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Parallelism Concurrent Random Access Machines

Subsection 1

Concurrent Random Access Machines
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Parallelism Concurrent Random Access Machines

Parallel Random Access Machines

In a parallel random access machine (PRAM) every processor is
connected with every other processor.

A word of memory can be sent from any processor to any other
processor in the time it takes to perform a single instruction.

We define a precise model of PRAMs called Concurrent Random
Access Machines.

This model is synchronous, i.e., the processors work in lock step.
It is also concurrent, i.e., at the same time step, several processors
may:

Read from the same location;

Try to write the same location.
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Parallelism Concurrent Random Access Machines

Concurrent Random Access Machines: Priority Write

A concurrent random access machine (CRAM) consists of a large
number of processors, all connected to a common, global memory.

The processors are identical except that they each contain a unique
processor number.

At each step, any number of processors may read or write any word of
global memory.

If several processors try to write the same word at the same time,
then the lowest numbered processor succeeds.
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Parallelism Concurrent Random Access Machines

Concurrent Random Access Machines: Common Write

In the “common write” model the program guarantees that different
values will never be written to the same location at the same time.

The common write model is the more natural model for logic.

A formula such as (∀x)ϕ specifies a parallel program using n

processors, one for each possible value of x .

Any processor finding that ϕ is false for its value of x will write a zero
into a location in global memory that was initially one.
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Parallelism Concurrent Random Access Machines

CRAM: Processor Registers

Each processor has a finite set of registers, including the following:

Processor
Contains the number between 1 and p(n) of the processor;
Address
Contains an address of global memory;
Contents
Contains a word to be written or read from global memory;
ProgramCounter
Contains the line number of the instruction to be executed next.
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Parallelism Concurrent Random Access Machines

CRAM: Instruction Set

The instructions of a CRAM consist of the following:

READ: Read the word of global memory specified by Address into
Contents;
WRITE: Write the Contents register into the global memory location
specified by Address.
OP Ra Rb: Perform OP on Ra and Rb and leave the result in Rb.
Here OP may be Add, Subtract or Shift.
MOVE Ra Rb: Move Ra to Rb.
BLT R L: Branch to line L if the contents of R is less than zero.

The above instructions each increment the ProgramCounter, with the
exception of BLT, which replaces it by L if R is less than zero.
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Parallelism Concurrent Random Access Machines

Input and Output Conventions

Initially, the contents of the first ∣bin(A)∣ words of global memory
contain one bit each of the input string bin(A).
But any other plausible setting of the input will work as well.

A section of global memory is specified as the output.

One of the bits of the output may serve as a flag indicating that the
output is available.
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Parallelism Concurrent Random Access Machines

Parallel Time Complexity

Our measure of parallel time complexity will be time on a CRAM.

Define CRAM[t(n)] to be the set of boolean queries computable in
parallel time t(n) on a CRAM that has at most polynomially many
processors.

When we want to measure how many processors are needed, we use
the complexity classes CRAM-PROC[t(n),p(n)].
CRAM-PROC[t(n),p(n)] is the set of boolean queries computable by
a CRAM using at most p(n) processors and time O(t(n)).
Thus, CRAM[t(n)] = CRAM-PROC[t(n),nO(1)].
We will see that the complexity class CRAM[t(n)] is quite robust.

It is not affected by exactly how we place the input in the CRAM;
It is not affected by the global memory word size;
It is not affected by the size of the local registers;

provided that the latter two are both polynomially bounded.
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Parallelism Inductive Depth Equals Parallel Time

Subsection 2

Inductive Depth Equals Parallel Time

George Voutsadakis (LSSU) Descriptive Complexity December 2024 11 / 76



Parallelism Inductive Depth Equals Parallel Time

CRAM, Induction and Quantifiers

Theorem

Let S be a boolean query. For all polynomially bounded, parallel time
constructible t(n), the following are equivalent:

1. S is computable by a CRAM in parallel time t(n) using polynomially
many processors and registers of polynomially bounded word size;

2. S is definable as a uniform first-order induction whose depth, for
structures of size n, is at most t(n);

3. There exist:

A first-order quantifier-block [QB];
A quantifier-free formula M0;
A tuple c of constants,

such that the query S for structures of size at most n is expressed as

[QB]t(n)M0(c/x),
i.e., the quantifier-block repeated t(n) times followed by M0.
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Parallelism Inductive Depth Equals Parallel Time

CRAM, Induction and Quantifiers (Strategy)

Theorem (Cont’d)

In symbols, the equivalence of these three conditions can be written,

CRAM[t(n)] = IND[t(n)] = FO[t(n)].
Note that the inclusion

IND[t(n)] ⊆ FO[t(n)]
has already been proved.

So we prove, first, that

CRAM[t(n)] ⊆ IND[t(n)].
And, then, show that

FO[t(n)] ⊆ CRAM[t(n)].
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Parallelism Inductive Depth Equals Parallel Time

CRAM and Induction

Lemma

For any polynomially bounded t(n) we have,

CRAM[t(n)] ⊆ IND[t(n)].
We want to simulate the computation of a CRAM M.

