Introduction to the Theory of Distributions

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

Theory of Distributions

July 2014

1 / 110

D Fourier Transforms and Tempered Distributions

- The Classical Fourier Transformation in L^2
- Tempered Distributions
- Fourier Transform in ${\mathscr S}$
- Fourier Transform in \mathscr{S}'
- Fourier Transform in L^2
- Fourier Transform in &'
- The Cauchy-Riemann Operator
- Fourier Transforms and Homogeneous Distributions

Subsection 1

The Classical Fourier Transformation in L^2

The Fourier Transformation in $L^1(\mathbb{R}^n)$

- Fix Ω to be ℝⁿ and write L^p, D, D', etc. for L^p(ℝⁿ), D(ℝⁿ), D'(ℝⁿ), etc.
- For $x = \langle x_1, \dots, x_n \rangle, \xi = \langle \xi_1, \dots, \xi_n \rangle \in \mathbb{R}^n$, let

$$\langle x,\xi\rangle = \sum_{j=1}^n x_j\xi_j.$$

• The Fourier transform of a function $f \in L^1$ is a function $\mathscr{F}(f) = \hat{f}$ on \mathbb{R}^n defined by

$$\widehat{f}(\xi) = \int e^{-i\langle x,\xi\rangle} f(x) dx, \quad \xi \in \mathbb{R}^n.$$

• The Fourier transformation is the mapping

$$\mathcal{F}: f \mapsto \widehat{f}$$

defined, so far, on L^1 .

Properties of the Fourier Transform

Lemma

- If $f \in L^1$, then, for all $\xi \in \mathbb{R}^n$, $|\hat{f}(\xi)| \le ||f||_1$.
 - By definition,

$$\widehat{f}(\xi) = \int e^{-i\langle x,\xi\rangle} f(x) dx.$$

So we have

$$\begin{aligned} |\widehat{f}(\xi)| &= |\int e^{-i\langle x,\xi\rangle} f(x) dx| \\ &\leq \int |e^{-i\langle x,\xi\rangle}| |f(x)| dx \\ &= \int |f(x)| dx \\ &= \|f\|_{1}. \end{aligned}$$

The Riemann-Lebesgue Lemma

Lemma (Riemann-Lebesgue Lemma)

If $f \in L^1$ is an integrable function, then $|\hat{f}(\xi)| \to 0$ as $|\xi| \to \infty$.

• We prove the lemma for n = 1. Assume, first, that $f \in C_0^0(\mathbb{R})$. Starting from the definition and substituting $y = x - \frac{\pi}{\xi}$, we get

$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-ix\xi} dx = \int_{-\infty}^{\infty} f(y + \frac{\pi}{\xi}) e^{-iy\xi} e^{-i\pi} dy$$
$$= -\int_{-\infty}^{\infty} f(y + \frac{\pi}{\xi}) e^{-iy\xi} dy.$$

So $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-ix\xi} dx = -\int_{-\infty}^{\infty} f(x + \frac{\pi}{\xi})e^{-ix\xi} dx.$ Taking means, we get $|\hat{f}(\xi)| \le \frac{1}{2} \int_{-\infty}^{\infty} |f(x) - f(x + \frac{\pi}{\xi})| dx.$ By continuity, $|f(x) - f(x + \frac{\pi}{\xi})| \xrightarrow{|\xi| \to \infty} 0.$

By the Lebesgue Dominated Convergence Theorem, $|\hat{f}(\xi)| \stackrel{|\xi| \to \infty}{\longrightarrow} 0$.

The Riemann-Lebesgue Lemma (Cont'd)

 Now suppose that f ∈ L¹. The key result is that C₀⁰ is dense in L¹. So, given ε > 0, there exists g ∈ C₀⁰, such that ||f − g||₁ < ε. Thus, using the preceding slide, we get

$$\begin{aligned} |\widehat{f}(\xi)| &= |\int_{-\infty}^{\infty} f(x)e^{-ix\xi}dx| \\ &= |\int_{-\infty}^{\infty} (f(x) - g(x) + g(x))e^{-ix\xi}dx| \\ &\leq |\int_{-\infty}^{\infty} (f(x) - g(x))e^{-ix\xi}dx| + |\int_{-\infty}^{\infty} g(x)e^{-ix\xi}dx| \\ &\leq \varepsilon + |\int_{-\infty}^{\infty} g(x)e^{-ix\xi}dx| \\ &\stackrel{|\xi| \to \infty}{\longrightarrow} \varepsilon + 0. \end{aligned}$$

Since $\varepsilon > 0$ was arbitrary, $|\hat{f}(\xi)| \to 0$ as $|\xi| \to \infty$.

Properties of the Fourier Transform

Proposition

Let $f \in L^1$ and $\xi_k \to \xi$ in \mathbb{R}^n .

(a)
$$\widehat{f}(\xi_k) \to \widehat{f}(\xi);$$

(b) \hat{f} is bounded an continuous on \mathbb{R}^n ;

(c)
$$\widehat{f}(\xi) \to 0$$
 as $|\xi| \to \infty$.

(a) Suppose ξ_k is a sequence in \mathbb{R}^n which converges to ξ .

$$|\widehat{f}(\xi_k) - \widehat{f}(\xi)| \le \int |f(x)| |e^{-i\langle x,\xi_k \rangle} - e^{-i\langle x,\xi \rangle} |dx.$$

Moreover, $|e^{-i\langle x,\xi_k\rangle} - e^{-i\langle x,\xi\rangle}| \stackrel{\xi_k \to \xi}{\longrightarrow} 0.$

By Lebesgue's Dominated Convergence Theorem, $\hat{f}(\xi_k) \rightarrow \hat{f}(\xi)$. (b) By a previous lemma and Part (a). (c) By the preceding lemma.

Remark on Integrability

In general f may not be integrable.
 Example: Consider the function

$$f(x) = \begin{cases} 1, & \text{if } x \in (-1,1) \\ 0, & \text{otherwise} \end{cases}$$

٠

We have over ${\mathbb R}$

$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} e^{-ix\xi} f(x) dx$$
$$= \int_{-1}^{1} e^{-ix\xi} dx$$
$$= -\frac{1}{i\xi} e^{-ix\xi} |_{-1}^{1}$$
$$= -\frac{1}{i\xi} (e^{-i\xi} - e^{i\xi})$$
$$= \frac{2\sin\xi}{\xi}.$$

This function is not in L^1 .

George Voutsadakis (LSSU)

The Inverse Fourier Transform

• When $\widehat{f} \in L^1$,

$$f(x) = \frac{1}{(2\pi)^n} \int e^{i\langle\xi,x\rangle} \widehat{f}(\xi) d\xi$$

almost everywhere.

- The right-hand side is continuous.
- If we assume that f, besides being integrable, is also continuous, then the equality holds everywhere.

The Fourier Transform as a Map From L^1 To C^0_∞

- Suppose $f, g \in L^1$.
- We have the linearity property

$$\mathscr{F}(af+bg)=a\widehat{f}+b\widehat{g},\quad a,b\in\mathbb{C}.$$

 Let C_∞⁰ be the Banach space of continuous functions on ℝⁿ which tend to 0 at ∞, equipped with the norm

 $||f|| = |f|_0 = \sup\{|f(x)| : x \in \mathbb{R}^n\}.$

• The Fourier transformation ${\mathscr F}$ satisfies the inequality

 $\|\mathcal{F}(f)\|=|\widehat{f}|_0\leq \|f\|_1.$

• It is therefore an injective, continuous linear map from L^1 to C^0_{∞} .

Preparing for an Extension to Distributions

- Suppose $f, g \in L^1$.
- Then \hat{g} is bounded.
- So $f\hat{g} \in L^1$.
- By Fubini's Theorem,

$$\int f(x)\widehat{g}(x)dx = \int f(x)\int g(\xi)e^{-i\langle x,\xi\rangle}d\xi dx$$
$$= \int g(\xi)\int f(x)e^{-i\langle x,\xi\rangle}dxd\xi.$$

Therefore,

$$\int f(x)\widehat{g}(x)dx = \int g(\xi)\widehat{f}(\xi)d\xi.$$

Idea of the Extension of ${\mathscr F}$

- We would like to extend the definition of the Fourier transformation from L¹ to 𝒫'.
- Viewing *f* as a distribution and *g* as a test function, we may consider applying the formula

$$\langle \widehat{f}, g \rangle = \langle f, \widehat{g} \rangle.$$

- Here we run into some problems.
 - Suppose g in D. Then g is analytic. So it cannot have compact support unless it is identically zero.
 This indicates that D is too small as a space of test functions.
 Equivalently, D' is too large for the purpose of extension.
 - Suppose g is taken in &. Then it may not be integrable. As a consequence, its Fourier transform may not exist.
 So it would seem that & is too big as a space of test functions.

Thus, a new space of test functions larger than \mathscr{D} and smaller than \mathscr{E} seems to be suitable for an extension of the Fourier transformation.

Constraints on a Space of Test Functions

- An appropriate test function space, call it X, should meet certain conditions in order to serve our purpose.
 - (i) X should be a subspace of C^{∞} in order that the distributions in X' have derivatives of all orders;
 - (ii) The Fourier transformation should be "well behaved" on X, in the sense that it maps X onto itself;
 - (iii) Since $\partial_k \mathscr{F}(\phi) = -i\mathscr{F}(x_k \phi)$, X should be closed under multiplication by polynomials.
- With these conditions, we should also choose X as small as possible, in order that X' be as large as possible.

Subsection 2

Tempered Distributions

Rapidly Decreasing Functions

• A function $\phi \in C^{\infty}$ is said to be **rapidly decreasing** if

$$\sup_{x\in\mathbb{R}^n}|x^{\alpha}\partial^{\beta}\phi(x)|<\infty,$$

for all pairs of multi-indices α and β .

• This is equivalent to the condition that

$$\lim_{|x|\to\infty}|x^{\alpha}\partial^{\beta}\phi(x)|=0.$$

• It is also equivalent to the condition that

 $\sup_{|\beta| \le m \times \in \mathbb{R}^n} \sup (1+|x|^2)^m |\partial^\beta \phi(x)| < \infty, \text{ for all } m \in \mathbb{N}_0.$

The Space of Rapidly Decreasing Functions

- ${\scriptstyle \bullet}$ We use ${\mathscr S}$ to denote the set of all rapidly decreasing functions.
- S is a linear space under the usual operations of addition and multiplication by scalars.
- A function in *S* approaches 0 as |x| → ∞ faster than any power of ¹/_{|x|}.
 Example: An example of a function in *S* is e^{-|x|}.

The Topology on ${\mathscr S}$

• For any $\phi \in \mathscr{S}$, we define the seminorms

$$p_{\alpha\beta}(\phi) = \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} \phi(x)|,$$

with $\alpha, \beta \in \mathbb{N}_0^n$.

- The countable family $\{p_{\alpha\beta}\}$ defines a Hausdorff, locally convex, topology on \mathscr{S} which is metrizable and complete.
- With this topology, ${\mathscr S}$ is, therefore, a Fréchet space.
- A sequence (ϕ_k) converges to 0 in \mathscr{S} if and only if $x^{\alpha}\partial^{\beta}\phi_k(x) \to 0$ uniformly on \mathbb{R}^n as $k \to \infty$.
- If ϕ is in \mathscr{S} , then $x^{\alpha}\partial^{\beta}\phi$ is in \mathscr{S} , for any pair $\alpha, \beta \in \mathbb{N}_{0}^{n}$.

Inclusion Relations Between $\mathcal{D}, \mathcal{S}, \mathcal{E}$

Theorem

The topological vector spaces \mathcal{D} , \mathscr{S} and \mathscr{E} are related by $\mathcal{D} \subseteq \mathscr{S} \subseteq \mathscr{E}$, with continuous injection. Moreover, \mathcal{D} is a dense subspace of \mathscr{S} and \mathscr{S} is a dense subspace of \mathscr{E} .

• The inclusion relations clearly hold between \mathcal{D}, \mathscr{S} and \mathscr{E} as sets. Let (ϕ_k) be a sequence in \mathcal{D} which converges to 0. Then, there is a compact set $K \subseteq \mathbb{R}^n$, such that (ϕ_k) lies in \mathcal{D}_K and converges to 0 in \mathcal{D}_K . Hence, $\phi_k \to 0$ in \mathscr{S} .

Let (ϕ_k) be a sequence in \mathscr{S} which converges to 0. Then, for any $\alpha \in \mathbb{N}_0^n$, $\partial^{\alpha} \phi_k \to 0$ uniformly on every compact subset of \mathbb{R}^n . This means that (ϕ_k) converges to 0 in \mathscr{E} .

The first part of the theorem is now proved.

