# Introduction to the Theory of Distributions 

## George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science<br>Lake Superior State University

LSSU Math 400

## (1) Fourier Transforms and Tempered Distributions

- The Classical Fourier Transformation in $L^{2}$
- Tempered Distributions
- Fourier Transform in $\mathscr{S}$
- Fourier Transform in $\mathscr{S}^{\prime}$
- Fourier Transform in $L^{2}$
- Fourier Transform in $\mathscr{E}^{\prime}$
- The Cauchy-Riemann Operator
- Fourier Transforms and Homogeneous Distributions


## Subsection 1

## The Classical Fourier Transformation in $L^{2}$

## The Fourier Transformation in $L^{1}\left(\mathbb{R}^{n}\right)$

- Fix $\Omega$ to be $\mathbb{R}^{n}$ and write $L^{p}, \mathscr{D}, \mathscr{D}^{\prime}$, etc. for $L^{p}\left(\mathbb{R}^{n}\right), \mathscr{D}\left(\mathbb{R}^{n}\right)$, $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$, etc.
- For $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle, \xi=\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle \in \mathbb{R}^{n}$, let

$$
\langle x, \xi\rangle=\sum_{j=1}^{n} x_{i} \xi_{i}
$$

- The Fourier transform of a function $f \in L^{1}$ is a function $\mathscr{F}(f)=\widehat{f}$ on $\mathrm{R}^{n}$ defined by

$$
\widehat{f}(\xi)=\int e^{-i\langle x, \xi\rangle} f(x) d x, \quad \xi \in \mathbb{R}^{n}
$$

- The Fourier transformation is the mapping

$$
\mathscr{F}: f \mapsto \widehat{f}
$$

defined, so far, on $L^{1}$.

## Properties of the Fourier Transform

## Lemma

If $f \in L^{1}$, then, for all $\xi \in \mathbb{R}^{n},|\widehat{f}(\xi)| \leq\|f\|_{1}$.

- By definition,

$$
\widehat{f}(\xi)=\int e^{-i\langle x, \xi\rangle} f(x) d x
$$

So we have

$$
\begin{aligned}
|\widehat{f}(\xi)| & =\left|\int e^{-i\langle x, \xi\rangle} f(x) d x\right| \\
& \leq \int\left|e^{-i(x, \xi\rangle} \| f(x)\right| d x \\
& =\int|f(x)| d x \\
& =\|f\|_{1} .
\end{aligned}
$$

## The Riemann-Lebesgue Lemma

## Lemma (Riemann-Lebesgue Lemma)

If $f \in L^{1}$ is an integrable function, then $|\widehat{f}(\xi)| \rightarrow 0$ as $|\xi| \rightarrow \infty$.

- We prove the lemma for $n=1$.

Assume, first, that $f \in C_{0}^{0}(\mathbb{R})$.
Starting from the definition and substituting $y=x-\frac{\pi}{\xi}$, we get

$$
\begin{aligned}
\widehat{f}(\xi) & =\int_{-\infty}^{\infty} f(x) e^{-i x \xi} d x=\int_{-\infty}^{\infty} f\left(y+\frac{\pi}{\xi}\right) e^{-i y \xi} e^{-i \pi} d y \\
& =-\int_{-\infty}^{\infty} f\left(y+\frac{\pi}{\xi}\right) e^{-i y \xi} d y
\end{aligned}
$$

So $\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-i x \xi} d x=-\int_{-\infty}^{\infty} f\left(x+\frac{\pi}{\xi}\right) e^{-i x \xi} d x$.
Taking means, we get $|\widehat{f}(\xi)| \leq \frac{1}{2} \int_{-\infty}^{\infty}\left|f(x)-f\left(x+\frac{\pi}{\xi}\right)\right| d x$.
By continuity, $\left|f(x)-f\left(x+\frac{\pi}{\xi}\right)\right| \xrightarrow{|\xi| \rightarrow \infty} 0$.
By the Lebesgue Dominated Convergence Theorem, $|\widehat{f}(\xi)| \xrightarrow{|\xi| \rightarrow \infty} 0$.

## The Riemann-Lebesgue Lemma (Cont'd)

- Now suppose that $f \in L^{1}$.

The key result is that $C_{0}^{0}$ is dense in $L^{1}$.
So, given $\varepsilon>0$, there exists $g \in C_{0}^{0}$, such that $\|f-g\|_{1}<\varepsilon$.
Thus, using the preceding slide, we get

$$
\begin{aligned}
|\widehat{f}(\xi)| & =\left|\int_{-\infty}^{\infty} f(x) e^{-i x \xi} d x\right| \\
& =\left|\int_{-\infty}^{\infty}(f(x)-g(x)+g(x)) e^{-i x \xi} d x\right| \\
& \leq\left|\int_{-\infty}^{\infty}(f(x)-g(x)) e^{-i x \xi} d x\right|+\left|\int_{-\infty}^{\infty} g(x) e^{-i x \xi} d x\right| \\
& \leq \varepsilon+\left|\int_{-\infty}^{\infty} g(x) e^{-i x \xi} d x\right| \\
& \xrightarrow{|\xi| \rightarrow \infty} \varepsilon+0
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, $|\widehat{f}(\xi)| \rightarrow 0$ as $|\xi| \rightarrow \infty$.

## Properties of the Fourier Transform

## Proposition

Let $f \in L^{1}$ and $\xi_{k} \rightarrow \xi$ in $\mathbb{R}^{n}$.
(a) $\widehat{f}\left(\xi_{k}\right) \rightarrow \widehat{f}(\xi)$;
(b) $\widehat{f}$ is bounded an continuous on $\mathbb{R}^{n}$;
(c) $\widehat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$.
(a) Suppose $\xi_{k}$ is a sequence in $\mathbb{R}^{n}$ which converges to $\xi$.

$$
\left|\widehat{f}\left(\xi_{k}\right)-\widehat{f}(\xi)\right| \leq \int|f(x)|\left|e^{-i\left\langle x, \xi_{k}\right\rangle}-e^{-i\langle x, \xi\rangle}\right| d x
$$

Moreover, $\left|e^{-i\left\langle x, \xi_{k}\right\rangle}-e^{-i\langle x, \xi\rangle}\right| \xrightarrow{\xi_{k} \rightarrow \xi} 0$.
By Lebesgue's Dominated Convergence Theorem, $\widehat{f}\left(\xi_{k}\right) \rightarrow \widehat{f}(\xi)$.
(b) By a previous lemma and Part (a).
(c) By the preceding lemma.

## Remark on Integrability

- In general $\widehat{f}$ may not be integrable.

Example: Consider the function

$$
f(x)= \begin{cases}1, & \text { if } x \in(-1,1) \\ 0, & \text { otherwise }\end{cases}
$$

We have over $\mathbb{R}$

$$
\begin{aligned}
\widehat{f}(\xi) & =\int_{-\infty}^{\infty} e^{-i x \xi} f(x) d x \\
& =\int_{-1}^{1} e^{-i x \xi} d x \\
& =-\left.\frac{1}{i \xi} e^{-i x \xi}\right|_{-1} ^{1} \\
& =-\frac{1}{i \xi}\left(e^{-i \xi}-e^{i \xi}\right) \\
& =\frac{2 \sin \xi}{\xi} .
\end{aligned}
$$

This function is not in $L^{1}$.

## The Inverse Fourier Transform

- When $\widehat{f} \in L^{1}$,

$$
f(x)=\frac{1}{(2 \pi)^{n}} \int e^{i\langle\zeta, x\rangle} \widehat{f}(\xi) d \xi
$$

almost everywhere.

- The right-hand side is continuous.
- If we assume that $f$, besides being integrable, is also continuous, then the equality holds everywhere.


## The Fourier Transform as a Map From $L^{1}$ To $C_{\infty}^{0}$

- Suppose $f, g \in L^{1}$.
- We have the linearity property

$$
\mathscr{F}(a f+b g)=a \widehat{f}+b \widehat{g}, \quad a, b \in \mathbb{C} .
$$

- Let $C_{\infty}^{0}$ be the Banach space of continuous functions on $\mathbb{R}^{n}$ which tend to 0 at $\infty$, equipped with the norm

$$
\|f\|=|f|_{0}=\sup \left\{|f(x)|: x \in \mathbb{R}^{n}\right\} .
$$

- The Fourier transformation $\mathscr{F}$ satisfies the inequality

$$
\|\mathscr{F}(f)\|=|\widehat{f}|_{0} \leq\|f\|_{1} .
$$

- It is therefore an injective, continuous linear map from $L^{1}$ to $C_{\infty}^{0}$.


## Preparing for an Extension to Distributions

- Suppose $f, g \in L^{1}$.
- Then $\hat{g}$ is bounded.
- So $f \widehat{g} \in L^{1}$.
- By Fubini's Theorem,

$$
\begin{aligned}
\int f(x) \widehat{g}(x) d x & =\int f(x) \int g(\xi) e^{-i\langle x, \xi\rangle} d \xi d x \\
& =\int g(\xi) \int f(x) e^{-i\langle x, \xi\rangle} d x d \xi
\end{aligned}
$$

Therefore,

$$
\int f(x) \widehat{g}(x) d x=\int g(\xi) \widehat{f}(\xi) d \xi
$$

## Idea of the Extension of $\mathscr{F}$

- We would like to extend the definition of the Fourier transformation from $L^{1}$ to $\mathscr{D}^{\prime}$.
- Viewing $f$ as a distribution and $g$ as a test function, we may consider applying the formula

$$
\langle\widehat{f}, g\rangle=\langle f, \widehat{g}\rangle .
$$

- Here we run into some problems.
- Suppose $g$ in $\mathscr{D}$. Then $\widehat{g}$ is analytic. So it cannot have compact support unless it is identically zero.
This indicates that $\mathscr{D}$ is too small as a space of test functions.
Equivalently, $\mathscr{D}^{\prime}$ is too large for the purpose of extension.
- Suppose $g$ is taken in $\mathscr{E}$. Then it may not be integrable. As a consequence, its Fourier transform may not exist.
So it would seem that $\mathscr{E}$ is too big as a space of test functions.
Thus, a new space of test functions larger than $\mathscr{D}$ and smaller than $\mathscr{E}$ seems to be suitable for an extension of the Fourier transformation.


## Constraints on a Space of Test Functions

- An appropriate test function space, call it $X$, should meet certain conditions in order to serve our purpose.
(i) $X$ should be a subspace of $C^{\infty}$ in order that the distributions in $X^{\prime}$ have derivatives of all orders;
(ii) The Fourier transformation should be "well behaved" on $X$, in the sense that it maps $X$ onto itself;
(iii) Since $\partial_{k} \mathscr{F}(\phi)=-i \mathscr{F}\left(x_{k} \phi\right), X$ should be closed under multiplication by polynomials.
- With these conditions, we should also choose $X$ as small as possible, in order that $X^{\prime}$ be as large as possible.


## Subsection 2

## Tempered Distributions

## Rapidly Decreasing Functions

- A function $\phi \in C^{\infty}$ is said to be rapidly decreasing if

$$
\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \partial^{\beta} \phi(x)\right|<\infty,
$$

for all pairs of multi-indices $\alpha$ and $\beta$.

- This is equivalent to the condition that

$$
\lim _{|x| \rightarrow \infty}\left|x^{\alpha} \partial^{\beta} \phi(x)\right|=0
$$

- It is also equivalent to the condition that

$$
\sup _{|\beta| \leq m x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{m}\left|\partial^{\beta} \phi(x)\right|<\infty, \text { for all } m \in \mathbb{N}_{0}
$$

## The Space of Rapidly Decreasing Functions

- We use $\mathscr{S}$ to denote the set of all rapidly decreasing functions.
- $\mathscr{S}$ is a linear space under the usual operations of addition and multiplication by scalars.
- A function in $\mathscr{S}$ approaches 0 as $|x| \rightarrow \infty$ faster than any power of $\frac{1}{|x|}$. Example: An example of a function in $\mathscr{S}$ is $e^{-|x|}$.


## The Topology on $\mathscr{S}$

- For any $\phi \in \mathscr{S}$, we define the seminorms

$$
p_{\alpha \beta}(\phi)=\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \partial^{\beta} \phi(x)\right|,
$$

with $\alpha, \beta \in \mathbb{N}_{0}^{n}$.

- The countable family $\left\{p_{\alpha \beta}\right\}$ defines a Hausdorff, locally convex, topology on $\mathscr{S}$ which is metrizable and complete.
- With this topology, $\mathscr{S}$ is, therefore, a Fréchet space.
- A sequence $\left(\phi_{k}\right)$ converges to 0 in $\mathscr{S}$ if and only if $x^{\alpha} \partial^{\beta} \phi_{k}(x) \rightarrow 0$ uniformly on $\mathbb{R}^{n}$ as $k \rightarrow \infty$.
- If $\phi$ is in $\mathscr{S}$, then $x^{\alpha} \partial^{\beta} \phi$ is in $\mathscr{S}$, for any pair $\alpha, \beta \in \mathbb{N}_{0}^{n}$.


## Inclusion Relations Between $\mathscr{D}, \mathscr{S}, \mathscr{E}$

## Theorem

The topological vector spaces $\mathscr{D}, \mathscr{S}$ and $\mathscr{E}$ are related by $\mathscr{D} \subseteq \mathscr{S} \subseteq \mathscr{E}$, with continuous injection. Moreover, $\mathscr{D}$ is a dense subspace of $\mathscr{S}$ and $\mathscr{S}$ is a dense subspace of $\mathscr{E}$.

- The inclusion relations clearly hold between $\mathscr{D}, \mathscr{S}$ and $\mathscr{E}$ as sets. Let $\left(\phi_{k}\right)$ be a sequence in $\mathscr{D}$ which converges to 0 . Then, there is a compact set $K \subseteq \mathbb{R}^{n}$, such that $\left(\phi_{k}\right)$ lies in $\mathscr{D}_{K}$ and converges to 0 in $\mathscr{D}_{K}$. Hence, $\phi_{k} \rightarrow 0$ in $\mathscr{S}$.
Let $\left(\phi_{k}\right)$ be a sequence in $\mathscr{S}$ which converges to 0 . Then, for any $\alpha \in \mathbb{N}_{0}^{n}, \partial^{\alpha} \phi_{k} \rightarrow 0$ uniformly on every compact subset of $\mathbb{R}^{n}$. This means that $\left(\phi_{k}\right)$ converges to 0 in $\mathscr{E}$.
The first part of the theorem is now proved.
The second part follows from the simple observation that $\mathscr{D}$ is dense in $\mathscr{E}$ as has already been shown.