On input A, a structure of size n, M runs in t(n) synchronous steps,
using p(n) processors, for some polynomial p(n).
The following are all polynomially bounded:

The number of processors;
The time;
The memory word size.

So we need only a constant number of variables x1, . . . , xk each
ranging over the n element universe of A, to name any bit in any
register belonging to any processor at any step of the computation.
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Parallelism Inductive Depth Equals Parallel Time

CRAM and Induction (Cont’d)

We can, thus, define the contents of all the relevant registers, for any
processor of M, by induction on the time step.

We now write a first-order inductive definition for the relation

VALUE(p, t, x , r ,b)
meaning that bit x in register r of processor p just after step t is
equal to b.

The base case is that if t = 0, then memory is correctly loaded with
bin(A).
This is first-order expressible.

We also need to say that the initial contents of each processor’s
register Processor is its processor number.

This is easy, since we are given the processor number as the argument
p.
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Parallelism Inductive Depth Equals Parallel Time

CRAM and Induction (Cont’d)

The inductive definition of the relation VALUE(p, t, x , r ,b) is a
disjunction depending on the value of p’s program counter at time
t − 1.
The most interesting case is when the instruction to be executed is
READ.

Then we find:

The most recent time t ′ < t at which the word specified by p’s register
Address at time t was written into;
The lowest numbered processor p′ that wrote into this address at time
t ′.

In this way we can access the answer, namely bit x of p′’s register
Contents at time t ′.

If there exists no such time t ′ then this memory location contains its
input value.

This is bit i of the input bin(A) if i < ∣bin(A)∣, and zero otherwise.
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Parallelism Inductive Depth Equals Parallel Time

CRAM and Induction (Cont’d)

It remains to check that Addition, Subtraction, BLT and Shift are
first-order expressible.

Addition was handled in a previous proposition.

Subtraction and Less Than may be expressed in a similar way.

Relation BIT allows our first-order formulas to examine any of the
log n bits of a domain variable. By a previous theorem, the addition
relation on such variables is first-order expressible.

Using addition, we can specify the Shift operation.

Thus, we have sketched an inductive definition of relation VALUE,
coding M’s entire computation.

Finally, note that one iteration of the definition occurs for each step
of M.
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Parallelism Inductive Depth Equals Parallel Time

Quantifiers and CRAM

Lemma

For polynomially bounded and parallel time constructible t(n),
FO[t(n)] ⊆ CRAM[t(n)].

Suppose the FO[t(n)] problem is determined by:

The quantifier free formulas M0,M1, . . . ,Mk ;
The quantifier block QB = (Q1x1.M1)⋯(Qkxk .Mk);
The tuple of constants c.

Our CRAM must test whether an input structure A, with n = ∥A∥,
satisfies the sentence

ϕn ≡ [QB]t(n)M0(c/x).
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Parallelism Inductive Depth Equals Parallel Time

Quantifiers and CRAM (Cont’d)

The CRAM will use nk processors and nk−1 bits of global memory.

Each processor has a number a1, . . . ,ak , with 0 ≤ ai < n.

Using the Shift operation, it can retrieve each of the ai ’s in constant
time.

The CRAM will evaluate ϕn from right to left, simultaneously for all
values of the variables x1, . . . , xk .

At its final step, it will output the bit ϕn(c/x).
For 0 ≤ r ≤ t(n) ⋅ k and i such that r = k ⋅ (q + 1) + 1 − i , let

ϕr
≡ (Qixi .Mi)⋯(Qkxk .Mk)[QB]qM0.

Denote the (k − 1)-tuple resulting from x1 . . . xk by removing xi by

x1 . . . x̂i . . . xk .
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Parallelism Inductive Depth Equals Parallel Time

Quantifiers and CRAM (Cont’d)

We give a program for the CRAM broken into rounds.

Each round consists of three processor steps, such that:

Just after round r , the contents of memory location a1 . . . âi . . . ak
is 1 or 0 according as whether A ⊧ ϕr(a1, . . . ,ak) or not.

Note that xi does not occur free in ϕr .

At round r , processor number a1 . . . ak executes the following three
instructions according to whether Qi is ∃ or Qi is ∀.{Qi is ∃}

1. b ∶= loc(a1 . . . âi+1 . . . ak);
2. loc(a1 . . . âi . . . ak) ∶= 0;

3. if Mi(a1, . . . ,ak) and b then loc(a1 . . . âi . . . ak) ∶= 1;

{Qi is ∀}
1. b ∶= loc(a1 . . . âi+1 . . . ak);
2. loc(a1 . . . âi . . . ak) ∶= 1;

3. if Mi(a1, . . . ,ak) and ¬b then loc(a1 . . . âi . . . ak) ∶= 0;
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Parallelism Inductive Depth Equals Parallel Time

Quantifiers and CRAM (Cont’d)

It is not hard to prove by induction that the displayed property holds.