The second part follows from the simple observation that ${\mathcal D}$ is dense in ${\mathscr E}$ as has already been shown.

Density of \mathscr{S} in L^p

Theorem

 \mathscr{S} is a dense subspace of L^p , $1 \le p < \infty$, with the identity map from \mathscr{S} into L^p continuous.

• Let $\phi \in \mathscr{S}$. Then $(1+|x|^2)^m \phi$ is in \mathscr{S} , for any m > 0. So $\phi \in L^p$. Let $\phi_k \to 0$ in \mathscr{S} . Then

$$\sup_{\mathbf{x}\in\mathbb{R}^n} (1+|\mathbf{x}|^2)^m |\phi_k(\mathbf{x})|^p \to 0,$$

for every *m* as $k \to \infty$. When $m > \frac{1}{2}n$, $(1 + |x|^2)^{-m}$ is integrable. We then have

$$\begin{aligned} \|\phi_k\|_p^p &= \int (1+|x|^2)^m |\phi_k(x)|^p (1+|x|^2)^{-m} dx \\ &\leq M \sup_{x \in \mathbb{R}^n} (1+|x|^2)^m |\phi_k(x)|^p. \end{aligned}$$

Therefore, $\phi_k \to 0$ in L^p . Since \mathscr{D} is dense in L^p , by a previous result, so is \mathscr{S} .

Convolution of Functions in ${\mathscr S}$

• The convolution $\phi * \psi$ of any pair of functions ϕ, ψ in \mathscr{S} is well defined in \mathbb{R}^n and is in fact an \mathscr{S} function.

To see this, note that the integral

$$(\phi * \psi)(x) = \int \phi(x - y)\psi(y)dy$$

is uniformly convergent in \mathbb{R}^n . Therefore, we can write

$$\sup_{x \in \mathbb{R}^{n}} |x^{\alpha} \partial^{\beta}(\phi * \psi)(x)| \leq \int \sup_{x \in \mathbb{R}^{n}} |x^{\alpha} \partial^{\beta} \phi(x - y)| |\psi(y)| dy$$
$$\leq M \int |\psi(y)| dy < \infty.$$

Tempered Distributions

- A previous theorem implies that the relation &' ⊆ S' ⊆ D' must hold between the topological dual spaces with the identity maps from &' to S' and from S' to D' continuous.
- Further, every locally integrable function f on \mathbb{R}^n defines a distribution in \mathcal{D}' by $\phi \mapsto \int f \phi$, $\phi \in \mathcal{D}$.
- For f to define a distribution in \mathscr{S}' by $\phi \mapsto \int f \phi$, $\phi \in \mathscr{S}$, it must, additionally, satisfy a growth condition at ∞ .
- f cannot grow faster than some power of x as |x| → ∞, since, otherwise, the integral ∫ f φ will not be defined.
 Example: The exponential function e^{|x|} does not define a distribution

in \mathscr{S}' .

- Loosely speaking, we can say that the elements of S' are the distributions of polynomial growth as |x| →∞.
- Hence they are called tempered distributions.

Tempered Distributions Defined by Polynomials

(i) Any polynomial function f on \mathbb{R}^n defines a tempered distribution by the formula

$$\langle f,\phi\rangle = \int f(x)\phi(x)x, \quad \phi \in \mathscr{S}.$$

Indeed, let:

- *k* be the degree of the polynomial *f*;
- $m > \frac{1}{2}(n+k)$.

Then we have

$$\begin{aligned} |\langle f, \phi \rangle| &\leq \int |f(x)\phi(x)| dx \\ &\leq M \sup_{x \in \mathbb{R}^n} (1+|x|^2)^m |\phi(x)| \end{aligned}$$

with $M = ||f(x)(1+|x|^2)^{-m}||_1$.

Multiplication of Distributions

- (ii) The same definitions and properties of **convergence**, **differentiation**, **translation** and **reflection in the origin** which were given in \mathscr{D}' apply to the elements of \mathscr{S}' .
 - Since S is closed under multiplication by polynomials, we can define the product of a polynomial P on Rⁿ with a tempered distribution by

$$PT(\phi) = T(P\phi), \quad \phi \in \mathscr{S}.$$

- This definition clearly extends to any C^{∞} function f with polynomial growth at ∞ , i.e., an $f \in C^{\infty}$ for which there is a positive integer m, such that $|x|^{-m} |\partial^{\alpha} f(x)|$ remains bounded as $|x| \to \infty$, for all $\alpha \in \mathbb{N}_0^n$.
- Thus, the linear space of multipliers of D', which is C[∞], is also "tempered" by a growth condition before it can serve as a linear space of multipliers of S'.

\mathscr{S} is a Subspace of L^p , $1 \le p \le \infty$

```
(iii) Suppose 1 \le p < \infty and \phi \in \mathscr{S}.
       Then for any positive integer m,
                   |\phi(x)| = (1+|x|^2)^{-m}(1+|x|^2)^{m}|\phi(x)| \le M(1+|x|^2)^{-m},
      where M = \sup \{ (1 + |x|^2)^m | \phi(x) | : x \in \mathbb{R}^n \}.
       Now |\phi|^p is integrable if m > \frac{1}{2} \frac{n}{p}.
       Hence, \mathscr{S} \subseteq L^p.
       Moreover, any \phi \in \mathscr{S} is bounded on \mathbb{R}^n.
       So we also have \mathscr{S} \subseteq L^{\infty}.
       Thus, \mathscr{S} is a subspace of L^p, for 1 \le p \le \infty.
```

Extension from L^p to \mathscr{S}'

(iv) We prove that $L^p \subseteq \mathscr{S}'$, for $1 \le p \le \infty$. Suppose $f \in L^p$ and ϕ is any C^{∞} function with compact support K.

$$\begin{aligned} |\langle f, \phi \rangle| &= |\int_{\mathcal{K}} f(x)\phi(x)dx| \\ &= |\int \phi(x)I_{\mathcal{K}}(x)f(x)dx| \\ &\stackrel{\text{H\"older}}{\leq} M|\phi|_{0}||f||_{p}. \end{aligned}$$

Thus, f defines a continuous linear functional on C_0^{∞} in the topology induced by \mathscr{S} .

But C_0^{∞} is dense in \mathscr{S} .

So f can be extended to a continuous linear functional of \mathcal{S} .

More generally, any locally integrable function f, such that |x|^{-m}|f(x)| is bounded (almost everywhere) as |x| → ∞, for some positive integer m, defines a distribution in S['].

Non-Necessity of the Boundedness Condition

Consider the function f(x) = e^x sin (e^x), x ∈ ℝ.
 Note that for no positive integer m, does x^{-m}|f(x)| = x^{-m}e^x|sin(e^x)| remain bounded as x → ∞.
 Hence, f(x) cannot be dominated at ∞ by a polynomial.

However, if $\phi \in \mathscr{S}(\mathbb{R})$, then

$$\begin{aligned} \int f(x)\phi(x)dx| &= |\int e^x \sin(e^x)\phi(x)dx| \\ &= |\int \phi(x)d(-\cos(e^x))| \\ &= |\int \cos(e^x)\phi'(x)dx| \\ &\leq \int |\phi'(x)|dx \\ &= \int (1+x^2)|\phi'(x)|\frac{1}{1+x^2}dx \\ &\leq M \sup(1+x^2)|\phi'(x)|. \end{aligned}$$

Thus f defines a distribution in $\mathscr{S}'(\mathbb{R})$.

Tempered Distributions as Derivatives

(v) The inclusion $\mathscr{S}' \subseteq \mathscr{D}'_F$.

- Clearly, $\mathscr{D}_F \subseteq \mathscr{S}$;
- Moreover, convergence in \mathcal{D}_F implies convergence in \mathcal{S} .

Thus, every tempered distribution is of finite order.

By a previous theorem, we conclude that every tempered distribution is a derivative of some continuous function of polynomial growth.

Examples:

- Consider again the tempered distribution $e^x \sin(e^x)$. It is the first derivative of the bounded function $-\cos(e^x)$.
- The powers $x_{+}^{\lambda}, x_{-}^{\lambda}$ and $|x|^{\lambda}$ are examples of tempered distributions. Each is dominated at $\pm \infty$ by $|x|^{m}$, if $m \ge \text{Re}\lambda$.

Subsection 3

Fourier Transform in ${\mathscr S}$

George Voutsadakis (LSSU)

Theory of Distributions

July 2014

29 / 110

Differentiation of Fourier Transforms

Since 𝒴 ⊆ L¹, the Fourier transform φ̂ of any φ∈𝒴 exists.
 Moreover,

$$\partial_k \widehat{\phi}(\xi) = \partial_k \int e^{-i\langle x,\xi \rangle} \phi(x) dx$$

= $\int \frac{\partial}{\partial \xi_k} e^{-i\langle x,\xi \rangle} \phi(x) dx$
= $-i \int e^{-i\langle x,\xi \rangle} x_k \phi(x) dx$
= $-i \mathscr{F}(x_k \phi).$

The second equality, where differentiation is carried inside the integral, is justified by the uniform convergence of the integral as a function of ξ .

Fourier Transforms of Derivatives

We also have

$$\mathcal{F}(\partial_k \phi)(\xi) = \int e^{-i\langle x,\xi \rangle} \partial_k \phi(x) dx$$

= $i\xi_k \int e^{-i\langle x,\xi \rangle} \phi(x) dx$
(integration by-parts)
= $i\xi_k \widehat{\phi}(\xi)$.

• Using the notation $D_k = -i\partial_k$, we have the relations

$$\mathscr{F}(D_k\phi) = \xi_k \mathscr{F}(\phi), \quad \mathscr{F}(x_k\phi) = -D_k \mathscr{F}(\phi).$$

• This process may be repeated any number of times, and with respect to any index, giving, for all $\alpha = (\alpha_1, ..., \alpha_n)$ and $D^{\alpha} = (-i)^{|\alpha|} \partial^{\alpha}$,

$$\begin{aligned} \mathscr{F}(D^{\alpha}\phi) &= \xi^{\alpha}\mathscr{F}(\phi), \\ \mathscr{F}(x^{\alpha}\phi) &= (-1)^{|\alpha|}D^{\alpha}\mathscr{F}(\phi). \end{aligned}$$

George Voutsadakis (LSSU)

The Fourier Transformation on ${\mathscr S}$

Theorem

The Fourier transformation is a continuous linear map from ${\mathscr S}$ into ${\mathscr S}$.

• For any $\phi \in \mathscr{S}$ and $\alpha, \beta \in \mathbb{N}_0^n$, we have the relations

$$\mathscr{F}(D^{\alpha}\phi) = \xi^{\alpha}\mathscr{F}(\phi), \quad \mathscr{F}(x^{\alpha}\phi) = (-1)^{|\alpha|}D^{\alpha}\mathscr{F}(\phi), \quad D^{\alpha} = (-i)^{|\alpha|}\partial^{\alpha}.$$

These imply

$$\begin{split} \xi^{\alpha} D^{\beta} \widehat{\phi}(\xi) &= \xi^{\alpha} (-1)^{|\beta|} \mathscr{F}(x^{\beta} \phi) = \mathscr{F}(D^{\alpha} (-x)^{\beta} \phi) \\ &= \int e^{-i\langle x,\xi\rangle} D^{\alpha} [(-x)^{\beta} \phi(x)] dx; \\ |\xi^{\alpha} D^{\beta} \widehat{\phi}(\xi)| &\leq \int |D^{\alpha} [x^{\beta} \phi(x)]| dx \\ &= \int (1+|x|^2)^{-m} (1+|x|^2)^m |D^{\alpha} [x^{\beta} \phi(x)]| dx. \end{split}$$

We can choose *m*, so that $\int (1+|x|^2)^{-m} dx = M < \infty$. Then $|\xi^{\alpha} D^{\beta} \hat{\phi}(\xi)| \leq \sup_{x \in \mathbb{R}^n} (1+|x|^2)^m |D^{\alpha}[x^{\beta} \phi(x)]| M$. But ϕ is in \mathscr{S} . So the right side is finite. Hence, $\hat{\phi}$ is in \mathscr{S} . Now \mathscr{F} is linear and $\hat{\phi} \to 0$ as $\phi \to 0$ in \mathscr{S} . So \mathscr{F} is continuous on \mathscr{S} .

