Introduction to the Theory of Distributions

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Theory of Distributions

Distributions in Hilbert Space

- Hilbert Space
- Sobolev Spaces
- Some Properties of H^s Spaces
- More on the Space $H^m(\Omega)$
- Fourier Series and Periodic Distributions

Subsection 1

Hilbert Space

George Voutsadakis (LSSU)

Theory of Distributions

Hilbert Spaces

- A Hilbert space \mathcal{H} is a Banach space whose norm is defined by an inner product.
- In a (complex) Hilbert space the **inner product** of any pair of vectors, $u, v \in \mathcal{H}$ is a complex number (w, v) with the following properties:

(i)
$$(au + bv, w) = a(u, w) + b(v, w)$$
, for all $u, v, w \in \mathcal{H}$ and $a, b \in \mathbb{C}$;

(ii)
$$(u,v) = \overline{(v,u)}$$
, for all $u, v \in \mathcal{H}$;

- (iii) (u, u) > 0, whenever $u \neq 0$.
- We clearly have $(u, av) = \overline{a}(u, v)$.
- The inner product of any vector with the zero vector is zero.
- The norm of any $u \in \mathcal{H}$, denoted by $||u||_{\mathcal{H}}$ or simply ||u||, is defined by

$$\|u\| = \sqrt{(u,u)}.$$

• With this definition, the properties for the norm are satisfied.

Schwarz Inequality and the Parallelogram Law

- We have two additional properties of inner product spaces.
- The Schwarz Inequality: For all $u, v \in \mathcal{H}$,

 $|(u,v)| \le ||u|| ||v||;$

• The **Parallelogram Law**: For all $u, v \in \mathcal{H}$,

$$||w + v||^{2} + ||u - v||^{2} = 2(||u||^{2} + ||v||^{2}).$$

The Space $L^2(\Omega)$

- Let Ω be an open subset of \mathbb{R}^n .
- The space $L^2(\Omega)$ is an example of a Hilbert space.
- The inner product of any two functions f and g is defined by

$$(f,g) = \int_{\Omega} f(x)\overline{g}(x)dx.$$

Orthogonality

• Any two vectors $u, v \in \mathcal{H}$ are said to be **orthogonal** if

(u,v)=0.

• The notion of orthogonality provides a geometric structure in the Hilbert space that generalizes that of the (finite dimensional) Euclidean space \mathbb{R}^n .

Continuity, Dual Space and Strong Convergence

 \bullet A linear functional ${\mathcal T}$ on the Hilbert space ${\mathscr H}$ is continuous if and only if

$$|T(\phi)| \le M \|\phi\|_{\mathcal{H}}, \quad \phi \in \mathcal{H},$$

for some positive constant M.

• In the dual space \mathcal{H}' , we define the norm

$$\|T\|_{\mathcal{H}'} = \sup\{|T(\phi)| : \phi \in \mathcal{H}, \|\phi\|_{\mathcal{H}} = 1\}.$$

- This norm generates a topology on \mathcal{H}' .
- In \mathcal{H}' , equipped with this topology, convergence of the sequence (T_i) to 0 is equivalent to the uniform convergence of $T_i(\phi)$ to 0 on every bounded subset of \mathcal{H} .
- This was defined as strong convergence in \mathcal{H}' .

Riesz Representation Theorem

- For any vector ψ in \mathscr{H} , the map from \mathscr{H} to \mathbb{C} defined by $\phi \mapsto (\phi, \psi)$ is (by properties of the inner product) a linear functional on \mathscr{H} .
- The Schwarz inequality $|(\phi, \psi)| \le \|\psi\|_{\mathscr{H}} \|\phi\|_{\mathscr{H}}$ shows its continuity.
- Riesz Representation Theorem:

Every continuous linear functional on ${\mathscr H}$ is defined in this way.

That is, to every continuous linear functional T on \mathcal{H} , there exists a unique vector $\psi \in \mathcal{H}$, such that

$$T(\phi) = (\phi, \psi), \text{ for all } \phi \in \mathcal{H},$$

and

$$\|T\|_{\mathcal{H}'} = \|\psi\|_{\mathcal{H}}.$$

Consequences of the Riesz Representation Theorem

- The dual space \mathscr{H}' of continuous linear functionals on \mathscr{H} is also a Hilbert space.
- The correspondence $\psi \leftrightarrow T_{\psi}$ defines a norm-preserving bijection, or isometry, between \mathcal{H} and \mathcal{H}' .
- Even though \mathscr{H} and \mathscr{H}' may be identified as sets, they cannot be identified as linear spaces.
- Indeed the linear combination $a_1\psi_1 + a_2\psi_2$ in \mathscr{H} corresponds to the **conjugate linear combination** $\overline{a}_1 T_{\psi_1} + \overline{a}_2 T_{\psi_2}$, unless of course \mathscr{H} is a real Hilbert space.

Reflexivity of Hilbert Spaces

- The second dual of *H*, *H*["] = (*H*['])['] composed of the continuous linear functionals on *H*['] may be identified with *H*.
- Linearity in this case is restored to the correspondence between the elements of \mathcal{H} and the elements of \mathcal{H}'' .
- This is the reflexive property of the Hilbert space.

Subsection 2

Sobolev Spaces

George Voutsadakis (LSSU)

Theory of Distributions

anuary 2024

The Sobolev Space $H^m(\Omega)$

For any integer m∈ N₀ and any open Ω⊆ Rⁿ, we define the Sobolev space H^m(Ω) to be the set of all functions φ∈ L²(Ω) whose distributional derivatives ∂^αφ are also in L²(Ω), for every α∈ N₀ⁿ, with |α| ≤ m, i.e.,

$$H^m(\Omega) = \{ \phi \in L^2(\Omega) : \partial^{\alpha} \phi \in L^2(\Omega), |\alpha| \le m \}.$$

- Thus, $H^m(\Omega)$ is the subspace of distributions $\phi \in \mathscr{D}'(\Omega)$, such that $\partial^{\alpha} \phi \in L^2(\Omega)$, for all $|\alpha| \leq m$.
- We clearly have

$$\mathcal{D}'(\Omega) \supseteq L^2(\Omega) = H^0(\Omega) \supseteq H^1(\Omega) \supseteq H^2(\Omega) \supseteq \cdots$$

Inner Product in Sobolev Space

• The inner product of two functions $\phi_1, \phi_2 \in H^m(\Omega)$ is defined by

$$(\phi_1,\phi_2)_m = \sum_{|\alpha| \le m} \int_{\Omega} \partial^{\alpha} \phi_1(x) \partial^{\alpha} \overline{\phi}_2(x) dx.$$

• The norm of $\phi \in H^m(\Omega)$ is given by

$$\|\phi\|_{m,2} = \sqrt{(\phi,\phi)_m} = \left[\sum_{|\alpha| \le m} \int_{\Omega} |\partial^{\alpha}\phi(x)|^2 dx\right]^{1/2}$$

• The subscript 2 indicates the use of the L^2 norm.

We have

$$\|\phi\|_{m,2}^2 = \sum_{|\alpha| \le m} \|\partial^{\alpha}\phi\|_2^2, \quad m \in \mathbb{N}_0.$$

• When m = 0, $\|\phi\|_{0,2} = \|\phi\|_2$.

The Banach Space $H^{m,p}(\Omega)$

If L₂ is replaced by L^p in the definition, 1 ≤ p < ∞, then the resulting norm

$$\|\phi\|_{m,p} = \left[\sum_{|\alpha| \le m} \|\partial^{\alpha}\phi\|_{p}^{p}\right]^{1/p}$$

generates the Banach spaces $H^{m,p}(\Omega)$.

- $H^{m,p}(\Omega)$ is a Hilbert space only when p = 2.
- We restrict to this case and write $H^m(\Omega)$ for $H^{m,2}(\Omega)$.
- Similarly ||·||_{m,2} will be abbreviated to ||·||_m = ||·||_{H^m}, which should not be confused with the L^p norm ||·||_p = ||·||_{L^p}.
- Only L² will be relevant to the Hilbert space theory of distributions, and the L² norm ||·||₂ will henceforth be designated by ||·||₀.
- Thus, we can write

$$\|\phi\|_{m} = \left[\sum_{|\alpha| \le m} \|\partial^{\alpha}\phi\|_{0}^{2}\right]^{1/2} = \left[\sum_{|\alpha| \le m} \int_{\Omega} |\partial^{\alpha}\phi(x)|^{2} dx\right]^{1/2}$$

Example

Let Ω be an open interval in ℝ containing the closed interval [a, b].
 Suppose f is the characteristic function of [a, b].

Then, for all $\phi \in \mathscr{D}(\Omega)$,

$$\langle f',\phi\rangle = \int_{\Omega} f(x)\phi'(x)dx = \int_{a}^{b} \phi'(x)dx = \phi(b) - \phi(a).$$

So $f' = \delta_a - \delta_b$.

Consequently, $f \notin H^1(\Omega)$.

On the other hand, if:

- Ω is bounded;
- f is continuous on Ω ;

• f' is bounded except at a finite number of points in Ω ,

then $f \in H^1(\Omega)$.

$H^m(\Omega)$ is a Hilbert Space

Theorem

$H^m(\Omega)$ is a Hilbert space.

- *H^m*(Ω) is a normed linear space whose norm is derived from an inner product.
 - So it suffices to show that $H^m(\Omega)$ is complete.
 - Let (ϕ_k) be a Cauchy sequence in $H^m(\Omega)$.
 - Thus, we have $\|\phi_k \phi_j\|_m \to 0$.

This implies, by the definition of $\|\cdot\|_m$, that

$$\|\partial^{\alpha}\phi_k - \partial^{\alpha}\phi_j\|_0 \to 0, \quad |\alpha| \le m.$$

So the sequence $(\partial^{\alpha}\phi_k)$ is a Cauchy sequence in $L^2(\Omega)$, $\alpha \leq m$.

$H^m(\Omega)$ is a Hilbert Space (Cont'd)

The sequence (∂^αφ_k) is a Cauchy sequence in L²(Ω), α ≤ m.
 Since L²(Ω) is complete, the sequence (∂^αφ_k) converges in L²(Ω) to some function φ_α ∈ L²(Ω).

By the Schwarz inequality

$$\left|\int_{\Omega} \left[\partial^{\alpha} \phi_{k}(x) - \phi_{\alpha}(x)\right] \psi(x) dx\right| \leq \|\partial^{\alpha} \phi_{k} - \phi_{\alpha}\|_{0} \|\psi\|_{0}, \ \psi \in \mathscr{D}(\Omega).$$

We now see that, as $k \to \infty$,

$$\int_{\Omega} \partial^{\alpha} \phi_{k}(x) \psi(x) dx \to \int_{\Omega} \phi_{\alpha}(x) \psi(x) dx, \ \psi \in \mathscr{D}(\Omega).$$

$H^m(\Omega)$ is a Hilbert Space (Cont'd)

But f_k → f in L²(Ω) implies f_k → f in D'(Ω).
 So we have, for all φ∈D(Ω),

$$\int_{\Omega} \partial^{\alpha} \phi_{k}(x) \psi(x) dx = \langle \partial^{\alpha} \phi_{k}, \psi \rangle$$

$$= (-1)^{|\alpha|} \langle \phi_{k}, \partial^{\alpha} \psi \rangle$$

$$\rightarrow (-1)^{|\alpha|} \langle \phi, \partial^{\alpha} \psi \rangle.$$

$$(\phi = \lim \phi_{k} \text{ in } L^{2}(\Omega).)$$

But

$$(-1)^{|\alpha|}\langle\phi,\partial^{\alpha}\psi\rangle=\langle\partial^{\alpha}\phi,\psi\rangle=\int_{\Omega}\partial^{\alpha}\phi(x)\psi(x)dx.$$

Hence, $\phi_{\alpha} = \partial^{\alpha} \phi$. So ϕ , which is clearly in $H^{m}(\Omega)$, is the limit of ϕ_{k} in the H^{m} norm.