Thus, the CRAM simulates the formula.

The bit fetched into b tells us whether A satisfies the formula

ϕr−1
≡ (Qi+1xi+1.Mi+1)⋯(Qkxk .Mk)[QB]qM0.

The effect of lines 2 and 3 is that, in parallel, for all values of xi , the
truth of ϕr is tested and recorded.

This completes the inductive step.
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Parallelism Inductive Depth Equals Parallel Time

Quantifiers and CRAM (Cont’d)

In the base case, at Step 1, processor (a1 . . . ak) must set

b = 1 iff A ⊧M0(a1, . . . ,ak).
Note that M0(x1, . . . , xk) is a quantifier-free formula.

Observe that, in constant time, using its processor number, the shift
operation and addition, processor (a1 . . . ak) can access the
appropriate bits of bin(A).
Furthermore, in constant time, it can compute the boolean
combination of these bits indicated by M0.
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Parallelism Inductive Depth Equals Parallel Time

CRAM[t(n)] and Format of the Input

Corollary

For any function t(n), the complexity class CRAM[t(n)] is not changed if
the definition of a CRAM is modified in any consistent combination of the
following ways (by consistent, we mean that input words larger than the
global word size or larger than the allowable length of applications of Shift
are not allowed).

1. Change the input distribution so that either:

a. The entire input is placed in the first word of global memory.
b. The Iτ(n) bits of input are placed log n bits at a time in the first

Iτ(n)/ logn words of global memory.

2. Change the global memory word size so that either:

a. The global word size is 1, i.e., words are single bits. (Local registers do
not have this restriction so that the processor’s number may be stored
and manipulated.)

b. The global word size is bounded by O(log n).
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Parallelism Inductive Depth Equals Parallel Time

CRAM[t(n)] and Format of the Input (Cont’d)

Corollary (Cont’d)

3. Modify the Shift operation so that shifts are limited to the maximum
of the input word size and of the log base two of the number of
processors.

4. Remove the polynomial bound on the number of memory locations,
thus allowing an unbounded global memory.

5. Instead of the priority rule for the resolution of write conflicts, adopt
the “common write” rule in which different processors never write
different values into the same memory location at a given time step.

One can show that the preceding lemmas still hold with any
consistent set of these modifications.
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Subsection 3

Number of Variables Versus Number of Processors
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Parallelism Number of Variables Versus Number of Processors

Introduction

We show that the number of variables in an inductive definition
determines the number of processors needed in the corresponding
CRAM computation.

The intuitive idea is that using k (log n)-bit variables, we can name
approximately nk different parts of the CRAM.

Thus, very roughly, k variables corresponds to nk processors.

The correspondence is not exact because the CRAM has a different
pattern of interconnection between its processors and memory than
the first-order inductive definition “model of parallelism”.

We analyze the proof of the preceding theorem to give processor-
versus-variable bounds for translating between CRAM and IND.
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Parallelism Number of Variables Versus Number of Processors

Processors and Variables

Corollary

Let CRAM-PROC[t(n),p(n)] be the complexity class CRAM[t(n)]
restricted to machines using at most O(p(n)) processors.
Let IND-VAR[t(n), v(n)] be the complexity class IND[t(n)] restricted to
inductive definitions using at most v(n) distinct variables.
Assume for simplicity that the maximum size of a register word and t(n)
are both o[√n] and that π ≥ 1 is a natural number. Then,

CRAM-PROC[t(n),nπ] ⊆ IND-VAR[t(n),2π + 2]
⊆ CRAM-PROC[t(n),n2π+2].

We prove these bounds using the following two lemmas.

A previous lemma simulated a CRAM using an inductive definition.

We defined relation VALUE, encoding the entire CRAM computation.
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Parallelism Number of Variables Versus Number of Processors

Lemma 1

Lemma

Let M be a CRAM-PROC[t(n),nπ] machine, such that the maximum size
of a register word and of t(n) are both o[√n]. Then the inductive
definition of VALUE may be written using 2π + 2 variables.

We write out the inductive definition of VALUE in enough detail to
count the number of variables used:

VALUE(p, t, x , r ,b) ≡ Z ∨W ∨ S ∨R ∨M ∨ B ∨A,

where the disjuncts have the following intuitive meanings:
Z : t = 0 and the initial value of r is correct;
W : t ≠ 0, the instruction just executed is WRITE, and the value of r is
correct, i.e., unchanged, unless r is Program-Counter;
S ,R ,M ,B,A: Similarly for SHIFT, READ, MOVE, BLT, and, ADD or
SUBTRACT, respectively.

We must show each disjunct can be written using 2π + 2 variables.
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Parallelism Number of Variables Versus Number of Processors

Lemma 1 (Cont’d)

First we consider the disjunct Z .

The only interesting part of Z is the case where r is “Processor”.

In this case we use relation BIT to say that b = 1 iff bit x of p is 1.

No extra variables are needed.

Note that the number of free variables in the relation is π + 1 because
the values t, x , r and b may be combined into a single variable.