Example: A Special Fourier Transform

Proposition

We have

$$\mathcal{F}\left(e^{-\frac{1}{2}|x|^2}\right) = (2\pi)^{n/2} e^{-\frac{1}{2}|\xi|^2}.$$

Let γ(x) = e^{-1/2|x|²}, x ∈ ℝⁿ.
 For n = 1, γ satisfies the differential equation γ'(x) + xγ(x) = 0, x ∈ ℝ.
 Taking the Fourier transform on the left, using
 𝔅(D^αφ) = ξ^α𝔅(φ), 𝔅(x^αφ) = (-1)^{|α|}D^α𝔅(φ), D^α = (-i)^{|α|}∂^α.

$$\mathscr{F}(D^{\alpha}\phi) = \xi^{\alpha}\mathscr{F}(\phi), \quad \mathscr{F}(x^{\alpha}\phi) = (-1)^{|\alpha|} D^{\alpha}\mathscr{F}(\phi), \quad D^{\alpha} = (-i)^{|\alpha|}$$

we obtain

$$\begin{aligned} \mathscr{F}(\gamma'(x) + x\gamma(x)) &= \mathscr{F}(\gamma'(x)) + \mathscr{F}(x\gamma(x)) \\ &= \xi \mathscr{F}(\gamma(x)) + (-D\mathscr{F}(\gamma(x))) \\ &= \xi \widehat{\gamma}(\xi) + \widehat{\gamma}'(\xi). \end{aligned}$$

Thus, $\xi \widehat{\gamma}(\xi) + (\widehat{\gamma})'(\xi) = 0, \ \xi \in \mathbb{R}.$

Example (Cont'd)

- We found $\xi \widehat{\gamma}(\xi) + (\widehat{\gamma})'(\xi) = 0$, $\xi \in \mathbb{R}$. Its solution is given by $\widehat{\gamma}(\xi) = ce^{-\frac{1}{2}\xi^2}$. The initial condition gives $c = \widehat{\gamma}(0) = \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} dx = (2\pi)^{1/2}$. Therefore, $\widehat{\gamma}(\xi) = (2\pi)^{1/2} e^{-\frac{1}{2}\xi^2}$.
- Suppose, next, that n≥1.
 Then we can write

$$\widehat{\gamma}(\xi) = \int_{\mathbb{R}^n} \prod_{k=1}^n e^{-ix_k \xi_k} e^{-\frac{1}{2}x_k^2} dx$$

= $\prod_{k=1}^n \int_{-\infty}^{\infty} e^{-ix_k \xi_k - \frac{1}{2}x_k^2} dx_k$
= $\prod_{k=1}^n \widehat{\gamma}(\xi_k)$
= $(2\pi)^{\frac{1}{2}n} e^{-\frac{1}{2}|\xi|^2}.$

The Fourier Inversion Formula in ${\mathscr S}$

Theorem

If $\phi \in \mathscr{S}$, then

$$\phi(x) = \mathscr{F}^{-1}(\widehat{\phi})(x) = (2\pi)^{-n} \int e^{i\langle x,\xi\rangle} \widehat{\phi}(\xi) d\xi.$$

• For any $\phi, \psi \in \mathscr{S}$, we have, using Fubini's Theorem,

$$\begin{split} \int \widehat{\phi}(x)\psi(x)e^{i\langle\xi,x\rangle}dx &= \int [\int e^{-i\langle y,x\rangle}\phi(y)dy]\psi(x)e^{i\langle\xi,x\rangle}dx \\ &= \int \phi(y)[\int e^{-i\langle y-\xi,x\rangle}\psi(x)dx]dy \\ &= \int \phi(y)\widehat{\psi}(y-\xi)dy \\ &= \int \phi(\xi+y)\widehat{\psi}(y)dy. \end{split}$$

Furthermore, when $\psi \in \mathscr{S}$ and $\varepsilon > 0$,

$$\mathscr{F}(\psi(\varepsilon x))(y) = \int e^{-i\langle y,x\rangle} \psi(\varepsilon x) dx = \int e^{-i\langle y,\frac{\xi}{\varepsilon}\rangle} \psi(\xi) \frac{1}{\varepsilon^n} d\xi = \frac{1}{\varepsilon^n} \widehat{\psi}\left(\frac{y}{\varepsilon}\right).$$

The Fourier Inversion Formula in \mathscr{S} (Cont'd)

Using this, we get

$$\begin{split} \int \widehat{\phi}(x) \psi(\varepsilon x) e^{i\langle \xi, x \rangle} \, dx &= \int \phi(\xi + y) \mathscr{F}(\psi(\varepsilon x))(y) \, dy \\ &= \int \phi(\xi + y) \widehat{\psi}(\frac{y}{\varepsilon}) \frac{1}{\varepsilon^n} \, dy \\ &= \int \phi(\xi + y) \widehat{\psi}(\frac{y}{\varepsilon}) d(\frac{y}{\varepsilon}) \\ &= \int \phi(\xi + \varepsilon y) \widehat{\psi}(y) \, dy. \end{split}$$

Since these integrals are uniformly convergent, we can take the limit as $\varepsilon \rightarrow 0$ inside the integral sign.

The result is $\psi(0) \int \widehat{\phi}(x) e^{i\langle \xi, x \rangle} dx = \phi(\xi) \int \widehat{\psi}(y) dy$.

If we choose $\psi(x) = e^{-\frac{1}{2}|x|^2}$, then:

•
$$\psi(0) = 1$$
.
• $\int \widehat{\psi}(y) dy = (2\pi)^{\frac{1}{2}n} \int e^{-\frac{1}{2}|y|^2} dy = (2\pi)^n$.
• we get $\int \widehat{\phi}(x) e^{i\langle \xi, x \rangle} dx = \phi(\xi)(2\pi)^n$.

A Topological Isomorphism

- We showed that \mathcal{F} is a continuous linear map from \mathcal{S} into \mathcal{S} .
- We also showed that an inversion formula exists.
- Thus, the Fourier transformation defines a **topological isomorphism** from \mathscr{S} onto \mathscr{S} .
- This means that it is a bijection from $\mathscr S$ to $\mathscr S$ which, in addition, preserves:
 - The algebraic properties of the linear space \mathscr{S} (linearity);
 - The topological properties of \mathscr{S} (homeomorphism).

Properties of Fourier Transforms

• Recall that $\phi \psi$ and $\phi * \psi$ are both in \mathscr{S} when $\phi, \psi \in \mathscr{S}$.

Theorem

- If $\phi, \psi \in \mathscr{S}$, then:
 - (a) $\int \widehat{\phi} \psi = \int \phi \widehat{\psi};$
 - (b) $\int \phi \overline{\psi} = (2\pi)^{-n} \int \widehat{\phi} \overline{\widehat{\psi}}$; (Parseval's Relation)
 - (c) $\mathscr{F}(\phi * \psi) = \widehat{\phi}\widehat{\psi};$
 - (d) $\mathscr{F}(\phi\psi) = (2\pi)^{-n}\widehat{\phi} * \widehat{\psi}.$
- (a) We get the conclusion from the following upon setting $\xi = 0$.

$$\begin{split} \int \widehat{\phi}(x)\psi(x)e^{i\langle\xi,x\rangle}dx &= \int \int \phi(y)e^{-i\langle y,x\rangle}dy\psi(x)e^{i\langle\xi,x\rangle}dx \\ &= \int \phi(y)\int \psi(x)e^{-i\langle y-\xi,x\rangle}dxdy \\ &= \int \phi(y)\widehat{\psi}(y-\xi)dy \\ &= \int \phi(y+\xi)\widehat{\psi}(y)dy. \end{split}$$

Properties of Fourier Transforms (b)

(b) We have

$$\widehat{\widehat{\psi}}(\xi) = \int e^{-i\langle\xi,x\rangle} \overline{\widehat{\psi}}(x) dx = \overline{\int e^{i\langle\xi,x\rangle} \widehat{\psi}(x) dx} = \overline{(2\pi)^n \psi(x)} = (2\pi)^n \overline{\psi}(x).$$

Now in Part (a), replace ψ by $(2\pi)^{-n}\overline{\psi}$ to get

$$(2\pi)^{-n} \int \widehat{\phi} \overline{\widehat{\psi}} = (2\pi)^{-n} \int \phi \overline{\widehat{\widehat{\psi}}}$$
$$= (2\pi)^{-n} \int \phi (2\pi)^n \overline{\psi}$$
$$= \int \phi \overline{\psi}.$$

Properties of Fourier Transforms (c)

(c) Using Fubini's Theorem, we get

$$\mathcal{F}(\phi * \psi)(\xi) = \int e^{-i\langle\xi, x\rangle} (\phi * \psi)(x) dx$$

$$= \int e^{-i\langle\xi, x\rangle} [\int \phi(y)\psi(x-y)dy] dx$$

$$= \int \phi(y) [\int e^{-i\langle\xi, x\rangle}\psi(x-y)dx] dy$$

$$= \int \phi(y) [\int e^{-i\langle\xi, y+\eta\rangle}\psi(\eta)d\eta] dy$$

$$= \int e^{-i\langle\xi, y\rangle}\phi(y) dy \int e^{-i\langle\xi, \eta\rangle}\psi(\eta)d\eta$$

 $= \widehat{\phi}(\xi)\widehat{\psi}(\xi).$

Properties of Fourier Transforms (d)

(d) The inversion formula gives

$$\begin{split} \phi(x) &= (2\pi)^{-n} \int e^{i\langle x,\xi\rangle} \widehat{\phi}(\xi) d\xi = (2\pi)^{-n} \widehat{\phi}(-x);\\ \widehat{\phi}(x) &= (2\pi)^n \phi(-x). \end{split}$$

Using Part (c), we now get

$$\begin{aligned} \widehat{\phi} * \widehat{\psi})(\xi) &= \mathscr{F}^{-1}(\widehat{\phi}\widehat{\widehat{\psi}})(\xi) \\ &= (2\pi)^{-n} \int e^{i\langle\xi,x\rangle} \widehat{\phi}(x) \widehat{\psi}(x) dx \\ &= (2\pi)^n \int e^{i\langle\xi,x\rangle} \phi(-x) \psi(-x) dx \\ &= (2\pi)^n \int e^{-i\langle\xi,x\rangle} \phi(x) \psi(x) dx \\ &= (2\pi)^n \mathscr{F}(\phi\psi)(\xi). \end{aligned}$$

Example

The equation 𝔅(φ * ψ) = φ̂ψ̂ can be used to construct two nonzero functions φ, ψ ∈ 𝔅, such that φ * ψ = 0.
Let φ₀, ψ₀ ≠ 0 be in 𝔅, such that suppφ₀ ∩ suppψ₀ = Ø.
Define φ = 𝔅⁻¹(φ₀) and ψ = 𝔅⁻¹(ψ₀).
Since φ₀, ψ₀ ∈ 𝔅 and 𝔅 is bijective, φ and ψ are in 𝔅.
We now have

$$\mathscr{F}(\phi * \psi) = \mathscr{F}(\phi)\mathscr{F}(\psi) = \phi_0 \psi_0 = 0.$$

This implies that $\phi * \psi = 0$.

• On the other hand, suppose $\phi \in \mathscr{S}$ and $\phi * \phi = 0$. Then $0 = \mathscr{F}(\phi * \phi) = [\mathscr{F}(\phi)]^2$. So $\mathscr{F}(\phi) = 0$. Therefore, $\phi = 0$.

Subsection 4

Fourier Transform in \mathscr{S}'

Fourier Transform of a Distribution

Definition

For any $T \in \mathscr{S}'$, the Fourier transform $\mathscr{F}(T) = \widehat{T}$ is defined by

 $\widehat{T}(\phi)=T(\widehat{\phi}),\quad \phi\in\mathcal{S}.$

Note that:

• $\widehat{\phi} \in \mathscr{S}$, for every $\phi \in \mathscr{S}$;

• The Fourier transformation is continuous on \mathscr{S} .

It now follows that $\widehat{T} \in \mathscr{S}'$, for every $T \in \mathscr{S}'$.

Fourier Transform of a Distribution

• \mathscr{S} can be considered a subspace of \mathscr{S}' . The function $\psi \in \mathscr{S}$ corresponds to $T_{\psi} \in \mathscr{S}'$. In this case $\widehat{T}_{\psi}(\psi) = T_{\psi}(\widehat{\psi})^{\int \widehat{\psi} \psi = \int \psi \widehat{\psi}} T_{\psi}(\psi)$

$$\widehat{T}_{\psi}(\phi) = T_{\psi}(\widehat{\phi}) \stackrel{\int \widehat{\phi}\psi = \int \phi\widehat{\psi}}{=} T_{\widehat{\psi}}(\phi).$$

Hence, $\widehat{T}_{\psi} = T_{\widehat{\psi}}$.