## Density of $\mathscr{S}$ in $L^{p}$

## Theorem

$\mathscr{S}$ is a dense subspace of $L^{p}, 1 \leq p<\infty$, with the identity map from $\mathscr{S}$ into $L^{P}$ continuous.

- Let $\phi \in \mathscr{S}$. Then $\left(1+|x|^{2}\right)^{m} \phi$ is in $\mathscr{S}$, for any $m>0$. So $\phi \in L^{p}$. Let $\phi_{k} \rightarrow 0$ in $\mathscr{S}$. Then

$$
\sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{m}\left|\phi_{k}(x)\right|^{p} \rightarrow 0
$$

for every $m$ as $k \rightarrow \infty$. When $m>\frac{1}{2} n,\left(1+|x|^{2}\right)^{-m}$ is integrable.
We then have

$$
\begin{aligned}
\left\|\phi_{k}\right\|_{p}^{p} & =\int\left(1+|x|^{2}\right)^{m}\left|\phi_{k}(x)\right|^{p}\left(1+|x|^{2}\right)^{-m} d x \\
& \leq M \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{m}\left|\phi_{k}(x)\right|^{p} .
\end{aligned}
$$

Therefore, $\phi_{k} \rightarrow 0$ in $L^{p}$.
Since $\mathscr{D}$ is dense in $L^{p}$, by a previous result, so is $\mathscr{S}$.

## Convolution of Functions in $\mathscr{S}$

- The convolution $\phi * \psi$ of any pair of functions $\phi, \psi$ in $\mathscr{S}$ is well defined in $\mathbb{R}^{n}$ and is in fact an $\mathscr{S}$ function.
To see this, note that the integral

$$
(\phi * \psi)(x)=\int \phi(x-y) \psi(y) d y
$$

is uniformly convergent in $\mathbb{R}^{n}$. Therefore, we can write

$$
\begin{aligned}
\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \partial^{\beta}(\phi * \psi)(x)\right| & \leq \int \sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \partial^{\beta} \phi(x-y)\right||\psi(y)| d y \\
& \leq M \int|\psi(y)| d y<\infty
\end{aligned}
$$

## Tempered Distributions

- A previous theorem implies that the relation $\mathscr{E}^{\prime} \subseteq \mathscr{S}^{\prime} \subseteq \mathscr{D}^{\prime}$ must hold between the topological dual spaces with the identity maps from $\mathscr{E}^{\prime}$ to $\mathscr{S}^{\prime}$ and from $\mathscr{S}^{\prime}$ to $\mathscr{D}^{\prime}$ continuous.
- Further, every locally integrable function $f$ on $\mathbb{R}^{n}$ defines a distribution in $\mathscr{D}^{\prime}$ by $\phi \mapsto \int f \phi, \phi \in \mathscr{D}$.
- For $f$ to define a distribution in $\mathscr{S}^{\prime}$ by $\phi \mapsto \int f \phi, \phi \in \mathscr{S}$, it must, additionally, satisfy a growth condition at $\infty$.
- $f$ cannot grow faster than some power of $x$ as $|x| \rightarrow \infty$, since, otherwise, the integral $\int f \phi$ will not be defined.
Example: The exponential function $e^{|x|}$ does not define a distribution in $\mathscr{S}^{\prime}$.
- Loosely speaking, we can say that the elements of $\mathscr{S}^{\prime}$ are the distributions of polynomial growth as $|x| \rightarrow \infty$.
- Hence they are called tempered distributions.


## Tempered Distributions Defined by Polynomials

(i) Any polynomial function $f$ on $\mathbb{R}^{n}$ defines a tempered distribution by the formula

$$
\langle f, \phi\rangle=\int f(x) \phi(x) x, \quad \phi \in \mathscr{S} .
$$

Indeed, let:

- $k$ be the degree of the polynomial $f$;
- $m>\frac{1}{2}(n+k)$.

Then we have

$$
\begin{aligned}
|\langle f, \phi\rangle| & \leq \int|f(x) \phi(x)| d x \\
& \leq \underset{x \in \mathbb{R}^{n}}{M \sup ^{n}}\left(1+|x|^{2}\right)^{m}|\phi(x)|
\end{aligned}
$$

with $M=\left\|f(x)\left(1+|x|^{2}\right)^{-m}\right\|_{1}$.

## Multiplication of Distributions

(ii) The same definitions and properties of convergence, differentiation, translation and reflection in the origin which were given in $\mathscr{D}^{\prime}$ apply to the elements of $\mathscr{S}^{\prime}$.

- Since $\mathscr{S}$ is closed under multiplication by polynomials, we can define the product of a polynomial $P$ on $\mathbb{R}^{n}$ with a tempered distribution by

$$
P T(\phi)=T(P \phi), \quad \phi \in \mathscr{S} .
$$

- This definition clearly extends to any $C^{\infty}$ function $f$ with polynomial growth at $\infty$, i.e., an $f \in C^{\infty}$ for which there is a positive integer $m$, such that $|x|^{-m}\left|\partial^{\alpha} f(x)\right|$ remains bounded as $|x| \rightarrow \infty$, for all $\alpha \in \mathbb{N}_{0}^{n}$.
- Thus, the linear space of multipliers of $\mathscr{D}^{\prime}$, which is $C^{\infty}$, is also "tempered" by a growth condition before it can serve as a linear space of multipliers of $\mathscr{S}^{\prime}$.


## $\mathscr{S}$ is a Subspace of $L^{p}, 1 \leq p \leq \infty$

(iii) Suppose $1 \leq p<\infty$ and $\phi \in \mathscr{S}$.

Then for any positive integer $m$,

$$
|\phi(x)|=\left(1+|x|^{2}\right)^{-m}\left(1+|x|^{2}\right)^{m}|\phi(x)| \leq M\left(1+|x|^{2}\right)^{-m},
$$

where $M=\sup \left\{\left(1+|x|^{2}\right)^{m}|\phi(x)|: x \in \mathbb{R}^{n}\right\}$.
Now $|\phi|^{p}$ is integrable if $m>\frac{1}{2} \frac{n}{p}$.
Hence, $\mathscr{S} \subseteq L^{p}$.
Moreover, any $\phi \in \mathscr{S}$ is bounded on $\mathbb{R}^{n}$.
So we also have $\mathscr{S} \subseteq L^{\infty}$.
Thus, $\mathscr{S}$ is a subspace of $L^{p}$, for $1 \leq p \leq \infty$.

## Extension from $L^{p}$ to $\mathscr{S}^{\prime}$

(iv) We prove that $L^{p} \subseteq \mathscr{S}^{\prime}$, for $1 \leq p \leq \infty$.

Suppose $f \in L^{p}$ and $\phi$ is any $C^{\infty}$ function with compact support $K$.

\[

\]

Thus, $f$ defines a continuous linear functional on $C_{0}^{\infty}$ in the topology induced by $\mathscr{S}$.
But $C_{0}^{\infty}$ is dense in $\mathscr{S}$.
So $f$ can be extended to a continuous linear functional of $\mathscr{S}$.

- More generally, any locally integrable function $f$, such that $|x|^{-m}|f(x)|$ is bounded (almost everywhere) as $|x| \rightarrow \infty$, for some positive integer $m$, defines a distribution in $\mathscr{S}^{\prime}$.


## Non-Necessity of the Boundedness Condition

- Consider the function $f(x)=e^{x} \sin \left(e^{x}\right), x \in \mathbb{R}$.

Note that for no positive integer $m$, does $x^{-m}|f(x)|=x^{-m} e^{x}\left|\sin \left(e^{x}\right)\right|$ remain bounded as $x \rightarrow \infty$.
Hence, $f(x)$ cannot be dominated at $\infty$ by a polynomial. However, if $\phi \in \mathscr{S}(\mathbb{R})$, then

$$
\begin{aligned}
\left|\int f(x) \phi(x) d x\right| & =\left|\int e^{x} \sin \left(e^{x}\right) \phi(x) d x\right| \\
& =\left|\int \phi(x) d\left(-\cos \left(e^{x}\right)\right)\right| \\
& =\left|\int \cos \left(e^{x}\right) \phi^{\prime}(x) d x\right| \\
& \leq \int\left|\phi^{\prime}(x)\right| d x \\
& =\int\left(1+x^{2}\right)\left|\phi^{\prime}(x)\right| \frac{1}{1+x^{2}} d x \\
& \leq M \sup \left(1+x^{2}\right)\left|\phi^{\prime}(x)\right|
\end{aligned}
$$

Thus $f$ defines a distribution in $\mathscr{S}^{\prime}(\mathbb{R})$.

## Tempered Distributions as Derivatives

(v) The inclusion $\mathscr{S}^{\prime} \subseteq \mathscr{D}_{F}^{\prime}$.

- Clearly, $\mathscr{D}_{F} \subseteq \mathscr{S}$;
- Moreover, convergence in $\mathscr{D}_{F}$ implies convergence in $\mathscr{S}$.

Thus, every tempered distribution is of finite order.
By a previous theorem, we conclude that every tempered distribution is a derivative of some continuous function of polynomial growth.
Examples:

- Consider again the tempered distribution $e^{x} \sin \left(e^{x}\right)$. It is the first derivative of the bounded function $-\cos \left(e^{x}\right)$.
- The powers $x_{+}^{\lambda}, x_{-}^{\lambda}$ and $|x|^{\lambda}$ are examples of tempered distributions. Each is dominated at $\pm \infty$ by $|x|^{m}$, if $m \geq \operatorname{Re} \lambda$.


## Subsection 3

## Fourier Transform in $\mathscr{S}$

## Differentiation of Fourier Transforms

- Since $\mathscr{S} \subseteq L^{1}$, the Fourier transform $\widehat{\phi}$ of any $\phi \in \mathscr{S}$ exists. Moreover,

$$
\begin{aligned}
\partial_{k} \widehat{\phi}(\xi) & =\partial_{k} \int e^{-i\langle x, \xi\rangle} \phi(x) d x \\
& =\int \frac{\partial}{\partial \xi_{k}} e^{-i\langle x, \xi\rangle} \phi(x) d x \\
& =-i \int e^{-i\langle x, \xi\rangle} x_{k} \phi(x) d x \\
& =-i \mathscr{F}\left(x_{k} \phi\right) .
\end{aligned}
$$

The second equality, where differentiation is carried inside the integral, is justified by the uniform convergence of the integral as a function of $\xi$.

## Fourier Transforms of Derivatives

- We also have

$$
\begin{aligned}
\mathscr{F}\left(\partial_{k} \phi\right)(\xi)= & \int e^{-i(x, \xi\rangle} \partial_{k} \phi(x) d x \\
= & i \xi_{k} \int e^{-i(x, \xi\rangle} \phi(x) d x \\
& \text { (integration by-parts) } \\
= & i \xi_{k} \widehat{\phi}(\xi) .
\end{aligned}
$$

- Using the notation $D_{k}=-i \partial_{k}$, we have the relations

$$
\mathscr{F}\left(D_{k} \phi\right)=\xi_{k} \mathscr{F}(\phi), \quad \mathscr{F}\left(x_{k} \phi\right)=-D_{k} \mathscr{F}(\phi) .
$$

- This process may be repeated any number of times, and with respect to any index, giving, for all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $D^{\alpha}=(-i)^{|\alpha|} \partial^{\alpha}$,

$$
\begin{aligned}
\mathscr{F}\left(D^{\alpha} \phi\right) & =\xi^{\alpha} \mathscr{F}(\phi) \\
\mathscr{F}\left(x^{\alpha} \phi\right) & =(-1)^{|\alpha|} D^{\alpha} \mathscr{F}(\phi) .
\end{aligned}
$$

## The Fourier Transformation on $\mathscr{S}$

## Theorem

The Fourier transformation is a continuous linear map from $\mathscr{S}$ into $\mathscr{S}$.

- For any $\phi \in \mathscr{S}$ and $\alpha, \beta \in \mathbb{N}_{0}^{n}$, we have the relations

$$
\mathscr{F}\left(D^{\alpha} \phi\right)=\xi^{\alpha} \mathscr{F}(\phi), \quad \mathscr{F}\left(x^{\alpha} \phi\right)=(-1)^{|\alpha|} D^{\alpha} \mathscr{F}(\phi), \quad D^{\alpha}=(-i)^{|\alpha|} \partial^{\alpha} .
$$

These imply

$$
\begin{aligned}
\xi^{\alpha} D^{\beta} \widehat{\phi}(\xi) & =\xi^{\alpha}(-1)^{|\beta|} \mathscr{F}\left(x^{\beta} \phi\right)=\mathscr{F}\left(D^{\alpha}(-x)^{\beta} \phi\right) \\
& =\int e^{-i(x, \xi\rangle} D^{\alpha}\left[(-x)^{\beta} \phi(x)\right] d x \\
\left|\xi^{\alpha} D^{\beta} \widehat{\phi}(\xi)\right| & \leq \int\left|D^{\alpha}\left[x^{\beta} \phi(x)\right]\right| d x \\
& =\int\left(1+|x|^{2}\right)^{-m}\left(1+|x|^{2}\right)^{m}\left|D^{\alpha}\left[x^{\beta} \phi(x)\right]\right| d x .
\end{aligned}
$$

We can choose $m$, so that $\int\left(1+|x|^{2}\right)^{-m} d x=M<\infty$.
Then $\left|\xi^{\alpha} D^{\beta} \widehat{\phi}(\xi)\right| \leq \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{m}\left|D^{\alpha}\left[x^{\beta} \phi(x)\right]\right| M$.
But $\phi$ is in $\mathscr{S}$. So the right side is finite. Hence, $\widehat{\phi}$ is in $\mathscr{S}$.
Now $\mathscr{F}$ is linear and $\widehat{\phi} \rightarrow 0$ as $\phi \rightarrow 0$ in $\mathscr{S}$. So $\mathscr{F}$ is continuous on $\mathscr{S}$.

## Example: A Special Fourier Transform

## Proposition

We have

$$
\mathscr{F}\left(e^{-\frac{1}{2}|x|^{2}}\right)=(2 \pi)^{n / 2} e^{-\frac{1}{2}|\xi|^{2}} .
$$

- Let $\gamma(x)=e^{-\frac{1}{2}|x|^{2}}, x \in \mathbb{R}^{n}$.