Next we consider the case of Addition.

Recall that the main work is to express the carry bit:

C [A,B](x) ≡ (∃y < x)[A(y) ∧ B(y) ∧ (∀z .y < z < x)(A(z) ∨ B(z))].
This definition uses two extra variables.

Thus, π + 3 ≤ 2π + 2 variables certainly suffice.

The cases S ,M and B are simpler.
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Parallelism Number of Variables Versus Number of Processors

Lemma 1 (Cont’d)

The last and most interesting case is R .
Here we must express the following.
1. The instruction just executed is READ;
2. Register r is register Contents;
3. There exists a processor p′ and a time t ′ such that:

a. t′ < t;

b. Address(p′, t′) = Address(p, t);
c. VALUE(p′, t′, x , r ,b);
d. Processor p′ wrote at time t′;

e. For all p′′ < p′, if p′′ wrote at time t
′
, then Address(p′′, t′) ≠

Address(p′, t′);
f. For all t′′ such that t′ < t′′ < t and for all p′′, if p′′ wrote at time t′′,

then Address(p′′, t′′) ≠ Address(p′, t′).

On its face, this formula uses three p′’s and three t’s.

However, we show that two copies of each suffice.

Where we quantify p′′ in Lines 3e and 3f, we no longer need p.

So we may use these variables instead.
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Parallelism Number of Variables Versus Number of Processors

Lemma 1 (Cont’d)

The most subtle case is 3f.

We use the fact that t is o[√n].
So t ′ and t ′′ can be coded into a single variable.

We use a variable from p to encode t and t ′.

Then we can use t to universally quantify t = ⟨t ′, t ′′⟩.
Now we can universally quantify p to act as p′′.

To say that Address(p′′, t ′′) ≠ Address(p′, t ′), we use the extra
variable (t ′) to assert that, there exists a bit position i and a bit b,
such that:

b is the bit at position i of Address(p′′, t ′′);
1 − b is the bit at position i of Address(p′, t ′).

To help in expressing the first conjunct, we may use a variable from p′.

To help in the second conjunct, we may use a variable from p.

Thus 2π + 2 variables suffice.
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Parallelism Number of Variables Versus Number of Processors

Lemma 2

Lemma

Let ϕ(R , x) be an inductive definition of depth d(n).
Let k be the number of distinct variables, including x , occurring in ϕ.
The relation defined by ϕ is computable in CRAM-PROC[d(n),O(nk)].

This is similar to the proof of FO[t(n)] ⊆ CRAM[t(n)].
Let T be the parse tree of ϕ.

The CRAM will have nk ∣T ∣ processors.
There is one for each value of the k variables and each node in T .

Let δ be the depth of T .

As in the proof of FO[t(n)] ⊆ CRAM[t(n)], in rounds consisting of
3δ steps, the CRAM will evaluate an iteration of ϕ.
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Parallelism Number of Variables Versus Number of Processors

Lemma 2 (Cont’d)

Let r = arity(R) = the number of variables in x .

So r ≤ k .

The CRAM will have nr bits of global memory to hold the truth value
of Rt = ϕ

t(∅).
It will use an additional nk ∣T ∣ bits of memory to store the truth values
corresponding to nodes of T .

Thus Rd(n), the least fixed point of ϕ, is computed in time O(d(n))
using O(nk) processors, as claimed.
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Parallelism Number of Variables Versus Number of Processors

The Factor 2

Why is the number of variables needed to express a computation of
nπ processors 2π + 2, instead of π?

We need the term 2π for two reasons:

We must specify p and p′ at the same time in order to say that their
address registers are equal;
We need to say that no lower numbered processor p′′ wrote into the
same address as p′.

The factor of 2 would be eliminated if we adopted a weaker parallel
machine model.

It would allow only common writes;
The memory location accessed by a processor at a given time could be
determined by a very simple computation on the processor number and
the time.
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Parallelism Number of Variables Versus Number of Processors

The Additive Factor 2

The additional two variables arise for various bookkeeping reasons.

This term can be reduced if we make the following two changes.

1. Rather than keeping track of all previous times, we can assume that
every bit of global memory is written into at least every T time steps
for some constant T .

2. The register size can be restricted to O(log n), so that we need only
O(log logn) bits to name a bit of a word.
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Parallelism Circuit Complexity

Subsection 4

Circuit Complexity
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Parallelism Circuit Complexity

Circuit Computation

Let S ⊆ STRUC[τs] be a boolean query on binary strings.

In circuit complexity, S would be computed by an infinite sequence of
circuits C = {Ci ∶ i = 1,2, . . .},
where Cn is a circuit with n input bits and a single output bit r .

For w ∈ {0,1}n , Cn(w) denotes the value at Cn’s output gate, when
the bits of w are placed in its n input gates.

We say that C computes S iff, for all n and for all w ∈ {0,1}n ,
w ∈ S iff Cn(w) = 1.
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Parallelism Circuit Complexity

Circuits

Recall that a circuit is a directed, acyclic graph.