• $\mathscr{F}: \mathscr{S}' \to \mathscr{S}'$ is continuous in the (weak) topology of \mathscr{S}' . This follows from the continuity of $\mathscr{F}: \mathscr{S} \to \mathscr{S}$. Suppose $T_k \to T$ in \mathscr{S}' and $\phi \in \mathscr{S}$. Then

$$\widehat{T}_k(\phi) = T_k(\widehat{\phi}) \to T(\widehat{\phi}) = \widehat{T}(\phi).$$

Thus, if $T_k \to T$ in \mathscr{S}' , then $\widehat{T}_k \to \widehat{T}$ in \mathscr{S}' . This means that $\mathscr{F}: \mathscr{S}' \to \mathscr{S}'$ is continuous in the topology of \mathscr{S}' .

The Case of an L^1 Function

Т

• Suppose f is an L^1 function. Then \hat{f} is a C^0_{∞} function. Therefore, $T_{\hat{f}} \in \mathscr{S}'$. Hence, for any $\phi \in \mathscr{S}$,

$$\hat{f}(\phi) = \int \hat{f}(\xi)\phi(\xi)d\xi$$

$$= \int \left[\int e^{-i\langle\xi,x\rangle}f(x)dx\right]\phi(\xi)d\xi$$

$$= \int f(x)\left[\int e^{-i\langle x,\xi\rangle}\phi(\xi)d\xi\right]dx$$

$$= \int f(x)\hat{\phi}(x)dx$$

$$= T_{f}(\hat{\phi}).$$

So, for all $\phi \in \mathscr{S}$, $\widehat{T}_f(\phi) = T_f(\widehat{\phi}) = T_{\widehat{f}}(\phi)$ (i.e., the Fourier transform of T, as a distribution, coincides with its transform as an L^1 function).

The Fourier Transformation in \mathscr{S}'

Theorem

The Fourier transformation ${\mathscr F}$ from ${\mathscr S}'$ to ${\mathscr S}'$ with the inversion formula

$$\widehat{\widetilde{T}} = (2\pi)^n \, \widecheck{T}, \quad T \in \mathscr{S}',$$

is a topological isomorphism.

• We define the inverse Fourier transform of $T \in \mathscr{S}'$ by $\mathscr{F}^{-1}(T)(\phi) = T(\mathscr{F}^{-1}(\phi)), \quad \phi \in \mathscr{S}.$

Then \mathscr{F}^{-1} is also a continuous map from \mathscr{S}' into \mathscr{S}' . Moreover, $\mathscr{F}^{-1}(\widehat{T})(\widehat{\phi}) = \widehat{T}(\mathscr{F}^{-1}(\widehat{\phi})) = \widehat{T}(\phi) = T(\widehat{\phi})$. Using equation $\widehat{\phi}(x) = (2\pi)^n \phi(-x)$, we get, for all $\phi \in \mathscr{S}$, $\widehat{T}(\phi) = T(\widehat{\phi}) = (2\pi)^n T(\widecheck{\phi}) = (2\pi)^n \widecheck{T}(\phi)$. Hence, $\widehat{T} = (2\pi)^n \widecheck{T}, \ T \in \mathscr{S}'$.

Properties of the Fourier Transform in \mathscr{S}'

- The definition of the Fourier transform of a tempered distribution by duality carries the properties of the Fourier transformation in \mathscr{S} into \mathscr{S}' .
- Recall the equations

$$\mathscr{F}(D^{\alpha}\phi) = \xi^{\alpha}\mathscr{F}(\phi), \quad \mathscr{F}(x^{\alpha}\phi) = (-1)^{|\alpha|}D^{\alpha}\mathscr{F}(\phi), \quad D^{\alpha} = (-i)^{|\alpha|}\partial^{\alpha}.$$

• Recall, also, that, for every $T \in \mathscr{S}'$, multiplication of T by any polynomial P has been defined by

$$PT(\phi) = T(P\phi), \quad \phi \in \mathscr{S}.$$

• Hence, we have, for every $T \in \mathscr{S}'$,

$$\begin{aligned} \mathscr{F}(D^{\alpha}T) &= \xi^{\alpha}\mathscr{F}(T); \\ \mathscr{F}(x^{\alpha}T) &= (-1)^{|\alpha|}D^{\alpha}\mathscr{F}(T). \end{aligned}$$

Example

• For any $\phi \in \mathscr{S}$, we have

$$\langle \widehat{\delta}, \phi \rangle = \langle \delta, \widehat{\phi} \rangle = \widehat{\phi}(0) = \langle 1, \phi \rangle.$$

Hence,
$$\hat{\delta} = 1$$
.
We know that $\hat{\delta} = (2\pi)^n \check{\delta} = (2\pi)^n \delta$.
So $\hat{1} = \hat{\delta} = (2\pi)^n \delta$.

• Now let $\alpha \in \mathbb{N}^n$.

We know $\mathscr{F}(D^{\alpha}T) = \xi^{\alpha}\mathscr{F}(T)$, $\mathscr{F}(x^{\alpha}T) = (-1)^{|\alpha|}D^{\alpha}\mathscr{F}(T)$. Hence the results above may be generalized to

$$\begin{aligned} \mathscr{F}(D^{\alpha}\delta) &= \xi^{\alpha}, \\ \mathscr{F}(x^{\alpha}) &= (-1)^{|\alpha|} (2\pi)^{n} D^{\alpha}\delta. \end{aligned}$$

Even and Odd Distributions

• A distribution $T \in \mathcal{D}'$ is said to be:

- even if $\check{T} = T$, in the sense that $T(\check{\phi}) = T(\phi)$, for every $\phi \in \mathcal{D}$;
- odd if $\check{T} = -T$, in the sense that $T(\check{\phi}) = -T(\phi)$, for every $\phi \in \mathscr{D}$.

• When T is an even distribution in \mathscr{S}' , for any $\phi \in \mathscr{S}$,

$$\widehat{T}(\check{\phi}) = \widetilde{T(\check{\phi})} = \widetilde{T(\phi)}^{T \text{ even }} T(\widehat{\phi}) = \widehat{T}(\phi).$$

Therefore \widehat{T} is even.

Conversely, if \hat{T} is even, we can also show that T is even.

- Similarly, T is odd if and only if \hat{T} is odd.
- Taking into account $\hat{T} = (2\pi)^n \check{T}$, $T \in \mathscr{S}'$, we also get

$$\mathscr{F}(T) = \begin{cases} (2\pi)^n \mathscr{F}^{-1}(T), & \text{if } T \text{ is even} \\ -(2\pi)^n \mathscr{F}^{-1}(T), & \text{if } T \text{ is odd} \end{cases}$$

.

Example

• Let $T = pv(\frac{1}{x}), x \in \mathbb{R}$. Claim: T is odd. If $\phi \in \mathcal{D}(\mathbb{R})$, then

$$\langle T, \check{\phi} \rangle = \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{1}{x} \phi(-x) dx$$

$$= -\lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{1}{x} \phi(x) dx$$

$$= -\langle T, \phi \rangle.$$

Example (Cont'd)

Claim: For
$$T = pv(\frac{1}{x})$$
, $\hat{T} = -2\pi i H + \pi i$.
We have

$$\langle xT, \phi \rangle = \langle T, x\phi \rangle = \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \phi(x) dx$$
$$= \int \phi(x) dx = \langle 1, \phi \rangle.$$

We conclude that xT = 1. Therefore, $\mathscr{F}(xT) = \hat{1} = 2\pi\delta$. But $\mathscr{F}(xT) = -D\hat{T} = i\frac{d\hat{T}}{d\xi}$. Hence, $\frac{d\hat{T}}{d\xi} = -2\pi i\delta$. This implies that $\hat{T} = -2\pi iH + c$, for some constant c. But \hat{T} is odd. So this constant satisfies $-2\pi i + c = -c$. Thus,

$$\widehat{T} = -2\pi i H + \pi i.$$

Example (Cont'd)

We saw that for T = pv(¹/_x), T̂ = -2πiH + πi.
 Claim: We have 𝔅⁻¹(H) = ¹/₂δ - ¹/_{2πi} pv¹/_x.
 The expressions for Ĥ and 𝔅⁻¹(H) can now be derived.

$$-2\pi i \hat{H} + 2\pi^2 i \delta = -2\pi i \hat{H} + \pi i \hat{1} = \hat{\tilde{T}}$$

= $2\pi \check{T}$ (since $\hat{\tilde{T}} = (2\pi)^n \check{T}$)
= $-2\pi T$. (since T is odd)

Hence, $\hat{H} = \pi \delta - i pv \frac{1}{x}$. On the other hand,

$$T = \mathscr{F}^{-1}(\widehat{T})$$

= $-2\pi i \mathscr{F}^{-1}(H) + \pi i \mathscr{F}^{-1}(1)$
= $-2\pi i \mathscr{F}^{-1}(H) + \pi i \delta.$

Therefore,

$$\mathscr{F}^{-1}(H) = \frac{1}{2}\delta - \frac{1}{2\pi i}\mathsf{pv}\frac{1}{x}.$$

Subsection 5

Fourier Transform in L^2

L^2 Norm and Inner Product

- Let Ω be an open subset of \mathbb{R}^n .
- L²(Ω) is the Banach space of (Lebesgue) square integrable complex functions on Ω under the norm

$$||f||_2 = \left[\int_{\Omega} |f(x)|^2 dx\right]^{1/2}.$$

• The Schwarz inequality gives, for all $f, g \in L^2(\Omega)$,

$$\left|\int_{\Omega} f(x)\overline{g(x)}dx\right| \leq \|f\|_2 \|g\|_2.$$

Consequently, the complex number

$$(f,g) = \int_{\Omega} f(x)\overline{g}(x)dx$$

is always finite.

• It is called the inner product of f, g in L^2 .

Some Properties and Remarks

We have

$$(f,f) = \int_{\Omega} |f(x)|^2 dx = ||f||_2^2.$$

- We use L^2 to denote $L^2(\mathbb{R}^n)$.
- L_2 is not a subspace of L_1 . So the definition $\hat{f}(\xi) = \int e^{-i\langle x,\xi\rangle} f(x) dx$ cannot be applied to all L^2 functions.
- Suppose, on the other hand, that f ∈ L¹ ∩ L².
 Then f̂ is also in L².

So Parseval's relation gives

$$||f||_2 = (2\pi)^{-n/2} ||\widehat{f}||_2.$$

Plancherel's Theorem

• Parseval's relation $\int \phi \overline{\psi} = (2\pi)^{-n} \int \widehat{\phi} \overline{\widehat{\psi}}$, which was proved in \mathscr{S} , will now be shown to hold in L^2 as a subspace of \mathscr{S} .

Theorem (Plancherel)

If $f \in L^2$, then $\hat{f} \in L^2$ and

$$\|\widehat{f}\|_2 = (2\pi)^{n/2} \|f\|_2.$$

• When we set $\psi = \phi$ in Parseval's relation, we obtain

$$\|\phi\|_2 = (2\pi)^{-n/2} \|\widehat{\phi}\|_2, \quad \phi \in \mathscr{S}.$$

 C_0^{∞} is dense in L^2 . Also, $C_0^{\infty} \subseteq \mathscr{S} \subseteq L^2$. Thus, \mathscr{S} is also dense in L^2 . Moreover, convergence in \mathscr{S} implies convergence in L^2 . So the preceding equation may be extended to L^2 .

Parseval's Relation in L^2

• Recall that, for all
$$f,g \in L^2$$
,

- (Parallelogram Law) $||f+g||_2^2 = (f+g, f+g) = ||f||_2^2 + 2\operatorname{Re}(f,g) + ||g||_2^2$;
- (Plancheret's Theorem) $\|\hat{f}\|_2 = (2\pi)^{n/2} \|f\|_2$.

Corollary (Parseval's Relation)

For all $f, g \in L^2$,

$$(\widehat{f},\widehat{g})=(2\pi)^n(f,g).$$

• We have (for real f,g)

$$\begin{aligned} 2(\widehat{f},\widehat{g}) &= \|\widehat{f} + \widehat{g}\|_{2}^{2} - \|\widehat{f}\|_{2}^{2} - \|\widehat{g}\|_{2}^{2} \\ &= (2\pi)^{n} \|f + g\|_{2}^{2} - (2\pi)^{n} \|f\|_{2}^{2} - (2\pi)^{n} \|g\|_{2}^{2} \\ &= (2\pi)^{n} (\|f + g\|_{2}^{2} - \|f\|_{2}^{2} - \|g\|_{2}^{2}) \\ &= (2\pi)^{n} 2(f,g). \end{aligned}$$

Then we may reason by real and imaginary parts.