For $n=1, \gamma$ satisfies the differential equation $\gamma^{\prime}(x)+x \gamma(x)=0, x \in \mathbb{R}$. Taking the Fourier transform on the left, using

$$
\mathscr{F}\left(D^{\alpha} \phi\right)=\xi^{\alpha} \mathscr{F}(\phi), \quad \mathscr{F}\left(x^{\alpha} \phi\right)=(-1)^{|\alpha|} D^{\alpha} \mathscr{F}(\phi), \quad D^{\alpha}=(-i)^{|\alpha|} \partial^{\alpha},
$$

we obtain

$$
\begin{aligned}
\mathscr{F}\left(\gamma^{\prime}(x)+x \gamma(x)\right) & =\mathscr{F}\left(\gamma^{\prime}(x)\right)+\mathscr{F}(x \gamma(x)) \\
& =\xi \mathscr{F}(\gamma(x))+(-D \mathscr{F}(\gamma(x))) \\
& =\xi \widehat{\gamma}(\xi)+\widehat{\gamma}^{\prime}(\xi) .
\end{aligned}
$$

Thus, $\xi \widehat{\gamma}(\xi)+(\widehat{\gamma})^{\prime}(\xi)=0, \xi \in \mathbb{R}$.

## Example (Cont'd)

- We found $\xi \widehat{\gamma}(\xi)+(\widehat{\gamma})^{\prime}(\xi)=0, \xi \in \mathbb{R}$.

Its solution is given by $\widehat{\gamma}(\xi)=c e^{-\frac{1}{2} \xi^{2}}$.
The initial condition gives $c=\widehat{\gamma}(0)=\int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2}} d x=(2 \pi)^{1 / 2}$.
Therefore, $\widehat{\gamma}(\xi)=(2 \pi)^{1 / 2} e^{-\frac{1}{2} \xi^{2}}$.

- Suppose, next, that $n \geq 1$.

Then we can write

$$
\begin{aligned}
\widehat{\gamma}(\xi) & =\int_{\mathbb{R}^{n}} \prod_{k=1}^{n} e^{-i x_{k} \xi_{k}} e^{-\frac{1}{2} x_{k}^{2}} d x \\
& =\prod_{k=1}^{n} \int_{-\infty}^{\infty} e^{-i x_{k} \xi_{k}-\frac{1}{2} x_{k}^{2}} d x_{k} \\
& =\prod_{k=1}^{n} \widehat{\gamma}\left(\xi_{k}\right) \\
& =(2 \pi)^{\frac{1}{2} n} e^{-\frac{1}{2}|\xi|^{2}} .
\end{aligned}
$$

## The Fourier Inversion Formula in $\mathscr{S}$

## Theorem

If $\phi \in \mathscr{S}$, then

$$
\phi(x)=\mathscr{F}^{-1}(\widehat{\phi})(x)=(2 \pi)^{-n} \int e^{i\langle x, \xi\rangle} \widehat{\phi}(\xi) d \xi .
$$

- For any $\phi, \psi \in \mathscr{S}$, we have, using Fubini's Theorem,

$$
\begin{aligned}
\int \widehat{\phi}(x) \psi(x) e^{i\langle\xi, x\rangle} d x & =\int\left[\int e^{-i\langle y, x\rangle} \phi(y) d y\right] \psi(x) e^{i\langle\xi, x\rangle} d x \\
& =\int \phi(y)\left[\int e^{-i\langle y-\xi, x\rangle} \psi(x) d x\right] d y \\
& =\int \phi(y) \widehat{\psi}(y-\xi) d y \\
& =\int \phi(\xi+y) \widehat{\psi}(y) d y .
\end{aligned}
$$

Furthermore, when $\psi \in \mathscr{S}$ and $\varepsilon>0$,

$$
\mathscr{F}(\psi(\varepsilon x))(y)=\int e^{-i\langle y, x\rangle} \psi(\varepsilon x) d x=\int e^{-i\left\langle y, \frac{\xi}{\varepsilon}\right\rangle} \psi(\xi) \frac{1}{\varepsilon^{n}} d \xi=\frac{1}{\varepsilon^{n}} \widehat{\psi}\left(\frac{y}{\varepsilon}\right) .
$$

## The Fourier Inversion Formula in $\mathscr{S}$ (Cont'd)

- Using this, we get

$$
\begin{aligned}
\int \widehat{\phi}(x) \psi(\varepsilon x) e^{i\langle\zeta, x\rangle} d x & =\int \phi(\xi+y) \mathscr{F}(\psi(\varepsilon x))(y) d y \\
& =\int \phi(\xi+y) \widehat{\psi}\left(\frac{y}{\varepsilon}\right) \frac{1}{\varepsilon^{n}} d y \\
& =\int \phi(\xi+y) \widehat{\psi}\left(\frac{y}{\varepsilon}\right) d\left(\frac{y}{\varepsilon}\right) \\
& =\int \phi(\xi+\varepsilon y) \widehat{\psi}(y) d y .
\end{aligned}
$$

Since these integrals are uniformly convergent, we can take the limit as $\varepsilon \rightarrow 0$ inside the integral sign.
The result is $\psi(0) \int \widehat{\phi}(x) e^{i\langle\xi, x\rangle} d x=\phi(\xi) \int \widehat{\psi}(y) d y$.
If we choose $\psi(x)=e^{-\frac{1}{2}|x|^{2}}$, then:

- $\psi(0)=1$.
- $\int \widehat{\psi}(y) d y=(2 \pi)^{\frac{1}{2} n} \int e^{-\frac{1}{2}|y|^{2}} d y=(2 \pi)^{n}$.

So we get $\int \widehat{\phi}(x) e^{i\langle\zeta, x\rangle} d x=\phi(\xi)(2 \pi)^{n}$.

## A Topological Isomorphism

- We showed that $\mathscr{F}$ is a continuous linear map from $\mathscr{S}$ into $\mathscr{S}$.
- We also showed that an inversion formula exists.
- Thus, the Fourier transformation defines a topological isomorphism from $\mathscr{S}$ onto $\mathscr{S}$.
- This means that it is a bijection from $\mathscr{S}$ to $\mathscr{S}$ which, in addition, preserves:
- The algebraic properties of the linear space $\mathscr{S}$ (linearity);
- The topological properties of $\mathscr{S}$ (homeomorphism).


## Properties of Fourier Transforms

- Recall that $\phi \psi$ and $\phi * \psi$ are both in $\mathscr{S}$ when $\phi, \psi \in \mathscr{S}$.


## Theorem

If $\phi, \psi \in \mathscr{S}$, then:
(a) $\int \widehat{\phi} \psi=\int \phi \hat{\psi}$;
(b) $\int \phi \bar{\psi}=(2 \pi)^{-n} \int \hat{\phi} \overline{\hat{\psi}} ; \quad$ (Parseval's Relation)
(c) $\mathscr{F}(\phi * \psi)=\widehat{\phi} \widehat{\psi}$;
(d) $\mathscr{F}(\phi \psi)=(2 \pi)^{-n} \widehat{\phi} * \widehat{\psi}$.
(a) We get the conclusion from the following upon setting $\xi=0$.

$$
\begin{aligned}
\int \widehat{\phi}(x) \psi(x) e^{i\langle\xi, x\rangle} d x & =\iint \phi(y) e^{-i\langle y, x\rangle} d y \psi(x) e^{i\langle\xi, x\rangle} d x \\
& =\int \phi(y) \int \psi(x) e^{-i\langle y-\xi, x\rangle} d x d y \\
& =\int \phi(y) \widehat{\psi}(y-\xi) d y \\
& =\int \phi(y+\xi) \widehat{\psi}(y) d y .
\end{aligned}
$$

## Properties of Fourier Transforms (b)

(b) We have

$$
\begin{aligned}
\hat{\widehat{\hat{\psi}}}(\xi) & =\int e^{-i\langle\xi, x\rangle} \overline{\widehat{\psi}}(x) d x \\
& =\frac{\int e^{i\langle\xi, x\rangle} \widehat{\psi}(x) d x}{(2 \pi)^{n} \psi(x)} \\
& =(2 \pi)^{n} \bar{\psi}(x)
\end{aligned}
$$

Now in Part (a), replace $\psi$ by $(2 \pi)^{-n} \overline{\widehat{\psi}}$ to get

$$
\begin{aligned}
(2 \pi)^{-n} \int \hat{\phi} \overline{\hat{\psi}} & =(2 \pi)^{-n} \int \phi \widehat{\hat{\hat{\psi}}} \\
& =(2 \pi)^{-n} \int \phi(2 \pi)^{n} \bar{\psi} \\
& =\int \phi \bar{\psi}
\end{aligned}
$$

## Properties of Fourier Transforms (c)

(c) Using Fubini's Theorem, we get

$$
\begin{aligned}
\mathscr{F}(\phi * \psi)(\xi) & =\int e^{-i\langle\zeta, x\rangle}(\phi * \psi)(x) d x \\
& =\int e^{-i\langle\zeta, x\rangle}\left[\int \phi(y) \psi(x-y) d y\right] d x \\
& =\int \phi(y)\left[\int e^{-i\langle\xi, x\rangle} \psi(x-y) d x\right] d y \\
& =\int \phi(y)\left[\int e^{-i\langle\zeta, y+\eta\rangle} \psi(\eta) d \eta\right] d y \\
& =\int e^{-i\langle\zeta, y\rangle} \phi(y) d y \int e^{-i\langle\xi, \eta\rangle} \psi(\eta) d \eta \\
& =\widehat{\phi}(\xi) \widehat{\psi}(\xi) .
\end{aligned}
$$

## Properties of Fourier Transforms (d)

(d) The inversion formula gives

$$
\begin{aligned}
& \phi(x)=(2 \pi)^{-n} \int e^{i\langle x, \xi\rangle} \widehat{\phi}(\xi) d \xi=(2 \pi)^{-n} \widehat{\widehat{\phi}}(-x) \\
& \widehat{\hat{\phi}}(x)=(2 \pi)^{n} \phi(-x)
\end{aligned}
$$

Using Part (c), we now get

$$
\begin{aligned}
(\widehat{\phi} * \widehat{\psi})(\xi) & =\mathscr{F}^{-1}(\widehat{\hat{\phi}} \widehat{\hat{\psi}})(\xi) \\
& =(2 \pi)^{-n} \int e^{i\langle\zeta, x\rangle} \widehat{\hat{\phi}}(x) \widehat{\hat{\psi}}(x) d x \\
& =(2 \pi)^{n} \int e^{i\langle\zeta, x\rangle} \phi(-x) \psi(-x) d x \\
& =(2 \pi)^{n} \int e^{-i\langle\zeta, x\rangle} \phi(x) \psi(x) d x \\
& =(2 \pi)^{n} \mathscr{F}(\phi \psi)(\xi) .
\end{aligned}
$$

## Example

- The equation $\mathscr{F}(\phi * \psi)=\widehat{\phi} \widehat{\psi}$ can be used to construct two nonzero functions $\phi, \psi \in \mathscr{S}$, such that $\phi * \psi=0$.
Let $\phi_{0}, \psi_{0} \neq 0$ be in $\mathscr{D}$, such that $\operatorname{supp} \phi_{0} \cap \operatorname{supp} \psi_{0}=\varnothing$.
Define $\phi=\mathscr{F}^{-1}\left(\phi_{0}\right)$ and $\psi=\mathscr{F}^{-1}\left(\psi_{0}\right)$.
Since $\phi_{0}, \psi_{0} \in \mathscr{S}$ and $\mathscr{F}$ is bijective, $\phi$ and $\psi$ are in $\mathscr{S}$.
We now have

$$
\mathscr{F}(\phi * \psi)=\mathscr{F}(\phi) \mathscr{F}(\psi)=\phi_{0} \psi_{0}=0 .
$$

This implies that $\phi * \psi=0$.

- On the other hand, suppose $\phi \in \mathscr{S}$ and $\phi * \phi=0$.

Then $0=\mathscr{F}(\phi * \phi)=[\mathscr{F}(\phi)]^{2}$.
So $\mathscr{F}(\phi)=0$.
Therefore, $\phi=0$.

## Subsection 4

## Fourier Transform in $\mathscr{S}^{\prime}$

## Fourier Transform of a Distribution

## Definition

For any $T \in \mathscr{S}^{\prime}$, the Fourier transform $\mathscr{F}(T)=\widehat{T}$ is defined by

$$
\widehat{T}(\phi)=T(\widehat{\phi}), \quad \phi \in \mathscr{S} .
$$

- Note that:
- $\widehat{\phi} \in \mathscr{S}$, for every $\phi \in \mathscr{S}$;
- The Fourier transformation is continuous on $\mathscr{S}$.

It now follows that $\hat{T} \in \mathscr{S}^{\prime}$, for every $T \in \mathscr{S}^{\prime}$.

## Fourier Transform of a Distribution

- $\mathscr{S}$ can be considered a subspace of $\mathscr{S}^{\prime}$.

The function $\psi \in \mathscr{S}$ corresponds to $T_{\psi} \in \mathscr{S}^{\prime}$.
In this case

$$
\widehat{T}_{\psi}(\phi)=T_{\psi}(\widehat{\phi}) \stackrel{\int \widehat{\phi} \psi=\int \phi \hat{\psi}}{=} T_{\widehat{\psi}}(\phi)
$$

Hence, $\hat{T}_{\psi}=T_{\widehat{\psi}}$.

- $\mathscr{F}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}$ is continuous in the (weak) topology of $\mathscr{S}^{\prime}$.

This follows from the continuity of $\mathscr{F}: \mathscr{S} \rightarrow \mathscr{S}$.
Suppose $T_{k} \rightarrow T$ in $\mathscr{S}^{\prime}$ and $\phi \in \mathscr{S}$.
Then

$$
\widehat{T}_{k}(\phi)=T_{k}(\widehat{\phi}) \rightarrow T(\widehat{\phi})=\widehat{T}(\phi)
$$

Thus, if $T_{k} \rightarrow T$ in $\mathscr{S}^{\prime}$, then $\hat{T}_{k} \rightarrow \hat{T}$ in $\mathscr{S}^{\prime}$.
This means that $\mathscr{F}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}$ is continuous in the topology of $\mathscr{S}^{\prime}$.

## The Case of an $L^{1}$ Function

- Suppose $f$ is an $L^{1}$ function. Then $\widehat{f}$ is a $C_{\infty}^{0}$ function.

