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Distributions in Hilbert Space Hilbert Space

Subsection 1

Hilbert Space
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Distributions in Hilbert Space Hilbert Space

Hilbert Spaces

A Hilbert space H is a Banach space whose norm is defined by an
inner product.

In a (complex) Hilbert space the inner product of any pair of vectors,
u,v ∈H is a complex number (w ,v) with the following properties:

(i) (au+bv ,w)= a(u,w)+b(v ,w), for all u,v ,w ∈H and a,b ∈C;

(ii) (u,v)= (v ,u), for all u,v ∈H ;
(iii) (u,u)> 0, whenever u 6= 0.

We clearly have (u,av)= a(u,v).

The inner product of any vector with the zero vector is zero.

The norm of any u ∈H , denoted by ‖u‖H or simply ‖u‖, is defined by

‖u‖=
√
(u,u).

With this definition, the properties for the norm are satisfied.
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Distributions in Hilbert Space Hilbert Space

Schwarz Inequality and the Parallelogram Law

We have two additional properties of inner product spaces.

The Schwarz Inequality: For all u,v ∈H ,

|(u,v)| ≤ ‖u‖‖v‖;

The Parallelogram Law: For all u,v ∈H ,

‖w +v‖2+‖u−v‖2 = 2(‖u‖2+‖v‖2).

George Voutsadakis (LSSU) Theory of Distributions January 2024 5 / 108



Distributions in Hilbert Space Hilbert Space

The Space L
2(Ω)

Let Ω be an open subset of Rn.

The space L2(Ω) is an example of a Hilbert space.

The inner product of any two functions f and g is defined by

(f ,g)=
∫

Ω

f (x)g(x)dx .
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Distributions in Hilbert Space Hilbert Space

Orthogonality

Any two vectors u,v ∈H are said to be orthogonal if

(u,v)= 0.

The notion of orthogonality provides a geometric structure in the
Hilbert space that generalizes that of the (finite dimensional)
Euclidean space Rn.
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Distributions in Hilbert Space Hilbert Space

Continuity, Dual Space and Strong Convergence

A linear functional T on the Hilbert space H is continuous if and only
if

|T (φ)| ≤M‖φ‖H , φ ∈H ,

for some positive constant M.

In the dual space H
′, we define the norm

‖T‖H ′ = sup{|T (φ)| :φ ∈H ,‖φ‖H = 1}.

This norm generates a topology on H
′.

In H
′, equipped with this topology, convergence of the sequence (Ti)

to 0 is equivalent to the uniform convergence of Ti(φ) to 0 on every
bounded subset of H .

This was defined as strong convergence in H
′.
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Distributions in Hilbert Space Hilbert Space

Riesz Representation Theorem

For any vector ψ in H , the map from H to C defined by φ 7→ (φ,ψ)
is (by properties of the inner product) a linear functional on H .

The Schwarz inequality |(φ,ψ)| ≤ ‖ψ‖H ‖φ‖H shows its continuity.

Riesz Representation Theorem:

Every continuous linear functional on H is defined in this way.

That is, to every continuous linear functional T on H , there exists a
unique vector ψ ∈H , such that

T (φ)= (φ,ψ), for all φ ∈H ,

and
‖T‖H ′ = ‖ψ‖H .
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Distributions in Hilbert Space Hilbert Space

Consequences of the Riesz Representation Theorem

The dual space H
′ of continuous linear functionals on H is also a

Hilbert space.

The correspondence ψ↔Tψ defines a norm-preserving bijection, or
isometry, between H and H

′.

Even though H and H
′ may be identified as sets, they cannot be

identified as linear spaces.

Indeed the linear combination a1ψ1+a2ψ2 in H corresponds to the
conjugate linear combination a1Tψ1 +a2Tψ2 , unless of course H is
a real Hilbert space.
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Distributions in Hilbert Space Hilbert Space

Reflexivity of Hilbert Spaces

The second dual of H , H
′′ = (H ′)′ composed of the continuous

linear functionals on H
′ may be identified with H .

Linearity in this case is restored to the correspondence between the
elements of H and the elements of H

′′.

This is the reflexive property of the Hilbert space.
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Distributions in Hilbert Space Sobolev Spaces

Subsection 2

Sobolev Spaces
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Distributions in Hilbert Space Sobolev Spaces

The Sobolev Space H
m(Ω)

For any integer m ∈N0 and any open Ω⊆Rn, we define the Sobolev

space Hm(Ω) to be the set of all functions φ ∈ L2(Ω) whose
distributional derivatives ∂αφ are also in L2(Ω), for every α ∈Nn

0 , with
|α| ≤m, i.e.,

Hm(Ω)= {φ ∈ L2(Ω) : ∂αφ ∈ L2(Ω), |α| ≤m}.

Thus, Hm(Ω) is the subspace of distributions φ ∈D
′(Ω), such that

∂αφ ∈ L2(Ω), for all |α| ≤m.

We clearly have

D
′(Ω)⊇ L2(Ω)=H0(Ω)⊇H1(Ω)⊇H2(Ω)⊇ ·· · .
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Distributions in Hilbert Space Sobolev Spaces

Inner Product in Sobolev Space

The inner product of two functions φ1,φ2 ∈Hm(Ω) is defined by

(φ1,φ2)m =
∑

|α|≤m

∫

Ω

∂αφ1(x)∂
αφ2(x)dx .

The norm of φ ∈Hm(Ω) is given by

‖φ‖m,2 =
√
(φ,φ)m =

[
∑

|α|≤m

∫

Ω

|∂αφ(x)|2dx
]1/2

.

The subscript 2 indicates the use of the L2 norm.

We have
‖φ‖2

m,2 =
∑

|α|≤m
‖∂αφ‖2

2, m ∈N0.

When m= 0, ‖φ‖0,2 = ‖φ‖2.
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Distributions in Hilbert Space Sobolev Spaces

The Banach Space H
m,p(Ω)

If L2 is replaced by Lp in the definition, 1≤ p <∞, then the resulting
norm

‖φ‖m,p =
[

∑

|α|≤m
‖∂αφ‖pp

]1/p

generates the Banach spaces Hm,p(Ω).

Hm,p(Ω) is a Hilbert space only when p = 2.

We restrict to this case and write Hm(Ω) for Hm,2(Ω).
Similarly ‖·‖m,2 will be abbreviated to ‖·‖m =‖·‖Hm , which should not
be confused with the Lp norm ‖·‖p = ‖·‖Lp .

Only L2 will be relevant to the Hilbert space theory of distributions,
and the L2 norm ‖·‖2 will henceforth be designated by ‖·‖0.

Thus, we can write

‖φ‖m =
[

∑

|α|≤m
‖∂αφ‖2

0

]1/2

=
[

∑

|α|≤m

∫

Ω

|∂αφ(x)|2dx
]1/2

.
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Distributions in Hilbert Space Sobolev Spaces

Example

Let Ω be an open interval in R containing the closed interval [a,b].

Suppose f is the characteristic function of [a,b].

Then, for all φ ∈D(Ω),

〈f ′,φ〉 =
∫

Ω

f (x)φ′(x)dx =
∫b

a
φ′(x)dx =φ(b)−φ(a).

So f ′ = δa−δb.

Consequently, f 6∈H1(Ω).

On the other hand, if:

Ω is bounded;
f is continuous on Ω;
f ′ is bounded except at a finite number of points in Ω,

then f ∈H1(Ω).
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Distributions in Hilbert Space Sobolev Spaces

H
m(Ω) is a Hilbert Space

Theorem

Hm(Ω) is a Hilbert space.

Hm(Ω) is a normed linear space whose norm is derived from an inner
product.

So it suffices to show that Hm(Ω) is complete.

Let (φk) be a Cauchy sequence in Hm(Ω).

Thus, we have ‖φk −φj‖m → 0.

This implies, by the definition of ‖·‖m, that

‖∂αφk −∂αφj‖0 → 0, |α| ≤m.

So the sequence (∂αφk) is a Cauchy sequence in L2(Ω), α≤m.
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Distributions in Hilbert Space Sobolev Spaces

H
m(Ω) is a Hilbert Space (Cont’d)

The sequence (∂αφk) is a Cauchy sequence in L2(Ω), α≤m.

Since L2(Ω) is complete, the sequence (∂αφk) converges in L2(Ω) to
some function φα ∈ L2(Ω).

By the Schwarz inequality

∣∣∣∣
∫

Ω

[∂αφk(x)−φα(x)]ψ(x)dx

∣∣∣∣≤‖∂αφk −φα‖0‖ψ‖0, ψ ∈D(Ω).

We now see that, as k →∞,
∫

Ω

∂αφk(x)ψ(x)dx →
∫

Ω

φα(x)ψ(x)dx , ψ ∈D(Ω).
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Distributions in Hilbert Space Sobolev Spaces

H
m(Ω) is a Hilbert Space (Cont’d)

But fk → f in L2(Ω) implies fk → f in D
′(Ω).

So we have, for all φ ∈D(Ω),

∫
Ω
∂αφk(x)ψ(x)dx = 〈∂αφk ,ψ〉

= (−1)|α|〈φk ,∂αψ〉
→ (−1)|α|〈φ,∂αψ〉.

(φ= limφk in L2(Ω).)

But

(−1)|α|〈φ,∂αψ〉 = 〈∂αφ,ψ〉 =
∫

Ω

∂αφ(x)ψ(x)dx .