Redefining Sobolev Space

• To apply Fourier transformation to $H^m(\Omega)$, we take $\Omega = \mathbb{R}^n$. A function f is in $H^m = H^m(\mathbb{R}^n)$ if and only if $\partial^{\alpha} f$ is in L^2 , $|\alpha| \le m$. Hence $H^m \subseteq L^2 \subseteq \mathscr{S}'$. Using preceding results, we get

$$\begin{split} \|f\|_{m} &= \left[\sum_{|\alpha| \le m} \|\partial^{\alpha} f\|_{0}^{2}\right]^{1/2} \\ &= \left(2\pi\right)^{-\frac{n}{2}} \left[\sum_{|\alpha| \le m} \|\widehat{\partial^{\alpha} f}\|_{0}^{2}\right]^{1/2} \\ &= \left(2\pi\right)^{-\frac{n}{2}} \left[\sum_{|\alpha| \le m} \|\xi^{\alpha} \widehat{f}\|_{0}^{2}\right]^{1/2} \\ &\le c_{1} \|(1+|\xi|^{2})^{\frac{1}{2}m} \widehat{f}\|_{0}, \end{split}$$

where c_1 is a positive constant (which depends on m). Similarly, there is a positive constant c_2 , such that

$$\|(1+|\xi|^2)^{\frac{1}{2}m}\widehat{f}\|_0 \le c_2(2\pi)^{-n/2} \left[\sum_{|\alpha|\le m} \|\xi^{\alpha}\widehat{f}\|_0^2\right]^{1/2} = c_2 \|f\|_m.$$

So a tempered distribution f is in H^m if and only if $(1+|\xi|^2)^{\frac{1}{2}m}\hat{f} \in L^2$.

Redefining Sobolev Space (Cont'd)

• We redefine the **Sobolev space** H^m , $m \in \mathbb{N}_0$ as the space of tempered distributions $f \in \mathscr{S}'$, such that

$$(1+|\xi|^2)^{\frac{1}{2}m}\widehat{f}\in L^2.$$

The scalar product is

$$(f,g)_{\widehat{m}} = \int (1+|\xi^2)^m \widehat{f}(\xi)\overline{\widehat{g}}(\xi)d\xi.$$

The norm is

$$\|f\|_{\widehat{m}} = \left[\int (1+|\xi|^2)^m |\widehat{f}(\xi)|^2 d\xi\right]^{1/2}$$

Note that the norms ||·||_m and ||·||_{m̂}, though equivalent, are not equal.
In particular we note, by Plancherel's Theorem,

$$\|f\|_{\widehat{0}} = (2\pi)^{\frac{n}{2}} \|f\|_{0}.$$

The Space $H^{s}(\mathbb{R}^{n})$

• The definition of H^m in the preceding slide is equivalent to the original when $m \ge 0$ is an integer and $\Omega = \mathbb{R}^n$, but allows for an extension to any real.

Definition

For any $s \in \mathbb{R}$, we define $H^{s}(\mathbb{R}^{n})$ to be the tempered distributions whose Fourier transforms are square-integrable with respect to the measure $(1+|\xi|^{2})^{s}d\xi$, i.e.,

$$H^{s}(\mathbb{R}^{n}) = \{ f \in \mathscr{S}' : (1+|\xi|^{2})^{\frac{1}{2}s} \widehat{f}(\xi) \in L^{2}(\mathbb{R}^{n}) \}.$$

H^s is a Hilbert Space

Claim: H^s , equipped with the inner product

$$(f,g)_{\widehat{s}} = \int (1+|\xi|^2)^s \widehat{f}(\xi)\overline{\widehat{g}}(\xi)d\xi$$

and the norm

$$\|f\|_{\widehat{s}} = \sqrt{(f,f)_{\widehat{s}}} = \left[\int (1+|\xi|^2)^s |\widehat{f}(\xi)|^2 d\xi\right]^{1/2},$$

is a Hilbert space.

Suppose (f_k) is a Cauchy sequence in H^s .

Then $(1+|\xi|^2)^{\frac{1}{2}s} \hat{f}_k$ is a Cauchy sequence in L^2 .

By the completeness of L^2 , $(1+|\xi|^2)^{\frac{1}{2}s} \widehat{f}_k$ converges to some $g \in L^2$. Therefore, $f_k \to f = \mathscr{F}^{-1}[(1+|\xi|^2)^{-s/2}g]$ in H^s , for every $s \in \mathbb{R}$. But $(1+|\xi|^2)^{\frac{1}{2}s} \widehat{f} = g$ is in L^2 . Thus, f is in H^s .

Inclusions Between Sobolev Spaces

• Suppose $s \ge 0$.

Then

$$\|f\|_{0} = (2\pi)^{-\frac{n}{2}} \|f\|_{\widehat{0}} \le (2\pi)^{-\frac{n}{2}} \|f\|_{\widehat{s}}.$$

Thus, $H^s \subseteq L^2$.

• In general, we have the following inclusion relations.

Theorem

For all real numbers s and t with s > t, we have $\mathscr{S} \subseteq H^s \subseteq H^t \subseteq \mathscr{S}'$ and the identity mappings $\mathscr{S} \to H^s \to H^t \to \mathscr{S}'$ are continuous. Furthermore, \mathscr{S} is dense in H^s , for all $s \in \mathbb{R}$.

The inclusion relations between the spaces as sets are obvious.
 It is also clear that if φ_k → 0 in S then ||φ_k||_ŝ → 0, for any s ∈ ℝ.
 But ||φ_k||_t ≤ ||φ_k||_ŝ, whenever t < s. This implies that ||φ_k||_t → 0.

Inclusions Between Sobolev Spaces (Cont'd)

$$\begin{aligned} \langle \phi_k, \psi \rangle &= \langle \widehat{\phi}_k, \mathscr{F}^{-1}(\psi) \rangle \\ &= \langle (1+|x|^2)^{\frac{t}{2}} \widehat{\phi}_k, (1+|x|^2)^{-\frac{t}{2}} \mathscr{F}^{-1}(\psi) \rangle \\ &\leq \|\phi_k\|_{\widehat{t}} \| (1+|x|^2)^{-\frac{t}{2}} \mathscr{F}^{-1}(\psi) \|_0. \end{aligned}$$

This means that $\phi_k \to 0$ in \mathscr{S}' when $\phi_k \to 0$ in H^t .

George Voutsadakis (LSSU)

Inclusions Between Sobolev Spaces (Cont'd)

• Finally, if $f \in H^s$, then $(1+|\xi|^2)^{\frac{s}{2}} \hat{f}$ is in L^2 . But \mathscr{S} is dense in L^2 .

So there is a sequence (ϕ_k) in \mathscr{S} , such that $\phi_k \to (1+|\xi|^2)^{\frac{s}{2}} \widehat{f}$ in L^2 . But $\widehat{\psi}_k = (1+|\xi|^2)^{-\frac{s}{2}} \phi_k$ is in \mathscr{S} , for every $s \in \mathbb{R}$. Hence,

$$\|(1+|\xi|^2)^{\frac{s}{2}}(\widehat{f}-\widehat{\psi}_k)\|_0\to 0.$$

So $||f - \psi_k||_{\widehat{s}} \to 0$, where (ψ_k) is clearly a sequence in \mathscr{S} .

• We know that C_0^{∞} is dense in \mathscr{S} .

By the theorem, it is also dense in H^s .

Corollary

 H^s is the completion of C_0^∞ under the norm $\|\cdot\|_{\widehat{s}}.$

The Topological Dual of H^s

- As a Hilbert space H^s has a dual space with respect to the inner product (f,g) → (f,g)_s which may be identified with H^s.
- That space is not the same as its dual in the bilinear form
 (f,g) → (f,g) = (f,g)₀ except when s = 0 and the space is real.

Characterization of the Topological Dual of H^s

Theorem

 H^{-s} represents the topological dual of H^s , for all $s \in \mathbb{R}$, and

$$|\langle f, \phi \rangle| \leq \frac{1}{(2\pi)^n} \|f\|_{\widehat{-s}} \|\phi\|_{\widehat{s}}, \quad \text{for all } \phi \in H^s, \ f \in H^{-s}.$$

• A function $f \in \mathscr{S}$ defines a continuous linear functional on \mathscr{S} by setting, for all $\phi \in \mathscr{S}$,

$$T_f(\phi) = \langle f, \phi \rangle$$

= $\int f(x)\phi(x)dx$
= $\frac{1}{(2\pi)^n}\int \widehat{f}(\xi)\widehat{\phi}(-\xi)d\xi,$

where the last equality follows from Parseval's relation.

The Topological Dual of H^s (Cont'd)

We write

$$\widehat{f}(\xi)\widehat{\phi}(-\xi) = (1+|\xi|^2)^{-\frac{s}{2}}\widehat{f}(\xi)(1+|\xi|^2)^{\frac{s}{2}}\widehat{\phi}(-\xi).$$

Using Schwarz' inequality, we obtain

$$|\langle f,\phi\rangle| \leq \frac{1}{(2\pi)^n} \|f\|_{-\mathfrak{s}} \|\phi\|_{\mathfrak{s}}.$$

Since \mathscr{S} is dense in H^s , for all s, the bilinear form $\langle f, \phi \rangle$ can be extended from $\mathscr{S} \times \mathscr{S}$ to $H^{-s} \times H^s$, with the inequality still valid. Since the dual of H^s is a subset of \mathscr{S}' , H^{-s} is a subset of $(H^s)'$.

George Voutsadakis (LSSU)

The Topological Dual of H^s (Cont'd)

• To show that $(H^s)' \subseteq H^{-s}$, let $T \in (H^s)'$ be arbitrary.

Then, by the Riesz Representation Theorem for the Hilbert space H^s , there is a function $f \in H^s$, such that, for all $\phi \in H^s$,

$$T(\phi) = (\phi, f)_{\widehat{s}}$$

= $\int (1 + |\xi|^2)^s \widehat{\phi}(\xi) \overline{\widehat{f}}(\xi) d\xi$
= $\int \phi(x) \overline{h}(x) dx,$

where $h(x) = (2\pi)^n \mathscr{F}^{-1}((1+|\xi|^2)^s \widehat{f}(\xi)).$ Now the function

$$(1+|\xi|^2)^{-\frac{s}{2}}\widehat{h}(\xi) = (2\pi)^n (1+|\xi|^2)^{\frac{s}{2}}\widehat{f}(\xi)$$

is in L^2 . This means that \overline{h} is in H^{-s} . Moreover, it represents T in the sense that $T(\phi) = \langle \overline{h}, \phi \rangle$, for all $\phi \in H$.

Characterization of Distributions in H^{-m}

• When s is a nonnegative integer we have the following characterization of H^{-s} .

Theorem

 $f \in H^{-m}$, where $m \in \mathbb{N}_0$, if and only if f is a finite sum of derivatives of order less than or equal to m of L^2 functions.

• Let
$$f \in H^{-m}$$
.
The function $(1+|\xi|^2)^{-\frac{m}{2}} \widehat{f}(\xi)$ is in L^2 . Then
 $(1+|\xi|^2)^{\frac{m}{2}} \leq (1+|\xi|)^m$
 $= [1+(\xi_1^2+\dots+\xi_n^2)^{1/2}]^m$
 $\leq (1+|\xi_1|+\dots+|\xi_n|)^m$
 $= 1+\sum_{1\leq |\alpha|\leq m} c_{\alpha}|\xi^{\alpha}|,$

where c_{α} are nonnegative integers and α is a multi-index in \mathbb{N}_0^n .

Characterization of Distributions in H^{-m} (Cont'd)

We got

$$(1+|\xi|^2)^{\frac{m}{2}} \leq 1+\sum_{1\leq |\alpha|\leq m} c_{\alpha}|\xi^{\alpha}|.$$

Let

$$\widehat{g}(\xi) = \left(1 + \sum_{1 \le |\alpha| \le m} c_{\alpha} |\xi^{\alpha}|\right)^{-1} \widehat{f}(\xi).$$

The preceding inequality implies that $\widehat{g}(\xi)$ satisfies

$$|\widehat{g}(\xi)| \leq (1+|\xi|^2)^{-\frac{m}{2}} |\widehat{f}(\xi)|.$$

Hence g is also in L^2 .