Example

• Suppose $f \in \mathscr{S}'$ satisfies the following differential equation in \mathbb{R}^n , where c > 0,

$$(-\Delta+c)f=g.$$

If $g \in L^2$, then we can show that $f \in L^2$. More generally, $D_k^m f \in L^2$, for all $0 \le m \le 2$, $1 \le k \le n$. We have

$$\mathscr{F}[(-\Delta+c)f] = \mathscr{F}[(D_1^2+\cdots+D_n^2+c)f] = (\xi_1^2+\cdots+\xi_n^2+c)\widehat{f}.$$

By hypothesis, $(-\Delta + c)f \in L^2$. So $(|\xi|^2 + c)\hat{f} \in L^2$. Hence

$$(|\xi|^2+1)\widehat{f} = \frac{|\xi|^2+1}{|\xi|^2+c} (|\xi|^2+c)\widehat{f} \in L^2.$$

With $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, $|\xi_k|^m \le |\xi|^2 + 1$, $0 \le m \le 2$, $1 \le k \le n$. This implies that $\mathscr{F}(D_k^m f) = \xi_k^m \hat{f} \in L^2$. Hence, $D_k^m f \in L^2$.

Subsection 6

Fourier Transform in \mathcal{E}'

Analytic and Entire Functions

- Let f be defined on an open connected set Ω in \mathbb{C}^n .
- f is analytic in Ω if, for all $k \in \{1, ..., n\}$, with $z_1, ..., z_{k-1}, z_{k+1}, ..., z_n$ all fixed, the function

$$f_k(z_k) = f(z_1, ..., z_{k-1}, z_k, z_{k+1}, ..., z_n)$$

of the single variable z_k is analytic on

$$\{z_k \in \mathbb{C} : z = (z_1, \ldots, z_{k-1}, z_k, z_{k+1}, \ldots, z_n) \in \Omega\}.$$

• When f is analytic in \mathbb{C}^n , it is called **entire**.

Analytic Functions and Power Series

 As in the single variable theory, if f is analytic in Ω, it has a power series expansion about every point c ∈ Ω,

$$f(z)=\sum_{\alpha}a_{\alpha}(z-c)^{\alpha},$$

valid for every point z in the open ball

$$B(c,r) = \left\{ z \in \Omega : |z-c| = \left[\sum_{k=1}^{n} |z_k - c_k|^2 \right]^{1/2} < r \right\},\$$

for some positive number r.

- The summation index α runs through \mathbb{N}_0^n .
- The a_{α} are the Taylor coefficients

$$a_{\alpha}=\frac{1}{\alpha!}\partial_{z}^{\alpha}f(c).$$

The Cauchy-Riemann Equations

- Let f be defined on an open connected set Ω in \mathbb{C}^n .
- When $z_k = x_k + iy_k$, we shall use the notation

$$\begin{array}{lll} \partial_{z_k} &=& \frac{1}{2}(\partial_{x_k} - i\partial_{y_k});\\ \overline{\partial}_{z_k} &=& \partial_{\overline{z}_k} = \frac{1}{2}(\partial_{x_k} + i\partial_{y_k}), \quad k = 1, \dots, n, \end{array}$$

• The Cauchy-Riemann equations take the form

$$\overline{\partial}_{z_k} f = \frac{1}{2} \left[\frac{\partial f}{\partial x_k} + i \frac{\partial f}{\partial y_k} \right] = 0, \quad k = 1, \dots, n.$$

• When Ω is an open subset of \mathbb{R}^n , we shall say that f is (real) analytic in Ω if it has a power series expansion about every point $c \in \Omega$, with zreplaced by $x \in B(c,r) \subseteq \mathbb{R}^n$.

This is so if and only if the function f can be extended to an open neighborhood of Ω in \mathbb{C}^n , where f is (complex) analytic.

George Voutsadakis (LSSU)

Analyticity of the Fourier Transform in \mathscr{E}'

Theorem

The Fourier transform of $T \in \mathscr{E}'$ is an analytic function in \mathbb{R}^n given by

$$\widehat{T}(\xi) = T_{X}(e^{-i\langle X,\xi\rangle}).$$

Furthermore, the right-hand side may be extended as an analytic function to \mathbb{C}^n , known as the **Fourier-Laplace transform** of \mathcal{T} .

As a function of ξ, T_x(e^{-i⟨x,ξ⟩}) is in C[∞]. Thus, it remains to show that the claimed equation holds in S'. By definition, for any φ∈ Ø, we have T(φ) = T(φ̂). If we consider φ as an element in E', then, by applying a previous theorem to distributions with compact support:

$$\begin{aligned} \langle \widehat{T}(\xi), \phi \rangle &= \langle T_x, \widehat{\phi} \rangle = T_x(\int e^{-i\langle \xi, x \rangle} \phi(\xi) d\xi) \\ &= \int T_x(e^{-i\langle \xi, x \rangle}) \phi(\xi) d\xi = \langle T_x(e^{-i\langle \xi, x \rangle}), \phi \rangle. \end{aligned}$$

Analyticity of the Fourier Transform in &' (Cont'd)

• We got, by working with $\phi \in \mathcal{D}$,

$$\widehat{T}(\xi) = T_{X}(e^{-i\langle X,\xi\rangle}).$$

But \mathscr{D} is dense in \mathscr{S} . So the equation holds in \mathscr{S}' . By replacing ξ by $\zeta = \xi + i\eta$, \widehat{T} may be extended into \mathbb{C}^n . There, it is also a C^{∞} function of ζ . $\partial_{\zeta_k} \widehat{T}$ and $\overline{\partial}_{\zeta_k} \widehat{T}$ may be computed by differentiating $e^{-i\langle x,\zeta\rangle}$. The exponential function is entire. Therefore, the same holds for $\widehat{T}(\zeta)$. Hence, \widehat{T} is analytic in \mathbb{R}^n .

Example

 Let T be a distribution in ℝ, such that T^(m) = δ, for some m > 0. Applying the Fourier transformation and taking into account 𝔅(D^αT) = ξ^α𝔅(T), we get

$$(i\xi)^m \widehat{T} = 1.$$

This gives

$$\widehat{T}=\frac{1}{(i\xi)^m}.$$

Now \widehat{T} is singular at $\xi = 0$.

By the preceding theorem, T cannot have compact support. In other words, any fundamental solution of the operator $\frac{d^m}{dx^m}$ in \mathbb{R} cannot have compact support.

Example

• Suppose T is a distribution with compact support such that $\langle T_x, x^{\alpha} \rangle = 0$, for every $\alpha \in \mathbb{N}_0^n$.

We prove that T = 0, and thereby conclude that the set of all polynomials in \mathbb{R}^n with constant coefficients is dense in C^{∞} .

(i) By hypothesis, T ∈ E'.
 By the theorem, T̂ ∈ E' can be extended as an analytic function f(ζ) in Cⁿ, such that f(ζ) = T_x(e^{-i⟨x,ζ⟩}). For any α ∈ Nⁿ₀,

$$\partial^{\alpha} f(\zeta) = T_{x}(\partial_{\zeta}^{\alpha} e^{-i\langle x,\zeta\rangle}) = (-i)^{|\alpha|} T_{x}(x^{\alpha} e^{-i\langle x,\zeta\rangle}).$$

At $\zeta = 0$, for all $\alpha \in \mathbb{N}_0^n$,

$$\partial^{\alpha} f(0) = (-i)^{|\alpha|} T_{x}(x^{\alpha}) = 0.$$

But f is an entire function in \mathbb{C}^n . So it is represented by the power series $f(\zeta) = \sum_{\alpha} \frac{1}{\alpha!} \partial^{\alpha} f(0) \zeta^{\alpha} = 0$, for any $\zeta \in \mathbb{C}^n$. Thus f, and therefore \widehat{T} vanishes identically. Since the Fourier transformation is injective in \mathscr{S}' , T = 0.

George Voutsadakis (LSSU)

Example (Cont'd)

(ii) Let 𝒫 be the set of all polynomials in ℝⁿ with constant coefficients. Assume that 𝒫 is a proper subset of C[∞].
By the Hahn-Banach theorem, there exists a nonzero continuous linear functional T on C[∞], such that

$$\langle T, P \rangle = 0$$
, for every $P \in \overline{\mathscr{P}}$.

This implies, in particular, that T is a nonzero distribution with compact support which satisfies $\langle T, x^{\alpha} \rangle = 0$, for every $\alpha \in \mathbb{N}^{n}$. However, this contradicts Part (i).

Convolution of \mathscr{S}' by \mathscr{E}'

Theorem

If $T_1 \in \mathscr{S}'$ and $T_2 \in \mathscr{E}'$, then $T_1 * T_2 \in \mathscr{S}'$ and

$$\mathscr{F}(T_1 * T_2) = \mathscr{F}(T_2)\mathscr{F}(T_1),$$

the right-hand side being a well-defined distribution because $\mathscr{F}(T_2)$ is C^{∞} .

Let φ∈ D. By properties of convolution and preceding results:
(T₁ * T₂)(φ) = (T₁ * T₂ * φ̃)(0);
(T₂ * φ̃)(x) = T₂(τ_xφ) is a C₀[∞] function.

Moreover, we have

$$(T_1 * T_2 * \check{\phi})(0) = \langle T_{1_y}, (T_2 * \check{\phi})(-y) \rangle$$

= $\langle T_{1_y}, T_2(\tau_{-y}\phi) \rangle$
= $\langle T_{1_y}, \check{T}_2(\tau_y\check{\phi}) \rangle$
= $\langle T_{1_y}, (\check{T}_2 * \phi)(y) \rangle.$

Therefore $(T_1 * T_2)(\phi) = T_1(\check{T}_2 * \phi)$.

Convolution of \mathscr{S}' by \mathscr{E}' (Cont'd)

• We found
$$(T_1 * T_2)(\phi) = T_1(\tilde{T}_2 * \phi)$$
.
Let ϕ be in \mathscr{S} .
Then

$$(\check{T}_2 * \phi)(x) = \check{T}_2(\tau_x \check{\phi}) = T_2(\tau_{-x} \phi).$$

So $\check{T}_2 * \phi$ is also in \mathscr{S} . This holds, since, if T_2 is of order *m*, then

$$\sup_{\substack{x \in \mathbb{R}^n \\ \alpha+\beta| \le k}} |x^{\alpha} \partial^{\beta}(\check{T}_2 * \phi)(x)| \le M_k \sup_{\substack{x \in \mathbb{R}^n \\ |\alpha+\beta| \le k+m}} |x^{\alpha} \partial^{\beta} \phi(x)|.$$

Thus, $T_1 * T_2$ is a continuous linear functional on \mathscr{S} .

Convolution of \mathscr{S}' by \mathscr{E}' (Cont'd)

We now compute its Fourier transform.
 Let φ∈ 𝒴 so that φ̂ is also in 𝒴.
 By a previous equation

$$\begin{aligned} (T_1 * T_2)(\widehat{\phi}) &= T_1(\check{T}_2 * \widehat{\phi}); \\ (\check{T}_2 * \widehat{\phi})(x) &= T_2(\tau_{-x} \widehat{\phi}) = T_{2_y}(\tau_{-x} \widehat{\phi}(y)) = T_{2_y}(\widehat{\phi}(x+y)). \end{aligned}$$

If $\phi \in \mathcal{D}$, then we can write

$$T_{2_{y}}(\widehat{\phi}(x+y)) = T_{2_{y}}(\int e^{-i\langle x+y,\xi\rangle}\phi(\xi)d\xi)$$

$$= \int T_{2_{y}}(e^{-i\langle y,\xi\rangle})\phi(\xi)e^{-i\langle x,\xi\rangle}d\xi$$

$$= \int \widehat{T}_{2}(\xi)\phi(\xi)e^{-i\langle x,\xi\rangle}d\xi.$$

$$(\widehat{T}(\xi) = T_{x}(e^{-i\langle x,\xi\rangle}))$$

Convolution of \mathscr{S}' by \mathscr{E}' (Conclusion)

• Similarly, for $\phi \in \mathcal{D}$,

$$\begin{aligned} (T_1 * T_2)(\widehat{\phi}) &= T_{1_x}(T_{2_y}(\widehat{\phi}(x+y))) \\ &= T_{1_x}(\int \widehat{T}_2(\xi)\phi(\xi)e^{-i\langle x,\xi\rangle}d\xi) \\ &= \int \widehat{T}_1(\xi)\widehat{T}_2(\xi)\phi(\xi)d\xi \\ &= \widehat{T}_1\widehat{T}_2(\phi). \end{aligned}$$

Since \mathcal{D} is dense in \mathscr{S} , this equation holds for all $\phi \in \mathscr{S}$. But, for all $\phi \in \mathscr{S}$,

$$(T_1 * T_2)(\widehat{\phi}) = \widehat{T_1 * T_2}(\phi).$$

So $\widehat{T_1 * T_2} = \widehat{T}_1 \widehat{T}_2$.