Hence, φα = ∂αφ.

So φ, which is clearly in Hm(Ω), is the limit of φk in the Hm norm.
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Distributions in Hilbert Space Sobolev Spaces

Redefining Sobolev Space

To apply Fourier transformation to Hm(Ω), we take Ω=Rn.

A function f is in Hm =Hm(Rn) if and only if ∂αf is in L2, |α| ≤m.

Hence Hm ⊆ L2 ⊆S
′. Using preceding results, we get

‖f ‖m = [
∑

|α|≤m ‖∂αf ‖2
0]

1/2

= (2π)−
n
2 [

∑
|α|≤m ‖∂̂αf ‖2

0]
1/2

= (2π)−
n
2 [

∑
|α|≤m ‖ξα f̂ ‖2

0]
1/2

≤ c1‖(1+|ξ|2)
1
2m f̂ ‖0,

where c1 is a positive constant (which depends on m).

Similarly, there is a positive constant c2, such that

‖(1+|ξ|2)
1
2m f̂ ‖0 ≤ c2(2π)

−n/2
[

∑

|α|≤m
‖ξαf̂ ‖2

0

]1/2

= c2‖f ‖m.

So a tempered distribution f is in Hm if and only if (1+|ξ|2)
1
2m f̂ ∈ L2.
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Distributions in Hilbert Space Sobolev Spaces

Redefining Sobolev Space (Cont’d)

We redefine the Sobolev space Hm, m ∈N0 as the space of tempered
distributions f ∈S

′, such that

(1+|ξ|2)
1
2m f̂ ∈ L2

.

The scalar product is

(f ,g)m̂ =
∫
(1+|ξ2)m f̂ (ξ)ĝ(ξ)dξ.

The norm is

‖f ‖m̂ =
[∫

(1+|ξ|2)m|f̂ (ξ)|2dξ
]1/2

.

Note that the norms ‖·‖m and ‖·‖m̂, though equivalent, are not equal.

In particular we note, by Plancherel’s Theorem,

‖f ‖0̂ = (2π)
n
2 ‖f ‖0.
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Distributions in Hilbert Space Sobolev Spaces

The Space H
s(Rn)

The definition of Hm in the preceding slide is equivalent to the original
when m≥ 0 is an integer and Ω=Rn, but allows for an extension to
any real.

Definition

For any s ∈R, we define Hs(Rn) to be the tempered distributions whose
Fourier transforms are square-integrable with respect to the measure
(1+|ξ|2)sdξ, i.e.,

Hs(Rn)= {f ∈S
′ : (1+|ξ|2)

1
2 s f̂ (ξ) ∈ L2(Rn)}.
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Distributions in Hilbert Space Sobolev Spaces

H
s is a Hilbert Space

Claim: Hs , equipped with the inner product

(f ,g)ŝ =
∫
(1+|ξ|2)s f̂ (ξ)ĝ(ξ)dξ

and the norm

‖f ‖ŝ =
√
(f , f )ŝ =

[∫
(1+|ξ|2)s |f̂ (ξ)|2dξ

]1/2

,

is a Hilbert space.

Suppose (fk) is a Cauchy sequence in Hs .

Then (1+|ξ|2)
1
2 s f̂k is a Cauchy sequence in L2.

By the completeness of L2, (1+|ξ|2)
1
2 s f̂k converges to some g ∈ L2.

Therefore, fk → f =F
−1[(1+|ξ|2)−s/2g ] in Hs , for every s ∈R.

But (1+|ξ|2)
1
2 s f̂ = g is in L2. Thus, f is in Hs .
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Distributions in Hilbert Space Sobolev Spaces

Inclusions Between Sobolev Spaces

Suppose s ≥ 0.

Then
‖f ‖0 = (2π)−

n
2 ‖f ‖0̂ ≤ (2π)−

n
2 ‖f ‖ŝ .

Thus, Hs ⊆ L2.

In general, we have the following inclusion relations.

Theorem

For all real numbers s and t with s > t, we have S ⊆Hs ⊆Ht ⊆S
′ and the

identity mappings S →Hs →Ht →S
′ are continuous. Furthermore, S is

dense in Hs , for all s ∈R.

The inclusion relations between the spaces as sets are obvious.

It is also clear that if φk → 0 in S then ‖φk‖ŝ → 0, for any s ∈R.

But ‖φk‖t̂ ≤ ‖φk‖ŝ , whenever t < s. This implies that ‖φk‖t̂ → 0.
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Distributions in Hilbert Space Sobolev Spaces

Inclusions Between Sobolev Spaces (Cont’d)

For any ψ ∈S , F
−1(ψ) is also in S .

We have

〈φk ,ψ〉 = 〈φ̂k ,F−1(ψ)〉

= 〈(1+|x |2)
t
2 φ̂k ,(1+|x |2)−

t
2 F

−1(ψ)〉

≤ ‖φk‖t̂‖(1+|x |2)−
t
2 F

−1(ψ)‖0.

This means that φk → 0 in S
′ when φk → 0 in Ht .
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Distributions in Hilbert Space Sobolev Spaces

Inclusions Between Sobolev Spaces (Cont’d)

Finally, if f ∈Hs , then (1+|ξ|2)
s
2 f̂ is in L2.

But S is dense in L2.

So there is a sequence (φk) in S , such that φk → (1+|ξ|2)
s
2 f̂ in L2.

But ψ̂k = (1+|ξ|2)−
s
2φk is in S , for every s ∈R.

Hence,
‖(1+|ξ|2)

s
2 (f̂ − ψ̂k)‖0 → 0.

So ‖f −ψk‖ŝ → 0, where (ψk) is clearly a sequence in S .

We know that C∞
0

is dense in S .

By the theorem, it is also dense in Hs .

Corollary

Hs is the completion of C∞
0

under the norm ‖·‖ŝ .
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Distributions in Hilbert Space Sobolev Spaces

The Topological Dual of H s

As a Hilbert space Hs has a dual space with respect to the inner
product (f ,g) 7→ (f ,g)ŝ which may be identified with Hs .

That space is not the same as its dual in the bilinear form
(f ,g) 7→ 〈f ,g〉 = (f ,g)0 except when s = 0 and the space is real.
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Distributions in Hilbert Space Sobolev Spaces

Characterization of the Topological Dual of H s

Theorem

H−s represents the topological dual of Hs , for all s ∈R, and

|〈f ,φ〉| ≤
1

(2π)n
‖f ‖−̂s‖φ‖ŝ , for all φ ∈Hs , f ∈H−s .

A function f ∈S defines a continuous linear functional on S by
setting, for all φ ∈S ,

Tf (φ) = 〈f ,φ〉
=

∫
f (x)φ(x)dx

= 1
(2π)n

∫
f̂ (ξ)φ̂(−ξ)dξ,

where the last equality follows from Parseval’s relation.
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Distributions in Hilbert Space Sobolev Spaces

The Topological Dual of H s (Cont’d)

We write

f̂ (ξ)φ̂(−ξ)= (1+|ξ|2)−
s
2 f̂ (ξ)(1+|ξ|2)

s
2 φ̂(−ξ).

Using Schwarz’ inequality, we obtain

|〈f ,φ〉| ≤
1

(2π)n
‖f ‖−̂s‖φ‖ŝ .

Since S is dense in Hs , for all s, the bilinear form 〈f ,φ〉 can be
extended from S ×S to H−s ×Hs , with the inequality still valid.

Since the dual of Hs is a subset of S
′, H−s is a subset of (Hs )′.
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Distributions in Hilbert Space Sobolev Spaces

The Topological Dual of H s (Cont’d)

To show that (Hs )′ ⊆H−s , let T ∈ (Hs)′ be arbitrary.

Then, by the Riesz Representation Theorem for the Hilbert space Hs ,
there is a function f ∈Hs , such that, for all φ ∈Hs ,

T (φ) = (φ, f )ŝ

=
∫
(1+|ξ|2)s φ̂(ξ)f̂ (ξ)dξ

=
∫
φ(x)h(x)dx ,

where h(x)= (2π)nF−1((1+|ξ|2)s f̂ (ξ)).
Now the function

(1+|ξ|2)−
s
2 ĥ(ξ)= (2π)n(1+|ξ|2)

s
2 f̂ (ξ)

is in L2. This means that h is in H−s .

Moreover, it represents T in the sense that T (φ)= 〈h,φ〉, for all φ ∈H.
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Distributions in Hilbert Space Sobolev Spaces

Characterization of Distributions in H
−m

When s is a nonnegative integer we have the following
characterization of H−s .

Theorem

f ∈H−m, where m ∈N0, if and only if f is a finite sum of derivatives of
order less than or equal to m of L2 functions.

Let f ∈H−m.

The function (1+|ξ|2)−
m
2 f̂ (ξ) is in L2. Then

(1+|ξ|2)
m
2 ≤ (1+|ξ|)m

= [1+ (ξ2
1 +·· ·+ξ2

n)
1/2]m

≤ (1+|ξ1|+ · · ·+ |ξn|)m

= 1+
∑

1≤|α|≤m
cα|ξα|,

where cα are nonnegative integers and α is a multi-index in Nn
0.
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Distributions in Hilbert Space Sobolev Spaces

Characterization of Distributions in H
−m (Cont’d)

We got
(1+|ξ|2)

m
2 ≤ 1+

∑
1≤|α|≤m

cα|ξα|.

