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Stochastic Domination

Let X and Y be random variables.

X stochastically dominates Y , or X is stochastically larger than

Y , written as X ≥st Y , if, for all t,

P(X > t) ≥ P(Y > t).

That is, X ≥st Y if for every constant t, it is at least as likely that X
will exceed t as it is that Y will.

Remark: Because a probability is always a continuous function on
events, an equivalent definition would be that X ≥st Y if

P(X ≥ t) ≥ P(Y ≥ t), for all t.
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Characterization of Stochastic Dominance: Lemma 1

Lemma

If X is a nonnegative random variable, then

E [X ] =

∫ ∞

0
P(X > t)dt.

For t > 0, define the random variable I (t) by

I (t) =

{

1, if t < X ,

0, if t ≥ X .

Now,
∫∞

0 I (t)dt =
∫ X

0 I (t)dt +
∫∞

X
I (t)dt = X .

Consequently,

E [X ] = E

[
∫ ∞

0
I (t)dt

]

=

∫ ∞

0
E [I (t)]dt =

∫ ∞

0
P(X > t)dt.
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Characterization of Stochastic Dominance: Lemma 2

Lemma

If X ≥st Y , then E [X ] ≥ E [Y ].

Suppose first that X and Y are nonnegative random variables.

By the preceding lemma and the definition of stochastic dominance,

E [X ] =

∫ ∞

0
P(X > t)dt ≥

∫ ∞

0
P(Y > t)dt = E [Y ].

Hence, the result is true when the random variables are nonnegative.

To prove the result in general, note that any number a can be
expressed as the difference of its positive and negative parts:
a = a+ − a−, where a+ = max (a, 0), a− = max (−a, 0).

This is a consequence of the fact that:

If a ≥ 0, then a+ = a and a− = 0;
If a < 0, then a+ = 0 and a− = −a.
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Proof of Lemma 2 (Cont’d)

Assume that X ≥st Y .

Express X ,Y as the difference of their positive and negative parts:

X = X+ − X− and Y = Y+ − Y−

Now, for any t ≥ 0,

P(X+ > t) = P(X > t) ≥ P(Y > t) = P(Y+ > t);

P(X− > t) = P(−X > t) = P(X < −t) ≤ P(Y < −t)
= P(−Y > t) = P(Y− > t).

Hence, X+ ≥st Y
+ and X− ≤st Y

−.

These random variables are all nonnegative.

So we have E [X+] ≥ E [Y+] and E [X−] ≤ E [Y−].

The result now follows because

E [X ] = E [X+]− E [X−] ≥ E [Y+]− E [Y−] = E [Y ].
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Characterization of Stochastic Dominance

Proposition

X ≥st Y if and only if E [h(X )] ≥ E [h(Y )] for all increasing functions h.

Suppose that X ≥st Y and that h is an increasing function.

To show that E [h(X )] ≥ E [h(Y )], we first show that h(X ) ≥st h(Y ).

Since h is increasing, for any t, there is some value, say h−1(t), such
that h(X ) > t is equivalent to either X ≥ h−1(t) or X > h−1(t).

Assume there is a unique value y such that h(y) = t.

Then the latter case holds and y = h−1(t).

Assuming the latter case, we have

P(h(X ) > t) = P(X > h−1(t)) ≥ P(Y > h−1(t)) = P(h(Y ) > t).

A similar argument holds if h(X ) > t is equivalent to X ≥ h−1(t).

Therefore, h(X ) ≥st h(Y ).

By the preceding lemma, E [h(X )] ≥ E [h(Y )].
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Characterization of Stochastic Dominance (Converse)

Conversely, assume E [h(X )] ≥ E [h(Y )], for all increasing functions h.

For fixed t, define the function ht by

ht(x) =

{

0, if x ≤ t,

1, if x > t.

Then ht(x) is increasing.

So we have
E [ht(X )] ≥ E [ht(Y )].

But E [ht(X )] = P(X > t) and E [ht(Y )] = P(Y > t).

This shows that that X ≥st Y .
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Using Coupling to Show Stochastic Dominance

One way to show that X ≥st Y is to find random variables X ′ and Y ′

such that:

X ′ has the same distribution as X ;
Y ′ has the same distribution as Y ;
It is always the case that X ′ ≥ Y ′.

Assume that we have found such random variables.

Then Y ′ > t implies that X ′ > t. So P(Y ′ > t) ≤ P(X ′ > t).