Characterization of Distributions in H^{-m} (Cont'd)

Now we can write

$$\widehat{f}(\xi) = \left(1 + \sum_{1 \le |\alpha| \le m} c_{\alpha} |\xi^{\alpha}|\right) \widehat{g}(\xi) = \sum_{|\alpha| \le m} \xi^{\alpha} \widehat{g}_{\alpha}(\xi),$$

where $\widehat{g}_{\alpha}(\xi) = \begin{cases} \widehat{g}(\xi), & \text{when } |\alpha| = 0\\ c_{\alpha}|\xi^{\alpha}|\xi^{-\alpha}\widehat{g}(\xi), & \text{when } 1 \le |\alpha| \le m \end{cases}$. Clearly \widehat{g}_{α} is in L^2 whenever \widehat{g} is in L^2 . Taking the inverse Fourier transform of \widehat{f} , gives

$$f(x) = \sum_{|\alpha| \le m} D^{\alpha} g_{\alpha}(x),$$

with $g_{\alpha} \in L^2$, for all $|\alpha| \le m$. Conversely, assume $f = \sum_{|\alpha| \le m} \partial^{\alpha} g_{\alpha}$, with $g_{\alpha} \in L^2$. Then $\partial^{\alpha} g_{\alpha} \in H^{-m}$, for all $|\alpha| \le m$. Consequently $f \in H^{-m}$.

The Spaces H^m , $m \in \mathbb{Z}$

Every g ∈ L² is a distribution of order 0.
 Apply the inequality

 $|\langle f, \phi \rangle| \leq M |\phi|_0$

where $M = ||f||_0 [volume(supp\phi)]$.

Corollary

Every element of H^m , $m \in \mathbb{Z}$, is a distribution of finite order.

• This result, of course, also follows from the inclusion $H^s \subseteq \mathscr{S}'$, for all $s \in \mathbb{R}$.

Example

- We know that
 - δ = 1;
 (1 + |ξ|²)^{1/2} ∈ L²(ℝ) provided s < -1/2 n.
 </p>

 It follows that δ ∈ H^s, for all s < -1/2 n.

 When n = 1, the Dirac measure δ lies in H⁻¹(ℝ).

 Consequently, it a sum of the form f₁ + f'₂ with f₁, f₂ ∈ L²(ℝ).

 One possible choice for these functions is given by

$$f_1(x) = \frac{1}{2}e^{-|x|}, \quad f_2(x) = \frac{1}{2}e^{-|x|}\operatorname{sgn} x.$$

One uses the facts that

- $(sgnx)^2 = 1$ almost everywhere;
- $(\operatorname{sgn} x)' = 2\delta$.

The Sobolev Imbedding Theorem

• For $s \ge 0$, H^s is a subspace of L^2 and its functions would be expected to achieve higher degrees of smoothness with increasing values of s, as their derivatives of higher order have to lie in L^2 .

The Sobolev Imbedding Theorem

If $s > \frac{n}{2}$, then $H^s \subseteq C^0$ with continuous injection.

• The function $(1 + |\xi|^2)^{-s}$ is integrable if and only if $s > \frac{1}{2}n$. Therefore, when $s > \frac{1}{2}n$ and $f \in H^s$, we have

This implies that \hat{f} is in $L^1 \subseteq \mathscr{S}'$.

So the inverse Fourier of f exists and satisfies $f(x) = \frac{1}{(2\pi)^n} \hat{f}(-x)$.
The Sobolev Imbedding Theorem (Cont'd)

• We saw \widehat{f} is in L^1 .

So its Fourier transform

$$\widehat{f}(x) = \int e^{-i\langle x,\xi\rangle} \widehat{f}(\xi) d\xi$$

- is continuous on \mathbb{R}^n .
- It follows that f is also continuous on \mathbb{R}^n .

We show that the topology of H^s , $s > \frac{1}{2}n$, is stronger than that of C^0 . Let $||f_k||_{\widehat{s}} \to 0$. By the preceding inequality, $||\widehat{f}_k||_{L^1} \to 0$. But the Fourier transformation is continuous from L^1 to C^0 . Hence $f_k(x) = \frac{1}{(2\pi)^n} \widehat{\widehat{f}}_k(-x) \to 0$ in C^0 .

Remarks on the Imbedding Theorem

• As an element of H^s , f is really a class of functions which are equal almost everywhere.

By writing equations $f(x) = \frac{1}{(2\pi)^n} \hat{f}(-x)$, we are choosing the continuous representative of that class.

This is actually the sense in which the inclusion $H^s \subseteq C^0$ should be understood in the theorem.

• We know $\hat{f} \in L^1$.

The Riemann-Lebesgue Lemma yields $\hat{f} \to 0$ as $|x| \to \infty$.

Thus, when $s > \frac{1}{2}n$, H^s actually lies in the subspace C_{∞}^0 of C^0 which consists of all continuous functions on \mathbb{R}^n that vanish at ∞ .

More on the Sobolev Imbedding Theorem

Corollary

If $s > \frac{1}{2}n + k$, where k is a nonnegative integer, then $H^s \subseteq C^k$, with continuous injection.

• If $f \in H^s$, then $\partial^{\alpha} f \in H^{s-|\alpha|}$. Suppose $s > \frac{1}{2}n + k$ and $|\alpha| \le k$. Then $s - |\alpha| \ge s - k > \frac{1}{2}n$. By the theorem, $\partial^{\alpha} f \in C^0$.

Now the distributional derivative coincides with the ordinary derivative when it is continuous.

We conclude that $f \in C^k$.

Example

• If
$$u(x) = e^{-|x|}$$
, $x \in \mathbb{R}$, then

$$\widehat{u}(\xi) = \frac{2}{1+\xi^2}.$$

So $u \in H^s$ if and only if $(1+\xi^2)^{\frac{1}{2}(s-2)} \in L^2$.

This yields that $u \in H^s$ if and only if $s < \frac{3}{2}$.

With n = 1, Sobolev's Imbedding Theorem guarantees the continuity of u but not its differentiability.

This is consistent with the fact that $e^{-|x|}$ is continuous but not differentiable on \mathbb{R} .

The Spaces H^{∞} and $H^{-\infty}$

Define

$$H^{\infty}(\mathbb{R}^n) = \bigcap_{s \in \mathbb{R}} H^s(\mathbb{R}^n), \quad H^{-\infty}(\mathbb{R}^n) = \bigcup_{s \in \mathbb{R}} H^s(\mathbb{R}^n).$$

- By the above corollary, H^{∞} is a subspace of C^{∞} .
- A function ϕ in C^{∞} lies in H^{∞} if $\partial^{\alpha}\phi \in L^2$, for all $\alpha \in \mathbb{N}_0^n$.
- This means $\phi(x)$ and all its partial derivatives tend to 0 as $|x| \to \infty$.

The Topology on H^{∞}

 $\bullet\,$ The topologies of H^∞ and $H^{-\infty}$ are defined so that the inclusion relations

$$H^{\infty} \subseteq H^{s} \subseteq H^{-\infty}$$

for any real number *s* become imbeddings.

- We define the topology of H^{∞} to be the weakest locally convex topology such that the identity mapping from H^{∞} to H^{s} is continuous for every *s*.
- This is the projective limit topology of $\{H^s : s \in \mathbb{R}\}$ introduced previously.

The Topology on $H^{-\infty}$

- We saw that for s > t, $H^s \subseteq H^t$, with continuous embeddings.
- As a result, $\bigcap_{|s| \le m} H^s = H^m$ and $\bigcup_{|s| \le m} H^s = H^{-m}$.
- We also saw that $(H^m)' = H^{-m}$.
- We conclude that

$$(\bigcap_{|s| \le m} H^s)' = \bigcup_{|s| \le m} H^s$$
, for all $m \in \mathbb{N}$.

- Therefore, $(H^{\infty})' = H^{-\infty}$.
- This defines the topology of H^{-∞} as the inductive limit of the topologies on {H^s : s ∈ ℝ}.
- Recall that this is the strongest locally convex topology, such that the identity map from H^s to H^∞ is continuous, for every *s*.
- As we have seen in connection with 𝔅_F and 𝔅'_F, these two methods of defining a topology on a linear space, that is the projective limit and the inductive limit, generally produce dual topological vector spaces.

George Voutsadakis (LSSU)

Theory of Distributions

Example

• Since $\mathscr{D} \subseteq \mathscr{S} \subseteq H^{\infty} \subseteq \mathscr{E}$ and \mathscr{D} is dense in \mathscr{E} we have the inclusions

$$\mathscr{E}' \subseteq H^{-\infty} \subseteq \mathscr{S}' \subseteq \mathscr{D}'.$$

- We relate, next, the order of a distribution in $H^s \cap \mathscr{E}'$ to s.
- From this, we can also obtain $\mathscr{E}' \subseteq H^{-\infty}$.

Example: Let $T \in \mathscr{E}'$. Since every distribution with compact support is of finite order, suppose that the order of T is m. We prove that $T \in H^s$ if $s \leq -\frac{1}{2}n - m$.

According to a previous theorem, \widehat{T} is a C^{∞} function, given by $\widehat{T}(\xi) = \langle T_x, e^{-i\langle x, \xi \rangle} \rangle$.

Since T is of order m, there exists a compact set $K \subseteq \mathbb{R}^n$ and a positive constant M, such that

$$|\widehat{T}(\xi)| \le M \sum_{|\alpha| \le m} \sup \{ |\partial^{\alpha} e^{-i\langle x,\xi \rangle}| : x \in K \} \le M \sum_{|\alpha| \le m} |\xi^{\alpha}|.$$

Example (Cont'd)

• Therefore, for some positive constants M_1 and M_2

$$|\widehat{T}(\xi)|^2 \leq M^2 \left(\sum_{|\alpha| \leq m} |\xi^{\alpha}|\right)^2 \leq M_1 \sum_{|\alpha| \leq m} |\xi^{\alpha}|^2 \leq M_2 (1+|\xi|^2)^m.$$

The last inequality $M_1 \sum_{|\alpha| \le m} |\xi^{\alpha}|^2 \le M_2 (1 + |\xi|^2)^m$ follows from

$$\begin{aligned} |\xi^{\alpha}|^{2} &= \xi_{1}^{2\alpha_{1}} \cdots \xi_{n}^{2\alpha_{n}} \\ &\leq (1 + \xi_{1}^{2} + \dots + \xi_{n}^{2})^{\alpha_{1}} \cdots (1 + \xi_{1}^{2} + \dots + \xi_{n}^{2})^{\alpha_{n}} \\ &= (1 + \xi_{1}^{2} + \dots + \xi_{n}^{2})^{\alpha_{1} + \dots + \alpha_{n}} \\ &\stackrel{|a| \leq m}{\leq} (1 + |\xi|^{2})^{m}. \end{aligned}$$

Hence, $(1+|\xi|^2)^s |\hat{T}|^2 \le M_2(1+|\xi|^2)^{m+s}$. So $T \in H^s$ when $(1+|\xi|^2)^{m+s} \in L^1$. I.e., when $m+s < -\frac{1}{2}n$. Thus all distributions with compact support and zero order are contained in H^s for $s < -\frac{1}{2}n$. (δ is included in this set. So, in view of a previous example, this estimate cannot be made any sharper.)

George Voutsadakis (LSSU)

Subsection 3

Some Properties of H^s Spaces

The Operator P(D)

- Sobolev spaces provide a way of measuring the differentiability properties of functions on \mathbb{R}^n .
- From the definition of the Sobolev space H^s = H^s(ℝⁿ), we have, for all f ∈ H^s,

$$\begin{aligned} \|\partial_k f\|_{\widehat{s-1}} &= \|\xi_k (1+|\xi|^2)^{\frac{1}{2}(s-1)} \widehat{f}\|_0 \\ &\leq \|(1+|\xi|^2)^{\frac{s}{2}} \widehat{f}\|_0 \\ &= \|f\|_{\widehat{s}}. \end{aligned}$$

- So the differential operator ∂_k, where k ∈ {1,...,n}, is a continuous linear operator from H^s to H^{s-1}.
- So, for P a polynomial on \mathbb{R}^n with constant coefficients and degree $\leq m$, P(D) is a continuous linear operator from H^s to H^{s-m} .
- When the polynomial P has no zeros in ℝⁿ, the mapping
 P(D): H^s → H^{s-m} is also bijective, as the next example illustrates.

The Operator $k^2 - \Delta$

Claim: The operator $k^2 - \Delta$, $k \neq 0$, is a homeomorphism from H^{s+2} onto H^s .

(i) The continuity of $(k^2 - \Delta) : H^{s+2} \to H^s$ is obvious since this operator has constant coefficients.