Let

ĝ(ξ)=
(
1+

∑

1≤|α|≤m
cα|ξα|

)−1

f̂ (ξ).

The preceding inequality implies that ĝ(ξ) satisfies

|ĝ(ξ)| ≤ (1+|ξ|2)−
m
2 |f̂ (ξ)|.

Hence g is also in L2.
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Distributions in Hilbert Space Sobolev Spaces

Characterization of Distributions in H
−m (Cont’d)

Now we can write

f̂ (ξ)=
(
1+

∑

1≤|α|≤m
cα|ξα|

)
ĝ(ξ)=

∑

|α|≤m
ξαĝα(ξ),

where ĝα(ξ)=
{

ĝ(ξ), when |α| = 0
cα|ξα|ξ−αĝ(ξ), when 1≤ |α| ≤m

.

Clearly ĝα is in L2 whenever ĝ is in L2.

Taking the inverse Fourier transform of f̂ , gives

f (x)=
∑

|α|≤m
Dαgα(x),

with gα ∈ L2, for all |α| ≤m.

Conversely, assume f =
∑

|α|≤m ∂αgα, with gα ∈ L2.

Then ∂αgα ∈H−m, for all |α| ≤m. Consequently f ∈H−m.
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Distributions in Hilbert Space Sobolev Spaces

The Spaces Hm, m ∈Z

Every g ∈ L2 is a distribution of order 0.

Apply the inequality
|〈f ,φ〉| ≤M |φ|0

where M = ‖f ‖0[volume(suppφ)].

Corollary

Every element of Hm, m ∈Z, is a distribution of finite order.

This result, of course, also follows from the inclusion Hs ⊆S
′, for all

s ∈R.
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Distributions in Hilbert Space Sobolev Spaces

Example

We know that

δ̂= 1;
(1+|ξ|2)

1
2 s ∈ L2(R) provided s <−1

2n.

It follows that δ ∈Hs , for all s <−1
2
n.

When n= 1, the Dirac measure δ lies in H−1(R).

Consequently, it a sum of the form f1+ f ′2 with f1, f2 ∈ L2(R).

One possible choice for these functions is given by

f1(x)=
1

2
e−|x |, f2(x)=

1

2
e−|x |sgnx .

One uses the facts that

(sgnx)2 = 1 almost everywhere;
(sgnx)′ = 2δ.
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Distributions in Hilbert Space Sobolev Spaces

The Sobolev Imbedding Theorem

For s ≥ 0, Hs is a subspace of L2 and its functions would be expected
to achieve higher degrees of smoothness with increasing values of s, as
their derivatives of higher order have to lie in L2.

The Sobolev Imbedding Theorem

If s > n
2
, then Hs ⊆C 0 with continuous injection.

The function (1+|ξ|2)−s is integrable if and only if s > 1
2
n.

Therefore, when s > 1
2
n and f ∈Hs , we have

∫
|f̂ (ξ)|dξ =

∫
(1+|ξ|2)−

s
2 (1+|ξ|2)

s
2 |f̂ (ξ)|dξ

≤ ‖f ‖ŝ
∫
(1+|ξ|2)−sdξ.

(by the Schwarz inequality)

This implies that f̂ is in L1 ⊆S
′.

So the inverse Fourier of f exists and satisfies f (x)= 1
(2π)n

̂̂f (−x).
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Distributions in Hilbert Space Sobolev Spaces

The Sobolev Imbedding Theorem (Cont’d)

We saw f̂ is in L1.

So its Fourier transform

̂̂
f (x)=

∫
e−i〈x ,ξ〉f̂ (ξ)dξ

is continuous on Rn.

It follows that f is also continuous on Rn.

We show that the topology of Hs , s > 1
2
n, is stronger than that of C 0.

Let ‖fk‖ŝ → 0. By the preceding inequality, ‖f̂k‖L1 → 0.

But the Fourier transformation is continuous from L1 to C 0.

Hence fk(x)= 1
(2π)n

̂̂
f k(−x)→ 0 in C 0.
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Distributions in Hilbert Space Sobolev Spaces

Remarks on the Imbedding Theorem

As an element of Hs , f is really a class of functions which are equal
almost everywhere.

By writing equations f (x)= 1
(2π)n

̂̂f (−x), we are choosing the

continuous representative of that class.

This is actually the sense in which the inclusion Hs ⊆C 0 should be
understood in the theorem.

We know f̂ ∈ L1.

The Riemann-Lebesgue Lemma yields ̂̂f → 0 as |x |→∞.

Thus, when s > 1
2
n, Hs actually lies in the subspace C 0

∞ of C 0 which
consists of all continuous functions on Rn that vanish at ∞.
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More on the Sobolev Imbedding Theorem

Corollary

If s > 1
2
n+k , where k is a nonnegative integer, then Hs ⊆C k , with

continuous injection.

If f ∈Hs , then ∂αf ∈Hs−|α|.

Suppose s > 1
2
n+k and |α| ≤ k .

Then s −|α| ≥ s −k > 1
2
n.

By the theorem, ∂αf ∈C 0.

Now the distributional derivative coincides with the ordinary derivative
when it is continuous.

We conclude that f ∈C k .
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Example

If u(x)= e−|x |, x ∈R, then

û(ξ)=
2

1+ξ2
.

So u ∈Hs if and only if (1+ξ2)
1
2 (s−2) ∈ L2.

This yields that u ∈Hs if and only if s < 3
2
.

With n= 1, Sobolev’s Imbedding Theorem guarantees the continuity
of u but not its differentiability.

This is consistent with the fact that e−|x | is continuous but not
differentiable on R.
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The Spaces H∞ and H
−∞

Define

H∞(Rn)=
⋂
s∈R

Hs(Rn), H−∞(Rn)=
⋃
s∈R

Hs(Rn).

By the above corollary, H∞ is a subspace of C∞.

A function φ in C∞ lies in H∞ if ∂αφ ∈ L2, for all α ∈Nn
0 .

This means φ(x) and all its partial derivatives tend to 0 as |x |→∞.
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The Topology on H
∞

The topologies of H∞ and H−∞ are defined so that the inclusion
relations

H∞ ⊆Hs ⊆H−∞

for any real number s become imbeddings.

We define the topology of H∞ to be the weakest locally convex
topology such that the identity mapping from H∞ to Hs is continuous
for every s.

This is the projective limit topology of {Hs : s ∈R} introduced
previously.
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The Topology on H
−∞

We saw that for s > t, Hs ⊆Ht , with continuous embeddings.

As a result,
⋂

|s|≤mHs =Hm and
⋃

|s|≤mHs =H−m.

We also saw that (Hm)′ =H−m.

We conclude that

(
⋂

|s|≤m
Hs )′ =

⋃
|s|≤m

Hs
, for all m ∈N.

Therefore, (H∞)′ =H−∞.

This defines the topology of H−∞ as the inductive limit of the
topologies on {Hs : s ∈R}.

Recall that this is the strongest locally convex topology, such that the
identity map from Hs to H∞ is continuous, for every s.

As we have seen in connection with DF and D
′
F
, these two methods of

defining a topology on a linear space, that is the projective limit and
the inductive limit, generally produce dual topological vector spaces.
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Example

Since D ⊆S ⊆H∞ ⊆ E and D is dense in E we have the inclusions

E
′ ⊆H−∞ ⊆S

′ ⊆D
′
.

We relate, next, the order of a distribution in Hs ∩E
′ to s.

From this, we can also obtain E
′ ⊆H−∞.

Example: Let T ∈ E
′. Since every distribution with compact support is

of finite order, suppose that the order of T is m. We prove that
T ∈Hs if s ≤−1

2
n−m.

According to a previous theorem, T̂ is a C∞ function, given by
T̂ (ξ)= 〈Tx ,e−i〈x ,ξ〉〉.
Since T is of order m, there exists a compact set K ⊆Rn and a
positive constant M, such that

|T̂ (ξ)| ≤M
∑

|α|≤m
sup{|∂αe−i〈x ,ξ〉| : x ∈K } ≤M

∑

|α|≤m
|ξα|.
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Example (Cont’d)

Therefore, for some positive constants M1 and M2

|T̂ (ξ)|2 ≤M2

(
∑

|α|≤m
|ξα|

)2

≤M1

∑

|α|≤m
|ξα|2 ≤M2(1+|ξ|2)m.

The last inequality M1
∑

|α|≤m |ξα|2 ≤M2(1+|ξ|2)m follows from

|ξα|2 = ξ
2α1

1
· · ·ξ2αn

n

≤ (1+ξ2
1+·· ·+ξ2

n)
α1 · · ·(1+ξ2

1 +·· ·+ξ2
n)

αn

= (1+ξ2
1+·· ·+ξ2

n)
α1+···+αn

|a| ≤m

≤ (1+|ξ|2)m.

Hence, (1+|ξ|2)s |T̂ |2 ≤M2(1+|ξ|2)m+s .

So T ∈Hs when (1+|ξ|2)m+s ∈ L1. I.e., when m+ s <−1
2
n.

Thus all distributions with compact support and zero order are
contained in Hs for s <−1

2
n. (δ is included in this set. So, in view of

a previous example, this estimate cannot be made any sharper.)
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Subsection 3

Some Properties of Hs Spaces
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The Operator P(D)

Sobolev spaces provide a way of measuring the differentiability
properties of functions on Rn.