Therefore, $T_{\widehat{f}} \in \mathscr{S}^{\prime}$.
Hence, for any $\phi \in \mathscr{S}$,

$$
\begin{aligned}
T_{\widehat{f}}(\phi) & =\int \widehat{f}(\xi) \phi(\xi) d \xi \\
& =\int\left[\int e^{-i\langle\xi, x\rangle} f(x) d x\right] \phi(\xi) d \xi \\
& =\int f(x)\left[\int e^{-i\langle x, \xi\rangle} \phi(\xi) d \xi\right] d x \\
& =\int f(x) \widehat{\phi}(x) d x \\
& =T_{f}(\widehat{\phi}) .
\end{aligned}
$$

So, for all $\phi \in \mathscr{S}, \widehat{T}_{f}(\phi)=T_{f}(\widehat{\phi})=T_{\widehat{f}}(\phi)$ (i.e., the Fourier transform of $T$, as a distribution, coincides with its transform as an $L^{1}$ function).

## The Fourier Transformation in $\mathscr{S}^{\prime}$

## Theorem

The Fourier transformation $\mathscr{F}$ from $\mathscr{S}^{\prime}$ to $\mathscr{S}^{\prime}$ with the inversion formula

$$
\widehat{\hat{T}}=(2 \pi)^{n} \check{T}, \quad T \in \mathscr{S}^{\prime},
$$

is a topological isomorphism.

- We define the inverse Fourier transform of $T \in \mathscr{S}^{\prime}$ by

$$
\mathscr{F}^{-1}(T)(\phi)=T\left(\mathscr{F}^{-1}(\phi)\right), \quad \phi \in \mathscr{S} .
$$

Then $\mathscr{F}^{-1}$ is also a continuous map from $\mathscr{S}^{\prime}$ into $\mathscr{S}^{\prime}$. Moreover, $\mathscr{F}^{-1}(\widehat{T})(\widehat{\phi})=\widehat{T}\left(\mathscr{F}^{-1}(\widehat{\phi})\right)=\widehat{T}(\phi)=T(\widehat{\phi})$. Using equation $\widehat{\hat{\phi}}(x)=(2 \pi)^{n} \phi(-x)$, we get, for all $\phi \in \mathscr{S}$,

$$
\widehat{\hat{T}}(\phi)=T(\widehat{\hat{\phi}})=(2 \pi)^{n} T(\check{\phi})=(2 \pi)^{n} \check{T}(\phi) .
$$

Hence, $\widehat{\hat{T}}=(2 \pi)^{n} \check{T}, T \in \mathscr{S}^{\prime}$.

## Properties of the Fourier Transform in $\mathscr{S}^{\prime}$

- The definition of the Fourier transform of a tempered distribution by duality carries the properties of the Fourier transformation in $\mathscr{S}$ into $\mathscr{S}^{\prime}$.
- Recall the equations

$$
\mathscr{F}\left(D^{\alpha} \phi\right)=\xi^{\alpha} \mathscr{F}(\phi), \quad \mathscr{F}\left(x^{\alpha} \phi\right)=(-1)^{|\alpha|} D^{\alpha} \mathscr{F}(\phi), \quad D^{\alpha}=(-i)^{|\alpha|} \partial^{\alpha} .
$$

- Recall, also, that, for every $T \in \mathscr{S}^{\prime}$, multiplication of $T$ by any polynomial $P$ has been defined by

$$
P T(\phi)=T(P \phi), \quad \phi \in \mathscr{S} .
$$

- Hence, we have, for every $T \in \mathscr{S}^{\prime}$,

$$
\begin{aligned}
\mathscr{F}\left(D^{\alpha} T\right) & =\xi^{\alpha} \mathscr{F}(T) ; \\
\mathscr{F}\left(x^{\alpha} T\right) & =(-1)^{|\alpha|} D^{\alpha} \mathscr{F}(T) .
\end{aligned}
$$

## Example

- For any $\phi \in \mathscr{S}$, we have

$$
\langle\widehat{\delta}, \phi\rangle=\langle\delta, \widehat{\phi}\rangle=\widehat{\phi}(0)=\langle 1, \phi\rangle .
$$

Hence, $\widehat{\delta}=1$.
We know that $\widehat{\delta}=(2 \pi)^{n} \check{\delta}=(2 \pi)^{n} \delta$.
So $\widehat{1}=\widehat{\hat{\delta}}=(2 \pi)^{n} \delta$.

- Now let $\alpha \in \mathbb{N}^{n}$.

We know $\mathscr{F}\left(D^{\alpha} T\right)=\xi^{\alpha} \mathscr{F}(T), \mathscr{F}\left(x^{\alpha} T\right)=(-1)^{|\alpha|} D^{\alpha} \mathscr{F}(T)$.
Hence the results above may be generalized to

$$
\begin{aligned}
\mathscr{F}\left(D^{\alpha} \delta\right) & =\xi^{\alpha} \\
\mathscr{F}\left(x^{\alpha}\right) & =(-1)^{|\alpha|}(2 \pi)^{n} D^{\alpha} \delta .
\end{aligned}
$$

## Even and Odd Distributions

- A distribution $T \in \mathscr{D}^{\prime}$ is said to be:
- even if $\check{T}=T$, in the sense that $T(\breve{\phi})=T(\phi)$, for every $\phi \in \mathscr{D}$;
- odd if $\mathscr{T}=-T$, in the sense that $T(\widehat{\phi})=-T(\phi)$, for every $\phi \in \mathscr{D}$.
- When $T$ is an even distribution in $\mathscr{S}^{\prime}$, for any $\phi \in \mathscr{S}$,

$$
\widehat{T}(\widehat{\phi})=\widehat{T(\widehat{\phi})}=\widehat{T(\widehat{\phi})}{ }^{T} \stackrel{\text { even }}{=} T(\widehat{\phi})=\widehat{T}(\phi) .
$$

Therefore $\widehat{T}$ is even.
Conversely, if $\widehat{T}$ is even, we can also show that $T$ is even.

- Similarly, $T$ is odd if and only if $\widehat{T}$ is odd.
- Taking into account $\widehat{\hat{T}}=(2 \pi)^{n} \check{T}, \quad T \in \mathscr{S}^{\prime}$, we also get

$$
\mathscr{F}(T)=\left\{\begin{array}{ll}
(2 \pi)^{n} \mathscr{F}^{-1}(T), & \text { if } T \text { is even } \\
-(2 \pi)^{n} \mathscr{F}^{-1}(T), & \text { if } T \text { is odd }
\end{array} .\right.
$$

## Example

- Let $T=\operatorname{pv}\left(\frac{1}{x}\right), x \in \mathbb{R}$.

Claim: $T$ is odd.
If $\phi \in \mathscr{D}(\mathbb{R})$, then

$$
\begin{aligned}
\langle T, \check{\phi}\rangle & =\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \phi(-x) d x \\
& =-\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \phi(x) d x \\
& =-\langle T, \phi\rangle
\end{aligned}
$$

## Example (Cont'd)

$$
\text { Claim: For } T=\operatorname{pv}\left(\frac{1}{x}\right), \widehat{T}=-2 \pi i H+\pi i \text {. }
$$

We have

$$
\begin{aligned}
\langle x T, \phi\rangle & =\langle T, x \phi\rangle=\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \phi(x) d x \\
& =\int \phi(x) d x=\langle 1, \phi\rangle
\end{aligned}
$$

We conclude that $x T=1$. Therefore, $\mathscr{F}(x T)=\widehat{1}=2 \pi \delta$.
But $\mathscr{F}(x T)=-D \widehat{T}=i \frac{d \hat{T}}{d \xi}$. Hence, $\frac{d \hat{T}}{d \xi}=-2 \pi i \delta$.
This implies that $\widehat{T}=-2 \pi i H+c$, for some constant $c$.
But $\hat{T}$ is odd. So this constant satisfies $-2 \pi i+c=-c$. Thus,

$$
\widehat{T}=-2 \pi i H+\pi i .
$$

## Example (Cont'd)

- We saw that for $T=\operatorname{pv}\left(\frac{1}{x}\right), \widehat{T}=-2 \pi i H+\pi i$.

Claim: We have $\mathscr{F}^{-1}(H)=\frac{1}{2} \delta-\frac{1}{2 \pi i} \mathrm{pv} \frac{1}{x}$.
The expressions for $\widehat{H}$ and $\mathscr{F}^{-1}(H)$ can now be derived.

$$
\begin{aligned}
-2 \pi i \widehat{H}+2 \pi^{2} i \delta & =-2 \pi i \widehat{H}+\pi i \widehat{1}=\widehat{\hat{T}} \\
& =2 \pi \check{T} \quad\left(\text { since } \widehat{\hat{T}}=(2 \pi)^{n} \check{T}\right) \\
& =-2 \pi T . \quad(\text { since } T \text { is odd })
\end{aligned}
$$

Hence, $\widehat{H}=\pi \delta-i p v \frac{1}{x}$. On the other hand,

$$
\begin{aligned}
T & =\mathscr{F}^{-1}(\widehat{T}) \\
& =-2 \pi i \mathscr{F}^{-1}(H)+\pi i \mathscr{F}^{-1}(1) \\
& =-2 \pi i \mathscr{F}^{-1}(H)+\pi i \delta .
\end{aligned}
$$

Therefore,

$$
\mathscr{F}^{-1}(H)=\frac{1}{2} \delta-\frac{1}{2 \pi i} \mathrm{pv} \frac{1}{x} .
$$

## Subsection 5

## Fourier Transform in $L^{2}$

## $L^{2}$ Norm and Inner Product

- Let $\Omega$ be an open subset of $\mathbb{R}^{n}$.
- $L^{2}(\Omega)$ is the Banach space of (Lebesgue) square integrable complex functions on $\Omega$ under the norm

$$
\|f\|_{2}=\left[\int_{\Omega}|f(x)|^{2} d x\right]^{1 / 2}
$$

- The Schwarz inequality gives, for all $f, g \in L^{2}(\Omega)$,

$$
\left|\int_{\Omega} f(x) \overline{g(x)} d x\right| \leq\|f\|_{2}\|g\|_{2} .
$$

- Consequently, the complex number

$$
(f, g)=\int_{\Omega} f(x) \bar{g}(x) d x
$$

is always finite.

- It is called the inner product of $f, g$ in $L^{2}$.


## Some Properties and Remarks

- We have

$$
(f, f)=\int_{\Omega}|f(x)|^{2} d x=\|f\|_{2}^{2}
$$

- We use $L^{2}$ to denote $L^{2}\left(\mathbb{R}^{n}\right)$.
- $L_{2}$ is not a subspace of $L_{1}$.

So the definition $\widehat{f}(\xi)=\int e^{-i\langle x, \xi\rangle} f(x) d x$ cannot be applied to all $L^{2}$ functions.

- Suppose, on the other hand, that $f \in L^{1} \cap L^{2}$.

Then $\widehat{f}$ is also in $L^{2}$.
So Parseval's relation gives

$$
\|f\|_{2}=(2 \pi)^{-n / 2}\|\widehat{f}\|_{2}
$$

## Plancherel's Theorem

- Parseval's relation $\int \phi \bar{\psi}=(2 \pi)^{-n} \int \hat{\phi} \overline{\hat{\psi}}$, which was proved in $\mathscr{S}$, will now be shown to hold in $L^{2}$ as a subspace of $\mathscr{S}$.


## Theorem (Plancherel)

If $f \in L^{2}$, then $\widehat{f} \in L^{2}$ and

$$
\|\widehat{f}\|_{2}=(2 \pi)^{n / 2}\|f\|_{2}
$$

- When we set $\psi=\phi$ in Parseval's relation, we obtain

$$
\|\phi\|_{2}=(2 \pi)^{-n / 2}\|\widehat{\phi}\|_{2}, \quad \phi \in \mathscr{S} .
$$

$C_{0}^{\infty}$ is dense in $L^{2}$. Also, $C_{0}^{\infty} \subseteq \mathscr{S} \subseteq L^{2}$. Thus, $\mathscr{S}$ is also dense in $L^{2}$. Moreover, convergence in $\mathscr{S}$ implies convergence in $L^{2}$.
So the preceding equation may be extended to $L^{2}$.

## Parseval's Relation in $L^{2}$

- Recall that, for all $f, g \in L^{2}$,
- (Parallelogram Law) $\|f+g\|_{2}^{2}=(f+g, f+g)=\|f\|_{2}^{2}+2 \operatorname{Re}(f, g)+\|g\|_{2}^{2}$;
- (Plancheret's Theorem) $\|\widehat{f}\|_{2}=(2 \pi)^{n / 2}\|f\|_{2}$.


## Corollary (Parseval's Relation)

For all $f, g \in L^{2}$,

$$
(\widehat{f}, \widehat{g})=(2 \pi)^{n}(f, g)
$$

- We have (for real $f, g$ )

$$
\begin{aligned}
2(\widehat{f}, \widehat{g}) & =\|\widehat{f}+\widehat{g}\|_{2}^{2}-\|\widehat{f}\|_{2}^{2}-\|\widehat{g}\|_{2}^{2} \\
& =(2 \pi)^{n}\|f+g\|_{2}^{2}-(2 \pi)^{n}\|f\|_{2}^{2}-(2 \pi)^{n}\|g\|_{2}^{2} \\
& =(2 \pi)^{n}\left(\|f+g\|_{2}^{2}-\|f\|_{2}^{2}-\|g\|_{2}^{2}\right) \\
& =(2 \pi)^{n} 2(f, g) .
\end{aligned}
$$

Then we may reason by real and imaginary parts.

## Example

- Suppose $f \in \mathscr{S}^{\prime}$ satisfies the following differential equation in $\mathbb{R}^{n}$, where $c>0$,

$$
(-\Delta+c) f=g .
$$

If $g \in L^{2}$, then we can show that $f \in L^{2}$.
More generally, $D_{k}^{m} f \in L^{2}$, for all $0 \leq m \leq 2,1 \leq k \leq n$.
We have

$$
\mathscr{F}[(-\Delta+c) f]=\mathscr{F}\left[\left(D_{1}^{2}+\cdots+D_{n}^{2}+c\right) f\right]=\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}+c\right) \widehat{f} .
$$

By hypothesis, $(-\Delta+c) f \in L^{2}$. So $\left(|\xi|^{2}+c\right) \widehat{f} \in L^{2}$. Hence

$$
\left(|\xi|^{2}+1\right) \widehat{f}=\frac{|\xi|^{2}+1}{|\xi|^{2}+c}\left(|\xi|^{2}+c\right) \widehat{f} \in L^{2}
$$

With $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n},\left|\xi_{k}\right|^{m} \leq|\xi|^{2}+1,0 \leq m \leq 2,1 \leq k \leq n$.
This implies that $\mathscr{F}\left(D_{k}^{m} f\right)=\xi_{k}^{m} \widehat{f} \in L^{2}$. Hence, $D_{k}^{m} f \in L^{2}$.