(ii) To show that (k² - Δ) is bijective, let (k² - Δ)u = 0, for some u ∈ H^{s+2}. Then (k² + |ξ|²)û = 0. Since k ≠ 0, û = 0. Hence, u = 0. So (k² - Δ) is injective. Suppose v ∈ H^s. Then u = ^v/_{k²+|ξ|²} ∈ S'. Also (k² - Δ)F⁻¹(u) = v. Thus, if F⁻¹(u) ∈ H^{s+2}, then k² - Δ is surjective.

The Operator $k^2 - \Delta$ (Cont'd)

(ii) For surjectivity, it suffices to show $\mathscr{F}^{-1}(u) \in H^{s+2}$. This relies on the following.

$$\begin{aligned} (1+|\xi|^2)^{\frac{1}{2}(s+2)} |\mathscr{F}(\mathscr{F}^{-1}(u))| &= (1+|\xi|^2)^{\frac{1}{2}s+1} |u| \\ &= (1+|\xi|^2)^{\frac{1}{2}s+1} \frac{|\hat{v}|}{k^2+|\xi|^2} \\ &\leq c(1+|\xi|^2)^{\frac{1}{2}s+1} \frac{|\hat{v}|}{1+|\xi|^2} \\ &= c(1+|\xi|^2)^{\frac{s}{2}} |\hat{v}|. \end{aligned}$$

Moreover, $(1+|\xi|^2)^{\frac{s}{2}} \hat{v} \in L^2$, since $v \in H^s$.

(iii) We have seen that $k^2 - \Delta$ is a continuous bijection from H^{s+2} to H^s . The spaces H^{s+2} and H^s are Banach spaces. By the Open Mapping Theorem, $(k^2 - \Delta)^{-1} : H^s \to H^{s+2}$ is continuous. Therefore $k^2 - \Delta$ is a homeomorphism.

George Voutsadakis (LSSU)

Multiplication of an H^s Distribution

 To allow the coefficients in the differential operator P(D): H^s → H^{s-m} to be functions, we investigate the feasibility of multiplying the elements of H^s by such functions.

Theorem

The mapping from $\mathscr{S} \times H^s$ into H^s , defined by $(\phi, u) \mapsto \phi u$, is bilinear and continuous on \mathscr{S} and H^s separately.

 Note that ⟨φν, u⟩ = ⟨v, φu⟩ for all u ∈ H^s, v ∈ H^{-s} and φ∈ 𝔅. So it suffices to consider the case when s≥0. Let φ and u be in 𝔅. Then their Fourier transforms φ̂ and û are also in 𝔅. With 𝔅(φu) = ¹/_{(2π)ⁿ} φ̂ * û, we have (1+|ξ|²)^s/₂ |𝔅(φu)(ξ)| ≤ ¹/_{(2π)ⁿ} ∫ (1+|ξ|²)^s/₂ |φ̂(η)û(ξ-η)|dη.

Multiplication of an H^s Distribution (Cont'd)

Now we have

$$\begin{aligned} 1+|\xi|^2 &= 1+|\xi-\eta+\eta|^2 \\ &\leq 1+|\xi-\eta|^2+2|\xi-\eta||\eta|+|\eta|^2 \\ &\leq 1+|\xi-\eta|^2+2|\eta|(1+|\xi-\eta|^2)+|\eta|^2 \\ &\leq (1+|\xi-\eta|^2)(1+|\eta|)^2. \end{aligned}$$

We can use this inequality and integrate with respect to ξ .

$$\begin{split} &\frac{1}{(2\pi)^n} \int (1+|\xi|^2)^{\frac{s}{2}} |\widehat{\phi}(\eta) \widehat{u}(\xi-\eta)| d\eta \\ &\leq \frac{1}{(2\pi)^n} \int (1+|\xi-\eta|^2)^{\frac{s}{2}} |\widehat{u}(\xi-\eta)| (1+|\eta|)^s |\widehat{\phi}(\eta)| d\eta \\ &\leq \frac{1}{(2\pi)^n} \|u\|_{\widehat{s}} \int (1+|\eta|)^s |\widehat{\phi}(\eta)| d\eta. \end{split}$$

Multiplication of an H^s Distribution (Cont'd)

We obtained

$$\|\phi u\|_{\widehat{s}} \leq \frac{1}{(2\pi)^n} \|u\|_{\widehat{s}} \int (1+|\eta|)^s |\widehat{\phi}(\eta)| d\eta.$$

But \mathscr{S} is dense in H^s .

So this inequality may be extended by continuity to all u in H^s . So ϕu is in H^s and depends continuously on $\phi \in \mathscr{S}$ and $u \in H^s$.

Corollary

If P is a polynomial on \mathbb{R}^n , with coefficients in \mathscr{S} and degree m, then P(D) is a continuous linear differential operator from H^s to H^{s-m} .

Order of an Operator

- Given any real number t, a linear operator L defined on H^{-∞} is said to have order t if it maps H^s into H^{s-t}, for every s ∈ ℝ.
- The following list contains some examples.
 - The differential operator ∂^{α} has order $|\alpha|$.
 - Given a polynomial P of degree m, with coefficients in \mathcal{S} , the operator P(D) has order m.
 - Let f be defined on ℝⁿ and bounded (almost everywhere).
 Then the mapping u → v, defined by v = f û, is an operator of order 0.
 - On the other hand, let v̂ = (1 + |ξ|²)^{t/2} û.
 Then the mapping u → v is an operator of order t.
 The inverse operator has order -t.
 - By the preceding theorem, the mapping $u \mapsto fu$, with $f \in \mathcal{S}$, is an operator of order 0.

Convolutions

- Let $u \in H^s \subseteq \mathscr{S}'$ and $v \in \mathscr{E}'$.
- Then the convolution product u * v is well-defined.
- Moreover, we have $\mathscr{F}(u * v) = \widehat{v}\widehat{u}$, with \widehat{v} in C^{∞} .
- In general \hat{v} is not bounded on \mathbb{R}^n .
- So neither is $(1+|\xi|^2)^{\frac{t}{2}} \hat{v}(\xi)$, for any $t \in \mathbb{R}$.
- Suppose we restrict $v \in \mathscr{E}'$ so that

$$\|v\|_{\widehat{t},\infty} = \sup_{\xi \in \mathbb{R}^n} (1+|\xi|^2)^{\frac{t}{2}} |\widehat{v}(\xi)| < \infty.$$

- Then the set $\{v \in \mathscr{E}' : ||v||_{\hat{t},\infty} < \infty\}$ is a linear subspace of \mathscr{E}' on which $\|\cdot\|_{\hat{t},\infty}$ defines a norm.
- The closure of this subspace in 𝒴' under the norm ||·||_{t̂,∞} is a normed linear subspace of 𝒴', which we denote by H^{t,∞}.

$$H^{t,\infty} = \{ v \in \mathscr{S}' : \|v\|_{\widehat{t},\infty} < \infty \}.$$

$H^{s,\infty}$ vs. L^{∞} and H^{s} vs. L^{2}

- The notation is suggested by that of the Banach space L[∞] of measurable functions on Rⁿ which are bounded almost everywhere.
- The norm of $f \in L^{\infty}$ is defined as the essential supremum of |f| on \mathbb{R}^n .
- It follows that

$$|f(x)| \le \|f\|_{L^{\infty}} = \|f\|_{\infty}$$

holds almost everywhere in \mathbb{R}^n .

• The defining equation implies, for all $u \in H^{s,\infty}$,

$$||u||_{\widehat{s},\infty} = ||(1+|\xi|^2)^{\frac{s}{2}}\widehat{u}||_{\infty}.$$

• This suggests that $H^{s,\infty}$ is related to L^{∞} in the same way that H^s is related to L^2 .

Spaces for Convolutions of Distributions

Theorem

The convolution $(u, v) \mapsto u * v$ is a bilinear mapping of $H^s \times H^{t,\infty}$ into H^{s+t} which is continuous on H^s and $H^{t,\infty}$ separately.

Let
$$u \in H^s$$
 and $v \in H^{t,\infty}$. Then

$$(1+|\xi|^{2})^{\frac{1}{2}(s+t)}\mathscr{F}(u*v)(\xi) = (1+|\xi|^{2})^{\frac{s}{2}}\widehat{u}(\xi)(1+|\xi|^{2})^{\frac{t}{2}}\widehat{v}(\xi)$$

$$\int (1+|\xi|^{2})^{\frac{1}{2}(s+t)}|\mathscr{F}(u*v)(\xi)|d\xi$$

$$= \int (1+|\xi|^{2})^{\frac{s}{2}}|\widehat{u}(\xi)|(1+|\xi|^{2})^{\frac{t}{2}}|\widehat{v}(\xi)|d\xi$$

$$\leq \sup_{\xi} (1+|\xi|^{2})^{\frac{t}{2}}|\widehat{v}(\xi)|\int (1+|\xi|^{2})^{\frac{s}{2}}|\widehat{u}(\xi)|d\xi.$$

So we get $||u * v||_{\widehat{s+t}} \le ||u||_{\widehat{s}} ||v||_{\widehat{t},\infty}$.

Corollary

When $u \in H^s$ and $v \in \mathscr{S}$, then $u * v \in H^\infty$.

Locally H^s Distributions

- Because the distributions in H^s for real values of s, are defined through their Fourier transforms, they are necessarily distributions in \mathbb{R}^n .
- We can also consider distributions "locally in" H^s.

Definition

Let Ω be an open subset of \mathbb{R}^n . A distribution $u \in \mathscr{D}'(\Omega)$ is said to be in $H^s_{loc}(\Omega)$ if, for every bounded open set ω in Ω , with $\overline{\omega} \subseteq \Omega$, there is a distribution $v \in H^s$, such that u = v on ω .

- The distributions in $H^s_{loc}(\Omega)$ enjoy the smoothness properties of H^s on Ω without being subjected to its global integrability condition.
- Moreover, any distribution in H^s_{loc}(Ω) with compact support is necessarily in H^s(Ω).

Characterization of Locally H^s Distributions

Theorem

 $u \in H^{s}_{loc}(\Omega)$ if and only if $\phi u \in H^{s}$, for every $\phi \in C^{\infty}_{0}(\Omega)$.

Suppose u ∈ H^s_{loc}(Ω) and φ∈ C[∞]₀(Ω). Then there is a v ∈ H^s, such that u = v on suppφ. By the preceding theorem, φv lies in H^s. Thus, so does φu. Suppose, conversely, φu ∈ H^s, for all φ∈ C[∞]₀(Ω). Let ω be any bounded open set in Ω, whose closure lies in Ω. Then we can choose φ∈ C[∞]₀(Ω) with φ = 1 on w. Moreover, u = φu ∈ H^s on ω.

Corollary

- $H^{s} \subseteq H^{s}_{loc}(\Omega)$, for every $\Omega \subseteq \mathbb{R}^{n}$.
 - When u ∈ H^s and φ is any function in C₀[∞](Ω), a previous theorem implies that φu ∈ H^s. From the preceding theorem, u ∈ H^s_{loc}(Ω).

$\bigcap_{s\in\mathbb{R}} H^s_{\mathsf{loc}}(\Omega) = C^\infty(\Omega)$

• For any open set $\Omega \subseteq \mathbb{R}^n$, $\bigcap_{s \in \mathbb{R}} H^s_{loc}(\Omega) = C^{\infty}(\Omega)$.

(i) We show, first, that, if $s > \frac{1}{2}n + k$, then $H_{loc}^{s}(\Omega) \subseteq C^{k}(\Omega)$. Suppose $u \in H^s_{loc}(\Omega)$. For any $x \in \Omega$, let U be a bounded neighborhood of x. Let $\phi \in C_0^{\infty}(\Omega)$ be such that $\phi = 1$ on U. Then, by previous results, $\phi u \in H^s(\mathbb{R}^n) \subseteq C^k(\mathbb{R}^n)$. Since $\phi = 1$ on U, this implies that $u \in C^k(U)$, for every U. Therefore, $u \in C^{k}(\Omega)$. Thus, $\bigcap_{s \in \mathbb{R}} H^{s}_{loc}(\Omega) \subseteq C^{\infty}(\Omega)$. (ii) We now show the inclusion in the other direction. Let $u \in C^{\infty}(\Omega)$. For any $\phi \in C_0^{\infty}(\Omega)$, the product ϕu is in $C_0^{\infty} \subseteq \mathscr{S} \subseteq H^s$, for all s. Thus, by the theorem, $u \in H^s_{loc}(\Omega)$, for every s. Therefore, $u \in \bigcap_{s \in \mathbb{R}} H^s_{loc}(\Omega)$.