From the definition of the Sobolev space Hs =Hs(Rn), we have, for
all f ∈Hs ,

‖∂k f ‖ŝ−1 = ‖ξk(1+|ξ|2)
1
2 (s−1) f̂ ‖0

≤ ‖(1+|ξ|2)
s
2 f̂ ‖0

= ‖f ‖ŝ .

So the differential operator ∂k , where k ∈ {1, . . . ,n}, is a continuous
linear operator from Hs to Hs−1.

So, for P a polynomial on Rn with constant coefficients and degree
≤m, P(D) is a continuous linear operator from Hs to Hs−m.

When the polynomial P has no zeros in Rn, the mapping
P(D) :Hs →Hs−m is also bijective, as the next example illustrates.
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The Operator k2−∆

Claim: The operator k2−∆, k 6= 0, is a homeomorphism from Hs+2

onto Hs .

(i) The continuity of (k2−∆) :Hs+2 →Hs is obvious since this operator
has constant coefficients.

(ii) To show that (k2−∆) is bijective, let (k2−∆)u = 0, for some u ∈Hs+2.

Then (k2+|ξ|2)û = 0. Since k 6= 0, û = 0.

Hence, u = 0. So (k2−∆) is injective.

Suppose v ∈Hs . Then u = v̂
k2+|ξ|2 ∈S

′. Also (k2−∆)F−1(u)= v .

Thus, if F
−1(u) ∈Hs+2, then k2−∆ is surjective.
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The Operator k2−∆ (Cont’d)

(ii) For surjectivity, it suffices to show F
−1(u) ∈Hs+2.

This relies on the following.

(1+|ξ|2)
1
2 (s+2)|F (F−1(u))| = (1+|ξ|2)

1
2 s+1|u|

= (1+|ξ|2)
1
2 s+1 |v̂ |

k2+|ξ|2

≤ c(1+|ξ|2)
1
2 s+1 |v̂ |

1+|ξ|2

= c(1+|ξ|2)
s
2 |v̂ |.

Moreover, (1+|ξ|2)
s
2 v̂ ∈ L2, since v ∈Hs .

(iii) We have seen that k2−∆ is a continuous bijection from Hs+2 to Hs .

The spaces Hs+2 and Hs are Banach spaces.

By the Open Mapping Theorem, (k2−∆)−1 :Hs →Hs+2 is continuous.

Therefore k2−∆ is a homeomorphism.
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Multiplication of an H
s Distribution

To allow the coefficients in the differential operator P(D) :Hs →Hs−m

to be functions, we investigate the feasibility of multiplying the
elements of Hs by such functions.

Theorem

The mapping from S ×Hs into Hs , defined by (φ,u) 7→φu, is bilinear and
continuous on S and Hs separately.

Note that 〈φv ,u〉 = 〈v ,φu〉 for all u ∈Hs , v ∈H−s and φ ∈S .

So it suffices to consider the case when s ≥ 0.

Let φ and u be in S .

Then their Fourier transforms φ̂ and û are also in S .

With F (φu)= 1
(2π)n

φ̂∗ û, we have

(1+|ξ|2)
s
2 |F (φu)(ξ)| ≤

1

(2π)n

∫
(1+|ξ|2)

s
2 |φ̂(η)û(ξ−η)|dη.

George Voutsadakis (LSSU) Theory of Distributions January 2024 50 / 108



Distributions in Hilbert Space Some Properties of Hs Spaces

Multiplication of an H
s Distribution (Cont’d)

Now we have

1+|ξ|2 = 1+|ξ−η+η|2

≤ 1+|ξ−η|2 +2|ξ−η||η|+ |η|2

≤ 1+|ξ−η|2 +2|η|(1+|ξ−η|2)+|η|2

≤ (1+|ξ−η|2)(1+|η|)2 .

We can use this inequality and integrate with respect to ξ.

1
(2π)n

∫
(1+|ξ|2)

s
2 |φ̂(η)û(ξ−η)|dη

≤ 1
(2π)n

∫
(1+|ξ−η|2)

s
2 |û(ξ−η)|(1+|η|)s |φ̂(η)|dη

≤ 1
(2π)n

‖u‖ŝ
∫
(1+|η|)s |φ̂(η)|dη.
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Multiplication of an H
s Distribution (Cont’d)

We obtained

‖φu‖ŝ ≤
1

(2π)n
‖u‖ŝ

∫
(1+|η|)s |φ̂(η)|dη.

But S is dense in Hs .

So this inequality may be extended by continuity to all u in Hs .

So φu is in Hs and depends continuously on φ ∈S and u ∈Hs .

Corollary

If P is a polynomial on Rn, with coefficients in S and degree m, then
P(D) is a continuous linear differential operator from Hs to Hs−m.
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Order of an Operator

Given any real number t, a linear operator L defined on H−∞ is said to
have order t if it maps Hs into Hs−t , for every s ∈R.

The following list contains some examples.

The differential operator ∂α has order |α|.
Given a polynomial P of degree m, with coefficients in S , the operator
P(D) has order m.
Let f be defined on Rn and bounded (almost everywhere).
Then the mapping u 7→ v , defined by v̂ = f û, is an operator of order 0.

On the other hand, let v̂ = (1+|ξ|2)
t
2 û.

Then the mapping u 7→ v is an operator of order t.
The inverse operator has order −t.
By the preceding theorem, the mapping u 7→ fu, with f ∈S , is an
operator of order 0.
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Convolutions

Let u ∈Hs ⊆S
′ and v ∈ E

′.

Then the convolution product u∗v is well-defined.

Moreover, we have F (u∗v)= v̂ û, with v̂ in C∞.

In general v̂ is not bounded on Rn.

So neither is (1+|ξ|2)
t
2 v̂(ξ), for any t ∈R.

Suppose we restrict v ∈ E
′ so that

‖v‖t̂,∞ = sup
ξ∈Rn

(1+|ξ|2)
t
2 |v̂(ξ)| <∞.

Then the set {v ∈ E
′ : ‖v‖t̂,∞ <∞} is a linear subspace of E

′ on which
‖·‖t̂,∞ defines a norm.

The closure of this subspace in S
′ under the norm ‖·‖t̂,∞ is a normed

linear subspace of S
′, which we denote by Ht,∞.

Ht,∞ = {v ∈S
′ : ‖v‖t̂,∞ <∞}.
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H
s ,∞ vs. L∞ and H

s vs. L2

The notation is suggested by that of the Banach space L∞ of
measurable functions on Rn which are bounded almost everywhere.

The norm of f ∈ L∞ is defined as the essential supremum of |f | on Rn.

It follows that
|f (x)| ≤ ‖f ‖L∞ = ‖f ‖∞

holds almost everywhere in Rn.

The defining equation implies, for all u ∈Hs,∞,

‖u‖ŝ,∞ = ‖(1+|ξ|2)
s
2 û‖∞.

This suggests that Hs,∞ is related to L∞ in the same way that Hs is
related to L2.
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Spaces for Convolutions of Distributions

Theorem

The convolution (u,v) 7→ u∗v is a bilinear mapping of Hs ×Ht,∞ into Hs+t

which is continuous on Hs and Ht,∞ separately.

Let u ∈Hs and v ∈Ht,∞. Then

(1+|ξ|2)
1
2 (s+t)F (u∗v)(ξ)= (1+|ξ|2)

s
2 û(ξ)(1+|ξ|2)

t
2 v̂(ξ).

∫
(1+|ξ|2)

1
2 (s+t)|F (u∗v)(ξ)|dξ

=
∫
(1+|ξ|2)

s
2 |û(ξ)|(1+|ξ|2)

t
2 |v̂(ξ)|dξ

≤ supξ (1+|ξ|2)
t
2 |v̂(ξ)|

∫
(1+|ξ|2)

s
2 |û(ξ)|dξ.

So we get ‖u∗v‖ŝ+t ≤ ‖u‖ŝ‖v‖t̂,∞.

Corollary

When u ∈Hs and v ∈S , then u∗v ∈H∞.
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Locally H
s Distributions

Because the distributions in Hs for real values of s, are defined through
their Fourier transforms, they are necessarily distributions in Rn.

We can also consider distributions “locally in” Hs .

Definition

Let Ω be an open subset of Rn. A distribution u ∈D
′(Ω) is said to be in

Hs
loc
(Ω) if, for every bounded open set ω in Ω, with ω⊆Ω, there is a

distribution v ∈Hs , such that u = v on ω.

The distributions in Hs
loc
(Ω) enjoy the smoothness properties of Hs on

Ω without being subjected to its global integrability condition.

Moreover, any distribution in Hs
loc
(Ω) with compact support is

necessarily in Hs (Ω).
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Characterization of Locally H
s Distributions

Theorem

u ∈Hs
loc
(Ω) if and only if φu ∈Hs , for every φ ∈C∞

0
(Ω).

Suppose u ∈Hs
loc
(Ω) and φ ∈C∞

0 (Ω).

Then there is a v ∈Hs , such that u = v on suppφ.

By the preceding theorem, φv lies in Hs . Thus, so does φu.

Suppose, conversely, φu ∈Hs , for all φ ∈C∞
0 (Ω).

Let ω be any bounded open set in Ω, whose closure lies in Ω.

Then we can choose φ ∈C∞
0
(Ω) with φ= 1 on ω.

Moreover, u =φu ∈Hs on ω.

Corollary

Hs ⊆Hs
loc
(Ω), for every Ω⊆Rn.