The leaves of the circuit are the input nodes.

Every other vertex is an “and”, “or” or “not” gate.

The edges of the circuit indicate connections between nodes.

Edge (a,b) would indicate that the output of gate a is an input to
gate b.
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Parallelism Circuit Complexity

A Normalization: Layered Circuits

It is convenient to assume that all the “not” gates in our circuits have
been pushed down to the bottom.

We can do this using the De Morgan Laws

¬(α ∧ β) ≡ (¬α ∨ ¬β);
¬(α ∨ β) ≡ (¬α ∧ ¬β).

This transformation does not increase the depth, nor does it
significantly increase the size of the circuit.

Furthermore, we can assume that the levels alternate:

The top level consists of all “or” gates;
The next level consists of all “and” gates;
⋮

Such a normalized circuit is called a layered circuit.
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Parallelism Circuit Complexity

Drawing of a Layered Circuit
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Parallelism Circuit Complexity

Vocabulary of Circuits

We recall the vocabulary of circuits

τc = ⟨E 2,G 1
∧ ,G

1
∨ ,G

1
¬ , I

1, r⟩.
Constant r refers to the root node, or output, of the circuit.

The gates that have no incoming edges are the leaves of the circuit.

The property that x is a leaf is expressed by

L(x) ≡ (∀y)(¬E(y , x)).
The leaves need to be ordered 1,2, . . . so that we know where to
place input bits b1,b2, . . . ,bn.
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Parallelism Circuit Complexity

Vocabulary of Circuits (Cont’d)

We assume for simplicity that the leaves of a circuit are the initial
elements of the universe of a circuit.

That is, we assume that every circuit C satisfies the following formula:

Leaves-Come-First ≡ (∀xy)(L(x) ∧ ¬L(y)→ x < y).
Input relation I(v) represents the fact that leaf v contains value 1.

Internal node w is:

An and-gate if G∧(w) holds;
An or-gate if G∨(w) holds;
A not-gate if G¬(w) holds.
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Parallelism Circuit Complexity

Threshold Gates

A threshold gate with threshold value i has output 1 iff at least i
of its inputs have value 1.

Note that threshold gates include as special cases:

“or” gates in which the threshold is 1;
“and” gates in which the threshold is equal to the number of inputs.

We generalize the vocabulary of circuits to the vocabulary of

threshold circuits,
τthc = τc ∪ {G 2

t }.
Gt(g , v) means that g is a threshold gate with threshold value v .

If Gt(g , v) holds, the g takes value 1 in a circuit iff at least v of its
inputs have value 1.
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Parallelism Circuit Complexity

Accepting a Structure

Let A ∈ STRUC[τ], with n = ∥A∥.
A circuit Cn with n̂τ(n) leaves can take A as input by placing the
binary string bin(A) into its leaves.

We write C(w) to denote the output of circuit C on input w .

That is, C(w) denotes the value of the root node when:

w is placed at the leaves;
C is evaluated.

We say that circuit C accepts structure A if and only if

C(bin(A)) = 1.
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Parallelism Circuit Complexity

Uniformity

Definition (Uniformity)

Let C be a sequence of circuits.
Let τ ∈ {τc , τthc} be the vocabulary of circuits or threshold circuits.
Let I ∶ STRUC[τs]→ STRUC[τ] be a query such that, for all n ∈N,

I(0n) = Cn.

That is, on input a string of n zero’s, the query produces circuit n.

If I ∈ FO, then C is a first-order uniform sequence of circuits.

If I ∈ L, then C is a logspace uniform sequence of circuits.

If I ∈ P, then C is polynomial-time uniform sequence of circuits.

⋮

Whether we use first-order, logspace or polynomial-time uniformity,
any uniform sequence of circuits is polynomial-size.
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Circuit Complexity

Definition (Circuit Complexity)

Let t(n) be a polynomially bounded function.
Let S ⊆ STRUC[τ] be a boolean query.
Then S is in the (first-order uniform) circuit complexity class NC[t(n)],
AC[t(n)], ThC[t(n)], respectively, iff, there exists a first-order query

I ∶ STRUC[τs]→ STRUC[τthc ]
defining a uniform class of circuits Cn = I(0n), satisfying:
1. For all A ∈ STRUC[τ], A ∈ S iff C∥A∥ accepts A;
2. The depth of Cn is O(t(n));
3. The gates of Cn consist, respectively, of binary “and” and “or” gates

(NC), unbounded fan-in “and” and “or” gates (AC), unbounded
fan-in threshold gates (ThC).
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Circuit Complexity Classes

For i ∈N, we define the following classes:

NCi
= NC[(log n)i],

ACi
= AC[(log n)i ],

ThCi
= ThC[(log n)i ].

Finally, let

NC =
∞

⋃
i=0

NCi .
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Comments on the Three Classes

The NC circuits correspond to standard silicon-based hardware.

The AC circuits are idealized hardware in that it is not known how to
connect n inputs to a single gate with constant delay time.