But

P(X ′ > t) = P(X > t) and P(Y ′ > t) = P(Y > t).

Therefore, X ≥st Y .

This method of establishing that one random variable is stochastically
larger than another is called coupling.
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Example

a Poisson random variable is stochastically increasing in its mean.

That is, a Poisson random variable with mean λ1 + λ2 is
stochastically larger than a Poisson random variable with mean λ1

when λi > 0, i = 1, 2.

For a Poisson random variable X with mean λ,

P(X ≥ j) =

∞
∑

i=j

e−λλ
i

i !
.

Direct verification that it is increasing in λ for any j is not easy.

So we use coupling.

Let X1, X2 be independent Poisson with means λ1, λ2.

The sum of independent Poisson random variables is also Poisson.

So X1 + X2 is Poisson with mean λ1 + λ2.

But X1 + X2 ≥ X1. So the result follows by coupling.
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Continuous Distribution and Uniform Random Variable

Lemma

If F is a continuous distribution function and U a uniform (0, 1) random
variable, then the random variable F−1(U) has distribution function F ,
where F−1(u) is defined to be that value such that F (F−1(u)) = u.

A distribution function is increasing.

So the inequalities a ≤ x and F (a) ≤ F (x) are equivalent.

Hence,

P(F−1(U) ≤ x) = P(F (F−1(U)) ≤ F (x))

= P(U ≤ F (x))

= F (x).
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Stochastic Dominance and Coupling

Proposition

If X ≥st Y , then there are random variables X ′ having the same
distribution as X , and Y ′ having the same distribution as Y , such that
X ′ ≥ Y ′.

Assume that X and Y are continuous, with respective distribution
functions F and G , and that X ≥st Y .

X ≥st Y implies that F (x) ≤ G (x), for all x .

So we get

F (G−1(u)) ≤ G (G−1(u)) = u = F (F−1(u)).

Since F is increasing, we get G−1(u) ≤ F−1(u).

Let U be uniform (0, 1) and set X ′ = F−1(U) and Y ′ = G−1(U).

We showed X ′ ≥ Y ′. The result follows from the preceding lemma.
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An Application

Theorem

Let X1, . . . ,Xn and Y1, . . . ,Yn be vectors of independent random
variables, and suppose that Xi ≥st Yi for each i = 1, . . . , n. If
g(x1, . . . , xn) is increasing in each component,

g(X1, . . . ,Xn) ≥st g(Y1, . . . ,Yn).

Let g(x1, . . . , xn) be increasing in each component.

For i = 1, . . . , n, let:

Fi be the distribution function of Xi ;
Gi be the distribution function of Yi .
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An Application (Cont’d)

Let U1, . . . ,Un be independent uniform (0, 1) random variables.

Set, for all i = 1, . . . , n,

X ′
i = F−1

i (Ui) and Y ′
i = G−1

i (Ui).

We have X ′
i ≥ Y ′

i , for all i .

So g(X ′
1, . . . ,X

′
n) ≥ g(Y ′

1, . . . ,Y
′
n).

By the proposition, for all i , we have:

X ′
i has the same distribution as Xi ;

Y ′
i has the same distribution as Yi .

It follows that:

g(X ′
1, . . . ,X

′
n) has the same distribution as g(X1, . . . ,Xn);

g(Y ′
1, . . . ,Y

′
n) has the same distribution as g(Y1, . . . ,Yn).

Now the result follows by coupling.
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Likelihood Ratio Ordering

Suppose X and Y are continuous random variables, with:

X having density function f ;
Y having density function g .

We say that X is likelihood ratio larger than Y if f (x)
g(x) is increasing

in x over the region where either f (x) or g(x) is greater than 0.

Suppose, next, that X and Y are discrete random variables.

We say that X is likelihood ratio larger than Y if P(X=x)
P(Y=x) is

increasing in x over the region where either P(X = x) or P(Y = x) is
greater than 0.
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Likelihood Ratio Ordering and Stochastic Order

Proposition

If X is likelihood ratio larger than Y , then X is stochastically larger than
Y .

Let X and Y have probability density functions f and g .

Suppose that f (x)
g(x) ↑ x .

We must show that, for any a,
∫

x>a
f (x)dx ≥

∫

x>a
g(x)dx .