$\bigcup H^s_{\mathrm{loc}}(\Omega) = \mathscr{D}'_F(\Omega)$

- We show ∪ H^s_{loc}(Ω) = 𝒫'_F(Ω), where 𝒫'_F(Ω) is the space of distributions in 𝒫'(Ω) of finite order.
 - (i) Let u ∈ H^s_{loc}(Ω). Take φ ∈ D(Ω) with compact support K. There exists v ∈ H^s, such that u = v in a neighborhood of K. Define u on D(Ω) by ⟨u,φ⟩ = ⟨v,φ⟩.
 It is straightforward to verify that u is a distribution in Ω.

By a previous theorem, v can be expressed as a finite sum of derivatives of order $\leq |s| + 1$ of L^2 functions.

So *u* has finite order.

(ii) Let
$$u \in \mathscr{D}'_F(\Omega)$$
.

By a previous theorem, u is a derivative of a continuous function in Ω . But any continuous function is locally square integrable.

So u is locally a derivative of finite order, say m, of an L^2 function.

For any $\phi \in C_0^{\infty}(\Omega)$, ϕu is also a finite sum of derivatives of order $\leq m$

of L^2 functions. Therefore, ϕu lies in H^{-m} .

Thus, by the theorem, $u \in H_{loc}^{-m}$.

Elliptic Linear Differential Operators

- We saw that a linear differential operator L of order m, with coefficients in \mathscr{S} maps H^s into H^{s-m} .
- We do not know whether $Lu \in H^s$ implies that $u \in H^{s+m}$, i.e., whether L^{-1} is an operator of order -m.
- This is not true in general.

Consider, e.g., the equation $\partial_x \partial_y u = 0$ on \mathbb{R}^2 .

It is satisfied by the sum u(x,y) = f(x) + g(y) of any pair of differentiable functions on \mathbb{R} .

Thus, although $\partial_x \partial_y u \in H^{\infty}$, the function u is not necessarily in H^{∞} .

- When L is elliptic, we have a local regularity theorem.
- The linear differential operator

$$L = \sum_{|\alpha| \le m} c_{\alpha} \partial^{\alpha}$$

is elliptic if $\sum_{|\alpha|=m} c_{\alpha} \xi^{\alpha} \neq 0$, whenever $\xi \neq 0$.

The Local Regularity Theorem

The Local Regularity Theorem

Let $L = \sum_{|\alpha| \le m} c_{\alpha} \partial^{\alpha}$ be a linear elliptic differential operator in Ω of order m with coefficients $c_{\alpha} \in C^{\infty}(\Omega)$. If $Lu = f \in H^{s}_{loc}(\Omega)$, for some $s \in \mathbb{R}$, then $u \in H^{s+m}_{loc}(\Omega)$.

We only prove the simpler case in which the leading coefficients in L, i.e., those c_α in which α = m, are constants. Let φ ∈ C₀[∞](Ω) be arbitrary and t ≤ s + m - 1. Claim: If ψu ∈ H^t, for some ψ ∈ C₀[∞](Ω) which is 1 on an open set containing suppφ, then φu ∈ H^{t+1}. Consider the distribution v = L(φu) - φLu = L(φu) - φf. It has its support in suppφ. So u may be replaced by ψu in this equation to give

$$v = L(\phi \psi u) - \phi L(\psi u) = \sum_{|\alpha| \le m} c_{\alpha} [\partial^{\alpha} (\phi \psi u) - \phi \partial^{\alpha} (\psi u)].$$

We are working with

$$v = \sum_{|\alpha| \le m} c_{\alpha} [\partial^{\alpha} (\phi \psi u) - \phi \partial^{\alpha} (\psi u)].$$

Note that the derivatives of ψu of order *m* cancel out.

So this sum is a linear combination of derivatives of ψu of orders $\leq m-1$ with coefficients in $C_0^{\infty}(\mathbb{R}^n)$. Since $\psi u \in H^t$, we have $v \in H^{t-m+1}$. Now $\phi f \in H^s$ and $t-m+1 \leq s$. Thus, $\phi f \in H^{t-m+1}$. We conclude that $L(\phi u) = v + \phi f \in H^{t-m+1}$. From this we wish to conclude that $\phi u \in H^{t+1}$. Write $L = P(\partial) + Q(\partial)$, where: • P is defined by $P(y) = \sum_{|\alpha|=m} c_{\alpha} y^{\alpha}, y \in \mathbb{R}^n$;

• Q is a polynomial of degree $\leq m-1$.

P, by assumption, has constant coefficients.
 So, for any w ∈ H^s,

$$\mathcal{F}(P(\partial)w) = P(i\xi)\widehat{w}$$

= $[|\xi|^{-m}(1+|\xi|^m) - |\xi|^{-m}]P(i\xi)\widehat{w}$
= $\mathcal{F}([P_2(\partial) - P_1(\partial)]w),$

where $P_1(\partial)$, $P_2(\partial)$ are operators on $H^{-\infty}(\Omega)$ defined on $\mathbb{R}^n - \{0\}$ by

 $\mathscr{F}(P_1(\partial)w) = |\xi|^{-m} P(i\xi)\widehat{w}, \quad \mathscr{F}(P_2(\partial)w) = (1+|\xi|^m)|\xi|^{-m} P(i\xi)\widehat{w}.$

P is homogeneous of degree *m* whose only zero is $\xi = 0$. So both $\frac{P(i\xi)}{|\xi|^m}$ and $\frac{|\xi|^m}{P(i\xi)}$ are bounded functions on $\mathbb{R}^n - \{0\}$. Hence, $P_1(\partial)$ and $P_1^{-1}(\partial)$ are operators of order 0.

• On the other hand, we have

$$1 + |\xi|^{m} = (1 + |\xi|^{2})^{\frac{m}{2}} \frac{1 + |\xi|^{m}}{(1 + |\xi|^{2})^{\frac{m}{2}}},$$

where $(1+|\xi|^m)(1+|\xi|^2)^{-\frac{m}{2}}$ and its reciprocal are bounded on \mathbb{R}^n . The mapping $w \mapsto z$ defined by $\hat{z} = (1+|\xi|^2)^{\frac{m}{2}} \hat{w}$ is of order m. So the same is true of the mapping defined by

$$\widehat{z} = (1+|\xi|^2)^{\frac{m}{2}}g(\xi)\widehat{w},$$

where g and its inverse are bounded in \mathbb{R}^n . So $P_2(\partial)$ is an operator of order m whose inverse has order -m.

We now have

$$\begin{split} [P_2(\partial)-P_1(\partial)+Q(\partial)](\phi u) &= & [P(\partial)+Q(\partial)](\phi u) \\ &= & L(\phi u) \in H^{t-m+1}. \end{split}$$

We also have $\phi u = \phi \psi u$ and $\psi u \in H^t$. So, by a previous theorem, $\phi u \in H^t$. But $Q(\partial)$ has order m-1 and $P_1(\partial)$ has order 0. So $[Q(\partial) - P_1(\partial)](\phi u) \in H^{t-m+1}$. Therefore, $P_2(\partial)(\phi u) \in H^{t-m+1}$. But $P_2^{-1}(\partial)$ has order -m. Hence, $\phi u \in H^{t+1}$. It remains to show that $\phi u \in H^{s+m}$.

Claim: $\phi u \in H^{s+m}$.

Choose $\phi_0 \in C_0^{\infty}(\Omega)$, such that $\phi_0 = 1$ on a neighborhood of supp ϕ . Call that neighborhood U_0 .

Now $\phi_0 u$ has compact support. So it lies in H^t , for some t.

We may take t to be s + m - k, for some positive integer k. Choose open sets U_1, \ldots, U_k , such that:

- U_j properly contains \overline{U}_{j+1} , for $0 \le j \le k-1$;
- $\overline{U}_k = \operatorname{supp} \phi$.

Finally, choose the C_0^{∞} functions ϕ_1, \ldots, ϕ_k , such that:

• $\phi_j = 1$ on U_j and $\operatorname{supp} \phi_j = \overline{U}_{j-1}$, for $1 \le j \le k-1$; • $\phi_k = \phi$.

From the preceding argument, we conclude that

$$\phi_1 u \in H^{t+1}, \phi_2 u \in H^{t+2}, \dots, \phi_k u = \phi u \in H^{t+k} = H^{s+m}.$$

Consequences of the Local Regularity Theorem

- Denote $\cap H^s_{loc}(\Omega)$ by $H^{\infty}_{loc}(\Omega)$ and $\bigcup H^s_{loc}(\Omega)$ by $H^{-\infty}_{loc}(\Omega)$.
- We know that $H^{\infty}_{\text{loc}}(\Omega) = C^{\infty}(\Omega)$ and $H^{-\infty}_{\text{loc}}(\Omega) = \mathscr{D}'_{F}(\Omega)$.
- Thus, the theorem yields the following.

Corollary

If $Lu \in C^{\infty}(\Omega)$, then $u \in C^{\infty}(\Omega)$. Hence any solution of the homogeneous equation Lu = 0 is in $C^{\infty}(\Omega)$. In particular, every harmonic distribution in $\mathscr{D}'(\Omega)$ is a C^{∞} harmonic function in Ω .

Corollary

Any fundamental solution of *L*, i.e., a solution of $LE = \delta$ on \mathbb{R}^n , is infinitely differentiable on $\mathbb{R}^n - \{0\}$.

Subsection 4

More on the Space $H^m(\Omega)$

The Space $H^m(\Omega)$

• $H^m(\Omega)$ is the Hilbert space of functions on Ω , such that

$$\partial^{\alpha} u \in L^2(\Omega)$$
, for all $|\alpha| \le m$.

• It is equipped with the norm

$$\|u\|_m = \left[\sum_{|\alpha| \le m} \|\partial^{\alpha} u\|_0^2\right]^{1/2}, \quad m \in \mathbb{N}_0.$$

- A preceding theorem implies that $H^1(\mathbb{R}) \subseteq C^0(\mathbb{R})$.
- It is shown, next, that the same inclusion holds when \mathbb{R} is replaced by any open interval in \mathbb{R} .

$H^1(a,b) \subseteq C^0(a,b)$

Let f ∈ H¹(a, b).
 Define the function g on (a, b) by g(x) = ∫_a^x f'(t)dt.
 Then g is continuous and g' = f' in the sense of distributions.
 In fact, for all φ ∈ D(a, b),

$$g',\phi\rangle = -\langle g,\phi'\rangle$$

$$= -\int_a^b [\int_a^x f'(t)dt]\phi'(x)dx$$

$$= -\int_a^b \int_a^b H(x-t)f'(t)\phi'(x)dtdx$$

$$= -\int_a^b [\int_t^b \phi'(x)dx]f'(t)dt$$

$$= \int_a^b \phi(t)f'(t)dt$$

$$= \langle f',\phi\rangle.$$

Therefore, g = f + constant and f is continuous a.e. in (a, b). Thus, $H^1(a, b) \subseteq C^0(a, b)$.

• The analogous statement does not hold when $n \ge 2$.