When u ∈Hs and φ is any function in C∞
0 (Ω), a previous theorem

implies that φu ∈Hs . From the preceding theorem, u ∈Hs
loc
(Ω).
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⋂
s∈RH

s
loc
(Ω)=C

∞(Ω)

For any open set Ω⊆Rn,
⋂
s∈RH

s
loc
(Ω)=C∞(Ω).

(i) We show, first, that, if s > 1
2n+k , then Hs

loc
(Ω)⊆C k(Ω).

Suppose u ∈Hs
loc

(Ω).
For any x ∈Ω, let U be a bounded neighborhood of x .
Let φ ∈C∞

0
(Ω) be such that φ= 1 on U .

Then, by previous results, φu ∈Hs(Rn)⊆C k(Rn).
Since φ= 1 on U , this implies that u ∈C k(U), for every U .
Therefore, u ∈C k(Ω). Thus,

⋂
s∈RHs

loc
(Ω)⊆C∞(Ω).

(ii) We now show the inclusion in the other direction.
Let u ∈C∞(Ω).
For any φ ∈C∞

0
(Ω), the product φu is in C∞

0
⊆S ⊆Hs , for all s.

Thus, by the theorem, u ∈Hs
loc

(Ω), for every s.
Therefore, u ∈

⋂
s∈RHs

loc
(Ω).
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⋃
H

s
loc
(Ω)=D

′
F
(Ω)

We show
⋃
Hs

loc
(Ω)=D

′
F
(Ω), where D

′
F
(Ω) is the space of

distributions in D
′(Ω) of finite order.

(i) Let u ∈Hs
loc

(Ω). Take φ ∈D(Ω) with compact support K .
There exists v ∈Hs , such that u = v in a neighborhood of K .
Define u on D(Ω) by 〈u,φ〉 = 〈v ,φ〉.
It is straightforward to verify that u is a distribution in Ω.
By a previous theorem, v can be expressed as a finite sum of
derivatives of order ≤ |s|+1 of L2 functions.
So u has finite order.

(ii) Let u ∈D
′
F
(Ω).

By a previous theorem, u is a derivative of a continuous function in Ω.
But any continuous function is locally square integrable.
So u is locally a derivative of finite order, say m, of an L2 function.
For any φ ∈C∞

0
(Ω), φu is also a finite sum of derivatives of order ≤m

of L2 functions. Therefore, φu lies in H−m.
Thus, by the theorem, u ∈H−m

loc
.
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Elliptic Linear Differential Operators

We saw that a linear differential operator L of order m, with
coefficients in S maps Hs into Hs−m.

We do not know whether Lu ∈Hs implies that u ∈Hs+m, i.e., whether
L−1 is an operator of order −m.

This is not true in general.

Consider, e.g., the equation ∂x∂yu = 0 on R2.

It is satisfied by the sum u(x ,y)= f (x)+g(y) of any pair of
differentiable functions on R.

Thus, although ∂x∂yu ∈H∞, the function u is not necessarily in H∞.

When L is elliptic, we have a local regularity theorem.

The linear differential operator

L=
∑

|α|≤m
cα∂

α

is elliptic if
∑

|α|=m cαξ
α 6= 0, whenever ξ 6= 0.
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The Local Regularity Theorem

The Local Regularity Theorem

Let L=
∑

|α|≤m cα∂
α be a linear elliptic differential operator in Ω of order m

with coefficients cα ∈C∞(Ω). If Lu = f ∈Hs
loc
(Ω), for some s ∈R, then

u ∈Hs+m
loc

(Ω).

We only prove the simpler case in which the leading coefficients in L,
i.e., those cα in which α=m, are constants.

Let φ ∈C∞
0 (Ω) be arbitrary and t ≤ s +m−1.

Claim: If ψu ∈Ht , for some ψ ∈C∞
0
(Ω) which is 1 on an open set

containing suppφ, then φu ∈Ht+1.

Consider the distribution v = L(φu)−φLu = L(φu)−φf .

It has its support in suppφ.

So u may be replaced by ψu in this equation to give

v = L(φψu)−φL(ψu)=
∑

|α|≤m
cα[∂

α(φψu)−φ∂α(ψu)].
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The Local Regularity Theorem (Cont’d)

We are working with

v =
∑

|α|≤m
cα[∂

α(φψu)−φ∂α(ψu)].

Note that the derivatives of ψu of order m cancel out.

So this sum is a linear combination of derivatives of ψu of orders
≤m−1 with coefficients in C∞

0 (Rn).

Since ψu ∈Ht , we have v ∈Ht−m+1.

Now φf ∈Hs and t −m+1≤ s. Thus, φf ∈Ht−m+1.

We conclude that L(φu)= v +φf ∈Ht−m+1.

From this we wish to conclude that φu ∈Ht+1.

Write L=P(∂)+Q(∂), where:

P is defined by P(y)=
∑

|α|=m cαy
α, y ∈Rn;

Q is a polynomial of degree ≤m−1.
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The Local Regularity Theorem (Cont’d)

P , by assumption, has constant coefficients.

So, for any w ∈Hs ,

F (P(∂)w) = P(iξ)ŵ

= [|ξ|−m(1+|ξ|m)−|ξ|−m]P(iξ)ŵ
= F ([P2(∂)−P1(∂)]w),

where P1(∂), P2(∂) are operators on H−∞(Ω) defined on Rn− {0} by

F (P1(∂)w)= |ξ|−mP(iξ)ŵ , F (P2(∂)w)= (1+|ξ|m)|ξ|−mP(iξ)ŵ .

P is homogeneous of degree m whose only zero is ξ= 0.

So both
P(iξ)
|ξ|m and |ξ|m

P(iξ) are bounded functions on Rn− {0}.

Hence, P1(∂) and P−1
1 (∂) are operators of order 0.
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The Local Regularity Theorem (Cont’d)

On the other hand, we have

1+|ξ|m = (1+|ξ|2)
m
2

1+|ξ|m

(1+|ξ|2)
m
2

,

where (1+|ξ|m)(1+|ξ|2)−
m
2 and its reciprocal are bounded on Rn.

The mapping w 7→ z defined by ẑ = (1+|ξ|2)
m
2 ŵ is of order m.

So the same is true of the mapping defined by

ẑ = (1+|ξ|2)
m
2 g(ξ)ŵ ,

where g and its inverse are bounded in Rn.

So P2(∂) is an operator of order m whose inverse has order −m.
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The Local Regularity Theorem (Cont’d)

We now have

[P2(∂)−P1(∂)+Q(∂)](φu) = [P(∂)+Q(∂)](φu)

= L(φu) ∈Ht−m+1.

We also have φu =φψu and ψu ∈Ht .

So, by a previous theorem, φu ∈Ht .

But Q(∂) has order m−1 and P1(∂) has order 0.

So [Q(∂)−P1(∂)](φu) ∈Ht−m+1.

Therefore, P2(∂)(φu) ∈Ht−m+1.

But P−1
2 (∂) has order −m.

Hence, φu ∈Ht+1.

It remains to show that φu ∈Hs+m.
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The Local Regularity Theorem (Cont’d)

Claim: φu ∈Hs+m.

Choose φ0 ∈C∞
0
(Ω), such that φ0 = 1 on a neighborhood of suppφ.

Call that neighborhood U0.

Now φ0u has compact support. So it lies in Ht , for some t.

We may take t to be s +m−k , for some positive integer k .

Choose open sets U1, . . . ,Uk , such that:
Uj properly contains U j+1, for 0≤ j ≤ k −1;

Uk = suppφ.

Finally, choose the C∞
0 functions φ1, . . . ,φk , such that:

φj = 1 on Uj and suppφj =U j−1, for 1≤ j ≤ k −1;
φk =φ.

From the preceding argument, we conclude that

φ1u ∈Ht+1
,φ2u ∈Ht+2

, . . . ,φku =φu ∈Ht+k =Hs+m
.
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Consequences of the Local Regularity Theorem

Denote
⋂
Hs

loc
(Ω) by H∞

loc
(Ω) and

⋃
Hs

loc
(Ω) by H−∞

loc
(Ω).

We know that H∞
loc
(Ω)=C∞(Ω) and H−∞

loc
(Ω)=D

′
F
(Ω).

Thus, the theorem yields the following.

Corollary

If Lu ∈C∞(Ω), then u ∈C∞(Ω). Hence any solution of the homogeneous
equation Lu = 0 is in C∞(Ω). In particular, every harmonic distribution in
D

′(Ω) is a C∞ harmonic function in Ω.

Corollary

Any fundamental solution of L, i.e., a solution of LE = δ on Rn, is infinitely
differentiable on Rn− {0}.

George Voutsadakis (LSSU) Theory of Distributions January 2024 68 / 108



Distributions in Hilbert Space More on the Space Hm(Ω)

Subsection 4

More on the Space H
m(Ω)
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The Space H
m(Ω)

Hm(Ω) is the Hilbert space of functions on Ω, such that

∂αu ∈ L2(Ω), for all |α| ≤m.

It is equipped with the norm

‖u‖m =
[

∑

|α|≤m
‖∂αu‖2

0

]1/2

, m ∈N0.

A preceding theorem implies that H1(R)⊆C 0(R).

It is shown, next, that the same inclusion holds when R is replaced by
any open interval in R.
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H
1(a,b)⊆C

0(a,b)

Let f ∈H1(a,b).

Define the function g on (a,b) by g(x)=
∫x
a f ′(t)dt.