Example (Part (i))

(i) Let $T_a = \frac{1}{2}(\delta_a + \delta_{-a})$, for some real number *a*.

To find the Fourier transform of T_a , we shall first compute $\hat{\delta}_a$. We have, for all $\phi \in \mathscr{D}(\mathbb{R})$,

$$\begin{aligned} \widehat{\delta}_{a}, \phi \rangle &= \langle \delta_{a}, \widehat{\phi} \rangle \\ &= \widehat{\phi}(a) \\ &= \int e^{-ixa} \phi(x) dx \\ &= \langle e^{-iax}, \phi \rangle. \end{aligned}$$

Hence,
$$\hat{\delta}_a(\xi) = e^{-ia\xi}$$
.
It follows that
 $\hat{T}_a(\xi) = \frac{1}{2}(e^{-ia\xi} + e^{ia\xi}) = \cos a\xi$

Example (Part (ii))

(ii) We verify that

$$\mathscr{F}(T_a * T_b) = \mathscr{F}(T_a)\mathscr{F}(T_b).$$

We use

$$\begin{aligned} (\delta_a * \delta_b)(x) &= \int \delta_a(y) \delta_b(x - y) dy \\ &= \delta_b(x - a) \\ &= \tau_a \delta_b(x) \\ &= \delta_{a+b}(x). \end{aligned}$$

Now we get

7

$$\begin{aligned} T_a * T_b &= \left(\frac{1}{2}(\delta_a + \delta_{-a})\right) * \left(\frac{1}{2}(\delta_a + \delta_{-a})\right) \\ &= \frac{1}{4}(\delta_{a+b} + \delta_{-(a+b)} + \delta_{a-b} + \delta_{-(a-b)}). \end{aligned}$$

So

$$\mathcal{F}(T_a * T_b) = \frac{1}{4} [2\cos(a+b)\xi + 2\cos(a-b)\xi]$$

= $\cos a\xi \cos b\xi$
= $\mathcal{F}(T_a)\mathcal{F}(T_b).$

Example (Part (iii))

(iii) Now compute the Fourier transforms of $\sin x$ and $\cos x$.

$$\mathcal{F}(\cos x) = \mathcal{F}(\cos(1x))$$

$$= \widehat{\overline{T}_{1}}$$

$$= 2\pi \check{T}_{1}$$

$$= \pi(\check{\delta}_{1} + \check{\delta}_{-1})$$

$$= \pi(\delta_{-1} + \delta_{1});$$

$$\mathcal{F}(\sin x) = \mathcal{F}(-iD\cos x)$$

$$= -i\xi \mathcal{F}(\cos x)$$

$$= -i\pi\xi(\delta_{1} + \delta_{-1})$$

$$= i\pi(\delta_{-1} - \delta_{1}).$$

)

The Paley-Wiener-Schwartz Theorem

The Paley-Wiener-Schwartz Theorem

(i) If $T \in \mathscr{E}'$ and supp $T \subseteq \{x \in \mathbb{R}^n : |x| \le r\} = \overline{B}(0, r)$, then there is a constant M and a nonnegative integer N, such that

 $|\widehat{T}(\zeta)| \leq M(1+|\zeta|)^N e^{r|\operatorname{Im}\zeta|}, \quad \zeta \in \mathbb{C}^n.$

- (ii) Conversely, every entire function in \mathbb{C}^n satisfying the preceding inequality is the Fourier-Laplace transform of a distribution with support contained in $\overline{B}(0, r)$.
- (iii) If $T \in C_0^{\infty}$ and supp $T \subseteq \overline{B}(0, r)$, then, for every integer $m \ge 0$, there is a constant M_m , such that

$$|\widehat{T}(\zeta)| \le M_m (1+|\zeta|)^{-m} e^{r|\mathrm{Im}\zeta|}, \quad \zeta \in \mathbb{C}^n.$$

(iv) Conversely, every entire function in \mathbb{C}^n satisfying the equation above, for every $m \in \mathbb{N}_0$ is the Fourier-Laplace transform of a C_0^{∞} function with support contained in $\overline{B}(0, r)$.

Proof of Paley-Wiener-Schwartz Theorem Part (i)

(i) Let $K = \operatorname{supp} T \subseteq \overline{B}(0, r)$.

Let ψ be a C_0^{∞} function which equals 1 on a neighborhood of K. Then we have $T(\phi) = T(\psi\phi)$, for all $\phi \in \mathscr{E}$. Now $\psi\phi$ is in \mathscr{D} . By a previous theorem, T is of finite order on \mathscr{D} . So there is an integer $N \ge 0$ and a constant M_1 , such that

$$|T(\phi)| = |T(\psi\phi)| \le M_1 |\psi\phi|_N.$$

Suppose supp $\psi = K_0 \supseteq K^\circ \supseteq K$. By Leibniz's formula, there exists $M_2 > 0$, such that

 $|\psi\phi|_N \le M_2 \sup\{|\partial^{\alpha}\phi(x)| : x \in K_0, |\alpha| \le N\}.$

Since the inequality is true, for every K_0 , such that $K_0^{\circ} \supseteq K$, it is holds for K.

Proof of Paley-Wiener-Schwartz Theorem (Part (i) Cont'd)

• Setting
$$\phi(x) = e^{-i\langle x,\zeta\rangle}$$
 and $\zeta = \xi + i\eta$, we obtain

$$\sup \{ |\partial^{\alpha} \phi(x)| : x \in K, |\alpha| \le N \} = \sup \{ |\partial^{\alpha} e^{-i\langle x, \xi + i\eta \rangle}| : x \in K, |\alpha| \le N \}$$

$$\leq \sup \{ |\zeta|^{|\alpha|} e^{\langle x, \eta \rangle} : |x| \le r, |\alpha| \le N \}$$

$$\leq (1 + |\zeta|)^{N} e^{r|\eta|}.$$

Applying the preceding three inequalities, we get

$$\begin{aligned} \widehat{T}(\zeta)| &= |T_x(e^{-i\langle x,\zeta\rangle})| \\ &\leq M_1 |\psi e^{-i\langle x,\zeta\rangle}|_N \\ &\leq M_2 M_1 \sup \{|\partial^{\alpha} e^{-i\langle x,\zeta\rangle}| : x \in K, |\alpha| \le N\} \\ &\leq M_2 M_1 (1+|\zeta|)^N e^{r|\operatorname{Im}\zeta|}. \end{aligned}$$

Proof of Paley-Wiener-Schwartz Theorem Part (ii)

(ii) Suppose T is a C_0^{∞} function.

Then we can use $\mathscr{F}(D^{\alpha}\phi) = \xi^{\alpha}\mathscr{F}(\phi)$, to write, for any $\alpha \in \mathbb{N}_{0}^{n}$,

$$\zeta^{\alpha}\,\widehat{T}(\zeta)=\int e^{-i\langle x,\zeta\rangle}D^{\alpha}\,T(x)dx.$$

Assume, moreover, that supp T in $\overline{B}(0,r)$.

Then the expression above yields

 $|\zeta^{\alpha}\,\widehat{T}(\zeta)| \leq M e^{r|\eta|},$

for some constant M.

From this, Part (ii) follows.

Proof of Paley-Wiener-Schwartz Theorem Part (iii)

iii) Suppose that, for all m, there exists M_m , such that

$$|\widehat{T}(\zeta)| \le M_m (1+|\zeta|)^{-m} e^{r|\mathrm{Im}\zeta|}, \quad \zeta \in \mathbb{C}^n.$$

Then the integral

$$(2\pi)^{-n}\int\widehat{T}(\xi)e^{i\langle x,\xi\rangle}d\xi$$

is absolutely convergent on \mathbb{R}^n .

It clearly defines the inverse Fourier transform T(x) of $\widehat{T}(\xi)$. Now, for $\alpha \in \mathbb{N}_{0}^{n}$,

$$\partial^{\alpha} T(x) = (-i)^{|\alpha|} (2\pi)^{-n} \int \widehat{T}(\xi) \xi^{\alpha} e^{i\langle x,\xi\rangle} d\xi$$

is also absolutely convergent. We conclude that T is in C^{∞} .

Proof of Paley-Wiener-Schwartz Theorem (Part (iii) Cont'd)

 We show, next, that *T* has compact support. The preceding integrand extends to an entire function on Cⁿ. So we can use Cauchy's Theorem with each variable ζ₁,...,ζ_n to shift the integration from Rⁿ into Cⁿ. For any fixed η ∈ Rⁿ, we get

$$T(x) = (2\pi)^{-n} \int \widehat{T}(\xi + i\eta) e^{i\langle x, \xi + i\eta \rangle} d\xi.$$

Using the hypothesis, with m = n + 1,

$$\begin{aligned} |T(x)| &\leq (2\pi)^{-n} M_{n+1} e^{-\langle x,\eta\rangle + r|\eta|} \int (1+|\xi|)^{-n-1} d\xi \\ &\leq M e^{r|\eta| - \langle x,\eta\rangle}. \end{aligned}$$

Taking $\eta = tx$ we get

$$|T(x)| \le M e^{-t|x|(r-|x|)}.$$

Letting $t \to \infty$, we get T(x) = 0, for all $x \in \mathbb{R}^n$, with |x| > r. Therefore, the support of T must lie in $\overline{B}(0, r)$.

Proof of Paley-Wiener-Schwartz Theorem Part (iv)

(iv) Let $\widehat{T}(\zeta)$ be an entire function which satisfies

$$|\widehat{T}(\zeta)| \leq M(1+|\zeta|)^N e^{r|\mathrm{Im}\zeta|}.$$

Then $\hat{T}(\xi)$ has polynomial growth at ∞ . So it lies in \mathscr{S}' .

Its inverse Fourier transform T must also be in \mathscr{S}' .

We show, next, that supp T is compact.

We regularize T using the C^{∞} functions β_{λ} , $\lambda > 0$, satisfying supp $\beta_{\lambda} \subseteq \overline{B}(0, \lambda)$.

Now $T_{\lambda} = T * \beta_{\lambda}$ is in C^{∞} .

Its Fourier transform, according to a previous theorem, is $\hat{T}_{\lambda} = \hat{\beta}_{\lambda} \hat{T}$. For each $\lambda > 0$, $\hat{T}_{\lambda}(\xi)$ extends to an analytic function on \mathbb{C}^{n} .

Proof of Paley-Wiener-Schwartz Theorem (Part (iv) Cont'd)

• \widehat{T} satisfies, for some M and $N \ge 0$,

$$|\widehat{T}(\zeta)| \leq M(1+|\zeta|)^N e^{r|\operatorname{Im}\zeta|}, \quad \zeta \in \mathbb{C}^n.$$

 β_{λ} satisfies, for all $m \ge 0$ and some M_m ,

 $|\widehat{\beta}_{\lambda}(\zeta)| \leq M_m (1+|\zeta|)^{-m} e^{\lambda |\operatorname{Im}\zeta|}, \quad \zeta \in \mathbb{C}^n.$

So \widehat{T}_{λ} must satisfy, for m = 0, 1, 2, ... and $\zeta \in \mathbb{C}^n$,

$$|\widehat{T}_{\lambda}(\zeta)| \leq MM_m (1+|\zeta|)^{N-m} e^{(r+\lambda)|\mathrm{Im}\zeta|}$$

Choosing *m* greater than *N*, we see that \widehat{T}_k satisfies the hypothesis of Part (iii) with *r* replaced by $r + \lambda$. So, by Part (iii), supp $T_{\lambda} \subseteq \overline{B}(0, r + \lambda)$. Since $T_{\lambda} \to T$ as $\lambda \to 0$,

supp
$$T \subseteq \bigcap \{\overline{B}(0, r + \lambda) : \lambda > 0\} = \overline{B}(0, r).$$

Subsection 7

The Cauchy-Riemann Operator

Fourier Transformation with Respect to Some Variables

- Suppose $T \in \mathscr{S}'(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$, with $n_1 + n_2 = n$.
- The Fourier transform $\mathscr{F}_1(T)$ of T with respect to $x \in \mathbb{R}^{n_1}$ is defined, for all $\phi \in \mathscr{S}(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$, by

 $\langle \mathscr{F}_1(T), \phi \rangle = \langle T, \mathscr{F}_1(\phi) \rangle.$

• $\mathscr{F}_1(\phi)$ is well defined by the integral formula

$$\mathscr{F}_1(\phi(\cdot,y))(\xi) = \int_{\mathbb{R}^{n_1}} e^{-i\langle x,\xi\rangle} \phi(x,y) dx, \quad \xi \in \mathbb{R}^{n_1}, \ y \in \mathbb{R}^{n_2}.$$

𝓕₁(φ(·,y))(ξ) is also denoted by φ̂(ξ,y).
It lies in ℒ(ℝⁿ₁ × ℝⁿ₂).