There are two cases:
Case 1 f (a) ≥ g(a): If x > a, then f (x)

g(x) ≥
f (a)
g(a) ≥ 1. Hence, if x ≥ a,

f (x) ≥ g(x). This gives the result.

Case 2 f (a) < g(a): If x ≤ a then f (x)
g(x) ≤

f (a)
g(a) < 1. So we get

∫

x≤a
f (x)dx <

∫

x≤a
g(x)dx . This gives

∫

x>a

f (x)dx = 1−
∫

x≤a

f (x)dx ≥ 1−
∫

x≤a

g(x)dx =

∫

x>a

g(x)dx.
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Tilted Density Function

Let X be a random variable with density function f (x).

Define

C =
1

∫

ety f (y)dy
.

The t-tilted density with regard to f is the density function ft
given by

ft(x) = Cetx f (x).
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Tilted Density Function and Likelihood Ratio Ordering

Let X be a random variable with density function f (x).

Note that
ft(x)

f (x)
=

etx
∫

ety f (y)dy

is:

Increasing in x when t > 0;
Decreasing in x when t < 0.

It follows that a random variable Xt having density function ft is:

Likelihood ratio (and thus also stochastically) larger than X when
t > 0;
Likelihood ratio (and thus also stochastically) smaller than X when
t < 0.
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A Single-Period Investment Problem

Suppose we have an initial fortune w .

We must decide on an amount y , 0 ≤ y ≤ w , to invest.

After one period, an investment of size y returns the amount

yX + (1 + r)(w − y),

where

X is a nonnegative random variable having a known distribution;
r is a specified interest rate earned by the uninvested amount.

Let u be an increasing, concave utility function.

We maximize the expected utility of the end-of-period wealth.

That is, with β = 1 + r , the objective is to find

M = max
0≤y≤w

E [u(yX + β(w − y))].
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Maximizing the Expected Utility

Suppose X is a continuous random variable with density f .

M = max0≤y≤w E [u((X − β)y + βw)]

= max0≤y≤w

∫∞

−∞
u((x − β)y + βw)f (x)dx .

Differentiating the term inside the maximum yields that

d
dy

∫∞

0 u((x − β)y + βw)f (x)dx

=
∫∞

0 u′((x − β)y + βw)(x − β)f (x)dx

=
∫∞

0 h(y , x)f (x)dx ,

where h(y , x) = u′((x − β)y + βw)(x − β).

So the maximizing value yf of y is such that
∫ ∞

0
h(yf , x)f (x)dx = 0.
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Properties of h(y , x)

Lemma

For fixed x , h(y , x) is decreasing in y . In addition:

h(y , x) ≤ 0, if x ≤ β;

h(y , x) ≥ 0, if x ≥ β.

Case 1 x ≤ β: We have the following implications.

x ≤ β ⇒ (x − β)y + βw ↓ y

⇒ u′((x − β)y + βw) ↑ y (u concave ⇒ u′(v) ↓ v)

⇒ h(y , x) = (x − β)u′((x − β)y + βw) ↓ y .

We also have:

x − β ≤ 0;
u′ ≥ 0 (since u is increasing).

It follows that h(y , x) ≤ 0.
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Properties of h(y , x) (Case 2)

Case 2 x ≥ β: We have the following implications.

x ≥ β ⇒ (x − β)y + βw ↑ y

⇒ u′((x − β)y + βw) ↓ y (u′(v) ↓ v)

⇒ h(y , x) = (x − β)u′((x − β)y + βw) ↓ y .

We also have:

x − β ≥ 0;
u′ ≥ 0 (since u is increasing).

It follows that h(y , x) ≥ 0.
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Comparison Between Investments

Now consider two scenarios for an investor with initial wealth w .

The multiplicative random variable is X1 with density function f ;
The multiplicative random variable is X2, with density function g .

We explore conditions on f and g under which the optimal amount
invested in the first scenario is at least as large as the optimal amount
invested in the second scenario, for every increasing, concave utility
function.

Equivalently, we want to ensure yf ≥ yg .

An initial guess may be that X1 being stochastically larger than X2 is
sufficient.

This, however, is not the case as is shown by the following example.
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Stochastic Comparison and Size of Investment

Suppose the utility function is

u(x) =

{

x , if x ≤ 100
100, if x > 100

.

Assume that:
P(X1 = 4) = P(X1 = 0) = 1

2 ;
P(X2 = 3) = P(X2 = 0) = 1

2 .

