
bounded almost everywhere is denoted by L*(Q).

o [°°(Q) becomes a normed linear space if we define the norm of
g € L*°(Q), called the essential supremum of g, by

lglloo =inf{M:|g(x)<M a.e. in Q.
o Thus, we can state that, if f€ LY(R") and g€ L*(R"), then
If gl < fll1ligllco-
o So, if fe LY(R") and g€ L*(IR"), then f x g € L°(R") and

I % glloo < I fll111& lloo-
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Convolution of L*(IR") Functions

o When f and g are both in L}(IR") it is not obvious that their
convolution (f *g)(x) = [ f(x—y)g(y)dy exists.
E.g., at x=0, if we take f(—y)=g(y), this integral may diverge, since
not every integrable function is square integrable.

o We show that the function F(x) = [f(x—y)g(y)dy exists for almost
all x in R" by showing that F=f g e L1(R").

Let Fi)= | Fx=y)g()dy. SoIF(I= [ IFe=ye(yidy.

lylsk
Now we get
JIFk()ldx = [[fiy<k!f(x=y)g(y)ldyldx
Sy 1 (x=y)ldx]lg (y)ldy
111 Sy 1<k l&(¥)dy
< |fllgls.

In the limit as kK — oo, we obtain |[Fly1=f *xgll1 < Ifll1lgll.
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Convolution of L}(R") and LP(R"), 1< p<o0

o Let feLY(R") and ge LP(R"), 1< p<oo.
o We saw that, if p=1,00, f *g € LP(R") and

I+ glp=Ifliligllp

o Now consider 1< p < oo.
Since g € LP(R"), we get |glP € L}(R™).
Hence, since f € L1(R"), we have a.e.

[ 1=y gyPay <co.

Therefore, as a function of y, the product If(x—y)ll/plg(y)l lies in
LP(R"), for almost all x.

1,1_
Let g be such that Soo=h

Since |f| € LY(IR™), we have (for almost all x) |f(x—y)[*/9 e LI(R").
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Convolution of L}(R") and LP(R"), 1< p<o0

o Now, by Hélder's inequality, the function

I (x=y)g(y)l = [ (x=y)IMPlg(y)][If (x - y)I*/]

lies in LY(R™), for almost all x.
For such values of x, let h(x) = [f(x—y)g(y)dy.
Hdlder's inequality then gives

lh(x)l = [If(x=y)llg(y)ldy
< [SIF(x=y)lig(y)IPdy]YPLf IF(x = y)ldy]"/9;
P < [L1F(x=y)lg(y)Pdy]IFIP’;
J1h()Pdx < 1A [ [ 1IF(x=y)lig(y)IPdy]dx

IFI/9 [ LS 1F(x = y)ldX]ig(y)IPdy
1Pl g8
IF121g15.

Thus, h=f g e LP(R") and [If xgll, < Ifll1ligll,.
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Example

o Let Te2'(R"). Then, for any ¢ € 2(R"),

(6+T)¢p) = (BeT)(¢(x+y))
Ty (8(p(x+y)))
Ty(#())

= T(¢)

Thus, 6 is the unit element of the product operation .

Furthermore,

(096) » T() Ty((0%0)xp(x +))
Ty((=1)"0%(y))

0*T(¢)-
Therefore, (0%6)* T=0%T =6 *0*T.
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supp( Ty = Tp) Ssupp T1 +supp To.

Let suppT; = E;, i =1,2. Suppose, without loss of generality, that E; is
compact and E; is closed.

First, we show that the set E1 + E; = {x+y:x€ Ey,y € Ey} is closed.
Let (xx +y«k), xk € E1, yx € Ez, be a sequence converging to a point a.
Since E; is compact, (xx) has a subsequence (x; ), with x; — x € E;.
Now both (x, ) and the corresponding subsequence (x, +y, ) converge.
Since E; is closed, their difference (y, ) also converges to some y € E».
Thus, a=x+y isin E; + Ey. So Ey + E; is closed.

Thus, Q=R"-(E; + E2) is open.

Now for any (x,y) €supp(T1® T2) = E1 x Ep, we have x+y € E; + E;.
So supp(T1® T) does not intersect supp(¢p(x+y)), for any ¢p € 2(Q).
Hence T; = T, vanishes on 2(Q) and its support must be in E; + E;.
In particular, if T; and T have compact support, so does Ty * T>.
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Basic Property 2

2. Tyx(TaxT3)=(T1* To)* T3=Ty* T T3, for Ty, Ty, T3€ 2(R")
and at least two of the three distributions have compact support.
Both Ty T and Ty = T3 are in 2'(R").

The convolutions Ty % (T2 * T3) and ( Ty * Ty) * T3 are well defined.
To show that they are equal, note that, for any ¢ € 2(R"),

[T1*(T2xT3)](0) [Tre(To* T3)[(p(x+y"))
[Tie(T2® T3)|(p(x +y+2))
[(T1® T2)® T3](p(x +y +2))
[(T1 = T2) = T3](o).

o This associative property of , implies that the linear space &'(R") is
a commutative and associative algebra under the convolution product,
with § as its unit element.
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Basic Property 3

3. For Ty and T», with at least one having compact support,

6“(T1 * T2) = (6“6) * (Tl * T2)
= ((8%6)* T1)* Ty
= (6“ T]_) * T2
= T]_ * (6“ T2)

This follows directly from equation
(096)* T=0"T =6+0°T

and the commutative and associative properties of .
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Basic Property 4. Translations in R”

4. Let f is a function on R" and h is any point in R".
The translation 7, of f by h is the function 7,f defined on R" by

hf(x)=f(x—h).
o We clearly have 74¢p € CS°(R"), whenever ¢ € C°(R").
We define the translation of the distribution 7€ 2'(R") by
(@ T)@)=T(r-n¢),  pe2(R").

which is again a distribution in R".