George Voutsadakis (LSSU)

Theory of Distributions

The Space $H_0^m(\Omega)$

- We have seen that $C_0^{\infty}(\mathbb{R}^n)$ is dense in $H^m(\mathbb{R}^n)$.
- This is not true of Ω in general.
- It is not even true that $C^{\infty}(\overline{\Omega}) \cap H^{m}(\Omega)$ is dense in $H^{m}(\Omega)$, where $C^{\infty}(\overline{\Omega})$ denotes the restriction to $\overline{\Omega}$ of the functions in $C^{\infty}(\mathbb{R}^{n})$, unless $\partial\Omega$ is smooth enough.
- The advantage of \mathbb{R}^n in this respect is that it has no boundary.
- We now define $H_0^m(\Omega)$ to be the closure of $C_0^{\infty}(\Omega)$ in $H^m(\Omega)$.
- So we have $H_0^m(\mathbb{R}^n) = H^m(\mathbb{R}^n)$.
- In general, however, $H_0^m(\Omega)$ is a proper closed subspace of $H^m(\Omega)$.
- So $H_0^m(\Omega)$ is a Hilbert space in the induced structure.
$H^1_0(\Omega)$ versus $H^1(\Omega)$

We show H¹₀(Ω) ≠ H¹(Ω), if Ω is a bounded set in ℝⁿ.
 Claim: Let u ∈ H¹₀(Ω). Define u₀ in ℝⁿ by

$$u_0(x) = \begin{cases} u(x), & \text{if } x \in \Omega \\ 0, & \text{if } x \in \mathbb{R}^n - \Omega \end{cases}$$

Then $u_0 \in H^1(\mathbb{R}^n)$. Let ϕ be in $C_0^{\infty}(\Omega)$. Then $\phi_0 \in C_0^{\infty}(\mathbb{R}^n)$ and $\|\phi_0\|_1 = \|\phi\|_1$. Consider the map $\lambda_1 : C_0^{\infty}(\Omega) \to H^1(\mathbb{R}^n)$, defined by $\lambda_1(\phi) = \phi_0$. It follows that λ_1 is a linear isometry which extends by continuity to a continuous linear map from $H_0^1(\Omega)$ to $H^1(\mathbb{R}^n)$. Now $u \in H_0^1(\Omega)$. So there is a sequence (u_k) in $C_0^{\infty}(\Omega)$ which converges to u in $H^1(\Omega)$.

$H_0^1(\Omega)$ versus $H^1(\Omega)$ (Cont'd)

By the continuity of λ_1 , $\lambda_1(u_k) \rightarrow \lambda_1(u)$ in $H^1(\mathbb{R}^n)$. • Hence, $\lambda_1(u_k) \rightarrow \lambda_1(u)$ in $L^2(\mathbb{R}^n)$. Consequently, there is a subsequence $(u_{k'})$ of (u_k) , such that $\lambda_1(u_{k'}) \rightarrow \lambda_1(u)$ a.e. in \mathbb{R}^n . Hence, $u_0 = \lambda_1(u)$ lies in $H^1(\mathbb{R}^n)$. To finish the proof, let: • Ω be a bounded open set in \mathbb{R}^n ; • $\mu = 1$ on Ω . Then $u \in H^1(\Omega)$. By the first example of the set, $u_0 \notin H^1(\mathbb{R}^n)$. Therefore, by the claim, $u \notin H_0^1(\Omega)$. We conclude that $H_0^1(\Omega) \neq H^1(\Omega)$.

The Operator λ_m

Let Ω be an open set in ℝⁿ and u ∈ H^m₀(Ω).
 Define λ_m(u) = u₀, where, as before,

$$u_0(x) = \begin{cases} u(x), & \text{if } x \in \Omega \\ 0, & \text{if } x \in \mathbb{R}^n - \Omega \end{cases}$$

Then $\lambda_m(u) \in H^m(\mathbb{R}^n)$. Moreover, by a previous result, $\lambda_m(u) \in C^k(\mathbb{R}^n)$, if $m > \frac{1}{2}n + k$. But $\lambda_m(u) = u$ on Ω . So $H_0^m(\Omega) \subseteq C^k(\overline{\Omega})$ when $m > \frac{1}{2}n + k$. Consider the special case when m = 0. We know that $C_0^{\infty}(\Omega)$ is dense in $L^2(\Omega)$. So, in this case, $H_0^0(\Omega)$ coincides with $H^0(\Omega)$.

.

The "Negative Norm"

• Any function $v \in H_0^0(\Omega) = L^2(\Omega)$ defines a continuous linear functional T_v on $H_0^m(\Omega)$ by

 $\mathcal{T}_{v}(u) = \langle v, u \rangle = (v, \overline{u})_{0}, \quad \text{for all } u \in H_{0}^{m}(\Omega).$

By the Schwarz inequality, $|\langle v, u \rangle| \le ||v||_0 ||u||_0 \le ||v||_0 ||u||_m$. So T_v is bounded by $||v||_0$. We define the "negative norm" of $v \in L^2(\Omega)$ by

$$\|v\|_{-m} = \sup_{u \in H_0^m(\Omega)} \frac{|\langle v, u \rangle|}{\|u\|_m}.$$

By definition, $|\langle v, u \rangle| \le ||v||_{-m} ||u||_m$. Now $||u||_0 \le ||u||_m$. So we have

$$\|v\|_{-m} \le \sup_{u \in H_0^m(\Omega)} \frac{|\langle v, u \rangle|}{\|u\|_0} = \|v\|_0.$$

We can verify that $\|\cdot\|_{-m}$ satisfies the properties of a norm.

The Space $H^{-m}(\Omega)$

• Define $H^{-m}(\Omega)$ to be the completion of $L^2(\Omega)$ in the norm $\|\cdot\|_{-m}$.

Theorem

The dual space $(H_0^m)'(\Omega)$ of the space $H_0^m(\Omega)$ may be identified with $H^{-m}(\Omega)$, for all $m \ge 0$.

• Let F be the set of continuous linear functionals T_v on $H_0^m(\Omega)$ defined by

$$T_{v}(u) = \langle v, u \rangle = (v, \overline{u})_{0}, \quad u \in H_{0}^{m}(\Omega).$$

This is clearly a subspace of the Hilbert space $(H_0^m)'(\Omega)$. We now show that it is a dense subspace.

Suppose F is not dense in $(H_0^m)'(\Omega)$. Then there is a nonzero $S \in (H_0^m)''(\Omega)$, such that $S(T_v) = 0$, for all $T_v \in F$.

By reflexivity applied to $H_0^m(\Omega)$, there is $w \in H_0^m(\Omega)$, such that

$$S(T) = T(w)$$
, for all $T \in (H_0^m)'(\Omega)$.

The Space $H^{-m}(\Omega)$ (Cont'd)

• Now we get, for all $v \in L^2(\Omega)$,

$$\langle v, w \rangle = T_v(w) = S(T_v) = 0.$$

But $H_0^m(\Omega) \subseteq L^2(\Omega)$. So we can choose v = w. We conclude that w = 0. This however, contradicts $S \neq 0$. Now we have $\overline{F} = (H_0^m)'(\Omega)$. So $(H_0^m)'(\Omega)$ can be identified with $H^{-m}(\Omega)$ by the correspondence

$$T_v \leftrightarrow v$$
 and $||T_v|| = ||v||_{-m}$.

Characterization of $H^{-m}(\Omega)$

• We characterize membership in $H^{-m}(\Omega)$ by showing

$$v \in H^{-m}(\Omega)$$
 if and only if $v = \sum_{|\alpha| \le m} \partial^{\alpha} v_{\alpha}$, where $v_{\alpha} \in L^{2}(\Omega)$.

- We use the preceding theorem.
- We prove that:

A distribution T belongs to $(H_0^m)'(\Omega)$ if and only if T is of the form T_v , where $v = \sum_{|\alpha| \le m} \partial^{\alpha} v_{\alpha}, v_{\alpha} \in L^2(\Omega)$.

Characterization of $H^{-m}(\Omega)$ (Part (i))

(i) Let T be a distribution of the form T_v with $v = \sum_{|\alpha| \le m} \partial^{\alpha} v_{\alpha}$. Let $u \in C_0^{\infty}(\Omega)$. Then

$$T_{\nu}(u) = \left\langle \sum_{|\alpha| \leq m} \partial^{\alpha} v_{\alpha}, u \right\rangle = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} \langle v_{\alpha}, \partial^{\alpha} u \rangle.$$

We know $C_0^{\infty}(\Omega)$ is dense in $H_0^{\infty}(\Omega)$. So the equality holds even when $u \in H_0^{\infty}(\Omega)$. Hence,

$$|T_{\nu}(u)| = \left|\sum_{|\alpha| \leq m} (-1)^{|\alpha|} (v_{\alpha}, \partial^{\alpha} \overline{u})_{0}\right| \leq \sum_{|\alpha| \leq m} ||v_{\alpha}||_{0} ||u||_{m}.$$

This clearly shows that T_v lies in $(H_0^m)'(\Omega)$.

George Voutsadakis (LSSU)

Characterization of $H^{-m}(\Omega)$ (Part (ii))

(ii) Suppose $T \in (H_0^m)'(\Omega)$.

Then there exists $g \in H_0^m(\Omega)$, such that, for all $f \in H_0^m(\Omega)$,

$$T(f) \stackrel{\text{Riesz}}{=} (f,g)_m = \sum_{|\alpha| \le m} (\partial^{\alpha} f, \partial^{\alpha} g)_0.$$

In particular, if $\phi \in C_0^{\infty}(\Omega) \subseteq H_0^m(\Omega)$,

$$T(\phi) = \sum_{|\alpha| \le m} (\partial^{\alpha} \phi, \partial^{\alpha} g)_0 = \sum_{|\alpha| \le m} (-1)^{|\alpha|} \langle \phi, \partial^{2\alpha} \overline{g} \rangle = \sum_{|\alpha| \le m} \langle \phi, \partial^{\alpha} g_{\alpha} \rangle,$$

where $g_{\alpha} = (-1)^{\alpha} \partial^{\alpha} \overline{g} \in L^{2}(\Omega)$. But $C_{0}^{\infty}(\Omega)$ is dense in $H_{0}^{m}(\Omega)$. So *T* has the form T_{ν} , with $\nu = \sum_{|\alpha| \le m} \partial^{\alpha} g_{\alpha}$, $g_{\alpha} \in L^{2}(\Omega)$.

Example

• Consider now the differential operator

$$(1-\Delta)^m$$
: $H^m(\Omega) \to \mathscr{D}'(\Omega)$,

where Δ is the Laplacian operator in \mathbb{R}^n and $m \in \mathbb{N}_0$. For $u \in H^m(\Omega)$ and $\phi \in C_0^{\infty}(\Omega)$,

$$\begin{aligned} \langle (1-\Delta)^m u, \phi \rangle &= \sum_{|\alpha| \le m} c_\alpha (-1)^{|\alpha|} \langle \partial^{2\alpha} u, \phi \rangle \\ &= \sum_{|\alpha| \le m} c_\alpha \langle \partial^\alpha u, \partial^\alpha \phi \rangle \\ &= \sum_{|\alpha| \le m} c_\alpha (\partial^\alpha u, \partial^\alpha \overline{\phi})_0, \end{aligned}$$

where c_{α} are the binomial coefficients of $(1 - \sum_{k=1}^{n} \partial_k^2)^m$.

Example (Cont'd)

• Now $1 \le c_{\alpha} \le c_m$, for some integer c_m . So we have

$$|\langle (1-\Delta)^m u, \phi \rangle| \le c_m \sum_{|\alpha| \le m} \|\partial^{\alpha} u\|_0 \|\partial^{\alpha} \phi\|_0 \le c_m \|u\|_m \|\phi\|_m.$$

This means that the mapping

$$\phi \mapsto \langle (1-\Delta)^m u, \phi \rangle = ((1-\Delta)^m u, \overline{\phi})_0$$

is a continuous linear functional on $C_0^{\infty}(\Omega)$, bounded in the H^m norm. It may therefore be extended by continuity to $H_0^m(\Omega)$. Thus, $(1-\Delta)^m u \in (H_0^m)'(\Omega) = H^{-m}(\Omega)$. We conclude that the linear differential operator $(1-\Delta)^m$ maps $H^m(\Omega)$ continuously into $H^{-m}(\Omega)$.

Subsection 5

Fourier Series and Periodic Distributions

Inner Product of Linear Combinations of Exponentials

Let

$$u(x) = \sum_{|\alpha| \le k} a_{\alpha} e^{i \langle \alpha, x \rangle}$$

be a finite sum of exponential functions with:

•
$$x \in \mathbb{R}^n$$
;
• $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}^n$;
• $|\alpha| = \sum_{i=1}^n |\alpha_i|$;

•
$$\langle \alpha, x \rangle = \alpha_1 x_1 + \dots + \alpha_n x_n$$
.