Then g is continuous and g ′ = f ′ in the sense of distributions.

In fact, for all φ ∈D(a,b),

〈g ′,φ〉 = −〈g ,φ′〉

= −
∫b
a [

∫x
a f ′(t)dt]φ′(x)dx

= −
∫b
a

∫b
a H(x − t)f ′(t)φ′(x)dtdx

= −
∫b
a

[∫b
t φ′(x)dx

]
f ′(t)dt

=
∫b
a φ(t)f ′(t)dt

= 〈f ′,φ〉.

Therefore, g = f +constant and f is continuous a.e. in (a,b).

Thus, H1(a,b)⊆C 0(a,b).

The analogous statement does not hold when n ≥ 2.
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The Space H
m
0 (Ω)

We have seen that C∞
0 (Rn) is dense in Hm(Rn).

This is not true of Ω in general.

It is not even true that C∞(Ω)∩Hm(Ω) is dense in Hm(Ω), where
C∞(Ω) denotes the restriction to Ω of the functions in C∞(Rn),
unless ∂Ω is smooth enough.

The advantage of Rn in this respect is that it has no boundary.

We now define Hm
0 (Ω) to be the closure of C∞

0 (Ω) in Hm(Ω).

So we have Hm
0 (Rn)=Hm(Rn).

In general, however, Hm
0 (Ω) is a proper closed subspace of Hm(Ω).

So Hm
0 (Ω) is a Hilbert space in the induced structure.
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H
1
0 (Ω) versus H1(Ω)

We show H1
0 (Ω) 6=H1(Ω), if Ω is a bounded set in Rn.

Claim: Let u ∈H1
0 (Ω). Define u0 in Rn by

u0(x)=
{

u(x), if x ∈Ω

0, if x ∈Rn−Ω
.

Then u0 ∈H1(Rn).

Let φ be in C∞
0
(Ω). Then φ0 ∈C∞

0
(Rn) and ‖φ0‖1 = ‖φ‖1.

Consider the map λ1 :C
∞
0 (Ω)→H1(Rn), defined by λ1(φ)=φ0.

It follows that λ1 is a linear isometry which extends by continuity to a
continuous linear map from H1

0 (Ω) to H1(Rn).

Now u ∈H1
0 (Ω).

So there is a sequence (uk) in C∞
0
(Ω) which converges to u in H1(Ω).
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H
1
0 (Ω) versus H1(Ω) (Cont’d)

By the continuity of λ1, λ1(uk)→λ1(u) in H1(Rn).

Hence, λ1(uk)→λ1(u) in L2(Rn).

Consequently, there is a subsequence (uk ′) of (uk), such that
λ1(uk ′)→λ1(u) a.e. in Rn.

Hence, u0 =λ1(u) lies in H1(Rn).

To finish the proof, let:

Ω be a bounded open set in Rn;
u = 1 on Ω.

Then u ∈H1(Ω).

By the first example of the set, u0 6∈H1(Rn).

Therefore, by the claim, u 6∈H1
0 (Ω).

We conclude that H1
0 (Ω) 6=H1(Ω).
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The Operator λm

Let Ω be an open set in Rn and u ∈Hm
0 (Ω).

Define λm(u)= u0, where, as before,

u0(x)=
{

u(x), if x ∈Ω

0, if x ∈Rn−Ω
.

Then λm(u) ∈Hm(Rn).

Moreover, by a previous result, λm(u) ∈C k(Rn), if m> 1
2
n+k .

But λm(u)= u on Ω.

So Hm
0 (Ω)⊆C k(Ω) when m> 1

2
n+k .

Consider the special case when m= 0.

We know that C∞
0 (Ω) is dense in L2(Ω).

So, in this case, H0
0 (Ω) coincides with H0(Ω).
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The “Negative Norm"

Any function v ∈H0
0 (Ω)= L2(Ω) defines a continuous linear functional

Tv on Hm
0 (Ω) by

Tv (u)= 〈v ,u〉 = (v ,u)0, for all u ∈Hm
0 (Ω).

By the Schwarz inequality, |〈v ,u〉| ≤ ‖v‖0‖u‖0 ≤‖v‖0‖u‖m.

So Tv is bounded by ‖v‖0.

We define the “negative norm” of v ∈ L2(Ω) by

‖v‖−m = sup
u∈Hm

0 (Ω)

|〈v ,u〉|
‖u‖m

.

By definition, |〈v ,u〉| ≤ ‖v‖−m‖u‖m.

Now ‖u‖0 ≤ ‖u‖m. So we have

‖v‖−m ≤ sup
u∈Hm

0 (Ω)

|〈v ,u〉|
‖u‖0

= ‖v‖0.

We can verify that ‖·‖−m satisfies the properties of a norm.
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The Space H
−m(Ω)

Define H−m(Ω) to be the completion of L2(Ω) in the norm ‖·‖−m.

Theorem

The dual space (Hm
0 )′(Ω) of the space Hm

0 (Ω) may be identified with
H−m(Ω), for all m≥ 0.

Let F be the set of continuous linear functionals Tv on Hm
0 (Ω)

defined by
Tv (u)= 〈v ,u〉 = (v ,u)0, u ∈Hm

0 (Ω).

This is clearly a subspace of the Hilbert space (Hm
0 )′(Ω).

We now show that it is a dense subspace.

Suppose F is not dense in (Hm
0 )′(Ω). Then there is a nonzero

S ∈ (Hm
0 )′′(Ω), such that S(Tv )= 0, for all Tv ∈F .

By reflexivity applied to Hm
0 (Ω), there is w ∈Hm

0 (Ω), such that

S(T )=T (w), for all T ∈ (Hm
0 )′(Ω).
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The Space H
−m(Ω) (Cont’d)

Now we get, for all v ∈ L2(Ω),

〈v ,w 〉 =Tv (w)= S(Tv )= 0.

But Hm
0 (Ω)⊆ L2(Ω).

So we can choose v =w .

We conclude that w = 0.

This however, contradicts S 6= 0.

Now we have F = (Hm
0 )′(Ω).

So (Hm
0 )′(Ω) can be identified with H−m(Ω) by the correspondence

Tv ↔ v and ‖Tv‖= ‖v‖−m.
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Characterization of H−m(Ω)

We characterize membership in H−m(Ω) by showing

v ∈H−m(Ω) if and only if v =
∑

|α|≤m
∂αvα, where vα ∈ L2(Ω).

We use the preceding theorem.

We prove that:

A distribution T belongs to (Hm
0 )′(Ω)

if and only if
T is of the form Tv , where v =

∑
|α|≤m ∂αvα, vα ∈ L2(Ω).

George Voutsadakis (LSSU) Theory of Distributions January 2024 79 / 108



Distributions in Hilbert Space More on the Space Hm(Ω)

Characterization of H−m(Ω) (Part (i))

(i) Let T be a distribution of the form Tv with v =
∑

|α|≤m ∂αvα.

Let u ∈C∞
0 (Ω). Then

Tv (u)=
〈

∑

|α|≤m
∂αvα,u

〉
=

∑

|α|≤m
(−1)|α|〈vα,∂αu〉.

We know C∞
0 (Ω) is dense in H∞

0 (Ω).

So the equality holds even when u ∈H∞
0 (Ω).

Hence,

|Tv (u)| =

∣∣∣∣∣
∑

|α|≤m
(−1)|α|(vα,∂αu)0

∣∣∣∣∣ ≤
∑

|α|≤m
‖vα‖0‖u‖m.

This clearly shows that Tv lies in (Hm
0 )′(Ω).
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Characterization of H−m(Ω) (Part (ii))

(ii) Suppose T ∈ (Hm
0 )′(Ω).

Then there exists g ∈Hm
0 (Ω), such that, for all f ∈Hm

0 (Ω),

T (f )
Riesz= (f ,g)m =

∑

|α|≤m
(∂αf ,∂αg)0.

In particular, if φ ∈C∞
0 (Ω)⊆Hm

0 (Ω),

T (φ)=
∑

|α|≤m
(∂αφ,∂αg)0 =

∑

|α|≤m
(−1)|α|〈φ,∂2αg〉 =

∑

|α|≤m
〈φ,∂αgα〉,

where gα = (−1)α∂αg ∈ L2(Ω).

But C∞
0 (Ω) is dense in Hm

0 (Ω).

So T has the form Tv , with v =
∑

|α|≤m∂αgα, gα ∈ L2(Ω).
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Example

Consider now the differential operator

(1−∆)m :Hm(Ω)→D
′(Ω),

where ∆ is the Laplacian operator in Rn and m ∈N0.

For u ∈Hm(Ω) and φ ∈C∞
0 (Ω),

〈(1−∆)mu,φ〉 =
∑

|α|≤m cα(−1)|α|〈∂2αu,φ〉
=

∑
|α|≤m cα〈∂αu,∂αφ〉

=
∑

|α|≤m cα(∂
αu,∂αφ)0,

where cα are the binomial coefficients of (1−
∑n

k=1
∂2
k
)m.
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Example (Cont’d)

Now 1≤ cα ≤ cm, for some integer cm.

So we have

|〈(1−∆)mu,φ〉| ≤ cm
∑

|α|≤m
‖∂αu‖0‖∂αφ‖0 ≤ cm‖u‖m‖φ‖m.

This means that the mapping

φ 7→ 〈(1−∆)mu,φ〉 = ((1−∆)mu,φ)0

is a continuous linear functional on C∞
0 (Ω), bounded in the Hm norm.