@ When the distribution T is defined by a locally integrable function
f(x), its translation 7, T is clearly defined by f(x— h).

o In the case of the Dirac measure, we have

7h0(p) = 6(T-pp) = Pp(h) = 5 ().
This implies that 7,6 = 6,.
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Translations in R" (Cont'd)

o More generally, for any T € 2'(R")

Th T(¢) T(1-no)
T(¢p(x +h))
Tx(0n(p(x +y)))
(8h = T) ().

Therefore, 1y T =6,* T, Te2'(R").

o If either Ty or T, has compact support, this gives

Tp(T1* T2) Opx(T1* Ty) (preceding property)
(6p* T1)* T, (associativiy)
(thT1)* To (preceding property)

T1%(thT2). (commutativity)
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Convolutions of Multiple Distributions

o Even though we can sometimes define the convolution product of
several distributions where more than one is without compact support,
such products may not satisfy all the properties listed above.

: Let 1 denote the distribution represented by the constant
function 1 on R". Then (H*6")*1 and H = (6’ % 1) are both well
defined distributions but they are not equal.

(H%6")x1 = (H'%6)x1 Hx(6'+1) = H=x(6x1)
= (6%0)x1 = H=x0
= 6*1 = 0
= 1;
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Cancelations

o The equality 6’ *1 =0 also shows that, if T; and T, are two nonzero
distributions, it may happen that T; * T> = 0.
o In other words, the equality S;* T =5, % T, for some T #0, does not
necessarily imply that $; = S,.
@ On the positive side, suppose:
o Te2'(R");
o 51,5 €6°’(IR"), such that

S1#T=5=*T=6.

Then we have

51 = 5*51
(SQ*T)*51
52*(T*51)
52*(5
= 5.
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Convolutions in 2/ (R)

o Let 2/ (R)={T € 2'(R):suppT <[0,00)}.
o If T,5e2!(R), we can still define the convolution of T and S by

(S T,P) = (S Ty, p(x+y))), ¢e2(R).

For fixed x and ¢ € 2(R), ¢(x +y) has compact support in y.
So y(x) =(T,,p(x+y)) is a well-defined function in C®(R).
Moreover, suppy is bounded from above.

Suppose y € suppT and x +y € suppp < [-M, M].
Then y=0 and |[x+yl <M. Hence, x<x+y=<M.

Thus, supp$S < [0,00) intersects suppy < (—oo, M] in a bounded set.
So we can define (S * T,¢) =(S,y) as lim(S,p,v), where ¢, is a C5°
function which equals 1 on [—n, n].

Note that supp(S * T) SsuppS +supp T < [0,00).

Hence, S+ T €2 (R), i.e., 2, (R) is closed under the operation *.
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Inverse of a Distribution

o Let Te2'(R").

o A distribution S € 2'(R") is called an inverse of T in 2'(R") with
respect to the binary operation *, and denoted by 771, if

ST =6.

o We saw that in &', if such an inverse exists, it is unique.

o It is also unique in any subspace of &', where the convolution product
is a commutative and associative algebra, such as 2/,.
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Examples of Inverse Distributions

o We look at the possibility of inverting some simple distributions in R.
(i) Let SxH=4. Then
6'=(SxH)=S«H =5%6=S.
Hence, H™1=¢".
Similarly, (6")"t=S"1=H.
(1) Let S*(6'-=A8)=6. Then

Sx6'—-AS*x6=6
(S5%6) -AS%x6=06
S'-AS=6.

Set S=eMT. Then
S'=2eMT + T
eMT'=5-15=6
T'=6
T=H.
Therefore, (§'—A8)™1 =S =eM*H.
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Subsection 4

Regularization of Distributions
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The Reflection of a Function in 0

o For any function f on R", we define its reflection in 0 as the function
f defined on R" by _
f(x)="7(-x).

o We extend this definition to 2'(R") by duality,

T(®)=T(P), PR
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Convolution of 2'(R") by C°(R")

Theorem

For all Te2'(R") and all w e C§°(RR"), the convolution (T *vy) = T(7x¥)
is in C*°(R").

o For any ¢ € 2(R), we have

(T*y)(¢)
W(y) p(x+y)

Te(W(y), p(x+y)N);
S (y)p(x+y)dy
Ju(E—x)p(§)d¢
W(§-x),¢(5)
W(x=¢),¢(5)
(TeW(x), p(&)).

Hence, (T *y)(¢) = Tx((z¢¥(x), 9(S))) = (T (%), (&)
Furthermore, (T *y)(x) = T(7x¥) = T, (w(x—-y)) is a C®(R")
function, by a preceding corollary.
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Consequences

Corollary
T(¢) = (T % $)(0), for every p € 2(R") and T € 2'(R").

o As a consequence, if T x¢ =0, for every ¢ € 2(R"), then T =0.
Corollary
Let Te&'(R").
(a) If we C®(R"), then (T *y) = T(1x¥) is in C®°(R").
(b) If ye CP(R"), then (T xy)(x) is in C3°(R").

o For Part (a) multiply v by a C§°(R") function equal to 1 on suppT.
Part (b) follows from the fact supp(T *y) <supp T +suppy.
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Convolution of 2™ (RR") by CJ"(R")

0 If Te2™(R") and we CJ'(R"), (T *y) = T(vx¥) still holds and the
convolution T *1 is then continuous in R".
Suppose (x;) is a sequence in R" which converges to x.

im(Txyw)(x;)) = Iim(T,py(xi—y))
= (T, limy(x;—y))
(T continuous on 2™(R"))
= (T, p(x—y)
= (Txy)(x).

o If Te2™(R") has compact support, then we can take y in C™(R")
and reach the same conclusion.