Then X1 is stochastically larger than X2.

Suppose, further, that:
The initial wealth is w = 30;
The interest rate is r = 0.

The optimal amount to invest in the X1 factor problem ≤ 70
3 .

Investing more than 70
3 would yield the same utility value (of 100) as

investing 70
3 if X1 = 4 and a smaller utility if X1 = 0.

The optimal amount to invest in the X2 factor problem is 30.
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Likelihood Ratio and Size of Investment

Having a stochastically larger investment return factor does not
necessarily imply that a larger amount should be invested.

We show that this result is true when the investment returns are
likelihood ratio ordered.

Theorem

If f and g are density functions of nonnegative random variables, for which
f (x)
g(x) increases in x , then yf ≥ yg . That is, when f is a likelihood ratio
ordered larger density than g , then the optimal amount to invest when the
multiplicative factor has density f is larger than when it has density g .

We know that the optimal amount to invest is:

yg , such that
∫∞

0
h(yg , x)g(x)dx = 0, if X has density g ;

yf , such that
∫∞

0 h(yf , x)f (x)dx = 0, if X has density f .

We would like to show yf ≥ yg .
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Likelihood Ratio and Size of Investment (Cont’d)

We know h(y , x) is decreasing in y .

So yf ≥ yg is equivalent to

∫ ∞

0
h(yg , x)f (x)dx ≥

∫ ∞

0
h(yf , x)f (x)dx .

So it suffices to prove that
∫∞

0 h(yg , x)f (x)dx ≥ 0.

We have

∫ ∞

0
h(yg , x)f (x)dx =

∫ β

0
h(yg , x)f (x)dx +

∫ ∞

β

h(yg , x)f (x)dx .

We distinguish two cases according to whether x ≤ β or x ≥ β.
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Likelihood Ratio and Size of Investment (Cont’d)

Suppose, first, x ≤ β.

Then f (x)
g(x) ≤

f (β)
g(β) . So f (x) ≤ f (β)

g(β)g(x).

Moreover, by the preceding lemma, h(yg , x) ≤ 0.

Hence,
∫ β

0
h(yg , x)f (x)dx ≥ f (β)

g(β)

∫ β

0
h(yg , x)g(x)dx .

Suppose, next, x ≥ β.

Then f (x)
g(x) ≥

f (β)
g(β) . So f (x) ≥ f (β)

g(β)g(x).

Moreover, by the preceding lemma, h(yg , x) ≥ 0.

Hence,
∫ ∞

β

h(yg , x)f (x)dx ≥ f (β)

g(β)

∫ ∞

β

h(yg , x)g(x)dx .

Adding, we get
∫∞

0 h(yg , x)f (x)dx ≥ f (β)
g(β)

∫∞

0 h(yg , x)g(x)dx = 0.
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Subsection 5

Second-Order Dominance
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Second-Order Dominance

Definition

We say that X second order dominates Y , written as X ≥icv Y , if

E [h(X )] ≥ E [h(Y )], for all functions h that
are both increasing and concave.

Remarks:

1. The notation X ≥icv Y is used because equivalent terminology to X

second-order dominating Y is that X is stochastically larger than

Y in the increasing, concave sense.

2. If X has expected value E [X ], then by Jensen’s inequality, the
constant random variable E [X ] second order dominates X .
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A Necessary Condition

For a specified value of a, let

ha(x) =

{

x , if x ≤ a

a, if x > a
.

ha(x) is an increasing straight line that becomes flat when it hits a.

So ha(x) is an increasing, concave function.

We write
ha(X ) = a− (a − ha(X )).

Then a − ha(X ) nonnegative random variable.
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A Necessary Condition (Cont’d)

By a previous lemma,

E [ha(X )] = a− E [a − ha(X )]

= a−
∫∞

0 P(a − ha(X ) > t)dt

= a−
∫∞

0 P(ha(X ) < a − t)dt

= a−
∫∞

0 P(X < a − t)dt

= a−
∫ a

−∞
P(X < y)dy .

If X second-order stochastically dominates Y , E [ha(X )] ≥ E [ha(Y )].