- The coefficients a_{α} are complex numbers which satisfy $a_{-\alpha} = \overline{a}_{\alpha}$ when u is a real function.
- For any integer *m*, we define the **inner product** of *u* with $v(x) = \sum_{|\alpha| \le k} b_{\alpha} e^{i\langle \alpha, x \rangle}$, by

$$(u,v)_m = (2\pi)^n \sum_{|\alpha| \le k} (1+|\alpha|^2)^m a_\alpha \overline{b}_\alpha$$

Some Observations

We have

$$(u,v)_0 = (2\pi)^n \sum_{|\alpha| \le k} a_\alpha \overline{b}_\alpha = \int u(x) \overline{v}(x) dx,$$

where the integral is taken over the cube $[-\pi,\pi]^n$. For this, it suffices o notice that, for $a \in \mathbb{Z}$,

$$\int e^{iax} dx = \begin{cases} (2\pi)^n, & \text{if } a = 0\\ 0, & \text{if } a \neq 0 \end{cases}$$

• We also have

$$a_{\alpha}=\frac{1}{(2\pi)^n}(u,e^{i\langle\alpha,x\rangle})_0.$$

The Norm Generated by the Inner Product

• The norm generated by this inner product is

$$\|u\|_{m} = \sqrt{(u,u)_{m}} = (2\pi)^{n/2} \left[\sum_{|\alpha| \le k} (1+|\alpha|^{2})^{m} |a_{\alpha}|^{2} \right]^{1/2}.$$

• The Schwarz inequality gives

 $|(u,v)_m| \le ||u||_m ||v||_m.$

• It may be generalized to

$$|(u,v)_m| \le ||u||_{m+\ell} ||v||_{m-\ell},$$

for any integer ℓ .

George Voutsadakis (LSSU)

The Space \widetilde{H}^m

• Let \widetilde{H}^m be the completion of the linear space of trigonometric polynomials of the form

$$u(x) = \sum_{|\alpha| \le k} a_{\alpha} e^{i \langle \alpha, x \rangle}$$

under the norm $\|\cdot\|_m$.

- \tilde{H}^m is a Hilbert space.
- The elements of \tilde{H}^m are represented by infinite sums of the form $\sum a_{\alpha}e^{i\langle\alpha,x\rangle}$, such that the norm

$$(2\pi)^{n/2} \left[\sum (1+|\alpha|^2)^m |a_{\alpha}|^2\right]^{1/2}$$

is finite.

Some Remarks

• When *m* is a nonnegative integer, this implies the convergence of the series in the $L^2([-\pi,\pi]^n)$ norm.

In his case

$$\sum a_{\alpha} e^{i \langle a, x \rangle}$$

is a Fourier series expansion of a periodic function in \mathbb{R}^n whose Fourier coefficients, in the classical sense, are a_{α} .

- The choice of $(2\pi)^n$ as the period is arbitrary.
- It can be changed by an appropriate change of scale of x.

The Operator ∂^{α}

• For every multi-index $\alpha \in \mathbb{N}_0^n$, we have

$$\partial^{\alpha} \sum a_{\beta} e^{i\langle \beta, x \rangle} = \sum (i\beta)^{\alpha} a_{\beta} e^{i\langle \beta, x \rangle},$$

where $(i\beta)^{\alpha} = (i\beta_1)^{\alpha_1}(i\beta_2)^{\alpha_2}\cdots(i\beta_n)^{\alpha_n}$.

So we obtain

$$\begin{aligned} \|\partial^{\alpha} \sum a_{\beta} e^{i\langle\beta,x\rangle}\|_{0}^{2} &= (2\pi)^{n} \sum |\beta^{\alpha} a_{\beta}|^{2} \\ &\leq (2\pi)^{n} \sum (1+|\beta|^{2})^{|\alpha|} |a_{\beta}|^{2} \\ &= \|\sum a_{\beta} e^{i\langle\beta,x\rangle}\|_{|\alpha|}^{2}. \end{aligned}$$

• In other words, for all $u \in \widetilde{H}^m$, $|\alpha| \le m$,

$$\|\partial^{\alpha} u\|_{0} \leq \|u\|_{|\alpha|}.$$

The Operator ∂^{α} (Cont'd)

• More generally, for all $u \in \widetilde{H}^m$, ℓ and α , such that $\ell + |\alpha| \le m$,

$$\|\partial^{\alpha}u\|_{\ell} \leq \|u\|_{\ell+|\alpha|}.$$

- This implies, in particular, that ∂^{α} is a bounded linear operator from \widetilde{H}^m to $\widetilde{H}^{m-|\alpha|}$, $|\alpha| \le m$.
- If $u \in \widetilde{H}^m$ and $\ell < m$, then $||u||_{\ell} \le ||u||_m$.
- So, if $\ell < m$, $\widetilde{H}^m \subseteq \widetilde{H}^\ell$.
- \widetilde{H}^0 is therefore the space of periodic functions which are square integrable over $[-\pi,\pi]^n$.
- It obviously includes \tilde{C}^0 , the continuous periodic functions in \mathbb{R}^n .

Example

- When m > 0, \tilde{H}^m is the space of periodic functions whose (distributional) derivatives up to order m are square integrable.
- To characterize \tilde{H}^m when m < 0, we first consider some examples. Example: Let $\sum a_{\alpha} e^{i\langle \alpha, x \rangle} \in \tilde{H}^m$, $m \ge 0$. Then, there exists a $u \in \tilde{H}^m$, such that, for any $\varepsilon > 0$, when k is large enough,

$$\|u(x)-\sum_{|\alpha|\leq k}a_{\alpha}e^{i\langle \alpha,x\rangle}\|_m<\varepsilon.$$

Consequently

$$\begin{split} \|\partial^{\beta}u - \sum_{|\alpha| \le k} (i\alpha)^{\beta} a_{\alpha} e^{i\langle \alpha, x \rangle} \|_{0} &= \|\partial^{\beta} \left[u - \sum_{|\alpha| \le k} a_{\alpha} e^{i\langle \alpha, x \rangle} \right] \|_{0} \\ &\leq \|u - \sum_{|\alpha| \le k} a_{\alpha} e^{i\langle \alpha, x \rangle} \|_{|\beta|} \\ &\leq \|u - \sum_{|\alpha| \le k} a_{\alpha} e^{i\langle \alpha, x \rangle} \|_{m} \\ &< \varepsilon. \end{split}$$

Therefore, $\sum_{|\alpha| \le k} (i\alpha)^{\beta} a_{\alpha} e^{i\langle \alpha, x \rangle} \to \partial^{\beta} u$ in $\widetilde{H}^0 = \widetilde{L}^2$, for all $|\beta| \le m$.

Example

We have

$$(1-\Delta)\sum a_{\alpha}e^{i\langle\alpha,x\rangle} = \sum (1+|\alpha|^2)a_{\alpha}e^{i\langle\alpha,x\rangle}$$

Thus,

$$(1-\Delta)^{-1}\sum a_{\alpha}e^{i\langle\alpha,x\rangle}=\sum(1+|\alpha|^2)^{-1}a_{\alpha}e^{i\langle\alpha,x\rangle}.$$

Therefore, for all $\ell \in \mathbb{Z}$,

$$(1-\Delta)^{\ell}\sum a_{\alpha}e^{i\langle\alpha,x\rangle} = \sum (1+|\alpha|^2)^{\ell}a_{\alpha}e^{i\langle\alpha,x\rangle}$$

Thus, for any pair of trigonometric polynomials

$$u_k = \sum_{|\alpha| \le k} a_{\alpha} e^{i \langle \alpha, x \rangle}$$
 and $v_k = \sum_{|\alpha| \le k} b_{\alpha} e^{i \langle \alpha, x \rangle}$,

we have

$$((1-\Delta)^{\ell} u_k, v_k)_m = (u_k, (1-\Delta)^{\ell} v_k)_m = (u_k, v_k)_{m+\ell}.$$

Example (Cont'd)

We got

$$((1-\Delta)^{\ell} u_k, v_k)_m = (u_k, (1-\Delta)^{\ell} v_k)_m = (u_k, v_k)_{m+\ell}.$$

Taking
$$v_k = (1 - \Delta)^{\ell} u_k$$
,
 $\|(1 - \Delta)^{\ell} u_k\|_m^2 = (u_k, (1 - \Delta)^{2\ell} u_k)_m = (u_k, u_k)_{m+2\ell}$.

Equivalently,

$$\|(1-\Delta)^{\ell} u_k\|_m = \|u_k\|_{m+2\ell}.$$

But the trigonometric polynomials are dense in \tilde{H}^m . So this equation can be extended by continuity to \tilde{H}^m . Hence, for any $u \in \tilde{H}^m$,

$$\|(1-\Delta)^{\ell}u\|_{m} = \|u\|_{m+2\ell}, \quad \ell, m \in \mathbb{Z}.$$

Example (Cont'd)

• For any $u \in \widetilde{H}^m$,

$$\|(1-\Delta)^{\ell}u\|_{m} = \|u\|_{m+2\ell}, \quad \ell, m \in \mathbb{Z}.$$

In particular, if *m* is replaced by -m and $\ell = m$, then

$$\|(1-\Delta)^m u\|_{-m} = \|u\|_m, \quad m \in \mathbb{Z}.$$

This equation implies that the linear mapping $(1-\Delta)^m : \widetilde{H}^m \to \widetilde{H}^{-m}$, $m \in \mathbb{Z}$ is bijective and norm preserving. Since \widetilde{H}^m is a Hilbert space, the Riesz representation theorem provides

another norm-preserving isomorphism between \tilde{H}^m and $(\tilde{H}^m)'$. So there is a norm-preserving isomorphism between $(\tilde{H}^m)'$ and \tilde{H}^{-m} . This allows identification of these two spaces for all integers m.

The Dual of the Real Space \widetilde{H}^{m}

Theorem

For all $m \ge 0$, \widetilde{H}^{-m} is the dual space of the real Hilbert space \widetilde{H}^m with respect to the inner product $(\cdot, \cdot)_0$ in the sense that T is a continuous linear functional on \widetilde{H}^m if and only if there is a unique $v \in \widetilde{H}^{-m}$, such that $T(u) = \langle v, u \rangle = (v, u)_0$, $u \in \widetilde{H}^m$. Furthermore, $||T|| = ||v||_{-m}$.

Suppose H
^m is real. Then the coefficients satisfy a_{-α} = ā_α.
 Let T be a continuous linear functional on H
^m in the (weak) topology defined by (·, ·)₀. Then, for any u ∈ H
^m and m≥0,

 $|T(u)| \le M ||u||_0 \le M ||u||_m.$

Hence T is also continuous in the (strong) topology of \widetilde{H}^m defined by $(\cdot, \cdot)_m$. By the Riesz Representation Theorem, there is a unique $v \in (\widetilde{H}^m)' = \widetilde{H}^{-m}$, such that: • $T(u) = (v, u)_0$;

•
$$||T|| = \sup \{(v, u)_0 : ||u||_m = 1\} = ||v||_{-m}.$$

Example

• Consider the trigonometric polynomial

$$f_p(x) = \sum_{k=-p}^{p} e^{ikx}, \quad x \in \mathbb{R}.$$

It converges in \widetilde{H}^m , whenever $m \leq -1$.

According to a previous theorem, the limit to which f_p converges in \tilde{H}^{-1} may be determined by considering the (weak) limit

$$\lim_{p\to\infty}\sum_{-p}^{p}(e^{ikx},\phi(x))_{0}=\lim_{p\to\infty}\sum_{-p}^{p}(e^{-ikx},\phi(x))_{0},$$

where ϕ is an arbitrary function in \widetilde{H}^1 . But $(e^{ikx}, \phi(x))_0$ is the expansion coefficient a_k of ϕ . So this limit is simply $\phi(0)$. Thus $\lim f_p = \widetilde{\delta}$, where $\widetilde{\delta}$ is a periodic version of the Dirac distribution. Its *m*-th derivative is $\widetilde{\delta}^{(m)} = \sum (ik)^m e^{ikx}$.

Sobolev Imbedding for \widetilde{H}^m

Theorem

If $m > \frac{1}{2}n$, then \widetilde{H}^m is a subspace of \widetilde{C}^0 .

• Let
$$m > \frac{1}{2}n$$
 and $u = \sum a_{\alpha} e^{i\langle \alpha, x \rangle} \in \widetilde{H}^{m}$. Then

$$(\sum |a_{\alpha}|)^{2} = [\sum (1+|\alpha|^{2})^{-\frac{1}{2}m} (1+|\alpha|^{2})^{\frac{1}{2}m} |a_{\alpha}|]^{2}$$

$$\leq [\sum (1+|\alpha|^{2})^{-m}][\sum (1+|\alpha|^{2})^{m} |a_{\alpha}|^{2}]$$

$$= \sum (1+|\alpha|^{2})^{-m} \frac{1}{(2\pi)^{n}} ||u||_{m}^{2} < \infty.$$

Thus, the Fourier series of u converges uniformly. Since $e^{i\langle \alpha, x\rangle}$ is continuous, the sum $\sum a_{\alpha}e^{i\langle \alpha, x\rangle}$ is continuous. • This result is generalized to

Theorem

If $m > \frac{1}{2}n + k$, where $k \ge 0$ is an integer, then \widetilde{H}^m is a subspace of \widetilde{C}^k .