Corollary

If Te2™(R") and we C™(R"), then (T *y)(x)=(T,,w(x—y)) is a
continuous function in R", provided T or ¥ has compact support.

George Voutsadakis (LSSU) Theory of Distributions January 2024 55 /116



Distributions with Compact Support and Convolutions [FRegularization of Distributions

The Function 3

e_ﬁ, Ix| <1

0, x| =1
that has support in B(0,1), with finite positive integral over R".

o Recall, also, the definition §(x) = f;((:))dx' another C* function with
support B(0,1), satisfying [ B(x)dx = 1.

o Finally, recall the function

o Recall the definition of the C* function a(x) ={

Ba(x) = %ﬂ(%), for A >0.
o We have B, € 2(R"), supp(B1) = B(0,1) and

fﬁ,l(x)dxzfﬁ(x)dle.
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The Convolution T % 8,

Theorem

For any T € 2'(R") the C*®(IR") function T * 8, converges strongly to T
as 1 —0, i.e.,, (T *p,)(¢) converges to T(¢p) uniformly on every bounded
subset of 2(R").

o Txfyisin C®°(R") by the preceding theorem.
Let E be any bounded subset of 2(IR"). By previous theorems:

o There is a compact K in R", such that E is bounded in 2k (R");
o For every ¢p € E, the support of §; = ¢ lies in a A-neighborhood of K.

If 2€(0,1), then there is a compact Kp, such that K< Ko = R" and
supp(Ba * ¢) < Ko, for all pe E.

Let m be any nonnegative integer. 0%¢(x) € 2k (R"), lal <m. So
there is € = e(m) >0, such that 0%p(x —y) € 2k, (R"), y € B(0,¢).

The function 0%¢p(x —y) = 6“(/>(x) uniformly on Ko, |a| < m.
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The Convolution T * 8, (Cont'd)

o We also have

(B2 % 0% —0%)(x) |/ BA(Y)[0%p(x — y) — 0%¢p(x)]dy|

S BA(Y)I0%p(x —y) —a%p(x)Idy.

IA I

For all values of A in (0,¢), suppBy < B(0,¢).

So the integration may be performed over B(0,¢€).

Thus, the left-hand side tends to 0 uniformly as A — 0, for all x in K
and all |a| = m.

Using a preceding corollary,

(T*pr—T)(¢)

(T *B2)*(0) = (T *$)(0)
T (Br*dp—¢)(0)
T(Br*d—9).

For the last equality, By * ¢ = By * P = B * ¢, since B, is even.
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The Convolution T * 8, (Conclusion)

o As 1 —0, Bz * ¢ — ¢ uniformly for all p€ E.
Therefore, T % ) — T converges to 0 uniformly on E.

Corollary

If Te&'(R™), then T * B, converges uniformly to T on every bounded
subset of &(R").
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Regularization

: By setting T =4 in the theorem, we see that 8, converges
strongly to & in both 2'(R") and &'(R").

o Previously, the convolution of a locally integrable function f with §,
was called a regularization of f.

o Extending the notion to distributions, we call

TBrk=T+*vk

a regularizing sequence of functions for the distribution T € 2'(R").
© Yk is a regularizing sequence for §.
o In consequence, if T x¢ =0, for every ¢p € 2(R"), then

T=T+6=IlimT xy,=0.

George Voutsadakis (LSSU) Theory of Distributions January 2024 60 /116



Distributions with Compact Support and Convolutions [FRegularization of Distributions

Vanishing Derivative on R

o We reestablish that T’ vanishes in R only if T is a constant (a.e.).
Let T e 2'(R) satisfy T'=0.
Let yx be a regularizing sequence for 6.
The C™ function T %y satisfies (T xy,) = T'xy,=0in R, for
every k.
So T *yk = ck, for some constant c.
Now cx =T xyx— T in D',
We show that the sequence of constants ¢, also converges in C.
Let ¢ € 2(R), such that [¢p(x)dx =1.
The sequence ¢ = (ck,¢) converges in C because ¢, converges in &'

Hence, its limit, the constant lim ¢k, coincides with T.
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Vanishing Derivative on R (Remark)

o In general, the convergence of a sequence of functions f, to f in @’
does not imply that its pointwise limit is f, or that it is even a
function (recall the sequence sin kx which converges to 0 in 2").

o However, when f; is constant, we have just shown that both assertions
can be made.
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Linearity of a Distribution

o The result leads to the conclusion that, if T(k) =0, then T is (almost
everywhere) a polynomial of degree less than k.

o When k=2, we can use a regularization process, which can be
generalized from R to R".

: If Te2'(R) satisfies T" =0, we shall show that T is a
linear function a.e.

For any ¢ € 2(R), we know that T *¢ is a C* function and that
(T+g)'=T"+p=0

Therefore, T x¢ is a linear function of the form (T * ¢)(x) = ax + b.
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Linearity of a Distribution (Cont'd)

o We saw that, for all p € 2(R), (T *¢p)(x) is of he form ax+ b.
Let h(x) =ax+b, xeR.
Now S is a C™ function supported in [-1,1], with [ B(x)dx =1.
So we obtain

S h(x—y)B(y)dy
s [ba(x —y)+blB(y)dy
= ax+b,

(h*B)(x)

since [ yB(y)dy =0, the integrand being an odd function.
Thus, h=f=h.

Let B1/x € 2(R) be the regularizing sequence defined previously.
Then, taking into account what was shown above,

(T*B)*Bryk=(T*Pryx) *B=T *Pr/k-

In the limit as k — oo, we obtain T=T % a.e.
Since T = B is a linear function, so is the distribution T (a.e.).
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Characterization of Convolutions by 2(RR")

Theorem

For any T € 2'(R"), the linear map L from 2(R") to &(R") defined by
L(¢p) =T = ¢ is continuous and commutes with the translation 74, he R".
Conversely, if L is a continuous linear map from 2'(R") to &(IR") which
commutes with 7, then there is a unique T € 2'(R"), such that

L(p)=T =¢, pe2(R").
(1) For any sequence ¢, — ¢ in Dk, we have
lim (T * ¢x)(x) = lim T(1xPi) = T(1x) = (T = p)(x).