## Subsection 6

## Fourier Transform in $\mathscr{E}^{\prime}$

## Analytic and Entire Functions

- Let $f$ be defined on an open connected set $\Omega$ in $\mathbb{C}^{n}$.
- $f$ is analytic in $\Omega$ if, for all $k \in\{1, \ldots, n\}$, with $z_{1}, \ldots, z_{k-1}, z_{k+1}, \ldots, z_{n}$ all fixed, the function

$$
f_{k}\left(z_{k}\right)=f\left(z_{1}, \ldots, z_{k-1}, z_{k}, z_{k+1}, \ldots, z_{n}\right)
$$

of the single variable $z_{k}$ is analytic on

$$
\left\{z_{k} \in \mathbb{C}: z=\left(z_{1}, \ldots, z_{k-1}, z_{k}, z_{k+1}, \ldots, z_{n}\right) \in \Omega\right\} .
$$

- When $f$ is analytic in $\mathbb{C}^{n}$, it is called entire.


## Analytic Functions and Power Series

- As in the single variable theory, if $f$ is analytic in $\Omega$, it has a power series expansion about every point $c \in \Omega$,

$$
f(z)=\sum_{\alpha} a_{\alpha}(z-c)^{\alpha},
$$

valid for every point $z$ in the open ball

$$
B(c, r)=\left\{z \in \Omega:|z-c|=\left[\sum_{k=1}^{n}\left|z_{k}-c_{k}\right|^{2}\right]^{1 / 2}<r\right\}
$$

for some positive number $r$.

- The summation index $\alpha$ runs through $\mathbb{N}_{0}^{n}$.
- The $a_{\alpha}$ are the Taylor coefficients

$$
a_{\alpha}=\frac{1}{\alpha!} \partial_{z}^{\alpha} f(c)
$$

## The Cauchy-Riemann Equations

- Let $f$ be defined on an open connected set $\Omega$ in $\mathbb{C}^{n}$.
- When $z_{k}=x_{k}+i y_{k}$, we shall use the notation

$$
\begin{aligned}
\partial_{z_{k}} & =\frac{1}{2}\left(\partial_{x_{k}}-i \partial_{y_{k}}\right) \\
\bar{\partial}_{z_{k}} & =\partial_{\bar{z}_{k}}=\frac{1}{2}\left(\partial_{x_{k}}+i \partial_{y_{k}}\right), \quad k=1, \ldots, n,
\end{aligned}
$$

- The Cauchy-Riemann equations take the form

$$
\bar{\partial}_{z_{k}} f=\frac{1}{2}\left[\frac{\partial f}{\partial x_{k}}+i \frac{\partial f}{\partial y_{k}}\right]=0, \quad k=1, \ldots, n .
$$

- When $\Omega$ is an open subset of $\mathbb{R}^{n}$, we shall say that $f$ is (real) analytic in $\Omega$ if it has a power series expansion about every point $c \in \Omega$, with $z$ replaced by $x \in B(c, r) \subseteq \mathbb{R}^{n}$.
This is so if and only if the function $f$ can be extended to an open neighborhood of $\Omega$ in $\mathbb{C}^{n}$, where $f$ is (complex) analytic.


## Analyticity of the Fourier Transform in $\mathscr{E}^{\prime}$

## Theorem

The Fourier transform of $T \in \mathscr{E}^{\prime}$ is an analytic function in $\mathbb{R}^{n}$ given by

$$
\widehat{T}(\xi)=T_{x}\left(e^{-i\langle x, \xi\rangle}\right)
$$

Furthermore, the right-hand side may be extended as an analytic function to $\mathbb{C}^{n}$, known as the Fourier-Laplace transform of $T$.

- As a function of $\xi, T_{x}\left(e^{-i\langle x, \xi\rangle}\right)$ is in $C^{\infty}$.

Thus, it remains to show that the claimed equation holds in $\mathscr{S}^{\prime}$. By definition, for any $\phi \in \mathscr{D}$, we have $\widehat{T}(\phi)=T(\widehat{\phi})$.
If we consider $\phi$ as an element in $\mathscr{E}^{\prime}$, then, by applying a previous theorem to distributions with compact support:

$$
\begin{aligned}
\langle\widehat{T}(\xi), \phi\rangle & =\left\langle T_{x}, \widehat{\phi}\right\rangle=T_{x}\left(\int e^{-i\langle\zeta, x\rangle} \phi(\xi) d \xi\right) \\
& =\int T_{x}\left(e^{-i\langle\xi, x\rangle}\right) \phi(\xi) d \xi=\left\langle T_{x}\left(e^{-i\langle\xi, x\rangle}\right), \phi\right\rangle .
\end{aligned}
$$

## Analyticity of the Fourier Transform in $\mathscr{E}^{\prime}$ (Cont'd)

- We got, by working with $\phi \in \mathscr{D}$,

$$
\widehat{T}(\xi)=T_{x}\left(e^{-i\langle x, \xi\rangle}\right)
$$

But $\mathscr{D}$ is dense in $\mathscr{S}$. So the equation holds in $\mathscr{S}^{\prime}$.
By replacing $\xi$ by $\zeta=\xi+i \eta, \widehat{T}$ may be extended into $\mathbb{C}^{n}$.
There, it is also a $C^{\infty}$ function of $\zeta$.
$\partial_{\zeta_{k}} \widehat{T}$ and $\bar{\partial}_{\zeta_{k}} \widehat{T}$ may be computed by differentiating $e^{-i\langle x, \zeta\rangle}$.
The exponential function is entire.
Therefore, the same holds for $\widehat{T}(\zeta)$.
Hence, $\widehat{T}$ is analytic in $\mathbb{R}^{n}$.

## Example

- Let $T$ be a distribution in $\mathbb{R}$, such that $T^{(m)}=\delta$, for some $m>0$. Applying the Fourier transformation and taking into account $\mathscr{F}\left(D^{\alpha} T\right)=\xi^{\alpha} \mathscr{F}(T)$, we get

$$
(i \xi)^{m} \widehat{T}=1 .
$$

This gives

$$
\widehat{T}=\frac{1}{(i \xi)^{m}}
$$

Now $\hat{T}$ is singular at $\xi=0$.
By the preceding theorem, $T$ cannot have compact support. In other words, any fundamental solution of the operator $\frac{d^{m}}{d x^{m}}$ in $\mathbb{R}$ cannot have compact support.

## Example

- Suppose $T$ is a distribution with compact support such that $\left\langle T_{x}, x^{\alpha}\right\rangle=0$, for every $\alpha \in \mathbb{N}_{0}^{n}$.
We prove that $T=0$, and thereby conclude that the set of all polynomials in $\mathbb{R}^{n}$ with constant coefficients is dense in $C^{\infty}$.
(i) By hypothesis, $T \in \mathscr{E}^{\prime}$.

By the theorem, $\widehat{T} \in \mathscr{E}^{\prime}$ can be extended as an analytic function $f(\zeta)$ in $\mathbb{C}^{n}$, such that $f(\zeta)=T_{x}\left(e^{-i\langle x, \zeta\rangle}\right)$. For any $\alpha \in \mathbb{N}_{0}^{n}$,

$$
\partial^{\alpha} f(\zeta)=T_{x}\left(\partial_{\zeta}^{\alpha} e^{-i\langle x, \zeta\rangle}\right)=(-i)^{|\alpha|} T_{x}\left(x^{\alpha} e^{-i\langle x, \zeta\rangle}\right)
$$

At $\zeta=0$, for all $\alpha \in \mathbb{N}_{0}^{n}$,

$$
\partial^{\alpha} f(0)=(-i)^{|\alpha|} T_{x}\left(x^{\alpha}\right)=0
$$

But $f$ is an entire function in $\mathbb{C}^{n}$. So it is represented by the power series $f(\zeta)=\sum_{\alpha} \frac{1}{\alpha!} \partial^{\alpha} f(0) \zeta^{\alpha}=0$, for any $\zeta \in \mathbb{C}^{n}$.
Thus $f$, and therefore $\widehat{T}$ vanishes identically.
Since the Fourier transformation is injective in $\mathscr{S}^{\prime}, T=0$.

## Example (Cont'd)

(ii) Let $\mathscr{P}$ be the set of all polynomials in $\mathbb{R}^{n}$ with constant coefficients. Assume that $\overline{\mathscr{P}}$ is a proper subset of $C^{\infty}$.
By the Hahn-Banach theorem, there exists a nonzero continuous linear functional $T$ on $C^{\infty}$, such that

$$
\langle T, P\rangle=0, \quad \text { for every } P \in \overline{\mathscr{P}}
$$

This implies, in particular, that $T$ is a nonzero distribution with compact support which satisfies $\left\langle T, x^{\alpha}\right\rangle=0$, for every $\alpha \in \mathbb{N}^{n}$. However, this contradicts Part (i).

## Convolution of $\mathscr{S}^{\prime}$ by $\mathscr{E}^{\prime}$

## Theorem

If $T_{1} \in \mathscr{S}^{\prime}$ and $T_{2} \in \mathscr{E}^{\prime}$, then $T_{1} * T_{2} \in \mathscr{S}^{\prime}$ and

$$
\mathscr{F}\left(T_{1} * T_{2}\right)=\mathscr{F}\left(T_{2}\right) \mathscr{F}\left(T_{1}\right),
$$

the right-hand side being a well-defined distribution because $\mathscr{F}\left(T_{2}\right)$ is $C^{\infty}$.

- Let $\phi \in \mathscr{D}$. By properties of convolution and preceding results:
- $\left(T_{1} * T_{2}\right)(\phi)=\left(T_{1} * T_{2} * \breve{\phi}\right)(0)$;
- $\left(T_{2} * \breve{\phi}\right)(x)=T_{2}\left(\tau_{x} \phi\right)$ is a $C_{0}^{\infty}$ function.

Moreover, we have

$$
\begin{aligned}
\left(T_{1} * T_{2} * \breve{\phi}\right)(0) & =\left\langle T_{1_{y}},\left(T_{2} * \breve{\phi}\right)(-y)\right\rangle \\
& =\left\langle T_{1_{y}}, T_{2}\left(\tau_{-y} \phi\right)\right\rangle \\
& =\left\langle T_{1_{y}}, \widetilde{T}_{2}\left(\tau_{y} \breve{\phi}\right)\right\rangle \\
& =\left\langle T_{1_{y}},\left(\widetilde{T}_{2} * \phi\right)(y)\right\rangle .
\end{aligned}
$$

Therefore $\left(T_{1} * T_{2}\right)(\phi)=T_{1}\left(\check{T}_{2} * \phi\right)$.

## Convolution of $\mathscr{S}^{\prime}$ by $\mathscr{E}^{\prime}($ Cont'd)

- We found $\left(T_{1} * T_{2}\right)(\phi)=T_{1}\left(\check{T}_{2} * \phi\right)$.

Let $\phi$ be in $\mathscr{S}$.
Then

$$
\left(\check{T}_{2} * \phi\right)(x)=\check{T}_{2}\left(\tau_{x} \check{\phi}\right)=T_{2}\left(\tau_{-x} \phi\right) .
$$

So $\breve{T}_{2} * \phi$ is also in $\mathscr{S}$.
This holds, since, if $T_{2}$ is of order $m$, then

$$
\sup _{\substack{x \in \mathbb{R}^{n} \\|\alpha+\beta| \leq k}}\left|x^{\alpha} \partial^{\beta}\left(\check{T}_{2} * \phi\right)(x)\right| \leq M_{k} \sup _{\substack{x \in \mathbb{R}^{n} \\|\alpha+\beta| \leq k+m}}\left|x^{\alpha} \partial^{\beta} \phi(x)\right| .
$$

Thus, $T_{1} * T_{2}$ is a continuous linear functional on $\mathscr{S}$.

## Convolution of $\mathscr{S}^{\prime}$ by $\mathscr{E}^{\prime}$ (Cont'd)

- We now compute its Fourier transform.

Let $\phi \in \mathscr{S}$ so that $\hat{\phi}$ is also in $\mathscr{S}$.
By a previous equation

$$
\begin{aligned}
\left(T_{1} * T_{2}\right)(\widehat{\phi}) & =T_{1}\left(\check{T}_{2} * \widehat{\phi}\right) ; \\
\left(\check{T}_{2} * \widehat{\phi}\right)(x) & =T_{2}\left(\tau_{-x} \widehat{\phi}\right)=T_{2_{y}}\left(\tau_{-x} \widehat{\phi}(y)\right)=T_{2_{y}}(\widehat{\phi}(x+y))
\end{aligned}
$$

If $\phi \in \mathscr{D}$, then we can write

$$
\begin{aligned}
T_{2_{y}}(\widehat{\phi}(x+y))= & T_{2_{y}}\left(\int e^{-i\langle x+y, \xi\rangle} \phi(\xi) d \xi\right) \\
= & \int T_{2_{y}}\left(e^{-i\langle y, \xi\rangle}\right) \phi(\xi) e^{-i(x, \xi\rangle} d \xi \\
= & \int \widehat{T}_{2}(\xi) \phi(\xi) e^{-i(x, \xi\rangle} d \xi . \\
& \left(\widehat{T}(\xi)=T_{x}\left(e^{-i(x, \xi\rangle}\right)\right)
\end{aligned}
$$

## Convolution of $\mathscr{S}^{\prime}$ by $\mathscr{E}^{\prime}$ (Conclusion)

- Similarly, for $\phi \in \mathscr{D}$,

$$
\begin{aligned}
\left(T_{1} * T_{2}\right)(\widehat{\phi}) & =T_{1_{x}}\left(T_{2_{y}}(\widehat{\phi}(x+y))\right) \\
& =T_{1_{x}}\left(\int \widehat{T}_{2}(\xi) \phi(\xi) e^{-i\langle x, \xi\rangle} d \xi\right) \\
& =\int \widehat{T}_{1}(\xi) \widehat{T}_{2}(\xi) \phi(\xi) d \xi \\
& =\widehat{T}_{1} \hat{T}_{2}(\phi) .
\end{aligned}
$$

Since $\mathscr{D}$ is dense in $\mathscr{S}$, this equation holds for all $\phi \in \mathscr{S}$.
But, for all $\phi \in \mathscr{S}$,

$$
\left(T_{1} * T_{2}\right)(\widehat{\phi})=\widehat{T_{1} * T_{2}}(\phi)
$$

So $\widehat{T_{1} * T_{2}}=\widehat{T}_{1} \hat{T}_{2}$.