The practical way to do this is to connect them in a binary tree,
causing an O(log n) time delay.

On the other hand, once we have such a binary tree, we can also
compute threshold functions.

This explains the inclusions, proven rigorously later,

AC[t(n)] ⊆ ThC[t(n)] ⊆ NC[t(n) log n].
We also see below that the unbounded fan-in gates in AC circuits
correspond exactly to concurrent writing in the CRAM model.
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Regular Languages and NC1

A regular language is a set of strings S ⊆ Σ∗ accepted by a finite
automaton.

A finite automaton is a Turing machine with no work tapes.

Proposition

Every regular language is in NC1.

We are given a deterministic finite automaton D = ⟨Σ,Q, δ, s,F ⟩.
We must construct a first order query

ID ∶ STRUC[τs]→ STRUC[τc ]
such that, letting Cn = ID(0n), we have, for all strings w ∈ Σ∗,

w ∈ L(D) iff C∣w ∣ accepts w .
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Regular Languages and NC1 (Cont’d)

Circuit Cn is a complete binary tree with n leaves.

The input to leaf L(i) is wi , character i of the input string.

Each such leaf contains the finite hardware to produce as output the
transition function of D on reading input symbol wi .

That is, we store a table for

fL(i) = δ(⋅,wi) ∶ Q → Q.

Each internal node v of the tree:

Takes as input the transition functions fℓc and frc of its left child and
right child;
Computes their composition

fv = frc ○ fℓc .
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Regular Languages and NC1 (Cont’d)

Inductively, the output of every node v is the function

fv = δ
∗(⋅,wv ),

where wv is the subword of w that is sitting below v ’s subtree.

In particular,
w ∈ L(D) iff fr(s) ∈ F ,

where fr is the mapping stored at the root.

Now D is a fixed, finite state automaton.

So the hardware at the leaves and at each internal node is a fixed,
bounded size NC circuit.

The first-order query ID need only describe a complete binary tree
with n leaves with these two fixed circuits placed at each leaf and
each internal node, respectively.

The height of the resulting circuits is O(log n).
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AC and FO

Theorem

For all polynomially bounded and first-order constructible t(n), the
following classes are equal:

CRAM[t(n)] = IND[t(n)] = FO[t(n)] = AC[t(n)].
The equality of the first three classes has already been proven.

We first show that FO[t(n)] ⊆ AC[t(n)].
Let S be a FO[t(n)] boolean query given by:

The quantifier block QB = [(Q1x1.M1)⋯(Qkxk .Mk)];
The initial formula M0;
The tuple of constants c.

We must write a first-order query I , generating circuit Cn = I(0n),
such that, for all A ∈ STRUC[τ],

A ⊧ (QB t(∥A∥)M0)(c/x) iff C∥A∥ accepts A.
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AC and FO (Cont’d)

Initially the circuit evaluates the quantifier-free formulas

Mi , i = 0,1, . . . ,k .

The nodes ⟨Mi ,b1, . . . ,bk⟩ will be the gates that have evaluated these
formulas, i.e.,

⟨Mi ,b1, . . . ,bk⟩(bin(A)) = 1 iff A ⊧Mi(b1, . . . ,bk).
Let ϕr be the inside r quantifiers of QB t(∥A∥)M0.

The first of these quantifiers is Qi , where i ≡ 1 − r (mod k).
We construct the gate ⟨2r ,b1, . . . , b̂i , . . . ,bk⟩ so that

⟨2r ,b1, . . . , b̂i , . . . ,bk⟩(bin(A)) = 1 iff A ⊧ ϕr(b1, . . . ,bk).
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AC and FO (Cont’d)

This is achieved inductively by letting gate ⟨2r ,b1, . . . , b̂i , . . . ,bk⟩ be
an “and”-gate or “or”-gate depending on whether Qi = ∀ or ∃.

This gate has inputs gates

⟨2r − 1,b1, . . . ,bi , b̂i+1, . . . ,bk⟩,
for bi ranging over ∣A∣.

Each ⟨2r − 1,b1, . . . ,bi , b̂i+1, . . . ,bk⟩ is a binary “and” -gate whose
inputs are ⟨Mi ,b1, . . . ,bk⟩ and ⟨2r − 2,b1, . . . ,bi , b̂i+1, . . . ,bk⟩.
The circuit we have described may be constructed via a first-order
query I , and it satisfies the required equivalence.
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AC and FO (Cont’d)

We now show that AC[t(n)] ⊆ IND[t(n)].
Let I ∶ STRUC[τs]→ STRUC[τc] be a first-order query, such that
Cn = I(0n), n = 1,2, . . ., is a uniform sequence of AC[t(n)] circuits.
We must write an inductive formula Φ ≡ (LFPϕ)(c), such that, for allA ∈ STRUC[τ],

A ⊧ Φ iff C∥A∥ accepts A.
Suppose A is given.

Applying the query, we get

C∥A∥ = ⟨E ,G∧,G∨,G¬,bin(A), r⟩.
The input string I = bin(A) is first-order describable from A.
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AC and FO (Cont’d)

We construct a first-order inductive definition of the relation V (x ,b)
meaning that gate x has boolean value b.