The second equality because both T and 7, are continuous.
If Te2'(R"), then, by a previous theorem, for all ¢ € 2(RR"),

(T*tpp)(x) = T(tx(1h)) = T(txT-1)
= T(tx-nP) = (T = P)(x = h) =T4(T * ¢)(x).
Thus, Ltp =14L.
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Characterization of Convolutions by 2(R") (Cont'd)

(11) Suppose L is a continuous linear map from 2(RR") to &(R") which
commutes with 7. Then the map

¢ L($)(0)

is a continuous linear function on 2(RR"). So there is T € 2'(R"),
such that

L()(0)=T(¢),  Ppea(R").
Now we have

Lp)(x) = 7-xL(¢)(0) = L(7_x¢)(0)
T(7-xp) = T(1x¢) = (T * $)(x).

The uniqueness of T follows from the observation that T x¢ =0, for
all pe 2(R"), implies that T =0.
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Subsection 5

Local Structure of Distributions
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Distributions as Derivatives of Continuous Functions

o We saw that the Dirac distribution on R is the second derivative of
the continuous function x, = xH(x).

o From a previous theorem, we conclude that every distribution on R
with support {0} is a finite linear combination of derivatives of x,.

o More generally, we can show that every distribution is, locally, a
derivative of some continuous function.

o In this sense distributions are the natural generalization of continuous
functions, achieved by supplementing these functions with their
(distributional) derivatives of all orders.
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Notation

o For xeR" and k € IN, we define

(x)k = xl.kH(x,-), i=1,...,m;
xk = X{‘sz---x,’,‘;
x = ()it (m)is
ok = ofo5---ox.

o Foralli=1,...,n, (k_ll)!éff(x,')’fl =6 is the Dirac measure on R.

@ Soin R",

% Ey =86,
where
o Ex= —[(k_ll)!]nxff‘l is in CK2(R");

o § is the Dirac measure on R", which is the tensor product of § € 2'(R)
with itself n times.
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Local Representation of a Distribution

Theorem

If Te2'(R") and K is a compact subset of R", then there is a continuous
function f on R” and a multi-index & € IN, such that

T(¢p) = (0%F,p) = (-1)1%1(f,0%), ¢ € D.

o Let e CP(R") and v =1 on a neighborhood of K.
The distribution T equals T on K and has compact support.
Therefore it is of finite order, say m. We can now write

YT =8+yT =(0™2En2) s wT =0™2(EpsaxywT).

Now Epi2 € C™(R™). The distribution ¢ T being of order m, may be
extended to a continuous linear functional on Cj"(IR") in the topology
of 2™(RR"™). Since w T has compact support, by a previous theorem,
the convolution E42 * v is a continuous function on R". E.p0 %W
represents the desired function f.
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The Case of Compact Support

o When T has compact support this result takes a global form.

Corollary

If Te&'(R"), then there is a continuous function f on R"” and a multi-
index a, such that T =0%f.

o If suppT = K is compact, then T is of finite order, say m.
By the theorem, T =8™*2f, where f = E,u0 % T € CO(R").
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An Example on Compact Support

o Let Te&'(R) be a distribution of compact support.
As a consequence, T has finite order, say m.

We have
° Emi2=(mppd € CM(R);
(m+2) _
W SURET

Suppose f =T * Ejpn. Then
T=Tx6=TxEM? = f(m2),

But T € &'(R) is of order m.
So it can be extended to a bounded linear functional on C™(R).
Hence, using equation (T xy)(x) = T(7x¥), we can write

f(x)=(Ty, Emea(x—y)),

which is clearly continuous.
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An Example on Compact Support (Remarks)

o In the example, even though T has compact support, the continuous
function f which satisfies T = f(™*2) may not have compact support.

In fact, when T =6, then f = Ep,,2, which has support [0,00).

o Note, also, the relation between the order of differentiation of f which
is needed to represent T, namely m+2, and the order of T.
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Remarks on the Order of the Derivative and the Domain

o The representation T =0%f in the statement of both the theorem and
its corollary is not unique.

The choice a =(ai,...,an) =(m+2,...,m+2) always works when f is
chosen to be E,, 5 * T, but obviously there are other possibilities.

o The second point worth noting is that this representation remains
valid whether K is taken in R" or in any of its open subsets.

Hence the theorem and its corollary still hold if R” is replaced by Q.

@ The corollary remains valid if the distribution T is merely of finite
order, as we will next show.

George Voutsadakis (LSSU) Theory of Distributions January 2024 74 /116



Distributions with Compact Support and Convolutions [\ Local Structure of Distributions

Locally Finite Partitions of Unity

o Let Q be any open set in R".

o An open covering {Q; : i € IN} of Q is called locally finite if every
compact subset of Q intersects at most a finite number of Q;.

o Following a procedure outlined previously, we can construct a sequence
of functions v;, in C§°(Q2), such that, for each i€ N, suppy; € Q;,
O<syi<1, and

o0
Y wi(x)=1, forevery xeQ.
i=1

@ Since any x € Q lies in at most a finite number of the sets Q;, this sum
has only a finite number of nonzero terms.

o The collection {1} is called a locally finite partition of unity in Q
subordinate to the cover {Q;}.
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Finite Order and Global Derivative Representation

If Te2'(Q) is of finite order, then there exists a continuous function f in
Q and a multi-index a, such that T =9%f in Q.

o Suppose T €2'(Q) is of order m.