## Example (Part (i))

(i) Let $T_{a}=\frac{1}{2}\left(\delta_{a}+\delta_{-a}\right)$, for some real number $a$.

To find the Fourier transform of $T_{a}$, we shall first compute $\widehat{\delta}_{a}$. We have, for all $\phi \in \mathscr{D}(\mathbb{R})$,

$$
\begin{aligned}
\left\langle\widehat{\delta}_{a}, \phi\right\rangle & =\left\langle\delta_{a}, \widehat{\phi}\right\rangle \\
& =\widehat{\phi}(a) \\
& =\int e^{-i x a} \phi(x) d x \\
& =\left\langle e^{-i a x}, \phi\right\rangle .
\end{aligned}
$$

Hence, $\widehat{\delta}_{a}(\xi)=e^{-i a \xi}$.
It follows that

$$
\widehat{T}_{a}(\xi)=\frac{1}{2}\left(e^{-i a \xi}+e^{i a \xi}\right)=\cos a \xi .
$$

## Example (Part (ii))

(ii) We verify that

$$
\mathscr{F}\left(T_{a} * T_{b}\right)=\mathscr{F}\left(T_{a}\right) \mathscr{F}\left(T_{b}\right) .
$$

We use

$$
\begin{aligned}
\left(\delta_{a} * \delta_{b}\right)(x) & =\int \delta_{a}(y) \delta_{b}(x-y) d y \\
& =\delta_{b}(x-a) \\
& =\tau_{a} \delta_{b}(x) \\
& =\delta_{a+b}(x)
\end{aligned}
$$

Now we get

$$
\begin{aligned}
T_{a} * T_{b} & =\left(\frac{1}{2}\left(\delta_{a}+\delta_{-a}\right)\right) *\left(\frac{1}{2}\left(\delta_{a}+\delta_{-a}\right)\right) \\
& =\frac{1}{4}\left(\delta_{a+b}+\delta_{-(a+b)}+\delta_{a-b}+\delta_{-(a-b)}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\mathscr{F}\left(T_{a} * T_{b}\right) & =\frac{1}{4}[2 \cos (a+b) \xi+2 \cos (a-b) \xi] \\
& =\cos a \xi \cos b \xi \\
& =\mathscr{F}\left(T_{a}\right) \mathscr{F}\left(T_{b}\right) .
\end{aligned}
$$

## Example (Part (iii))

(iii) Now compute the Fourier transforms of $\sin x$ and $\cos x$.

$$
\begin{aligned}
\mathscr{F}(\cos x) & =\mathscr{F}(\cos (1 x)) \\
& =\widehat{\widehat{T}}_{1} \\
& =2 \pi \check{T}_{1} \\
& =\pi\left(\breve{\delta}_{1}+\breve{\delta}_{-1}\right) \\
& =\pi\left(\delta_{-1}+\delta_{1}\right) ; \\
\mathscr{F}(\sin x) & =\mathscr{F}(-i D \cos x) \\
& =-i \xi \mathscr{F}(\cos x) \\
& =-i \pi \xi\left(\delta_{1}+\delta_{-1}\right) \\
& =i \pi\left(\delta_{-1}-\delta_{1}\right) .
\end{aligned}
$$

## The Paley-Wiener-Schwartz Theorem

## The Paley-Wiener-Schwartz Theorem

(i) If $T \in \mathscr{E}^{\prime}$ and $\operatorname{supp} T \subseteq\left\{x \in \mathbb{R}^{n}:|x| \leq r\right\}=\bar{B}(0, r)$, then there is a constant $M$ and a nonnegative integer $N$, such that

$$
|\widehat{T}(\zeta)| \leq M(1+|\zeta|)^{N} e^{r|l m \zeta|}, \quad \zeta \in \mathbb{C}^{n} .
$$

(ii) Conversely, every entire function in $\mathbb{C}^{n}$ satisfying the preceding inequality is the Fourier-Laplace transform of a distribution with support contained in $\bar{B}(0, r)$.
(iii) If $T \in C_{0}^{\infty}$ and $\operatorname{supp} T \subseteq \bar{B}(0, r)$, then, for every integer $m \geq 0$, there is a constant $M_{m}$, such that

$$
|\widehat{T}(\zeta)| \leq M_{m}(1+|\zeta|)^{-m} e^{r|l m \zeta|}, \quad \zeta \in \mathbb{C}^{n} .
$$

(iv) Conversely, every entire function in $\mathbb{C}^{n}$ satisfying the equation above, for every $m \in \mathbb{N}_{0}$ is the Fourier-Laplace transform of a $C_{0}^{\infty}$ function with support contained in $\bar{B}(0, r)$.

## Proof of Paley-Wiener-Schwartz Theorem Part (i)

(i) Let $K=\operatorname{supp} T \subseteq \bar{B}(0, r)$.

Let $\psi$ be a $C_{0}^{\infty}$ function which equals 1 on a neighborhood of $K$.
Then we have $T(\phi)=T(\psi \phi)$, for all $\phi \in \mathscr{E}$.
Now $\psi \phi$ is in $\mathscr{D}$. By a previous theorem, $T$ is of finite order on $\mathscr{D}$.
So there is an integer $N \geq 0$ and a constant $M_{1}$, such that

$$
|T(\phi)|=|T(\psi \phi)| \leq M_{1}|\psi \phi|_{N} .
$$

Suppose supp $\psi=K_{0} \supseteq K^{\circ} \supseteq K$.
By Leibniz's formula, there exists $M_{2}>0$, such that

$$
|\psi \phi|_{N} \leq M_{2} \sup \left\{\left|\partial^{\alpha} \phi(x)\right|: x \in K_{0},|\alpha| \leq N\right\} .
$$

Since the inequality is true, for every $K_{0}$, such that $K_{0}^{\circ} \supseteq K$, it is holds for $K$.

## Proof of Paley-Wiener-Schwartz Theorem (Part (i) Cont'd)

- Setting $\phi(x)=e^{-i\langle x, \zeta\rangle}$ and $\zeta=\xi+i \eta$, we obtain

$$
\begin{aligned}
\sup \left\{\left|\partial^{\alpha} \phi(x)\right|: x \in K,|\alpha| \leq N\right\} & =\sup \left\{\left|\partial^{\alpha} e^{-i\langle x, \xi+i \eta\rangle}\right|: x \in K,|\alpha| \leq N\right\} \\
& \leq \sup \left\{|\zeta|^{|\alpha|} e^{\langle x, \eta\rangle}:|x| \leq r,|\alpha| \leq N\right\} \\
& \leq(1+|\zeta|)^{N} e^{r|\eta|} .
\end{aligned}
$$

Applying the preceding three inequalities, we get

$$
\begin{aligned}
|\widehat{T}(\zeta)| & =\left|T_{x}\left(e^{-i\langle x, \zeta\rangle}\right)\right| \\
& \leq M_{1}\left|\psi e^{-i\langle x, \zeta\rangle}\right|_{N} \\
& \leq M_{2} M_{1} \sup \left\{\left|\partial^{\alpha} e^{-i\langle x, \zeta\rangle}\right|: x \in K,|\alpha| \leq N\right\} \\
& \leq M_{2} M_{1}(1+|\zeta|)^{N} e^{r|I m \zeta|} .
\end{aligned}
$$

## Proof of Paley-Wiener-Schwartz Theorem Part (ii)

(ii) Suppose $T$ is a $C_{0}^{\infty}$ function.

Then we can use $\mathscr{F}\left(D^{\alpha} \phi\right)=\xi^{\alpha} \mathscr{F}(\phi)$, to write, for any $\alpha \in \mathbb{N}_{0}^{n}$,

$$
\zeta^{\alpha} \widehat{T}(\zeta)=\int e^{-i\langle x, \zeta\rangle} D^{\alpha} T(x) d x
$$

Assume, moreover, that supp $T$ in $\bar{B}(0, r)$.
Then the expression above yields

$$
\left|\zeta^{\alpha} \widehat{T}(\zeta)\right| \leq M e^{r|\eta|}
$$

for some constant $M$.
From this, Part (ii) follows.

## Proof of Paley-Wiener-Schwartz Theorem Part (iii)

(iii) Suppose that, for all $m$, there exists $M_{m}$, such that

$$
|\widehat{T}(\zeta)| \leq M_{m}(1+|\zeta|)^{-m} e^{r|l m \zeta|}, \quad \zeta \in \mathbb{C}^{n} .
$$

Then the integral

$$
(2 \pi)^{-n} \int \widehat{T}(\xi) e^{i\langle x, \xi\rangle} d \xi
$$

is absolutely convergent on $\mathbb{R}^{n}$.
It clearly defines the inverse Fourier transform $T(x)$ of $\widehat{T}(\xi)$.
Now, for $\alpha \in \mathbb{N}_{0}^{n}$,

$$
\partial^{\alpha} T(x)=(-i)^{|\alpha|}(2 \pi)^{-n} \int \widehat{T}(\xi) \xi^{\alpha} e^{i\langle x, \xi\rangle} d \xi
$$

is also absolutely convergent.
We conclude that $T$ is in $C^{\infty}$.

## Proof of Paley-Wiener-Schwartz Theorem (Part (iii) Cont'd)

- We show, next, that $T$ has compact support.

The preceding integrand extends to an entire function on $\mathbb{C}^{n}$.
So we can use Cauchy's Theorem with each variable $\zeta_{1}, \ldots, \zeta_{n}$ to shift the integration from $\mathbb{R}^{n}$ into $\mathbb{C}^{n}$.
For any fixed $\eta \in \mathbb{R}^{n}$, we get

$$
T(x)=(2 \pi)^{-n} \int \widehat{T}(\xi+i \eta) e^{i\langle x, \xi+i \eta\rangle} d \xi
$$

Using the hypothesis, with $m=n+1$,

$$
\begin{aligned}
|T(x)| & \leq(2 \pi)^{-n} M_{n+1} e^{-\langle x, \eta\rangle+r|\eta|} \int(1+|\xi|)^{-n-1} d \xi \\
& \leq M e^{r|\eta|-\langle x, \eta\rangle}
\end{aligned}
$$

Taking $\eta=t x$ we get

$$
|T(x)| \leq M e^{-t|x|(r-|x|)} .
$$

Letting $t \rightarrow \infty$, we get $T(x)=0$, for all $x \in \mathbb{R}^{n}$, with $|x|>r$. Therefore, the support of $T$ must lie in $\bar{B}(0, r)$.

## Proof of Paley-Wiener-Schwartz Theorem Part (iv)

(iv) Let $\hat{T}(\zeta)$ be an entire function which satisfies

$$
|\hat{T}(\zeta)| \leq M(1+|\zeta|)^{N} e^{r|l| m \zeta \mid} .
$$

Then $\hat{T}(\xi)$ has polynomial growth at $\infty$. So it lies in $\mathscr{S}^{\prime}$. Its inverse Fourier transform $T$ must also be in $\mathscr{S}^{\prime}$.
We show, next, that supp $T$ is compact.
We regularize $T$ using the $C^{\infty}$ functions $\beta_{\lambda}, \lambda>0$, satisfying $\operatorname{supp} \beta_{\lambda} \subseteq \bar{B}(0, \lambda)$.
Now $T_{\lambda}=T * \beta_{\lambda}$ is in $C^{\infty}$.
Its Fourier transform, according to a previous theorem, is $\widehat{T}_{\lambda}=\widehat{\beta}_{\lambda} \widehat{T}$.
For each $\lambda>0, \widehat{T}_{\lambda}(\xi)$ extends to an analytic function on $\mathbb{C}^{n}$.

## Proof of Paley-Wiener-Schwartz Theorem (Part (iv) Cont'd)

- $\widehat{T}$ satisfies, for some $M$ and $N \geq 0$,

$$
|\widehat{T}(\zeta)| \leq M(1+|\zeta|)^{N} e^{r|I m \zeta|}, \quad \zeta \in \mathbb{C}^{n}
$$

$\beta_{\lambda}$ satisfies, for all $m \geq 0$ and some $M_{m}$,

$$
\left|\widehat{\beta}_{\lambda}(\zeta)\right| \leq M_{m}(1+|\zeta|)^{-m} e^{\lambda|I m \zeta|}, \quad \zeta \in \mathbb{C}^{n} .
$$

So $\hat{T}_{\lambda}$ must satisfy, for $m=0,1,2, \ldots$ and $\zeta \in \mathbb{C}^{n}$,

$$
\left|\widehat{T}_{\lambda}(\zeta)\right| \leq M M_{m}(1+|\zeta|)^{N-m} e^{(r+\lambda)|I m \zeta|}
$$

Choosing $m$ greater than $N$, we see that $\widehat{T}_{k}$ satisfies the hypothesis of Part (iii) with $r$ replaced by $r+\lambda$.
So, by Part (iii), $\operatorname{supp} T_{\lambda} \subseteq \bar{B}(0, r+\lambda)$.
Since $T_{\lambda} \rightarrow T$ as $\lambda \rightarrow 0$,

$$
\operatorname{supp} T \subseteq \bigcap\{\bar{B}(0, r+\lambda): \lambda>0\}=\bar{B}(0, r)
$$

## Subsection 7

## The Cauchy-Riemann Operator

## Fourier Transformation with Respect to Some Variables

- Suppose $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$, with $n_{1}+n_{2}=n$.
- The Fourier transform $\mathscr{F}_{1}(T)$ of $T$ with respect to $x \in \mathbb{R}^{n_{1}}$ is defined, for all $\phi \in \mathscr{S}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$, by

$$
\left\langle\mathscr{F}_{1}(T), \phi\right\rangle=\left\langle T, \mathscr{F}_{1}(\phi)\right\rangle .
$$

- $\mathscr{F}_{1}(\phi)$ is well defined by the integral formula

$$
\mathscr{F}_{1}(\phi(\cdot, y))(\xi)=\int_{\mathbb{R}^{n_{1}}} e^{-i\langle x, \xi\rangle} \phi(x, y) d x, \quad \xi \in \mathbb{R}^{n_{1}}, y \in \mathbb{R}^{n_{2}}
$$

- $\mathscr{F}_{1}(\phi(\cdot, y))(\xi)$ is also denoted by $\widehat{\phi}(\xi, y)$.
- It lies in $\mathscr{S}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$.