We use:
DEFINED(x), meaning that x is ready to be defined,

(∀y)(∃c)(E(y , x)→ V (y , c));
C(x), saying that all of x ’s inputs are true,

C(x) ≡ (∀y)(E(y , x)→ V (y ,1));
D(x), saying that some of x ’s inputs are true,

D(x) ≡ (∃y)(E(y , x) ∧ V (y ,1));
N(x), saying that its input is false,

N(x) ≡ (∃!y)(E(y , x))∧ (∃y)(E(y , x) ∧V (y ,0)).
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AC and FO (Cont’d)

Then we have

V (x ,b) ≡ DEFINED(x) ∧ [L(x) ∧ (I(x)↔ b)∨
G∧(x) ∧ (C(x)↔ b) ∨G∨(x) ∧ (D(x)↔ b)
∨G¬(x) ∧ (N(x)↔ b)].

The inductive definition of V closes in exactly the depth of Cn.

So it takes O(t(n)) iterations.
After the last iteraton, Φ ≡ V (r ,1) expresses the acceptance
condition in IND[t(n)].
So we have A ⊧ Φ iff C∥A∥ accepts A.
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Characterization of NC

A corollary of the theorem is the following characterization of the
class NC.

Corollary

NC =
∞

⋃
k=1

FO[(log n)k] = ∞

⋃
k=1

CRAM[(log n)k].
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Subsection 5

Alternating Complexity
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The Logarithmic Time Hierarchy

Let the logarithmic time hierarchy (LH) be defined by

LH ∶= ATIME-ALT[log n,O(1)].
This is the set of boolean queries computed by alternating Turing
machines:

In O(log n) time;
Making a bounded number of alternations.

The following theorem says that LH = FO.

Theorem

The logarithmic-time hierarchy is exactly the set of first-order expressible
boolean queries.
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Deterministic Logarithmic Time and FO

The most delicate part of the proof is the following

Lemma

DTIME[log n] ⊆ FO.
Let T be a DTIME[log n] machine.

We must write a first-order sentence ϕ, such that, for all inputs A,
T (bin(A)) ↓ iff A ⊧ ϕ.

The sentence ϕ will begin with existential quantifiers,

ϕ ≡ (∃x1 . . . xc)ψ(x).
The variables x will code the log n steps of T ’s computation.
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Deterministic Logarithmic Time and FO (Cont’d)

For each step t of T ’s computation, the coding by x will include the
values:

qt , representing T ’s state;
wt , representing the symbol it writes;
dt , representing the direction its head moves;
It representing the value of the input being scanned by the
index-tape-controlled input head.

It is important to remember that:

Each variable is a ⌈logn⌉ bit number;
The numeric predicate BIT allows these bits to be specified.
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Deterministic Logarithmic Time and FO (Cont’d)

The formula ψ must now assert that the information in x meshes
together to form a valid accepting computation of T .

To accomplish this, we must define the first-order relations:

C(p, t, a), the contents of cell p at time t is a;
P(p, t), meaning that for the computation determined by x , the work
head is at position p at time t.

Given C and P we can assert that x is self-consistent.
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Deterministic Logarithmic Time and FO (Cont’d)

Note, for example, that we can:

Guess the contents y of the index tape;
Then use C to verify that y is correct;
Next, using y , we can verify that the input symbol I is correct.

Next, note that, using P , we can write C .

This is because the contents of cell p at time t is just Wt1 , where t1
is the most recent time that the head was at position p.

Finally, observe that to write the relation P it suffices to take the sum
of O(log n) values each of which is either −1 or 1.

We can do this in FO using BIT, by a previous result.
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The Logarithmic Time Hierarchy (Cont’d)

Now we show LH ⊆ FO.

Consider an alternating logarithmic-time machine.

It may be assumed to:

Write its guesses on a work tape;
Then deterministically check for acceptance.

By hypothesis, there are a bounded number of alternations.

Moreover, the total time is O(log n).
So these guesses may be simulated by a bounded number of
first-order quantifiers.

The remaining work is in DTIME[log n].
Thus, by the lemma, it is in FO.
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The Logarithmic Time Hierarchy (Cont’d)

We must, finally, show that FO ⊆ LH.

Consider a first-order sentence

ϕ ≡ (∃x1)(∀x2)⋯(Qkxk)M(x).
We must show that, there exists an ATIME-ALT[log n,0(1)] machine
T , such that, for all input strings A,

T (bin(A)) ↓ iff A ⊧ ϕ.
Note that M is a constant size quantifier-free formula.
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The Logarithmic Time Hierarchy (Cont’d)

So it is easy to build a DTIME[log n] Turing machine which, on inputA and with values a1, . . . ,ak on its tape, tests whether or not

A ⊧M(a).
The most complicated part of this is to verify the BIT predicate.

This requires counting in binary up to O(log n) on a work tape, which
is straightforward.