Let {y;} be a locally finite partition of Q subordinate to the cover {Q;}.
Then T=Yw; T =Y T;, where: T;:=v;T is a distribution:

o with compact support in Q;;

o of order m; <= m, since its order cannot exceed the order of T.

By the corollary to the theorem, it is represented in Q by
Ti = 0™*2(Emyea % Ti) = 0™ (Emea » Ti),
where the convolution of E,,;»> and T is well defined because

T;=v;T can be extended as 0 into R"-Q;.
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Finite Order and Global Derivative Representation (Cont'd)

o Now E,,.o* T;=f: is a continuous function in Q.

Moreover, T is represented by the sum
T = Z Ti — Zam+2f} =am+22f}'
i i i

Since any compact set in Q intersects the supports of at most a finite
number of the functions f;, this sum over f is finite.

Therefore, the function g =Y ;f; is continuous in Q.
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Another Global Version

o If the distribution T is not of finite order, the representation
T = Z am+2f}

is still valid.

o So we obtain a global version of the theorem.

Corollary

For every T € 2'(Q), there exist continuous functions f; in Q and
multi-indices a; € INj, such that T =3 0% f;, in the sense that

N
(T, )= Z(—l)'“"(ﬁ,d“”q{)), for all e 2(Q),
i=1

where the (finite) integer N depends on supp¢.
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Subsection 6

Applications to Differential Equations
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Existence of Primitive Distributions in R

o Recall, for a given T € 2'(Q), the distribution S which satisfies
0k S(d) = T(¢), for every p € 2(Q), is called a primitive of T.

Theorem

Any distribution in 2'(R) has a primitive distribution which is unique up to
an additive constant.

o Let Te2'(R). We wish to determine a distribution S, such that
S'(@)=-5(¢)=T(¢), ¢e2(R).
This determines S on the space
20(R)={y € 2(R):w =¢', for some ¢p € 2(R)}.

We have already seen that w € 2¢(R) if and only if (% w(x)dx =0.
Let ¢po be a fixed function in 2(R), such that (1,¢p) = 1.
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Existence of Primitive Distributions in R (Cont'd)

For any ¢ € 2(RR), we can write
P(x) = P(x) = (L, P)po(x) + (L P)po(x) = w(x) + (1,p)po(x) -
— ——

€2(R) €2(R)-Z0(R)
We first define S on 2p(RR) by

S(w)=—T(x), where y(x)= f_ _w(t)dtc(R)
Then we extend the definition to 2(R) by
5(¢) == T(X) +(c, ),

where ¢ is an arbitrary complex constant.
If S is a distribution, then, for all ¢ € 2(R),

S'9)=-5(0)= - |-T([_¢' @) +c.on| = T9)+0.

This means that S is a primitive of T.
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Existence of Primitive Distributions in R (Cont'd)

: Sisin 2'(R).
Let (¢pk) be any sequence in 2(R) which converges to 0.

This implies that:

o suppdy is in some fixed compact set K <R, for all k;
o 0%y — 0 uniformly on K.

So (1,¢k) — 0. Therefore, in 2(R),

¢r(x) = (L pidpo(x) — 0;
S wk(t)dt —0.

Vi(x)
Xk(x)

Hence,
S(pk) = = T(xk) +(c, i) — 0.

This proves that S is a distribution in RR.

George Voutsadakis (LSSU) Theory of Distributions January 2024 82 /116



Distributions with Compact Support and Convolutions [Applications to Differential Equations

Existence of Primitive Distributions in R (Conclusion)

Uniqueness.
Suppose S; and S are two primitives of T.
Then for any ¢ € 2(R),

(S51-%2)'(¢) = S1(#) = S3(¢) = T(d) - T($) =0.

By a preceding result, we conclude that S; — S, must be a constant.
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Linear Partial Differential Equations of Order m

o Let L be a linear partial differential operator of order m=1 of the
form
L= ca(x)d%
lal=m
where a € N[ and ¢, are C* functions on R".
o L clearly maps 2'(Q) into 2'(Q).

o The corresponding equation
Lu=f

where f is generally given as a distribution in Q< R”, is called a
linear partial differential equation of order m.

o The restriction to linear differential equations is necessary because we
cannot define multiplication in 2’ as a natural extension of
multiplication of functions.
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©

In the classical theory, by a “solution” to the differential equation
Lu=f in Q we mean a function which is differentiable up to order m
in Q and satisfies the equation in the sense of equality of functions.
We demand here a little more smoothness.

o We call u a strong solution of Lu=1f in Q if ue C™(Q) and the
(continuous) function Lu equals f in Q.

A weak solution of Lu=f is a distribution v € 2'(Q) which satisfies
Lu=f in the sense of distributions, i.e., in the sense that

(Lu,p)y ={f,¢p), for all peD(Q).

Every strong solution of Lu=f is also a weak solution.
o Any continuous function defines a distribution in 2';
o All its continuous derivatives coincide with its corresponding
distributional derivatives.

We ask of the equation Lu=f

©

©

©

©
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Example

o Consider the ordinary differential equation xu’ =0 on R.
It has the strong solution u=cy.
The function u(x) = e H(x) satisfies the equation as a distribution.

U =cH =cé.
So, for all € 2(R),

(xu', ) = co(x8, ) = c2(8, xp) = 0.

Hence, u=c; + o H is a weak solution of xu’ = 0.
o This solution violates the (classical) rule that an ordinary differential
equation of order 1 has a general solution with one arbitrary constant.

o It would seem that this “rule” no longer holds when distributions are
admitted to the class of solutions.
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Characterization of Strong Solutions

Theorem

Let L be a linear differential operator of order m and u be a weak solution

of Lu=fin Q. If ue C™(Q) and f € C°(Q), then v is also a strong
solution of the equation.

o A weak solution of Lu=f, u satisfies (Lu,$) = (f,¢), for ¢ € 2(Q).
Equivalently, [, (Lu—f)¢ =0, for all ¢ € 2(Q).
We must show Lu—f =0 on Q. If not, there exists x € Q, where
Lu(x)—f(x)#0. But Lu—f is continuous.
So there is a neighborhood U of x, where Lu—f does not vanish.