## Partial Differentiation

- Given $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right), \mathscr{F}_{1}(T) \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$.

Claim: If $\partial_{y}^{\alpha}$ is a partial differential operator in $y \in \mathbb{R}^{n_{2}}$, then

$$
\mathscr{F}_{1}\left(\partial_{y}^{\alpha} T\right)=\partial_{y}^{\alpha} \mathscr{F}_{1}(T)
$$

We have, for all $\phi \in \mathscr{S}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$,

$$
\begin{aligned}
\left\langle\mathscr{F}_{1}\left(\partial_{y}^{\alpha} T\right), \phi\right\rangle & =\left\langle\partial_{y}^{\alpha} T, \mathscr{F}_{1}(\phi)\right\rangle \\
& =(-1)^{|\alpha|}\left\langle T, \partial_{y}^{\alpha} \mathscr{F}_{1}(\phi)\right\rangle \\
& =(-1)^{|\alpha|}\left\langle T, \mathscr{F}_{1}\left(\partial_{y}^{\alpha} \phi\right)\right\rangle \\
& =(-1)^{|\alpha|}\left\langle\mathscr{F}_{1}(T), \partial_{y}^{\alpha} \phi\right\rangle \\
& =\left\langle\partial_{y}^{\alpha} \mathscr{F}_{1}(T), \phi\right\rangle .
\end{aligned}
$$

We note that the commutation of $\mathscr{F}_{1}$ with $\partial_{y}^{\alpha}$ on $\mathscr{S}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$ is based on the linearity and continuity of $\mathscr{F}_{1}$.

## Example

- Consider the differential operator in $\mathbb{R}$ of order $m$ with constant coefficients

$$
L=\sum_{k=0}^{m} c_{k} D^{k} .
$$

If $u \in \mathscr{E}^{\prime}(\mathbb{R})$ satisfies $L u=0$, then, upon transformation,

$$
0=\mathscr{F}(L u)=\sum_{k=0}^{m} c_{k} \xi^{k} \widehat{u} .
$$

Hence, $\widehat{u}(\xi)=0$ except possibly at the zeros of the polynomial

$$
c_{0}+c_{1} \xi+\cdots+c_{m} \xi^{m} .
$$

But $u$ has compact support.
So $\widehat{u}$ is continuous. Thus, $\widehat{u}$ must vanish in all $\mathbb{R}$.
It follows that the ordinary differential equation $L u=0$ has only the trivial solution in $\mathscr{E}^{\prime}$.

## Example

- Consider the differential operator in $\mathbb{R}^{n}$ of order $m$ with constant coefficients

$$
L=\sum_{|\alpha| \leq m} c_{\alpha} D^{\alpha} .
$$

Let $u \in \mathscr{S}^{\prime}$ be a solution of $L u=0$.
The application of the Fourier transformation gives

$$
0=\mathscr{F}\left(\sum c_{\alpha} D^{\alpha} u\right)=\left(\sum c_{\alpha} \xi^{\alpha}\right) \widehat{u}=P(\xi) \widehat{u},
$$

where $P(\xi)$ is the polynomial $\sum_{|\alpha| \leq m} c_{\alpha} \xi^{\alpha}$.
Suppose $P(\xi)=0$ only when $\xi=0$. Then supp $\widehat{u} \subseteq\{0\}$.
By a previous theorem, $\widehat{u}=\sum_{|\alpha| \leq k} a_{\alpha} \partial^{\alpha} \delta$, for some $k$.
By taking the inverse Fourier transform, $u=\sum_{|\alpha| \leq k} b_{\alpha} x^{\alpha}$.
Thus, the only solution of $L u=0$ in $\mathscr{S}^{\prime}$ for this type of operator is a polynomial. In other words, the fundamental solution of $L$ in $\mathscr{S}^{\prime}$ is unique up to an additive polynomial.

## The Cauchy-Riemann Operator

- Consider the Cauchy-Riemann operator in $\mathbb{R}^{2}$,

$$
\bar{\partial}=\frac{1}{2}\left(\partial_{1}+i \partial_{2}\right) .
$$

The polynomial

$$
P(i \xi)=\frac{1}{2} i\left(\xi_{1}+i \xi_{2}\right)
$$

vanishes only at $\xi=0$.
So this operator is an example of the preceding slide.
Its fundamental solution in $\mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$ is unique up to an additive polynomial.
But every entire function $f$ satisfies $\bar{\partial} f=0$ in $\mathbb{R}^{2}$. Hence, the fundamental solution of $\bar{\partial}$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right)$ is unique up to an additive entire function.

## Example

- We show that $\frac{1}{\pi z}=\frac{1}{\pi(x+i y)}$ is a fundamental solution of the Cauchy-Riemann operator in the plane.
Since $\frac{1}{|z|}=\frac{1}{r} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right), \frac{1}{z}$ defines a distribution in $\mathbb{R}^{2}$.
For any $\phi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$,

$$
\left\langle\bar{\partial} \frac{1}{z}, \phi\right\rangle=-\left\langle\frac{1}{z}, \bar{\partial} \phi\right\rangle=-\frac{1}{2} \int_{\mathbb{R}^{2}} \frac{1}{x+i y}\left(\frac{\partial \phi}{\partial x}+i \frac{\partial \phi}{\partial y}\right) d x d y .
$$

We change to polar coordinates. Let $\widetilde{\phi}(r, \theta)=\phi(x, y)$.
Recall that $\frac{\partial}{\partial x}=\cos \theta \frac{\partial}{\partial r}-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}, \frac{\partial}{\partial y}=\sin \theta \frac{\partial}{\partial r}+\frac{\cos \theta}{r} \frac{\partial}{\partial \theta}$.
Therefore, we obtain

$$
\left\langle\bar{\partial} \frac{1}{z}, \phi\right\rangle=-\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{1}{r e^{i \theta}}\left[e^{i \theta} \frac{\partial \widetilde{\phi}}{\partial r}+\frac{i}{r} e^{i \theta} \frac{\partial \widetilde{\phi}}{\partial \theta}\right] r d r d \theta
$$

## Example (Cont'd)

- With $\widetilde{\phi}(r, \theta)=\phi(x, y)$,

$$
\left\langle\bar{\partial} \frac{1}{z}, \phi\right\rangle=-\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{1}{r e^{i \theta}}\left[e^{i \theta} \frac{\partial \widetilde{\phi}}{\partial r}+\frac{i}{r} e^{i \theta} \frac{\partial \widetilde{\phi}}{\partial \theta}\right] r d r d \theta
$$

By Fubini's Theorem,

$$
\begin{aligned}
\left\langle\bar{\partial} \frac{1}{z}, \phi\right\rangle & =-\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{\partial \widetilde{\phi}}{\partial r} d r d \theta-\frac{1}{2} i \int_{0}^{\infty} \frac{1}{r} \int_{0}^{2 \pi} \frac{\partial \widetilde{\phi}}{d \theta} d \theta d r \\
& =-\frac{1}{2}[-2 \pi \widetilde{\phi}(0)]-0, \quad \text { since } \widetilde{\phi}(r, 2 \pi)=\widetilde{\phi}(r, 0) \\
& =\pi \phi(0) .
\end{aligned}
$$

Therefore, $\bar{\partial}\left(\frac{1}{\pi z}\right)=\delta$.
It follows that any fundamental solution $E$ of $\bar{\partial}$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right)$ is of the form $E(z)=\frac{1}{\pi z}+h(z)$, where $h$ is an entire function in $\mathbb{C}$.

## Subsection 8

## Fourier Transforms and Homogeneous Distributions

## Dualizing a Linear Mapping

- Let $\Lambda$ be a linear mapping from $\mathbb{R}^{n}$ to $\mathbb{R}^{n}$.
- Let $F\left(\mathbb{R}^{n}\right)$ be the linear space of complex functions on $\mathbb{R}^{n}$.
- We define the map $\Lambda^{*}: F\left(\mathbb{R}^{n}\right) \rightarrow F\left(\mathbb{R}^{n}\right)$ by

$$
\Lambda^{*} f(x)=f(\Lambda x), \quad f \in F\left(\mathbb{R}^{n}\right)
$$

- $\Lambda^{*}$ is also linear. For all $f, g \in F\left(\mathbb{R}^{n}\right)$ and $a, b \in \mathbb{C}$,

$$
\begin{aligned}
\Lambda^{*}(a f+b g)(x) & =(a f+b g)(\Lambda x) \\
& =a \Lambda^{*} f(x)+b \Lambda^{*} g(x) \\
& =\left(a \Lambda^{*} f+b \Lambda^{*} g\right)(x)
\end{aligned}
$$

- $\Lambda$ may be represented by a real $n \times n$ matrix, determined by the basis that we choose for $\mathbb{R}^{n}$.
- It is nonsingular if the null space of $\Lambda$ is $\{0\} \subseteq \mathbb{R}^{n}$. In this case:
- The determinant $\operatorname{det} \Lambda$ is nonzero.
- The inverse map $\Lambda^{-1}$ exists and is a linear map from $\mathbb{R}^{n}$ to $\mathbb{R}^{n}$.


## Continuity of $\Lambda^{*}$

Claim: If $\Lambda$ is nonsingular, then $\Lambda^{*}$ maps $\mathscr{S}$ continuously onto $\mathscr{S}$. Let $\phi, \psi$ be functions in $\mathscr{S}$. Then

$$
\begin{aligned}
\left\langle\Lambda^{*} \psi, \phi\right\rangle & =\int \psi(\Lambda x) \phi(x) d x \\
& =\int \psi(y) \phi\left(\Lambda^{-1} y\right) \frac{1}{|\operatorname{det} \Lambda|} d y \\
& =\int \psi(y) \frac{1}{|\operatorname{det} \Lambda|} \Lambda^{-1 *} \phi(y) d y
\end{aligned}
$$

This shows that

$$
\left\langle\Lambda^{*} \psi, \phi\right\rangle=\left\langle\psi, \frac{1}{|\operatorname{det} \Lambda|} \Lambda^{-1 *} \phi\right\rangle .
$$

Now note that $\frac{1}{|\operatorname{det} \Lambda|} \Lambda^{-1 *} \phi$ is in $\mathscr{S}$, if $\phi$ is in $\mathscr{S}$.
So the function $\psi$ in the preceding equation may be extended by continuity from $\mathscr{S}$ to $\mathscr{S}^{\prime}$.

## Inverse of $\Lambda^{*}$

- We have, for every $f \in F\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
f(x) & =f\left(\Lambda^{-1} \Lambda x\right) \\
& =\Lambda^{*} f\left(\Lambda^{-1} x\right) \\
& =\Lambda^{*} \Lambda^{-1 *}(x)
\end{aligned}
$$

Therefore,

$$
\Lambda^{-1 *}=\Lambda^{*-1}
$$

## The Fourier Transform of the Dual

- For any $\phi \in \mathscr{S}$, we have (denoting by $\Lambda^{T}$ the transpose of $\Lambda$ )

$$
\begin{aligned}
\mathscr{F}\left(\Lambda^{*} \phi\right)(\xi) & =\int e^{-i\langle\zeta, x\rangle} \phi(\Lambda x) d x \\
& =\int e^{-i\left\langle\zeta, \Lambda^{-1} y\right\rangle} \phi(y) \frac{1}{|\operatorname{det} \Lambda|} d y \\
& =\int e^{-i\left\langle\Lambda^{-1 T} \zeta, y\right\rangle} \phi(y) \frac{1}{|\operatorname{det} \Lambda|} d y \\
& =\frac{1}{|\operatorname{det} \Lambda|} \widehat{\phi}\left(\Lambda^{-1 T} \xi\right) .
\end{aligned}
$$

Thus,

$$
\widehat{\Lambda^{*} \phi}=\frac{1}{|\operatorname{det} \Lambda|}\left(\Lambda^{-1 T}\right)^{*} \widehat{\phi}, \quad \phi \in \mathscr{S} .
$$

Now $\mathscr{F} \Lambda^{*}$ and $\frac{1}{|\operatorname{det} \Lambda|}\left(\Lambda^{-1 T}\right)^{*} \mathscr{F}$ are equal and continuous on $\mathscr{S}$.
So they may be extended by continuity to $\mathscr{S}^{\prime}$ to obtain

$$
\widehat{\Lambda^{*} T}=\frac{1}{|\operatorname{det} \Lambda|}\left(\Lambda^{-1 T}\right)^{*} \widehat{T}, \quad T \in \mathscr{S}^{\prime}
$$

## Reflection Operator

- Consider the reflection operator

$$
\Lambda x=-x, \quad x \in \mathbb{R}^{n} .
$$

It is linear and continuous, for any $t \in \mathbb{R}$.
If $T \in \mathscr{D}^{\prime}$, then $\Lambda^{*} T$ is the distribution defined by

$$
\left\langle\Lambda^{*} T, \phi\right\rangle=\left\langle T, \frac{1}{|\operatorname{det} \Lambda|} \Lambda^{-1 *} \phi\right\rangle, \quad \phi \in \mathscr{D} .
$$

In this case we have:

- $\operatorname{det} \Lambda=(-1)^{n}$;
- $\Lambda^{-1}=\Lambda$.

So we get

$$
\left\langle\Lambda^{*} T, \phi\right\rangle=\left\langle T, \frac{1}{\left|(-1)^{n}\right|} \Lambda^{*} \phi\right\rangle=\langle T, \check{\phi}\rangle=\langle\check{T}, \phi\rangle .
$$

## Scaling Operators

- A more general example is the transformation

$$
\Lambda_{t} x=t x, \quad x \in \mathbb{R}^{n} .
$$

It is linear and continuous, for any $t \in \mathbb{R}$, but singular when $t=0$.
If $T \in \mathscr{D}^{\prime}$ and $t \neq 0$, then $\Lambda_{t}^{*} T$ is the distribution defined by

$$
\left\langle\Lambda_{t}^{*} T, \phi\right\rangle=\left\langle T, \frac{1}{\left|\operatorname{det} \Lambda_{t}\right|} \Lambda_{t}^{-1 *} \phi\right\rangle, \quad \phi \in \mathscr{D} .
$$

In this case we have:

- $\operatorname{det} \Lambda_{t}=t^{n}$;
- $\Lambda^{-1}=\Lambda_{1 / t}$.