It may therefore be extended by continuity to Hm
0 (Ω).

Thus, (1−∆)mu ∈ (Hm
0 )′(Ω)=H−m(Ω).

We conclude that the linear differential operator (1−∆)m maps
Hm(Ω) continuously into H−m(Ω).
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Subsection 5

Fourier Series and Periodic Distributions
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Distributions in Hilbert Space Fourier Series and Periodic Distributions

Inner Product of Linear Combinations of Exponentials

Let
u(x)=

∑

|α|≤k
aαe

i〈α,x〉

be a finite sum of exponential functions with:

x ∈Rn;
α= (α1, . . . ,αn) ∈Zn;
|α| =

∑n
j=1 |αj |;

〈α,x〉 =α1x1+·· ·+αnxn.

The coefficients aα are complex numbers which satisfy a−α = aα when
u is a real function.

For any integer m, we define the inner product of u with
v(x)=

∑
|α|≤k bαe

i〈α,x〉, by

(u,v)m = (2π)n
∑

|α|≤k
(1+|α|2)maαbα
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Some Observations

We have

(u,v)0 = (2π)n
∑

|α|≤k
aαbα =

∫
u(x)v(x)dx ,

where the integral is taken over the cube [−π,π]n.

For this, it suffices o notice that, for a ∈Z,

∫
e iaxdx =

{
(2π)n, if a= 0
0, if a 6= 0

.

We also have

aα =
1

(2π)n
(u,e i〈α,x〉)0.
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The Norm Generated by the Inner Product

The norm generated by this inner product is

‖u‖m =
√
(u,u)m = (2π)n/2

[
∑

|α|≤k
(1+|α|2)m|aα|2

]1/2

.

The Schwarz inequality gives

|(u,v)m| ≤ ‖u‖m‖v‖m.

It may be generalized to

|(u,v)m| ≤ ‖u‖m+ℓ‖v‖m−ℓ,

for any integer ℓ.
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The Space H̃
m

Let H̃m be the completion of the linear space of trigonometric
polynomials of the form

u(x)=
∑

|α|≤k
aαe

i〈α,x〉

under the norm ‖·‖m.

H̃m is a Hilbert space.

The elements of H̃m are represented by infinite sums of the form∑
aαe

i〈α,x〉, such that the norm

(2π)n/2
[∑

(1+|α|2)m|aα|2
]1/2

is finite.
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Some Remarks

When m is a nonnegative integer, this implies the convergence of the
series in the L2([−π,π]n) norm.

In his case ∑
aαe

i〈a,x〉

is a Fourier series expansion of a periodic function in Rn whose
Fourier coefficients, in the classical sense, are aα.

The choice of (2π)n as the period is arbitrary.

It can be changed by an appropriate change of scale of x .
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The Operator ∂α

For every multi-index α ∈Nn
0 , we have

∂α
∑

aβe
i〈β,x〉 =

∑
(iβ)αaβe

i〈β,x〉
,

where (iβ)α = (iβ1)
α1(iβ2)

α2 · · ·(iβn)
αn .

So we obtain

‖∂α
∑
aβe

i〈β,x〉‖2
0 = (2π)n

∑
|βαaβ|2

≤ (2π)n
∑
(1+|β|2)|α||aβ|2

= ‖
∑
aβe

i〈β,x〉‖2
|α|.

In other words, for all u ∈ H̃m, |α| ≤m,

‖∂αu‖0 ≤‖u‖|α|.
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The Operator ∂α (Cont’d)

More generally, for all u ∈ H̃m, ℓ and α, such that ℓ+|α| ≤m,

‖∂αu‖ℓ ≤ ‖u‖ℓ+|α|.

This implies, in particular, that ∂α is a bounded linear operator from
H̃m to H̃m−|α|, |α| ≤m.

If u ∈ H̃m and ℓ<m, then ‖u‖ℓ ≤‖u‖m.

So, if ℓ<m, H̃m ⊆ H̃ℓ.

H̃0 is therefore the space of periodic functions which are square
integrable over [−π,π]n.

It obviously includes C̃ 0, the continuous periodic functions in Rn.

George Voutsadakis (LSSU) Theory of Distributions January 2024 91 / 108



Distributions in Hilbert Space Fourier Series and Periodic Distributions

Example

When m> 0, H̃m is the space of periodic functions whose
(distributional) derivatives up to order m are square integrable.

To characterize H̃m when m< 0, we first consider some examples.

Example: Let
∑
aαe

i〈α,x〉 ∈ H̃m, m≥ 0. Then, there exists a u ∈ H̃m,
such that, for any ε> 0, when k is large enough,

‖u(x)−
∑

|α|≤k
aαe

i〈α,x〉‖m < ε.

Consequently

‖∂βu−
∑

|α|≤k(iα)
βaαe

i〈α,x〉‖0 = ‖∂β
[
u−

∑
|α|≤k aαe

i〈α,x〉]‖0

≤ ‖u−
∑

|α|≤k aαe
i〈α,x〉‖|β|

≤ ‖u−
∑

|α|≤k aαe
i〈α,x〉‖m

< ε.

Therefore,
∑

|α|≤k(iα)
βaαe

i〈α,x〉 → ∂βu in H̃0 = L̃2, for all |β| ≤m.

George Voutsadakis (LSSU) Theory of Distributions January 2024 92 / 108



Distributions in Hilbert Space Fourier Series and Periodic Distributions

Example

We have
(1−∆)

∑
aαe

i〈α,x〉 =
∑

(1+|α|2)aαe i〈α,x〉
.

Thus,
(1−∆)−1

∑
aαe

i〈α,x〉 =
∑

(1+|α|2)−1aαe
i〈α,x〉

.

Therefore, for all ℓ ∈Z,

(1−∆)ℓ
∑

aαe
i〈α,x〉 =

∑
(1+|α|2)ℓaαe i〈α,x〉

.

Thus, for any pair of trigonometric polynomials

uk =
∑

|α|≤k
aαe

i〈α,x〉 and vk =
∑

|α|≤k
bαe

i〈α,x〉
,

we have

((1−∆)ℓuk ,vk)m = (uk ,(1−∆)ℓvk)m = (uk ,vk)m+ℓ.

George Voutsadakis (LSSU) Theory of Distributions January 2024 93 / 108



Distributions in Hilbert Space Fourier Series and Periodic Distributions

Example (Cont’d)

We got

((1−∆)ℓuk ,vk)m = (uk ,(1−∆)ℓvk)m = (uk ,vk)m+ℓ.

Taking vk = (1−∆)ℓuk ,

‖(1−∆)ℓuk‖2
m = (uk ,(1−∆)2ℓuk)m = (uk ,uk)m+2ℓ.

Equivalently,
‖(1−∆)ℓuk‖m = ‖uk‖m+2ℓ.

But the trigonometric polynomials are dense in H̃m.

So this equation can be extended by continuity to H̃m.

Hence, for any u ∈ H̃m,

‖(1−∆)ℓu‖m =‖u‖m+2ℓ, ℓ,m ∈Z.
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Example (Cont’d)

For any u ∈ H̃m,

‖(1−∆)ℓu‖m =‖u‖m+2ℓ, ℓ,m ∈Z.

In particular, if m is replaced by −m and ℓ=m, then

‖(1−∆)mu‖−m = ‖u‖m, m ∈Z.

This equation implies that the linear mapping (1−∆)m : H̃m → H̃−m,
m ∈Z is bijective and norm preserving.

Since H̃m is a Hilbert space, the Riesz representation theorem provides
another norm-preserving isomorphism between H̃m and (H̃m)′.

So there is a norm-preserving isomorphism between (H̃m)′ and H̃−m.

This allows identification of these two spaces for all integers m.
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The Dual of the Real Space H̃
m

Theorem

For all m≥ 0, H̃−m is the dual space of the real Hilbert space H̃m with
respect to the inner product (·, ·)0 in the sense that T is a continuous linear
functional on H̃m if and only if there is a unique v ∈ H̃−m, such that
T (u)= 〈v ,u〉 = (v ,u)0, u ∈ H̃m. Furthermore, ‖T‖= ‖v‖−m.

Suppose H̃m is real. Then the coefficients satisfy a−α = aα.

Let T be a continuous linear functional on H̃m in the (weak) topology
defined by (·, ·)0. Then, for any u ∈ H̃m and m≥ 0,

|T (u)| ≤M‖u‖0 ≤M‖u‖m.

Hence T is also continuous in the (strong) topology of H̃m defined by
(·, ·)m. By the Riesz Representation Theorem, there is a unique

v ∈ (H̃m)′ = H̃−m, such that:
T (u)= (v ,u)0;
‖T ‖= sup {(v ,u)0 : ‖u‖m = 1}= ‖v‖−m.
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Example

Consider the trigonometric polynomial

fp(x)=
p∑

k=−p
e ikx , x ∈R.

It converges in H̃m, whenever m≤−1.

According to a previous theorem, the limit to which fp converges in
H̃−1 may be determined by considering the (weak) limit

lim
p→∞

p∑
−p
(e ikx ,φ(x))0 = lim

p→∞

p∑
−p
(e−ikx ,φ(x))0,

where φ is an arbitrary function in H̃1.

But (e ikx ,φ(x))0 is the expansion coefficient ak of φ.

So this limit is simply φ(0).