Now we can choose ¢ € 2(Q) to be a positive function supported in U.
For such a choice, we would have

fQ(Lu—f)(psz(Lu—f)(p;éO

in contradiction to the equality above.
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Example

o Suppose f and g are continuous functions on / = (a, b).
Suppose T is a distribution satisfying the differential equation
T +fT=g.
We show that T is a C! function which, consequently, is a strong
solution of the equation.
Choose a function ¢ € C1(/), such that ¢’ = f.
The function u(x) = ce™®™), ¢ constant, satisfies v’ + fu = 0.
Using the method of variation of parameters to construct a solution of

u'+ fu =g, we now assume that c is a function of x.
Then the equation u' + fu = g is satisfied if

ce?—ce PP +cePf=g
cdet=g
c(x) :f;; e?() g(t)dt, xo fixed in (a,b).
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Example (Cont'd)

o Since ce CY(1), u(x) = c(x)e™®™) isin C*(/) and '+ fu=g.
Let T be a distribution on (a,b), such that 7'+ T =g.
With ¢’ = f, the distribution S = e?(T - u) satisfies

S = [eXNT-u)
= e/ (T-u)+e?(T' -1
= e?[(T'+fT)— (v +fu)]
0.

Therefore, S is a constant, say A.
Hence, T =u+Ae %€ CY(/) is a strong solution of T'+fT =g.
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Example

o Consider the differential operator in IR with constant coefficients
m dm—l
L=—+c——+-+Cp-1—+Cm.
dxm " “Hxm-1 MLy

Let A1,...,Am be the roots of P(x)=x™+cix™ 1+ + cpo1X+Cm.

We show that
u= HeM* « HeMX x ...« HetmX

is a solution of the ordinary differential equation Lu=4.

We have
P(x)=(x=2A1)(x=2A2) - (x=Apm).

o))
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Example (Cont'd)

o It now follows that

L5 = (F-M)(E-22) (g —Am)o
= (G M) —22) (G~ Am)Bx0 x50
= (Lo A)5 (L m )8k (= A)o

(6"~ 116)(8" = 128) -+ (8" = Amb).

Write
Lu=Lux6=ux*Ld.

Then u satisfies Lu=6 if ux L6 =6.
So Lu=¢ if u=(L6)L.
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Example (Cont'd)

o Wesaw Lu=4 if u=(L5)".
Now we rely on the following two facts, the first of which was
established in a previous example.
o (8'-16)71 = e™H;

° (v*w)_lzv_1 1

* W T,

Then we can compute

u [(6" = A18) * (8" = A28) % -+ % (8" = Am6)] ¢
(6'- /115)_1 * (6 — /125)—1 - /1m5)_1

Her1X « Het2X « ...« HeAmX
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A Special Case

oWhenc1:C2= =cm:0 thenﬂ,]_:AQ:...:Am:O_
So we retrieve the solution of 27 u=§ as given by
H*H*~~~*H=# m-1 _ 1 Hxm-1

(m-1)U"" = (m-1)!
Suppose v is another solution of Lu=34.
Then g{—Tn(v— u)=0.
By a previous example, v —u is a polynomial of degree < m—1.

Hence, ]
u= me_l + by x™ 4 bpx™ 2 4 by
m—1)!
is the general solution of % =0, where by,..., by, are arbitrary
constants.

These constants may be evaluated by imposing conditions on v and its
derivatives at one or more points in RR.
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Example of a Second-Order Differential Equation

o Let E € 2'(R) satisfy the differential equation

d2
—E =9,
dx?
where § is the Dirac distribution on RR.
We found that one solution to the equation is given by x; = xH(x).

Any other solution E will satisfy the homogeneous equation
d2
E[E—XH(X)] =0
It must, therefore, have the form
E(x) =xH(x)+ax+b,

which is a continuous function on R.

The arbitrary constants a and b may be determined by imposing
boundary conditions on E.
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Example of a Second-Order Differential Equation

o Consider the differential equation u” = f, for given f € L1(0,1).
Its solution in (0,1) may be constructed by using the result of the
previous example.
If f is extended into R by setting f =0 outside (0,1), then f € L}(R).
We have
(FxE)' =f+E"=fx6=".

Thus, one solution of the equation is given by

u(x) = (F*E)x)
Jo (x=&)H(x=&)F(¢)d¢
Jo(x=&)Ff(&)dé, 0=x=<1.

The general solution is therefore

()= fo " (x—&E)F(£)dE+ax+b.
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Example (Fundamental Solutions)

o The requirement that f be integrable on (0,1) in u” =f is, of course,
not necessary.

o It was only made in order to allow us to express the convolution f * g
as an integral.

o We could have assumed that f is a distribution on (0,1) which can be
extended to a distribution in R with compact support in [0, 1].

. 2 5 5 .
o In fact, equation %E =4 is really a special case of equation u” =f,
where we chose f to be 6.
o The resulting solution E is called a fundamental solution of the
differential operator d

o The function He** x ... Helm* shown to satisfy the m-th order
equation (jm + cl(f,,, Tt cm_1% +Cm)u =90 is a fundamental

m-1

solution of the operator dx_m + cl% oot cm_1% + Crn.
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Fundamental Solutions of a Differential Operator

o Recall the linear partial differential operator of order m=>1

L= Y ca(x)0%

lal=m
where @ € N[ and ¢, are C* functions on R".
o E is a fundamental solution of the operator L, if E€2'(R") and

LE =4.