Thus, using k − 1 alternations between existential and universal
states, a Σk logarithmic-time machine can:

Guess a1, . . . , ak ;
Then deterministically verify M(a).
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Characterizations of FO

Notice that by the theorems in this set, we now have three interesting
characterizations of the class FO.

Corollary

FO = AC0
= CRAM[1] = LH.

The truth of the corollary depends on our choice of:

Including BIT as a numeric predicate;
Including the SHIFT operation in the CRAM;
Our definition of uniformity for AC0.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 68 / 76



Parallelism Alternating Complexity

AC and Alternation

Theorem

For t(n) ≥ log n,
ASPACE-ALT[log n, t(n)] = AC[t(n)] = FO[t(n)].

We have already seen that AC[t(n)] = FO[t(n)].
We now sketch AC[t(n)] ⊆ ASPACE-ALT[log n, t(n)].
Let t(n) ≥ log n and consider the same AC[t(n)] boolean query I , as
in the proof that AC[t(n)] ⊆ IND[t(n)], with I(0n) = Cn.

Now ASPACE-ALT[log n, t(n)] ⊇ ATIME-ALT[log n,1] = LH.
So, by the preceding theorem, ASPACE-ALT[log n, t(n)] ⊇ FO.
Thus, the circuit Cn is available in ASPACE-ALT[log n, t(n)].
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AC and Alternation (Cont’d)

We can simulate an AC[t(n)] circuit via an IND[t(n)] definition.
Looking at the simulation we see that it makes at most O(t(n))
alternations between existential and universal quantifiers.

This inductive definition can, thus, be directly simulated by an
ASPACE-ALT[log n, t(n)] machine:

Each universal quantifier is simulated by log n universal moves;
Each existential quantifier is simulated by logn existential moves.

The space needed to hold the variables is O(log n).
Furthermore, there are only a bounded number of alternations per
iteration of the inductive definition.
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AC and Alternation (Cont’d)

Next, we sketch ASPACE-ALT[log n, t(n)] ⊆ AC[t(n)].
Let M be an ASPACE-ALT[log n, t(n)] machine.

An ID of M can be coded using a bounded number of variables.

The acceptance condition of M can then be expressed via an
inductive definition of depth log n + t(n) as follows.
Let EPATHM(ID1, ID2) mean “there is a computation path of M from
ID1 to ID2 all of whose states except perhaps the last is existential”.

Let APATH mean the same thing for universal paths.

EPATH and APATH are expressible in IND[log n].
Thus, the following simultaneous induction has depth O(log n + t(n))
and expresses the acceptance condition for M as desired:

ACCEPTM(ID1) ≡ ID1 is the accept ID ∨ (∃ID2)[ACCEPTM(ID2)
∧(EPATH(ID1, ID2) ∨ APATH(ID1, ID2))].
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NC and Alternation (Cont’d)

We state a similar characterization of NC[t(n)] without proof.
Theorem

For t(n) ≥ log n,
NC[t(n)] = ASPACE-TIME[log n, t(n)].

The proof is similar to that of the preceding theorem.

The difference is that the definitions of C and D in V (x ,b) now
involve binary “and”s and “or”s rather than universal and existential
quantifiers.
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NC and AC

For i ≥ 1, the bound NCi
⊆ ACi is not optimal.

The following improvement is known to be optimal.

This is because the NC1 query PARITY requires depth logn
log log n .

Theorem

For t(n) ≥ log n,
NC[t(n)] ⊆ AC [ t(n)

log log n
] .

We prove, equivalently,

ASPACE-TlME[log n, t(n)] ⊆ IND [ t(n)
log log n

] .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 73 / 76



Parallelism Alternating Complexity

NC and AC (Cont’d)

Let M be an ASPACE-TIME[log n, t(n)] machine.

We inductively define the acceptance condition ACCEPTM of M.

The straightforward way to do this is in IND[t(n)], with one
alternation of quantifiers per move of M.

As usual, we assume that M alternates at each step between
existential and universal states.

We need to improve this simulation by a log log n factor.
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NC and AC (Cont’d)

A list of which existential moves to make in the event of each possible
sequence of log log n

2 universal moves can be given in log n bits.

Let e be such a log n-bit table of which existential move to make in
the event of any sequence of log log n

2 universal moves.

Let a be such a sequence of universal moves.

We can inductively define the relation

MOVESM(e,u, ID1, ID2)
meaning “ID2 follows from ID1 in the log log n moves of M
determined by the universal moves u and the existential moves given
by e indexed by u”.

It is easy to write such an inductive definition in depth log log n.
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NC and AC (Cont’d)

Our definition of ACCEPTM is then a simultaneous inductive
definition with MOVESM .

Namely, we have

ACCEPTM(ID1) ≡ ID1 is the accept ID
∨(∃e)(∀u)(∃ID2)(MOVESM(e,u, ID1, ID2)

∧ ACCEPTM(ID2)).
The depth of this simultaneous induction is

t(n)
log log n .
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