So, if X second-order stochastically dominates Y ,

∫ a

−∞

P(X < y)dy ≤
∫ a

−∞

P(Y < y)dy , for all a.
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Sufficiency of the Condition

In fact, it can be shown that the preceding is also a sufficient
condition for X ≥icv Y :

Theorem

X second-order stochastically dominates Y if and only if

∫ a

−∞

P(X < y)dy ≤
∫ a

−∞

P(Y < y)dy , for all a.
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Increasing Random Variables and Correlation

Proposition

If f (x) and g(x) are both increasing functions of x , then for any random
variable X ,

E [f (X )g(X )] ≥ E [f (X )]E [g(X )].

If one of f and g is an increasing function and the other is a decreasing
function, then

E [f (X )g(X )] ≤ E [f (X )]E [g(X )].

Let X and Y be independent with the same distribution.

Suppose f (x) and g(x) are both increasing functions of x .

Then f (X )− f (Y ) and g(X )− g(Y ) both have the same sign:

They are both nonnegative if X ≥ Y ;
They are both nonpositive if X ≤ Y .

Consequently, (f (X )− f (Y ))(g(X ) − g(Y )) ≥ 0.
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Increasing Random Variables and Correlation (Cont’d)

Equivalently,

f (X )g(X ) + f (Y )g(Y ) ≥ f (X )g(Y ) + f (Y )g(X ).

Taking expectations gives

E [f (X )g(X )] + E [f (Y )g(Y )] ≥ E [f (X )g(Y )] + E [f (Y )g(X )].

By the independence of X and Y ,

E [f (X )g(X )] + E [f (Y )g(Y )] ≥ E [f (X )]E [g(Y )] + E [f (Y )]E [g(X )].

Since X and Y have the same distribution, we get:
E [f (Y )g(Y )] = E [f (X )g(X )];
E [f (Y )] = E [f (X )];
E [g(Y )] = E [g(X )].

The preceding inequality yields the desired

2E [f (X )g(X )] ≥ 2E [f (X )]E [g(X )].
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Increasing Random Variables and Correlation (Cont’d)

Suppose, finally that:

f is decreasing;
g is increasing.

The preceding gives that

E [−f (X )g(X )] ≥ E [−f (X )]E [g(X )].

Multiplying both sides by −1, we get

E [f (X )g(X )] ≤ E [f (X )]E [g(X )].

This completes the proof.
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Zero Expectation Random Variable and Constant

Lemma

If E [X ] = 0 and c ≥ 1 is a constant, then X ≥icv cX .

Let h be an increasing concave function, and let c ≥ 1.

The Taylor series expansion with remainder of h(cx) about x gives
that, for some w between x and cx ,

h(cx) = h(x) + h′(x)(cx − x) + h′′(w)
2! (cx − x)2

≤ h(x) + h′(x)(cx − x).
(h′′(w) ≤ 0 by concavity)

Since the preceding holds for all x ,

h(cX ) ≤ h(X ) + (c − 1)Xh′(X ).

George Voutsadakis (LSSU) Mathematical Finance March 2024 40 / 48



Stochastic Order Relations Second-Order Dominance

Zero Expectation Random Variable and Constant (Cont’d)

We got h(cX ) ≤ h(X ) + (c − 1)Xh′(X ).

Note that we have:

f (x) = x is an increasing function;
h′(x) is a decreasing function of x , by the concavity of h.

So, by the preceding proposition,

E [Xh′(X )] ≤ E [X ]E [h′(X )].

Taking expectations in the inequality at the top gives

E [h(cX )] ≤ E [h(X )] + (c − 1)E [Xh′(X )]

≤ E [h(X )] + (c − 1)E [X ]E [h′(X )]

= E [h(X )]. (E [X ] = 0, by hypothesis)

We conclude that X ≥icv cX .
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Normal Random Variables and Second-Order Dominance

Theorem

If Xi , i = 1, 2, are normal random variables with respective means µi and
variances σ2

i , then

µ1 ≥ µ2 and σ1 ≤ σ2 imply X1 ≥icv X.

Assume that µ1 ≥ µ2 and σ1 ≤ σ2.

Let Z be a normal random variable with mean 0 and variance 1.

By the lemma, with c = σ2
σ1

≥ 1,

σ1Z ≥icv cσ1Z = σ2Z .
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Normal Variables and Second-Order Dominance (Cont’d)

Let h(x) be a concave and increasing function of x .

We obtain

E [h(µ1 + σ1Z )] ≥ E [h(µ2 + σ1Z )] (µ1 ≥ µ2 and h ↑)
≥ E [h(µ2 + σ2Z )],

where the final inequality follows because g(x) = h(µ2 + x) is a
concave, increasing function of x , and σ1Z ≥icv σ2Z .