@ The importance of the fundamental solution lies in the fact that it
allows solving the more general equation Lu=f.

o If E is a fundamental solution of L and f is a distribution with
compact support in Q< R", then

L(F+E)=fxLE=Ffx5=F.

o So f x E is a solution of the differential equation Lu=f.
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Example

o Consider the operator ,
d
L= 2 +0?,
where o is a (nonzero) constant.
We determine its fundamental solution.
The solution of Lu=0 is a linear combination of coswx and sinwx.
Let f; = acoswx and f> = bsinwx.

Based on the work of a previous example, we assume that one solution
of LE =6 is given by

acoswx, x<0
o= { bsinwx, x>0
Continuity of E at x =0 gives f1(0) = £2(0), i.e., a=0.
For E’ to have a unit jump discontinuity at x =0, we must have
£(0)=f/(0) =1, or bw=1. Therefore, E(x) =1 H(x)sinwx.
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Example (Cont'd)

o The solution of the differential equation Lu = f, where f € &'(R), is
now given by u=f =« E.

When suppf =[0,1] and f is integrable, we can write

u(x) é fo (€Y H(x — &) sineo(x — &)dé

X
lf ) mal—d, Dzsxsl
wJo
The general solution of Lu=f is therefore
1 X
u(x) = 5[ f(&)sin(x—¢&)d¢ + ¢y coswx + e sinwx,
0

where ¢; and ¢, are arbitrary constants which may be determined by
imposing appropriate boundary conditions on u.
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Example

o The general linear ordinary differential operator of order 2 with
constant coefficients is given by
d2

L=¢ +co—+c3, c #£0.
X

dx2 ' °d

From the classical theory are C* functions, we can find two linearly
independent solutions of Lu=0, say wy; and ws.

Assume that a fundamental solution of L has the form

_ | awi(x), x=<0
E(X)_{ bwl(x), x>0

We see that in order to satisfy LE =&, we must have

bws(0) — w1 (0) =0,  bw}(0) - aw](0) = Cll
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Example (Cont'd)

o We must have

{bwz(O) - awm(0) = 0 }
bwy(0) — aw;(0) Cll

Let

W(x) = wi (x)ws(x) — wy (x)wa(x).
be the Wronskian of the solutions w; and w» of Lu=0.
Since wy and ws are independent, W(x) #0.

So we have
b_ Wl(O)

C1 W(O) ’ a Cc1 W(O) ’
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Formal Adjoints

o Let L be the general linear differential operator
L= ca(x)d%
lal=m

where @ € N[ and ¢, are C* functions on R".
o Then we have, for all T €2'(Q),

(LT, Qb) = <Z|a|sm Ca(X)aa T! ¢>! ¢ € 9(Q)
(T»ZIalsm(_l)lalaa(Ca(X)(p))
(T,L* ).
o The operator L*, defined by

L'p= ¥ (-1)0%(calx)0)

lal=m

is known as the formal adjoint of L.
o We always have (L*)* = L.
o When L* =L, we say that L is formally self-adjoint.
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Formal Self-Adjointness: Ordinary of Order 2

o Consider the general linear ordinary differential operator of order 2

d? d
L= — + — +cs.
c1(x) a2 T 2 (x) dx
For self-adjointness, we must have, for every test function ¢,

(ap)’ —(20) +csp=c19" + '+ c3¢.

This equality is satisfied if and only if c; = c].
o Thus, we arrive at

©

d? rd
ij ';C]_ ax +C3
&(C]_a) + C3.
o Therefore, the general formally self-adjoint linear differential operator

of order 2 on R is given by

~
|

:i(pi)+q, p#0, g are C* on R.
dx " dx
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Formal Self-Adjointness: Ordinary of Order 2 (Cont'd)

o Let wy and wy be two linearly independent solutions of the
homogeneous differential equation

Lu=(pu") +qu=0.
Then a fundamental solution of L can still be represented by

E(x) { aw(x), x=<0

bwy(x), x>0
awy (x) + [bwa (x) — awy (x)]|H(x).
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Formal Self-Adjointness: The Case of Order 2 (Cont'd)

o If we assume in

E(x) ={ Zﬁi% iig = awy (x) + [bwa (x) — awq (x)]H(x).

that aw; (0) = bws(0), we get
pE’ plaw; + (bwo —awy) H + (bwo — awy )]
= plaw; + (bwj —awy)H].

With Lwy = Lws =0, we have

LE = (pE'Y+qE
= a(pwy)'+aqwy + [p(bwj — aw;)H]" + q(bws — awy ) H
= a(pwy)'+aqwy +p'(bwsy —aw])H
+p(bwy —awy')H + p(bw} — aw; )6 + q(bwo — awy ) H
— al(pw]) + qual - al(pw) + qualH
+b[(pw}3) + qwa] + p(bw) — aw; )6
= p(O)[bw)(0) - aw] (0)].
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Formal Self-Adjointness: The Case of Order 2 (Cont'd)

o We found
LE = p(0)[bw;(0) — aw; (0)]5.