Partial Differentiation

• Given $T \in \mathscr{S}'(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}), \ \mathscr{F}_1(T) \in \mathscr{S}'(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}).$ Claim: If $\partial_{\gamma}^{\alpha}$ is a partial differential operator in $y \in \mathbb{R}^{n_2}$, then

$$\mathscr{F}_1(\partial_y^{\alpha} T) = \partial_y^{\alpha} \mathscr{F}_1(T).$$

We have, for all $\phi \in \mathscr{S}(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$,

$$\langle \mathscr{F}_{1}(\partial_{y}^{\alpha}T),\phi\rangle = \langle \partial_{y}^{\alpha}T,\mathscr{F}_{1}(\phi)\rangle$$

$$= (-1)^{|\alpha|}\langle T,\partial_{y}^{\alpha}\mathscr{F}_{1}(\phi)\rangle$$

$$= (-1)^{|\alpha|}\langle T,\mathscr{F}_{1}(\partial_{y}^{\alpha}\phi)\rangle$$

$$= (-1)^{|\alpha|}\langle \mathscr{F}_{1}(T),\partial_{y}^{\alpha}\phi\rangle$$

$$= \langle \partial_{y}^{\alpha}\mathscr{F}_{1}(T),\phi\rangle.$$

We note that the commutation of \mathscr{F}_1 with ∂_y^{α} on $\mathscr{S}(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ is based on the linearity and continuity of \mathscr{F}_1 .

George Voutsadakis (LSSU)

Theory of Distributions

• Consider the differential operator in ${\rm I\!R}$ of order m with constant coefficients

$$L=\sum_{k=0}^m c_k D^k.$$

If $u \in \mathscr{E}'(\mathbb{R})$ satisfies Lu = 0, then, upon transformation,

$$0 = \mathscr{F}(Lu) = \sum_{k=0}^{m} c_k \xi^k \widehat{u}.$$

Hence, $\widehat{u}(\xi) = 0$ except possibly at the zeros of the polynomial

$$c_0+c_1\xi+\cdots+c_m\xi^m.$$

But *u* has compact support.

So \hat{u} is continuous. Thus, \hat{u} must vanish in all \mathbb{R} .

It follows that the ordinary differential equation Lu = 0 has only the trivial solution in \mathcal{E}' .

• Consider the differential operator in \mathbb{R}^n of order m with constant coefficients

$$L=\sum_{|\alpha|\leq m}c_{\alpha}D^{\alpha}.$$

Let $u \in \mathscr{S}'$ be a solution of Lu = 0.

The application of the Fourier transformation gives

$$0 = \mathscr{F}(\sum c_{\alpha} D^{\alpha} u) = (\sum c_{\alpha} \xi^{\alpha}) \widehat{u} = P(\xi) \widehat{u},$$

where $P(\xi)$ is the polynomial $\sum_{|\alpha| \le m} c_{\alpha} \xi^{\alpha}$. Suppose $P(\xi) = 0$ only when $\xi = 0$. Then $\operatorname{supp} \widehat{u} \subseteq \{0\}$. By a previous theorem, $\widehat{u} = \sum_{|\alpha| \le k} a_{\alpha} \partial^{\alpha} \delta$, for some k. By taking the inverse Fourier transform, $u = \sum_{|\alpha| \le k} b_{\alpha} x^{\alpha}$. Thus, the only solution of Lu = 0 in \mathscr{S}' for this type of operator is a polynomial. In other words, the fundamental solution of L in \mathscr{S}' is unique up to an additive polynomial.

The Cauchy-Riemann Operator

 \bullet Consider the Cauchy-Riemann operator in $\mathbb{R}^2,$

$$\overline{\partial} = \frac{1}{2} (\partial_1 + i \partial_2).$$

The polynomial

$$P(i\xi) = \frac{1}{2}i(\xi_1 + i\xi_2)$$

vanishes only at $\xi = 0$.

So this operator is an example of the preceding slide.

Its fundamental solution in $\mathscr{S}'(\mathbb{R}^2)$ is unique up to an additive polynomial.

But every entire function f satisfies $\overline{\partial} f = 0$ in \mathbb{R}^2 .

Hence, the fundamental solution of $\overline{\partial}$ in $\mathscr{D}'(\mathbb{R}^2)$ is unique up to an additive entire function.

We show that ¹/_{πz} = ¹/_{π(x+iy)} is a fundamental solution of the Cauchy-Riemann operator in the plane.
 Since ¹/_{|z|} = ¹/_r ∈ L¹_{loc}(ℝ²), ¹/_z defines a distribution in ℝ².
 For any φ ∈ 𝔅(ℝ²),

$$\left\langle \overline{\partial} \frac{1}{z}, \phi \right\rangle = -\left\langle \frac{1}{z}, \overline{\partial} \phi \right\rangle = -\frac{1}{2} \int_{\mathbb{R}^2} \frac{1}{x + iy} \left(\frac{\partial \phi}{\partial x} + i \frac{\partial \phi}{\partial y} \right) dx dy.$$

We change to polar coordinates. Let $\tilde{\phi}(r,\theta) = \phi(x,y)$. Recall that $\frac{\partial}{\partial x} = \cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta}$, $\frac{\partial}{\partial y} = \sin\theta \frac{\partial}{\partial r} + \frac{\cos\theta}{r} \frac{\partial}{\partial \theta}$. Therefore, we obtain

$$\left\langle \overline{\partial} \frac{1}{z}, \phi \right\rangle = -\frac{1}{2} \int_0^{2\pi} \int_0^\infty \frac{1}{r e^{i\theta}} \left[e^{i\theta} \frac{\partial \widetilde{\phi}}{\partial r} + \frac{i}{r} e^{i\theta} \frac{\partial \widetilde{\phi}}{\partial \theta} \right] r dr d\theta.$$

Example (Cont'd)

• With $\tilde{\phi}(r,\theta) = \phi(x,y)$,

$$\left\langle \overline{\partial} \frac{1}{z}, \phi \right\rangle = -\frac{1}{2} \int_0^{2\pi} \int_0^\infty \frac{1}{r e^{i\theta}} \left[e^{i\theta} \frac{\partial \widetilde{\phi}}{\partial r} + \frac{i}{r} e^{i\theta} \frac{\partial \widetilde{\phi}}{\partial \theta} \right] r dr d\theta.$$

By Fubini's Theorem,

$$\left\langle \overline{\partial} \frac{1}{z}, \phi \right\rangle = -\frac{1}{2} \int_{0}^{2\pi} \int_{0}^{\infty} \frac{\partial \widetilde{\phi}}{\partial r} dr d\theta - \frac{1}{2} i \int_{0}^{\infty} \frac{1}{r} \int_{0}^{2\pi} \frac{\partial \widetilde{\phi}}{\partial \theta} d\theta dr = -\frac{1}{2} [-2\pi \widetilde{\phi}(0)] - 0, \quad \text{since } \widetilde{\phi}(r, 2\pi) = \widetilde{\phi}(r, 0) = \pi \phi(0).$$

Therefore, $\overline{\partial}(\frac{1}{\pi z}) = \delta$. It follows that any fundamental solution E of $\overline{\partial}$ in $\mathscr{D}'(\mathbb{R}^2)$ is of the form $E(z) = \frac{1}{\pi z} + h(z)$, where h is an entire function in \mathbb{C} .

Subsection 8

Fourier Transforms and Homogeneous Distributions

Dualizing a Linear Mapping

- Let Λ be a linear mapping from \mathbb{R}^n to \mathbb{R}^n .
- Let $F(\mathbb{R}^n)$ be the linear space of complex functions on \mathbb{R}^n .
- We define the map $\Lambda^* : F(\mathbb{R}^n) \to F(\mathbb{R}^n)$ by

$$\Lambda^* f(x) = f(\Lambda x), \quad f \in F(\mathbb{R}^n).$$

• Λ^* is also linear. For all $f, g \in F(\mathbb{R}^n)$ and $a, b \in \mathbb{C}$,

$$\Lambda^* (af + bg)(x) = (af + bg)(\Lambda x)$$

= $a\Lambda^* f(x) + b\Lambda^* g(x)$
= $(a\Lambda^* f + b\Lambda^* g)(x).$

- Λ may be represented by a real n×n matrix, determined by the basis that we choose for ℝⁿ.
- It is nonsingular if the null space of Λ is $\{0\} \subseteq \mathbb{R}^n$. In this case:
 - The determinant det Λ is nonzero.
 - The inverse map Λ^{-1} exists and is a linear map from \mathbb{R}^n to \mathbb{R}^n .

Continuity of Λ^*

Claim: If Λ is nonsingular, then Λ^* maps \mathscr{S} continuously onto \mathscr{S} . Let ϕ, ψ be functions in \mathscr{S} . Then

$$\langle \Lambda^* \psi, \phi \rangle = \int \psi(\Lambda x) \phi(x) dx$$

$$= \int \psi(y) \phi(\Lambda^{-1} y) \frac{1}{|\det \Lambda|} dy$$

$$= \int \psi(y) \frac{1}{|\det \Lambda|} \Lambda^{-1*} \phi(y) dy$$

This shows that

$$\langle \Lambda^* \psi, \phi \rangle = \left\langle \psi, \frac{1}{|\det \Lambda|} \Lambda^{-1*} \phi \right\rangle.$$

Now note that $\frac{1}{|\det\Lambda|}\Lambda^{-1*}\phi$ is in \mathscr{S} , if ϕ is in \mathscr{S} . So the function ψ in the preceding equation may be extended by continuity from \mathscr{S} to \mathscr{S}' .

Inverse of Λ^*

• We have, for every $f \in F(\mathbb{R}^n)$,

$$f(x) = f(\Lambda^{-1}\Lambda x)$$

= $\Lambda^* f(\Lambda^{-1}x)$
= $\Lambda^* \Lambda^{-1*}(x)$.

Therefore,

$$\Lambda^{-1*} = \Lambda^{*-1}.$$

The Fourier Transform of the Dual

• For any $\phi \in \mathscr{S}$, we have (denoting by Λ^T the transpose of Λ)

$$\mathcal{F}(\Lambda^*\phi)(\xi) = \int e^{-i\langle\xi, X\rangle} \phi(\Lambda x) dx$$

= $\int e^{-i\langle\xi, \Lambda^{-1}y\rangle} \phi(y) \frac{1}{|\det\Lambda|} dy$
= $\int e^{-i\langle\Lambda^{-1T}\xi, y\rangle} \phi(y) \frac{1}{|\det\Lambda|} dy$
= $\frac{1}{|\det\Lambda|} \widehat{\phi}(\Lambda^{-1T}\xi).$

Thus,

$$\widehat{\Lambda^*\phi} = \frac{1}{|\mathsf{det}\Lambda|} (\Lambda^{-1T})^* \widehat{\phi}, \quad \phi \in \mathscr{S}.$$

Now $\mathscr{F}\Lambda^*$ and $\frac{1}{|\det\Lambda|}(\Lambda^{-1T})^*\mathscr{F}$ are equal and continuous on \mathscr{S} . So they may be extended by continuity to \mathscr{S}' to obtain

$$\widehat{\Lambda^* T} = \frac{1}{|\det \Lambda|} (\Lambda^{-1T})^* \widehat{T}, \quad T \in \mathscr{S}'.$$

Reflection Operator

• Consider the reflection operator

$$\Lambda x = -x, \quad x \in \mathbb{R}^n.$$

It is linear and continuous, for any $t \in \mathbb{R}$. If $T \in \mathcal{D}'$, then $\Lambda^* T$ is the distribution defined by

$$\langle \Lambda^* T, \phi \rangle = \left\langle T, \frac{1}{|\det \Lambda|} \Lambda^{-1*} \phi \right\rangle, \quad \phi \in \mathcal{D}.$$

In this case we have:

• det $\Lambda = (-1)^n$; • $\Lambda^{-1} = \Lambda$.