Thus lim fp = δ̃, where δ̃ is a periodic version of the Dirac distribution.

Its m-th derivative is δ̃(m) =
∑
(ik)me ikx .
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Sobolev Imbedding for H̃m

Theorem

If m> 1
2
n, then H̃m is a subspace of C̃ 0.

Let m> 1
2
n and u =

∑
aαe

i〈α,x〉 ∈ H̃m. Then

(
∑
|aα|)2 = [

∑
(1+|α|2)−

1
2m(1+|α|2)

1
2m|aα|]2

≤ [
∑
(1+|α|2)−m][

∑
(1+|α|2)m|aα|2]

=
∑
(1+|α|2)−m 1

(2π)n
‖u‖2

m <∞.

Thus, the Fourier series of u converges uniformly.

Since e i〈α,x〉 is continuous, the sum
∑
aαe

i〈α,x〉 is continuous.

This result is generalized to

Theorem

If m> 1
2
n+k , where k ≥ 0 is an integer, then H̃m is a subspace of C̃ k .
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The Spaces H̃∞ and H̃
−∞

Setting H̃∞ =
⋂
H̃m, we conclude that H̃∞ = C̃∞.

H̃∞ is a locally convex topological vector space in the projective limit
topology defined by {H̃m :m ∈N0}.

Similarly, we define H̃−∞ =⋃
H̃m.

H̃−∞ represents the dual of H̃∞ in the inner product (·, ·)0.
This may be seen by using the argument that was used for Hs .

We have H̃m ⊆Hℓ, when ℓ<m.

Thus, for any positive integer m,

⋃

|k |≤m
H̃k = H̃−m

,
⋂

|k |≤m
H̃k = H̃m

.

A previous theorem implies that
⋃

|k |≤m H̃k = (
⋂

|k |≤m H̃k )′.

Since m was arbitrary, H̃−∞ = (H̃∞)′.
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Distributions in H̃
−∞

H̃−∞ is the space of periodic distributions, whose elements are
continuous linear functionals on C̃∞ in the (weak) topology defined by
〈·, ·〉 = (·, ·)0.
That means u ∈ H̃−∞ if, for every sequence φk in C̃∞, such that
‖φk‖m → 0, for all m≥ 0,

|(u,φk)0| ≤ ‖u‖−m‖φk‖m → 0, for all m.

Equivalently, u ∈ H̃−∞ if, for every sequence φk in C̃∞, such that
∂αφk → 0 uniformly for all α ∈Nn

0 ,

|(u,φk)0| ≤ ‖u‖−m‖φk‖m → 0, for all m.
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H̃
−∞ and Duality

When m is a positive integer, we have already shown that H̃−m

represents the continuous linear functionals on H̃m.

But H̃∞ = C̃∞ is dense in H̃m.

So H̃−m may also be identified with the subspace of H̃−∞ consisting of
the distributions u for which (u,φk)0 → 0 whenever φk is a sequence
in C̃∞ which converges to 0 in H̃m.
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Periodicity and Representation in H̃
−∞

The translation of u ∈ H̃−∞ by (2π, . . . ,2π) is denoted by τ2π.

It satisfies, for all φ ∈ C̃∞,

〈τ2πu,φ〉 = 〈u,τ−2πφ〉 = 〈u,φ〉.

Recall that:

Trigonometric polynomials are complete in H̃m, for every m;
H̃−∞ =

⋃
H̃m.

So trigonometric polynomials are complete in H̃−∞, in the sense that
every u ∈ H̃−∞ is the limit as k →∞ of a sum

∑

|α|≤k
bαe

i〈α,x〉
.
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Representation in H̃
−∞ (Cont’d)

Note that any φ ∈ C̃∞ is represented by a series

∑
aαe

i〈α,x〉
,

where |α|maα
|α|→∞−→ 0, for all m≥ 0. Hence,

〈u,φ〉 =
∑

(u,aαe
i〈α,x〉)0 =

∑
aα(u,e i〈α,x〉)0,

where aα = 1
(2π)n (φ(x),e i〈α,x〉)0 are the Fourier coefficients of φ.

Denote (u,e i〈α,x〉)0 by (2π)nbα. We then have

〈u,φ〉 = (2π)n
∑
bαaα

= (
∑
bαe

i〈α,x〉,
∑
aαe

i〈α,x〉)0

= (
∑
bαe

i〈α,x〉,φ)0.

Thus, u is represented by the series u(x)=
∑
bαe

i〈α,x〉.
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Example (Estimating Approximation Error)

Let n= 1. Assume f (x)=
∑
ake

ikx ∈ H̃m, m≥ 1. Then
∣∣f (x)−∑

|k |≤ℓake
ikx

∣∣ ≤∑
|k |>ℓ |ak |

≤ [
∑

|k |>ℓ(1+k2)m|ak |2]
1/2

[
∑

|k |>ℓ(1+k2)−m]
1/2

≤ 1p
2π

‖f ‖m [
∑

|k |>ℓ(1+k2)−m]
1/2

.

Now

∑

|k |>ℓ
(1+k2)−m ≤ 2

∫∞

ℓ

dt

(1+ t2)m
≤ 2

∫∞

ℓ

1

t2m
dt =

2

2m−1

1

ℓ2m−1
.

This yields the estimate supx∈R |f (x)−
∑

|k |≤ℓake
ikx | ≤ cℓ−m+ 1

2 , where
c is a positive constant which depends on f and m.

Thus ℓ−m+ 1
2 indicates the rate of convergence of the Fourier series for

f as ℓ increases. The greater the (positive) integer m, the smoother
the function f and the faster the convergence of the series.

George Voutsadakis (LSSU) Theory of Distributions January 2024 104 / 108



Distributions in Hilbert Space Fourier Series and Periodic Distributions

Inclusions Involving H̃
m and C̃

m

Claim: The inclusion relations C̃m ⊆ H̃m ⊆ C̃m−1 can also be shown to
hold when n= 1 and m≥ 1.

Let f (x)=
∑
ake

ikx ∈ C̃m. Then

f (m)(x)=
∑

(ik)make
ikx ∈ C̃ 0 ⊆ H̃0 = L̃2

.

Hence,
∑
k2m|ak |2 <∞.

Consequently,
∑
(1+k2)m|ak |2 <∞.

This means that f ∈ H̃m.

The inclusion H̃m ⊆ C̃m−1 follows from a previous theorem.
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Example

Let L̃1 be the space of periodic functions which are locally integrable.

We show that L̃1 ⊆ H̃−1 when n= 1.

Let u =
∑
ake

ik ∈ L̃1. Let φ(x)=
∑
bke

ikx is any function in H̃1.

Then 〈u,φ〉 = (u,φ)0 = 2π
∑
akbk .

By the Riemann-Lebesgue Lemma, ak → 0 as |k |→∞.

So there is a positive integer ℓ, such that |ak | ≤ 1, for all |k | ≥ ℓ.
Note that:

The series
∑
(1+k2)−1 converges;

The series
∑
(1+k2)|bk |2 converges since φ ∈ H̃1.

Therefore, given ε> 0, for large enough ℓ, we have
∑

|k |≥ℓ |akbk | ≤
∑

|k |≥ℓ |bk |

≤ [
∑

|k |≥ℓ(1+k2)−1]
1/2

[
∑

|k |≥ℓ(1+k2)|bk |2]
1/2

< ε.

Hence, |〈u,φ〉| ≤ 2π
∑
|akbk | ≤ c‖φ‖1, for some constant c .

So u defines a continuous linear functional on H̃1, i.e., u ∈ H̃−1.
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Product of C̃∞ by H̃
m

Since L2
loc

⊆ L1
loc

we also have L̃2 ⊆ L̃1.

Combining this with the preceding inclusions, we ge

H̃1 ⊆ C̃ 0 ⊆ L̃2 ⊆ L̃1 ⊆ H̃−1
.

Theorem

If φ ∈ C̃∞ and u ∈ H̃m, then φu ∈ H̃m and ‖φu‖m ≤ c‖u‖m, where c is a
constant which depends on φ and m.

If m≥ 0, then, by Leibniz’s Formula, ‖φu‖m is bounded by a constant
multiple of ‖u‖m.

If m< 0, then

‖φu‖m = sup

{
(φu,v)0
‖v‖|m|

: v ∈ H̃ |m|
}
≤ sup

v 6=0

‖u‖m‖φv‖|m|
‖v‖|m|

.

But ‖φv‖|m| ≤ c‖v‖|m|. Hence, ‖φu‖m ≤ c‖u‖m.
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Differential Operators on H̃
m

Since ∂α maps H̃m continuously into H̃m−|α|, this theorem implies

Corollary

The linear differential operator of order ℓ, L=
∑

|α|≤ℓaα∂
α, with coefficients

in C̃∞ maps H̃m continuously into H̃m−ℓ, with ‖Lu‖m−ℓ ≤ c‖u‖m, u ∈ H̃m.

The converse, i.e., that Lu ∈ H̃m implies that u ∈ H̃m+ℓ is true,
provided L is elliptic.

In that case, it may be deduced from the Local Regularity Theorem.

The similarity of these results with those obtained earlier in this
chapter are due to a striking analogy between Fourier series and
Fourier transforms.

In the series, the weight function (1+|ξ|2)s in the integral which
defines the inner product in Hs corresponds to (1+|α|2)m in the sum

(u,v)m = (2π)n
∑

|α|≤k
(1+|α|2)maαbα.
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