Thus, if E is to be a fundamental solution, a and b must also satisfy

p(0)[bw(0) - aw (0)] = 1.

o |
1
p(0)

__w(0) - w(0)
pO)W(0) "~ p(O)W(0)’

l.e., a and b must be the solutions of

awi(0) - bwy(0)
—aw;(0) + bwj(0)

Consequently,
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Formal Self-Adjointness: The Case of Order 2 (Conclusion)

nce 2= 220 p__w()
° Since 2= Sgiwroy b= soywior

E(x)= m {w2(0)wa (x) + [wa (0)wz(x) = w2 (0)wa (x)]H(x)} -

The general solution in (0,1) of the differential equation
(pu")' +qu=f with f integrable on (0,1), is therefore

u(x) = FrE(X)+aw(x)+cws(x)
= o (0) 5 f(§)wa(x~&)d¢
+wa(0) [ F(&)wa (x—&)de]

+awmi(x)+aw(x), 0=sx<1.

c1 and ¢; may be determined from the boundary conditions on w.
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The Case of PDEs

o The method that we have used for constructing a solution to the
differential equation Lu=f by taking the convolution of f with a
fundamental solution of L works equally well when L is a partial
differential operator.

o Recall the following previously obtained results

Alog|x| = (03+03)logl|x| =276,
1 2. 32,32 1
A= = (B+0R+82)| ————|=-ans.
X X242 +2

o We may conclude, concerning the operator A, that:
o A fundamental solution of A in R? is %Ioglxl;
o A fundamental solution of A in R3 is _#le'
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Example: The Poisson Equation

o Consider in R3 the partial differential equation Au=f, known as the
nonhomogenous Laplace, or Poisson, equation.
o It has a solution which is given by

)
A7) x|

when this convolution is well defined.

The solution may be interpreted as the potential generated by f.

©

When f is an integrable function with compact support, u is
represented by the function

_ 1 f()
u(x) = 4n f]R:* [x — €& ds.

Clearly u(x) — 0 as |x| — oo, i.e., away from the mass distribution.
If uis to satisfy other boundary conditions, the solution has to be
supplemented by a solution of Au=0.
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Example: The Heat Equation

o The temperature distribution u on a slender, infinite conducting bar as
a function of time t and position x may be described by

d:u = 02u, (x,t)€(—00,00)x(0,00),
u(x,0) = g(x), xe(-o00,00).
o The equation governs the heat flow along the bar for all ¢t > 0;
o g describes the initial temperature distribution at t =0.
@ The “fundamental solution” that we need to construct u=f * E, would
have to satisfy

(0: = 0%)E(x, 1)
E(x,0)

0, (x,t)e(—o0,00)x(0,00);
6()(,0), t=0, —co< x <oo.

2
1 0 I T
o Such an E is glven.by E(x,t)= T e
o Note that the first equation above is satisfied.
o To satisfy the second, it suffices to show that E(x,t) is a
delta-convergent sequence as t — 07.
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Example: The Heat Equation (Cont'd)

e a
o Recall hat we have shown f} = m 0.
Setting A = 4t, we get E(x,t) = \/i—e = =0

o In its dependence on x, E(x,t) is a C* function which decays
exponentially as |x| — oo, for every t > 0.

o So the convolution

ulx,t)= g+ E)mt) = o= [ g0

is well defined for a wide class of functions, including all locally
integrable functions g(x) whose growth as |x| — co is no faster than
some power of x.

o It represents the temperature distribution u in (—oo,00) x (0, 00).

o It is clear that u— 0 as t — oo or as |x| — co.
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Example: The Wave Equation

o The motion of an infinite vibrating string is described by the wave
equation
6%u=6)2(u, —oc0< x<o00, 0<t<oo.
o If the string is released with initial shape ug and initial velocity u; then
we have the initial conditions

u = uy, t=0 —co<x<oo;
otu = u, t=0, —co<x<oo.
o Let
Eo = L[H(x+t)-H(x-1)],
Ei = 0:E=3[6(x+t)+8(x—t)].

o Then the following differential equations hold in the upper half-plane
t>0, —0o< x <00,

(97 -03)Eo

0;
(ai -02)E; 0.
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Example: The Wave Equation

o When t=0, we have

Ecb = 0
Ex = 6;
0:Ey = 0.

Consequently, a solution of the boundary value problem is given by
u=ug* Ey +up * Eg,

where the convolution is taken with respect to x.
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Example: The Wave Equation (Cont'd)

o We found u= ug* Ey + u; * Ey, where

Eo = 3[H(x+t)—H(x-t)],
Er = 0:E0=3[8(x+1t)+56(x—t)].
o When wp e C3(R) and u; € C1(R)nLY(R), we can write this in the
form
u(x,t) = Suo(x—t)+uo(x+t)]
+ 3 o i (OH(x+t =€)~ H(x~t = &)]d¢

= %[uo(x— t)+ug(x+1t)]+ % ;(_tht up(&)dé.
o It is straightforward to verify that this expression satisfies the wave
equation and that u(x,t) — up(x) and 0¢u(x,t) — ut(x) as t — 07,
o If the string is released from rest then u; =0.
In that case, the solution is the average of the two traveling waves
up(x—t) and up(x + t), both having the same shape uy but traveling
in opposite directions with velocities +1.
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Classification of the Applications

o Second order partial differential equations with constant coefficients
are classified as
o elliptic;
o parabolic;
o hyperbolic.
o Typical examples of these are:
o The Poisson equation for elliptic ones;
o The heat equation for parabolic ones;
o The wave equation for hyperbolic ones.

o In fact, in its homogeneous form, any second order partial differential
equation with constant coefficients may be transformed, by an
appropriate change of coordinates, to one of the following forms (A
the Laplacian in R"):

o Au=0; (Laplace’s Equation)
o (0:—A)u=0; (Heat Equation)
o (02-A)u=0. (Wave Equation)
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Classification: The Names

o Consider the three equations:
o Au=0; (Laplace’s Equation)
o (0:—A)u=0; (Heat Equation)
o (02-A)u=0. (Wave Equation)
o Replace 0; by T and d, by &, in the above operators.

o The Laplacian A becomes a polynomial in &5,...,&, whose level
surfaces are spherical or, up to a change of scale, elliptical.
o From this it follows that:

o The Laplace operator corresponds to an elliptic surface |£]% = 0;
o The heat operator corresponds to the parabolic surface 7 —|¢|2 =0;
o The wave operator to the hyperbolic surface 72— |2 = 0.
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