The result now follows because µi + σiZ is a normal random variable
with mean µi and variance σ2

i .
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Second Order Dominance and Sum

Theorem

Let X1, . . . ,Xn and Y1, . . . ,Yn both be vectors of n independent random
variables. If Xi ≥icv Yi for each i = 1, . . . , n, then

∑n
i=1 Xi ≥icv

∑n
i=1 Yi .

Let h be an increasing concave function.

We need to show that E [h(
∑n

i=1Xi )] ≥ E [h(
∑n

i=1 Yi)].

The proof is by induction on n.

The result is true when n = 1.

Assume it is true whenever the random vectors are of size n − 1.

Let X1, . . . ,Xn and Y1, . . . ,Yn be two vectors of independent random
variables. Without loss of generality, we may assume that these
vectors are independent of each other.

This is because independence of the vectors does not affect the values
of E [h(

∑n
i=1Xi )] and E [h(

∑n
i=1 Yi)].
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Second Order Dominance and Sum (Cont’d)

We start by showing that
∑n

i=1 Xi ≥icv
∑n−1

i=1 Yi + Xn.

For any x , define the function hx(a) by hx(a) = h(x + a).

Note that hx is an increasing concave function. We have

E [h(
∑n

i=1 Xi)|Xn = x ] = E [h(x +
∑n−1

i=1 Xi)|Xn = x ]

= E [h(x +
∑n−1

i=1 Xi)]

= E [hx(
∑n−1

i=1 Xi )]

≥ E [hx(
∑n−1

i=1 Yi )]

= E [h(x +
∑n−1

i=1 Yi)]

= E [h(x +
∑n−1

i=1 Yi)|Xn = x ]

= E [h(Xn +
∑n−1

i=1 Yi)|Xn = x ].

Hence, E [h(
∑n

i=1 Xi)|Xn] ≥ E [h(Xn +
∑n−1

i=1 Yi )|Xn].

Taking expectations E [h(
∑n

i=1 Xi)] ≥ E [h(Xn +
∑n−1

i=1 Yi)].
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Second Order Dominance and Sum (Cont’d)

We now show
∑n−1

i=1 Yi + Xn ≥icv
∑n

i=1 Yi .

Note that

E [h(
∑n−1

i=1 Yi + Xn)|
∑n−1

i=1 Yi = y ] = E [hy (Xn)]

≥ E [hy (Yn)]

= E [h(
∑n

i=1 Yi)|
∑n−1

i=1 Yi = y ],

where the inequality followed because hy is an increasing, concave
function and the equalities from independence.

But the preceding gives that

E

[

h

(

n−1
∑

i=1

Yi + Xn

)

|
n−1
∑

i=1

Yi

]

≥ E

[

h

(

n
∑

i=1

Yi

)

|
n−1
∑

i=1

Yi

]

.

Taking expectations, E [h(
∑n−1

i=1 Yi + Xn)] ≥ E [h(
∑n

i=1 Yi)].

Hence,
∑n−1

i=1 Yi + Xn ≥icv
∑n

i=1 Yi .
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Remark

The theorem along with the central limit theorem can be used to give
another proof that a normal random variable decreases in second
order dominance as its variance increases.

Suppose σ2 > σ1.

Let X be equally likely to be plus or minus σ1.

Let Y be equally likely to be plus or minus σ2.

It is easy to directly verify that X ≥icv Y by showing that

h(−σ1) + h(σ1) ≥ h(−σ2) + h(σ2)

whenever h is an increasing, concave function.

We consider two vectors of independent random variables:

Xi , i ≥ 1, all having the same distribution as X ;
Yi , i ≥ 1, all having the same distribution as Y .
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Remark (Cont’d)

It follows from the theorem that

n
∑

i=1

Xi ≥icv

n
∑

i=1

Yi .

But W ≥icv V implies cW ≥icv cV , for any positive constant c .

So we get
∑n

i=1Xi√
n

≥icv

∑n
i=1Yi√
n

.

The result now follows by letting n → ∞:
The term on the left converges to a normal random variable with mean
0 and variance σ2

1 ;
The term on the right converges to a normal random variable with
mean 0 and variance σ2

2 .

To make this argument truly rigorous, we would need to show that
second-order stochastic dominance is preserved when taking a limit.
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