So we get

$$
\left\langle\Lambda_{t}^{*} T, \phi\right\rangle=\left\langle T, \frac{1}{t^{n}} \Lambda_{1 / t}^{*} \phi\right\rangle .
$$

## Homogeneous Functions and Distributions

- Let $d$ be a complex number.
- A function $f$ on $\mathbb{R}^{n}$ is homogeneous of degree $d$ if

$$
f(t x)=t^{d} f(x) .
$$

- A distribution $T$ is homogeneous of degree $d$ if

$$
\Lambda_{t}^{*} T=t^{d} T, \quad \text { for any } t>0
$$

## Homogeneous Functions vs. Homogeneous Distributions

Claim: The two definitions coincide when the function is locally integrable in $\mathbb{R}^{n}$, in the sense that $\Lambda_{t}^{*} f=t^{d} f$ if and only if $f(t x)=t^{d} f(x)$ a.e.
We have, for all $\phi \in \mathscr{D}$,

$$
\begin{aligned}
\left\langle\Lambda_{t}^{*} f, \phi\right\rangle & =\left\langle f, \frac{1}{t^{n}} \Lambda_{1 / t}^{*} \phi\right\rangle \\
& =\int f(x) \frac{1}{t^{n}} \phi\left(\frac{x}{t}\right) d x \\
& =\int f(t y) \phi(y) d y .
\end{aligned}
$$

Suppose, first, $f(t x)=t^{d} f(x)$ a.e..
Then $\left\langle\Lambda_{t}^{*} f, \phi\right\rangle=\int t^{d} f(y) \phi(y) d y=\left\langle t^{d} f, \phi\right\rangle$.
So $\Lambda_{t}^{*} f=t^{d} f$.
Conversely, assume $\Lambda_{t}^{*} f=t^{d} f$.
Then, for all $\phi \in \mathscr{D}, \int f(t y) \phi(y) d y=\int t^{d} f(y) \phi(y) d y$.
Hence, by a previous result, $f(t y)=t^{d} f(y)$ a.e..

## Example

(i) Let $\left\{T_{1}, \ldots, T_{m}\right\}$ be a set of nonzero distributions in $\mathbb{R}^{n}$, such that $T_{k}$, $1 \leq k \leq m$, is homogeneous of real degree $d_{k}$ and $d_{k} \neq d_{j}$, if $k \neq j$.
Claim: The set $\left\{T_{1}, \ldots, T_{m}\right\}$ is linearly independent over $\mathbb{C}$.
Let $a_{1} T_{1}+\cdots+a_{m} T_{m}=0$. Without loss of generality, assume that $d_{1}>d_{2}>\cdots>d_{m}$. For any $\phi \in \mathscr{D}$, we have

$$
0=\left\langle\Lambda_{t}^{*} \sum_{k=1}^{m} a_{k} T_{k}, \phi\right\rangle=\sum_{k=1}^{m} a_{k}\left\langle\Lambda_{t}^{*} T_{k}, \phi\right\rangle=\sum_{k=1}^{m} a_{k} t^{d_{k}}\left\langle T_{k}, \phi\right\rangle .
$$

If the coefficients $a_{k}$ do not all vanish, let $i \geq 1$ be the smallest integer for which $a_{i} \neq 0$.

- If $i=m$, then $\left\langle T_{m}, \phi\right\rangle=0$. So $T_{m}=0$, a contradiction.
- If $1 \leq i<m$, then $a_{i}\left\langle T_{i}, \phi\right\rangle+\sum_{k=i}^{m} a_{k} t^{d_{k}-d_{i}}\left\langle T_{k}, \phi\right\rangle=0$, for all $t>0$ and $\phi \in \mathscr{D}$. Letting $t \rightarrow \infty$, we obtain $a_{i}\left\langle T_{i}, \phi\right\rangle=0$. But $a_{i} \neq 0$. Hence, $T_{i}=0$, again a contradiction.


## Example

(ii) We show that $\partial^{\alpha} \delta$ is homogeneous of degree $-n-|\alpha|$.

We have, for all $\phi \in \mathscr{D}$,

$$
\begin{aligned}
\left\langle\Lambda_{t}^{*} \partial^{\alpha} \delta, \phi\right\rangle & =\left\langle\partial^{\alpha} \delta, \frac{1}{t^{n}} \Lambda_{1 / t}^{*} \phi\right\rangle \\
& =\frac{1}{t^{n}}\left\langle\partial^{\alpha} \delta, \phi\left(\frac{x}{t}\right)\right\rangle \\
& =(-1)^{|\alpha|} \frac{1}{t^{n}}\left\langle\delta, \partial^{\alpha} \phi\left(\frac{x}{t}\right)\right\rangle \\
& =(-1)^{|\alpha|} \frac{1}{t^{n}} \frac{1}{t^{|\alpha|}}\left(\partial^{\alpha} \phi\right)(0) \\
& =\frac{1}{t^{n+|\alpha|}}\left\langle\partial^{\alpha} \delta, \phi\right\rangle
\end{aligned}
$$

Therefore,

$$
\Lambda_{t}^{*} \partial^{\alpha} \delta=\frac{1}{t^{n+|\alpha|}} \partial^{\alpha} \delta
$$

In view of Part (i), we conclude that the distributions $\delta, \delta^{\prime}, \ldots, \delta^{(m)}$ on $R$ are linearly independent.

## Example

- For $\lambda \geq 0$ we show that

$$
x_{+}^{\lambda}=x^{\lambda} H, \quad x \in \mathbb{R},
$$

is homogeneous of degree $\lambda$.
We have

$$
\begin{aligned}
\left\langle\Lambda_{t}^{*} x_{+}^{\lambda}, \phi\right\rangle & =\left\langle x_{+}^{\lambda}, \frac{1}{t} \Lambda_{1 / t}^{*} \phi\right\rangle \\
& =\frac{1}{t} \int_{0}^{\infty} x^{\lambda} \phi\left(\frac{x}{t}\right) d x \\
& =\frac{1}{t} \int_{0}^{\infty} t^{\lambda} y^{\lambda} \phi(y) t d y \\
& =\left\langle t^{\lambda} x_{+}^{\lambda}, \phi\right\rangle
\end{aligned}
$$

Hence

$$
\Lambda_{t}^{*} x_{+}^{\lambda}=t^{\lambda} x_{+}^{\lambda} .
$$

## Derivatives and Transforms of Homogeneous Distributions

## Theorem

If $T \in \mathscr{S}^{\prime}$ is homogeneous of degree $d$, then $\partial_{k} T$ is homogeneous of degree $d-1$ and $\hat{T}$ is homogeneous of degree $-n-d$.

- Let $\phi \in \mathscr{S}$ be homogeneous of degree $d$ and $t$ be a positive number. Then, by the chain rule, $\partial_{k}[\phi(t x)]=t\left(\partial_{k} \phi\right)(t x)$. Hence,

$$
\Lambda_{t}^{*}\left(\partial_{k} \phi\right)(x)=\left(\partial_{k} \phi\right)(t x)=\frac{1}{t} \partial_{k}[\phi(t x)]=t^{d-1}\left(\partial_{k} \phi\right)(x) .
$$

This means that $\partial_{k} \phi$ is homogeneous of degree $d-1$.

- To obtain the result for $T \in \mathscr{S}^{\prime}$, suppose the degree of $T$ is $d$. We first note that, for all $\phi \in \mathscr{S}$,

$$
\partial_{k}\left(\Lambda_{t}^{*} \phi\right)(x)=\partial_{k}[\phi(t x)]=t\left(\partial_{k} \phi\right)(t x)=t \Lambda_{t}^{*}\left(\partial_{k} \phi\right)(x)
$$

## Derivatives and Transforms of Homogeneous Distributions

- Keeping in mind $\Lambda_{t}^{-1}=\Lambda_{1 / t}$, we get

$$
\begin{aligned}
\Lambda_{t}^{*} \partial_{k} T(\phi) & =\partial_{k} T\left(\frac{1}{\mid \operatorname{det} \Lambda_{t}} \Lambda_{t}^{-1 *} \phi\right) \\
& =-T\left(\left|\operatorname{det} \Lambda_{1 / t}\right| \partial_{k} \Lambda_{1 / t}^{*} \phi\right) \\
& =-\frac{1}{t} T\left(\left|\operatorname{det} \Lambda_{1 / t}\right| \Lambda_{1 / t}^{*} \partial_{k} \phi\right) \\
& =-\frac{1}{t} \Lambda_{t}^{*} T\left(\partial_{k} \phi\right) \\
& =\frac{1}{t} \partial_{k} \Lambda_{t}^{*} T(\phi) \\
& =t^{d-1} \partial_{k} T(\phi) .
\end{aligned}
$$

Thus $\partial_{k} T$ has degree $d-1$.
Using the relations $\operatorname{det} \Lambda_{t}=t^{n}$ and $\Lambda_{t}^{T}=\Lambda_{t}$,

$$
\widehat{\Lambda_{t}^{*} T}=\frac{1}{|\operatorname{det} \Lambda|}\left(\Lambda^{-1 T}\right)^{*} \widehat{T}=\frac{1}{t^{n}} \Lambda_{1 / t}^{*} \widehat{T}, \quad T \in \mathscr{S}^{\prime} .
$$

If $T$ is homogeneous of degree $d, t^{d} \hat{T}=\frac{1}{t^{n}} \Lambda_{1 / t}^{*} \hat{T}$. So $\Lambda_{t}^{*} \hat{T}=\frac{1}{t^{n+d}} \hat{T}$.

## Example

- Consider the function

$$
f(z)=\frac{1}{z}=\frac{1}{x+i y} .
$$

It is locally integrable in the plane.
Clearly, $|f(z)|<1$ when $|z|>1$. Hence, $f$ defines a tempered distribution in $\mathbb{R}^{2}$.
We compute its Fourier transform.

$$
\mathscr{F}(z f)=\mathscr{F}(1)=\widehat{\hat{\delta}}=(2 \pi)^{2} \breve{\delta}=(2 \pi)^{2} \delta .
$$

Recalling the operator $\bar{\partial}=\frac{1}{2}\left(\frac{\partial}{\partial \xi}+i \frac{\partial}{\partial \eta}\right)$, we have,

$$
\begin{aligned}
\mathscr{F}(z f) & =\mathscr{F}(x f)+i \mathscr{F}(y f)=i \frac{\partial}{\partial \xi} \widehat{f}-\frac{\partial}{\partial \eta} \widehat{f} \\
& =i\left(\frac{\partial}{\partial \xi}+i \frac{\partial}{\partial \eta}\right) \widehat{f}=2 i \widehat{\partial} \widehat{f} .
\end{aligned}
$$

Therefore, $\frac{i \hat{f}}{2 \pi^{2}}$ is a fundamental solution of the operator $\bar{\partial}$.

## Example (Cont'd)

- By a previous example,

$$
\frac{i}{2 \pi} \widehat{f}(\zeta)=\frac{1}{\zeta}+h(\zeta)
$$

where $h$ is an entire function.
But $f$ is homogeneous of degree -1 in $\mathbb{R}^{2}$.
By the theorem, $\widehat{f}$ is homogeneous of degree $-2+1=-1$. If $h$ is not identically 0 , it must also have degree -1 .
Hence,

$$
h(t \zeta)=\frac{h(\zeta)}{t}, \quad t>0
$$

This becomes unbounded as $t \rightarrow 0$.
Thus, $h=0$.
So

$$
\mathscr{F}\left(\frac{1}{z}\right)=\widehat{f}(\zeta)=-\frac{2 \pi i}{\zeta} .
$$

## Orthogonal Transformations

- A linear transformation $\Lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be orthogonal if

$$
\Lambda^{T}=\Lambda^{-1}
$$

- If $\Lambda$ is orthogonal, then so is $\Lambda^{-1}$ and $\operatorname{det} \Lambda= \pm 1$.

Claim: The transformation $\Lambda$ is orthogonal if and only if it is norm-preserving.
An orthogonal transformation $\Lambda$ satisfies, for all $x \in \mathbb{R}^{n}$,

$$
|\Lambda x|^{2}=\langle\Lambda x, \Lambda x\rangle=\left\langle x, \Lambda^{T} \Lambda x\right\rangle=\langle x, x\rangle=|x|^{2} .
$$

Thus, $|\Lambda x|=|x|$.
Conversely, suppose $|\Lambda x|=|x|$, for all $x \in \mathbb{R}^{n}$.
Then $\Lambda^{T} \Lambda=$ identity. This implies that $\Lambda$ is orthogonal.

## Invariance

- A distribution $T \in \mathscr{D}^{\prime}$ is invariant under the transformation $\Lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ if

$$
\Lambda^{*} T=T .
$$

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is called rotation-invariant, or spherically symmetric, if there exists a function $g:[0, \infty) \rightarrow \mathbb{C}$, such that

$$
f(x)=g(|x|), \quad \text { for all } x \in \mathbb{R}^{n} .
$$

Claim: A function is rotation invariant if and only if it is invariant under orthogonal transformations.
Suppose $f$ is rotation-invariant. Then

$$
\Lambda^{*} f(x)=f(\Lambda x)=g(|\Lambda x|)=g(|x|)=f(x)
$$

So $f$ is invariant under any orthogonal transformation $\Lambda$.
Conversely, a rotation in $\mathbb{R}^{n}$ is an orthogonal transformation.

## Invariance of the Fourier Transform

## Theorem

If $T \in \mathscr{S}^{\prime}$ is invariant under orthogonal transformations, then $\hat{T}$ is also invariant under orthogonal transformations.

- Suppose $\Lambda$ is an orthogonal transformation.

If $T$ is any distribution in $\mathscr{S}^{\prime}$, then

$$
\widehat{\Lambda^{*} T}=\frac{1}{|\operatorname{det} \Lambda|}\left(\Lambda^{-1 T}\right)^{*} \widehat{T}=\Lambda^{*} \hat{T} .
$$

Consequently,

$$
\Lambda^{*} T=T \quad \text { if and only if } \widehat{\Lambda^{*} T}=\widehat{T} \text { if and only if } \Lambda^{*} \widehat{T}=\widehat{T} .
$$

- When a distribution is represented by a rotation-invariant function, the distribution is also said to be rotation-invariant.
- The theorem implies that if $T \in \mathscr{S}^{\prime}$ is rotation invariant and $\widehat{T}$ is a function, then $\hat{T}$ is also rotation invariant.