The Spaces \widetilde{H}^{∞} and $\widetilde{H}^{-\infty}$

- Setting $\widetilde{H}^{\infty} = \bigcap \widetilde{H}^m$, we conclude that $\widetilde{H}^{\infty} = \widetilde{C}^{\infty}$.
- \widetilde{H}^{∞} is a locally convex topological vector space in the projective limit topology defined by $\{\widetilde{H}^m : m \in \mathbb{N}_0\}$.
- Similarly, we define $\widetilde{H}^{-\infty} = \bigcup \widetilde{H}^m$.
- *H̃*^{-∞} represents the dual of *H̃*[∞] in the inner product (·,·)₀. This may be seen by using the argument that was used for *H*^s. We have *H̃*^m ⊆ *H*^ℓ, when ℓ < m. Thus, for any positive integer m,

$$\bigcup_{|k| \le m} \widetilde{H}^k = \widetilde{H}^{-m}, \qquad \bigcap_{|k| \le m} \widetilde{H}^k = \widetilde{H}^m.$$

A previous theorem implies that $\bigcup_{|k| \le m} \widetilde{H}^k = (\bigcap_{|k| \le m} \widetilde{H}^k)'$. Since *m* was arbitrary, $\widetilde{H}^{-\infty} = (\widetilde{H}^{\infty})'$.

Distributions in $\widetilde{H}^{-\infty}$

- *H̃*^{-∞} is the space of periodic distributions, whose elements are continuous linear functionals on *C̃*[∞] in the (weak) topology defined by (·,·) = (·, ·)₀.
- That means $u \in \widetilde{H}^{-\infty}$ if, for every sequence ϕ_k in \widetilde{C}^{∞} , such that $\|\phi_k\|_m \to 0$, for all $m \ge 0$,

$$|(u,\phi_k)_0| \le ||u||_{-m} ||\phi_k||_m \to 0, \quad \text{for all } m.$$

• Equivalently, $u \in \widetilde{H}^{-\infty}$ if, for every sequence ϕ_k in \widetilde{C}^{∞} , such that $\partial^{\alpha} \phi_k \to 0$ uniformly for all $\alpha \in \mathbb{N}_0^n$,

$$|(u,\phi_k)_0| \le ||u||_{-m} ||\phi_k||_m \to 0$$
, for all m .

$\widetilde{H}^{-\infty}$ and Duality

- When *m* is a positive integer, we have already shown that \tilde{H}^{-m} represents the continuous linear functionals on \tilde{H}^{m} .
- But $\widetilde{H}^{\infty} = \widetilde{C}^{\infty}$ is dense in \widetilde{H}^m .
- So \tilde{H}^{-m} may also be identified with the subspace of $\tilde{H}^{-\infty}$ consisting of the distributions u for which $(u, \phi_k)_0 \to 0$ whenever ϕ_k is a sequence in \tilde{C}^{∞} which converges to 0 in \tilde{H}^m .

Periodicity and Representation in $\widetilde{H}^{-\infty}$

- The translation of $u \in \widetilde{H}^{-\infty}$ by $(2\pi, ..., 2\pi)$ is denoted by $\tau_{2\pi}$.
- It satisfies, for all $\phi \in \widetilde{C}^{\infty}$,

$$\langle \tau_{2\pi} u, \phi \rangle = \langle u, \tau_{-2\pi} \phi \rangle = \langle u, \phi \rangle.$$

- Recall that:
 - Trigonometric polynomials are complete in \tilde{H}^m , for every *m*;
 - $\tilde{H}^{-\infty} = \bigcup \tilde{H}^m$.
- So trigonometric polynomials are complete in $\tilde{H}^{-\infty}$, in the sense that every $u \in \tilde{H}^{-\infty}$ is the limit as $k \to \infty$ of a sum

$$\sum_{\alpha|\leq k}b_{\alpha}e^{i\langle\alpha,x\rangle}.$$

Representation in $\widetilde{H}^{-\infty}$ (Cont'd)

• Note that any $\phi \in \widetilde{C}^{\infty}$ is represented by a series

 $\sum a_{\alpha}e^{i\langle \alpha,x
angle}$,

where $|\alpha|^m a_{\alpha} \xrightarrow{|\alpha| \to \infty} 0$, for all $m \ge 0$. Hence,

$$\langle u,\phi\rangle = \sum (u,a_{\alpha}e^{i\langle\alpha,x\rangle})_0 = \sum \overline{a}_{\alpha}(u,e^{i\langle\alpha,x\rangle})_0,$$

where $a_{\alpha} = \frac{1}{(2\pi)^n} (\phi(x), e^{i\langle \alpha, x \rangle})_0$ are the Fourier coefficients of ϕ . Denote $(u, e^{i\langle \alpha, x \rangle})_0$ by $(2\pi)^n b_{\alpha}$. We then have

$$\begin{array}{lll} \langle u, \phi \rangle &=& (2\pi)^n \sum b_\alpha \overline{a}_\alpha \\ &=& (\sum b_\alpha e^{i\langle \alpha, x \rangle}, \sum a_\alpha e^{i\langle \alpha, x \rangle})_0 \\ &=& (\sum b_\alpha e^{i\langle \alpha, x \rangle}, \phi)_0. \end{array}$$

Thus, *u* is represented by the series $u(x) = \sum b_{\alpha} e^{i \langle \alpha, x \rangle}$.

Example (Estimating Approximation Error)

• Let
$$n = 1$$
. Assume $f(x) = \sum a_k e^{ikx} \in \widetilde{H}^m$, $m \ge 1$. Then

$$\begin{split} \left| f(x) - \sum_{|k| \le \ell} a_k e^{ikx} \right| &\leq \sum_{|k| > \ell} |a_k| \\ &\leq \left[\sum_{|k| > \ell} (1+k^2)^m |a_k|^2 \right]^{1/2} \left[\sum_{|k| > \ell} (1+k^2)^{-m} \right]^{1/2} \\ &\leq \frac{1}{\sqrt{2\pi}} \| f \|_m \left[\sum_{|k| > \ell} (1+k^2)^{-m} \right]^{1/2}. \end{split}$$

Now

$$\sum_{|k|>\ell} (1+k^2)^{-m} \le 2\int_{\ell}^{\infty} \frac{dt}{(1+t^2)^m} \le 2\int_{\ell}^{\infty} \frac{1}{t^{2m}} dt = \frac{2}{2m-1} \frac{1}{\ell^{2m-1}}.$$

This yields the estimate $\sup_{x \in \mathbb{R}} |f(x) - \sum_{|k| \le \ell} a_k e^{ikx}| \le c\ell^{-m+\frac{1}{2}}$, where *c* is a positive constant which depends on *f* and *m*. Thus $\ell^{-m+\frac{1}{2}}$ indicates the rate of convergence of the Fourier series for *f* as ℓ increases. The greater the (positive) integer *m*, the smoother the function *f* and the faster the convergence of the series.

George Voutsadakis (LSSU)

Theory of Distributions

Inclusions Involving \widetilde{H}^m and \widetilde{C}^m

Claim: The inclusion relations $\tilde{C}^m \subseteq \tilde{H}^m \subseteq \tilde{C}^{m-1}$ can also be shown to hold when n = 1 and $m \ge 1$. Let $f(x) = \sum a_k e^{ikx} \in \tilde{C}^m$. Then

$$f^{(m)}(x) = \sum (ik)^m a_k e^{ikx} \in \widetilde{C}^0 \subseteq \widetilde{H}^0 = \widetilde{L}^2.$$

Hence, $\sum k^{2m} |a_k|^2 < \infty$. Consequently, $\sum (1 + k^2)^m |a_k|^2 < \infty$. This means that $f \in \widetilde{H}^m$. The inclusion $\widetilde{H}^m \subseteq \widetilde{C}^{m-1}$ follows from a previous theorem.

Example

- Let *L*¹ be the space of periodic functions which are locally integrable. We show that *L*¹ ⊆ *H*⁻¹ when n = 1. Let u = ∑ a_ke^{ik} ∈ *L*¹. Let φ(x) = ∑ b_ke^{ikx} is any function in *H*¹. Then ⟨u,φ⟩ = (u,φ)₀ = 2π∑ a_kb_k. By the Riemann-Lebesgue Lemma, a_k → 0 as |k| → ∞. So there is a positive integer ℓ, such that |a_k| ≤ 1, for all |k| ≥ ℓ. Note that:
 - The series $\sum (1+k^2)^{-1}$ converges;
 - The series $\sum (1+k^2)|b_k|^2$ converges since $\phi \in \widetilde{H}^1$.

Therefore, given $\varepsilon > 0$, for large enough ℓ , we have

$$\begin{split} \sum_{|k| \ge \ell} |a_k b_k| &\le \sum_{|k| \ge \ell} |b_k| \\ &\le \left[\sum_{|k| \ge \ell} (1+k^2)^{-1} \right]^{1/2} \left[\sum_{|k| \ge \ell} (1+k^2) |b_k|^2 \right]^{1/2} \\ &< \varepsilon. \end{split}$$

Hence, $|\langle u, \phi \rangle| \le 2\pi \sum |a_k b_k| \le c \|\phi\|_1$, for some constant *c*. So *u* defines a continuous linear functional on \widetilde{H}^1 , i.e., $u \in \widetilde{H}^{-1}$.

Product of \widetilde{C}^{∞} by \widetilde{H}^m

• Since $L^2_{loc} \subseteq L^1_{loc}$ we also have $\widetilde{L}^2 \subseteq \widetilde{L}^1$. Combining this with the preceding inclusions, we ge

$$\widetilde{H}^1 \subseteq \widetilde{C}^0 \subseteq \widetilde{L}^2 \subseteq \widetilde{L}^1 \subseteq \widetilde{H}^{-1}.$$

Theorem

If $\phi \in \widetilde{C}^{\infty}$ and $u \in \widetilde{H}^m$, then $\phi u \in \widetilde{H}^m$ and $\|\phi u\|_m \le c \|u\|_m$, where c is a constant which depends on ϕ and m.

• If $m \ge 0$, then, by Leibniz's Formula, $\|\phi u\|_m$ is bounded by a constant multiple of $\|u\|_m$.

If m < 0, then

$$\|\phi u\|_{m} = \sup\left\{\frac{(\phi u, v)_{0}}{\|v\|_{|m|}} : v \in \widetilde{H}^{|m|}\right\} \le \sup_{v \ne 0} \frac{\|u\|_{m} \|\phi v\|_{|m|}}{\|v\|_{|m|}}$$

But $\|\phi v\|_{|m|} \le c \|v\|_{|m|}$. Hence, $\|\phi u\|_m \le c \|u\|_m$.

Differential Operators on \widetilde{H}^{m}

• Since ∂^{α} maps \widetilde{H}^m continuously into $\widetilde{H}^{m-|\alpha|}$, this theorem implies

Corollary

The linear differential operator of order ℓ , $L = \sum_{|\alpha| \le \ell} a_{\alpha} \partial^{\alpha}$, with coefficients in \widetilde{C}^{∞} maps \widetilde{H}^m continuously into $\widetilde{H}^{m-\ell}$, with $\|Lu\|_{m-\ell} \le c \|u\|_m$, $u \in \widetilde{H}^m$.

• The converse, i.e., that $Lu \in \widetilde{H}^m$ implies that $u \in \widetilde{H}^{m+\ell}$ is true, provided L is elliptic.

In that case, it may be deduced from the Local Regularity Theorem.

• The similarity of these results with those obtained earlier in this chapter are due to a striking analogy between Fourier series and Fourier transforms.

In the series, the weight function $(1+|\xi|^2)^s$ in the integral which defines the inner product in H^s corresponds to $(1+|\alpha|^2)^m$ in the sum

$$(u,v)_m = (2\pi)^n \sum_{|\alpha| \le k} (1+|\alpha|^2)^m a_\alpha \overline{b}_\alpha.$$