So we get

$$\langle \Lambda^* T, \phi \rangle = \left\langle T, \frac{1}{|(-1)^n|} \Lambda^* \phi \right\rangle = \langle T, \check{\phi} \rangle = \langle \check{T}, \phi \rangle.$$

Scaling Operators

A more general example is the transformation

$$\Lambda_t x = tx, \quad x \in \mathbb{R}^n.$$

It is linear and continuous, for any $t \in \mathbb{R}$, but singular when t = 0. If $T \in \mathcal{D}'$ and $t \neq 0$, then $\Lambda_t^* T$ is the distribution defined by

$$\langle \Lambda_t^* T, \phi \rangle = \left\langle T, \frac{1}{|\det \Lambda_t|} \Lambda_t^{-1*} \phi \right\rangle, \quad \phi \in \mathcal{D}.$$

In this case we have:

• det $\Lambda_t = t^n$; • $\Lambda^{-1} = \Lambda_{1/t}$. So we get

$$\left< \Lambda_t^* \, T, \phi \right> = \left< T, \frac{1}{t^n} \Lambda_{1/t}^* \phi \right>.$$

Homogeneous Functions and Distributions

- Let *d* be a complex number.
- A function f on \mathbb{R}^n is homogeneous of degree d if

$$f(tx) = t^d f(x).$$

• A distribution T is homogeneous of degree d if

$$\Lambda_t^* T = t^d T, \quad \text{for any } t > 0.$$

Homogeneous Functions vs. Homogeneous Distributions

Claim: The two definitions coincide when the function is locally integrable in \mathbb{R}^n , in the sense that $\Lambda_t^* f = t^d f$ if and only if $f(tx) = t^d f(x)$ a.e.

We have, for all $\phi \in \mathcal{D}$,

$$\begin{split} \langle \Lambda_t^* f, \phi \rangle &= \langle f, \frac{1}{t^n} \Lambda_{1/t}^* \phi \rangle \\ &= \int f(x) \frac{1}{t^n} \phi(\frac{x}{t}) dx \\ &= \int f(ty) \phi(y) dy. \end{split}$$

Suppose, first, $f(tx) = t^d f(x)$ a.e.. Then $\langle \Lambda_t^* f, \phi \rangle = \int t^d f(y) \phi(y) dy = \langle t^d f, \phi \rangle$. So $\Lambda_t^* f = t^d f$. Conversely, assume $\Lambda_t^* f = t^d f$. Then, for all $\phi \in \mathcal{D}$, $\int f(ty) \phi(y) dy = \int t^d f(y) \phi(y) dy$. Hence, by a previous result, $f(ty) = t^d f(y)$ a.e..

(i) Let {T₁,..., T_m} be a set of nonzero distributions in ℝⁿ, such that T_k, 1 ≤ k ≤ m, is homogeneous of real degree d_k and d_k ≠ d_j, if k ≠ j.
Claim: The set {T₁,..., T_m} is linearly independent over ℂ.
Let a₁T₁+...+a_mT_m = 0. Without loss of generality, assume that d₁ > d₂ > ... > d_m. For any φ ∈ D, we have

$$0 = \left\langle \Lambda_t^* \sum_{k=1}^m a_k T_k, \phi \right\rangle = \sum_{k=1}^m a_k \langle \Lambda_t^* T_k, \phi \rangle = \sum_{k=1}^m a_k t^{d_k} \langle T_k, \phi \rangle.$$

If the coefficients a_k do not all vanish, let $i \ge 1$ be the smallest integer for which $a_i \ne 0$.

- If i = m, then $\langle T_m, \phi \rangle = 0$. So $T_m = 0$, a contradiction.
- If $1 \le i < m$, then $a_i \langle T_i, \phi \rangle + \sum_{k=i}^m a_k t^{d_k d_i} \langle T_k, \phi \rangle = 0$, for all t > 0 and $\phi \in \mathcal{D}$. Letting $t \to \infty$, we obtain $a_i \langle T_i, \phi \rangle = 0$. But $a_i \ne 0$. Hence, $T_i = 0$, again a contradiction.

(ii) We show that $\partial^{\alpha}\delta$ is homogeneous of degree $-n - |\alpha|$. We have, for all $\phi \in \mathcal{D}$,

$$\begin{split} \langle \Lambda_t^* \partial^\alpha \delta, \phi \rangle &= \langle \partial^\alpha \delta, \frac{1}{t^n} \Lambda_{1/t}^* \phi \rangle \\ &= \frac{1}{t^n} \langle \partial^\alpha \delta, \phi(\frac{x}{t}) \rangle \\ &= (-1)^{|\alpha|} \frac{1}{t^n} \langle \delta, \partial^\alpha \phi(\frac{x}{t}) \rangle \\ &= (-1)^{|\alpha|} \frac{1}{t^n} \frac{1}{t^{|\alpha|}} (\partial^\alpha \phi) (0) \\ &= \frac{1}{t^{n+|\alpha|}} \langle \partial^\alpha \delta, \phi \rangle. \end{split}$$

Therefore,

$$\Lambda_t^*\partial^\alpha\delta=\frac{1}{t^{n+|\alpha|}}\partial^\alpha\delta.$$

In view of Part (i), we conclude that the distributions $\delta, \delta', \dots, \delta^{(m)}$ on \mathbb{R} are linearly independent.

• For $\lambda \ge 0$ we show that

$$x_+^{\lambda} = x^{\lambda} H, \quad x \in \mathbb{R},$$

is homogeneous of degree λ .

<1

We have

$$\begin{split} \Lambda_t^* x_+^{\lambda}, \phi \rangle &= \langle x_+^{\lambda}, \frac{1}{t} \Lambda_{1/t}^* \phi \rangle \\ &= \frac{1}{t} \int_0^\infty x^{\lambda} \phi(\frac{x}{t}) dx \\ &= \frac{1}{t} \int_0^\infty t^{\lambda} y^{\lambda} \phi(y) t dy \\ &= \langle t^{\lambda} x_+^{\lambda}, \phi \rangle. \end{split}$$

Hence

$$\Lambda_t^* x_+^{\lambda} = t^{\lambda} x_+^{\lambda}.$$

Derivatives and Transforms of Homogeneous Distributions

Theorem

If $T \in \mathscr{S}'$ is homogeneous of degree d, then $\partial_k T$ is homogeneous of degree d-1 and \widehat{T} is homogeneous of degree -n-d.

 Let φ∈ 𝒴 be homogeneous of degree d and t be a positive number. Then, by the chain rule, ∂_k[φ(tx)] = t(∂_kφ)(tx). Hence,

$$\Lambda_t^*(\partial_k \phi)(x) = (\partial_k \phi)(tx) = \frac{1}{t} \partial_k [\phi(tx)] = t^{d-1} (\partial_k \phi)(x).$$

This means that $\partial_k \phi$ is homogeneous of degree d-1.

To obtain the result for T ∈ 𝒴', suppose the degree of T is d.
 We first note that, for all φ ∈ 𝒴,

$$\partial_k(\Lambda_t^*\phi)(x) = \partial_k[\phi(tx)] = t(\partial_k\phi)(tx) = t\Lambda_t^*(\partial_k\phi)(x).$$

Derivatives and Transforms of Homogeneous Distributions

• Keeping in mind $\Lambda_t^{-1} = \Lambda_{1/t}$, we get

$$\begin{aligned} \Lambda_t^* \partial_k T(\phi) &= \partial_k T\left(\frac{1}{|\det \Lambda_t|} \Lambda_t^{-1*} \phi\right) \\ &= -T(|\det \Lambda_{1/t}| \partial_k \Lambda_{1/t}^* \phi) \\ &= -\frac{1}{t} T(|\det \Lambda_{1/t}| \Lambda_{1/t}^* \partial_k \phi) \\ &= -\frac{1}{t} \Lambda_t^* T(\partial_k \phi) \\ &= \frac{1}{t} \partial_k \Lambda_t^* T(\phi) \\ &= t^{d-1} \partial_k T(\phi). \end{aligned}$$

Thus $\partial_k T$ has degree d-1. Using the relations det $\Lambda_t = t^n$ and $\Lambda_t^T = \Lambda_t$,

$$\widehat{\Lambda_t^*T} = \frac{1}{|\det\Lambda|} (\Lambda^{-1T})^* \widehat{T} = \frac{1}{t^n} \Lambda_{1/t}^* \widehat{T}, \quad T \in \mathscr{S}'.$$

If T is homogeneous of degree d, $t^d \hat{T} = \frac{1}{t^n} \Lambda_{1/t}^* \hat{T}$. So $\Lambda_t^* \hat{T} = \frac{1}{t^{n+d}} \hat{T}$.

Consider the function

$$f(z) = \frac{1}{z} = \frac{1}{x + iy}.$$

It is locally integrable in the plane. Clearly, |f(z)| < 1 when |z| > 1. Hence, f defines a tempered distribution in \mathbb{R}^2 . We compute its Fourier transform.

$$\mathscr{F}(zf) = \mathscr{F}(1) = \widehat{\delta} = (2\pi)^2 \widecheck{\delta} = (2\pi)^2 \delta.$$

Recalling the operator $\overline{\partial} = \frac{1}{2} \left(\frac{\partial}{\partial \xi} + i \frac{\partial}{\partial \eta} \right)$, we have,

$$\mathcal{F}(zf) = \mathcal{F}(xf) + i\mathcal{F}(yf) = i\frac{\partial}{\partial\xi}\widehat{f} - \frac{\partial}{\partial\eta}\widehat{f}$$
$$= i(\frac{\partial}{\partial\xi} + i\frac{\partial}{\partial\eta})\widehat{f} = 2i\overline{\partial}\widehat{f}.$$

Therefore, $\frac{i\hat{f}}{2\pi^2}$ is a fundamental solution of the operator $\overline{\partial}$.

Example (Cont'd)

By a previous example,

$$\frac{i}{2\pi}\widehat{f}(\zeta)=\frac{1}{\zeta}+h(\zeta),$$

where *h* is an entire function. But *f* is homogeneous of degree -1 in \mathbb{R}^2 . By the theorem, \hat{f} is homogeneous of degree -2+1=-1. If *h* is not identically 0, it must also have degree -1. Hence,

$$h(t\zeta) = \frac{h(\zeta)}{t}, \quad t > 0.$$

This becomes unbounded as $t \rightarrow 0$. Thus, h = 0. So

$$\mathscr{F}\left(\frac{1}{z}\right) = \widehat{f}(\zeta) = -\frac{2\pi i}{\zeta}.$$

Orthogonal Transformations

• A linear transformation $\Lambda : \mathbb{R}^n \to \mathbb{R}^n$ is said to be **orthogonal** if

$$\Lambda^{T} = \Lambda^{-1}.$$

If Λ is orthogonal, then so is Λ⁻¹ and detΛ = ±1.
 Claim: The transformation Λ is orthogonal if and only if it is norm-preserving.

An orthogonal transformation Λ satisfies, for all $x \in \mathbb{R}^n$,

$$|\Lambda x|^{2} = \langle \Lambda x, \Lambda x \rangle = \langle x, \Lambda^{T} \Lambda x \rangle = \langle x, x \rangle = |x|^{2}.$$

Thus, $|\Lambda x| = |x|$.

Conversely, suppose $|\Lambda x| = |x|$, for all $x \in \mathbb{R}^n$. Then $\Lambda^T \Lambda$ = identity. This implies that Λ is orthogonal.

Invariance

• A distribution $T \in \mathcal{D}'$ is **invariant** under the transformation $\Lambda : \mathbb{R}^n \to \mathbb{R}^n$ if

$$\Lambda^* T = T.$$

A function f: ℝⁿ → C is called rotation-invariant, or spherically symmetric, if there exists a function g: [0,∞) → C, such that

$$f(x) = g(|x|), \text{ for all } x \in \mathbb{R}^n.$$

Claim: A function is rotation invariant if and only if it is invariant under orthogonal transformations.

Suppose f is rotation-invariant. Then

$$\Lambda^* f(x) = f(\Lambda x) = g(|\Lambda x|) = g(|x|) = f(x).$$

So f is invariant under any orthogonal transformation Λ . Conversely, a rotation in \mathbb{R}^n is an orthogonal transformation.

George Voutsadakis (LSSU)

Theory of Distributions

Invariance of the Fourier Transform

Theorem

If $T \in \mathscr{S}'$ is invariant under orthogonal transformations, then \widehat{T} is also invariant under orthogonal transformations.

• Suppose Λ is an orthogonal transformation. If T is any distribution in \mathscr{S}' , then

$$\widehat{\Lambda^* \mathcal{T}} = \frac{1}{|\det \Lambda|} (\Lambda^{-1 \mathcal{T}})^* \widehat{\mathcal{T}} = \Lambda^* \widehat{\mathcal{T}}.$$

Consequently,

$$\Lambda^* T = T$$
 if and only if $\widehat{\Lambda^* T} = \widehat{T}$ if and only if $\Lambda^* \widehat{T} = \widehat{T}$.

- When a distribution is represented by a rotation-invariant function, the distribution is also said to be **rotation-invariant**.
- The theorem implies that if $T \in \mathscr{S}'$ is rotation invariant and \widehat{T} is a function, then \widehat{T} is also rotation invariant.

George Voutsadakis (LSSU)

Theory of Distributions