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Optimization Models A Deterministic Optimization Model

Subsection 1

A Deterministic Optimization Model
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Optimization Models A Deterministic Optimization Model

The Problem

Suppose we have m dollars to invest among n projects.

Investing x in project i yields a (present value) return of fi(x),
i = 1, . . . , n.

The problem is to determine the integer amounts to invest in each
project so as to maximize the sum of the returns.

Let xi denote the amount to be invested in project i .

The problem (mathematically) is to:

Choose nonnegative integers x1, . . . , xn,

such that
n

∑

i=1

xi = m,

to maximize
n

∑

i=1

fi(xi ).
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Optimization Models A Deterministic Optimization Model

Solution Based on Dynamic Programming

Let Vj(x) denote the maximal possible sum of returns when we have
a total of x to invest in projects 1, . . . , j .

Vn(m) represents the maximal value of the problem.

We determine Vn(m), and the optimal investment amounts, by:

Finding first the values of V1(x), for x = 1, . . . ,m;
Finding next the values of V2(x), for x = 1, . . . ,m;
...
Ending with the values of Vn(x), for x = 1, . . . ,m.
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Optimization Models A Deterministic Optimization Model

Solution Based on Dynamic Programming (Cont’d)

The maximal return when x must be invested in project 1 is f1(x).

So we have
V1(x) = f1(x).

Suppose that x must be invested between projects 1 and 2.
Let y be invested in project 2.
Then x − y is available to invest in project 1.

The best return from investing x − y in project 1 is V1(x − y).

So the maximal sum of returns possible when the amount y is
invested in project 2 is

f2(y) + V1(x − y).

The maximal sum of returns is obtained by maximizing over y ,

V2(x) = max
0≤y≤x

{f2(y) + V1(x − y)}.
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Optimization Models A Deterministic Optimization Model

Solution Based on Dynamic Programming (Cont’d)

In general, suppose that x must be invested among projects 1, . . . , j .
Suppose we invest y in project j .
Then a total of x − y is available to invest in projects 1, . . . , j − 1.

The best return from investing x − y in projects 1, . . . , j − 1 is
Vj−1(x − y).

So the maximal sum of returns possible when the amount y is
invested in project j is fj(y) + Vj−1(x − y).

The maximal sum of returns possible is obtained by maximizing the
preceding over y ,

Vj(x) = max
0≤y≤x

{fj(y) + Vj−1(x − y)}.

Let yj(x) denote the value (or a value if there is more than one) of y
that maximizes the right side of the preceding equation.

Then yj(x) is the optimal amount to invest in project j when we have
x to invest among projects 1, . . . , j .
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Optimization Models A Deterministic Optimization Model

Solution Based on Dynamic Programming (Cont’d)

The value of Vn(m) can now be obtained by first determining V1(x),
then V2(x), V3(x), . . ., Vn−1(x) and finally Vn(m).

The optimal amounts to invest are:

yn(m) in project n;
yn−1(m − yn(m)) in project n − 1;
...

This solution approach is called dynamic programming.

It views the problem as involving n sequential decisions.

It then analyzes it by determining:

The optimal last decision;
The optimal next to last decision;
...
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Optimization Models A Deterministic Optimization Model

Example

Suppose that three investment projects with the following return
functions are available:

f1(x) = 10x
1+x

, x = 0, 1, . . . ,

f2(x) =
√
x , x = 0, 1, . . . ,

f3(x) = 10(1− e−x ), x = 0, 1, . . . .

We want to maximize our return when we have 5 to invest.

We have

V1(x) = f1(x) =
10x

1 + x
.

Moreover,
y1(x) = x .
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Optimization Models A Deterministic Optimization Model

Example (Cont’d)

Now
V2(x) = max0≤y≤x {f2(y) + V1(x − y)}

= max0≤y≤x

{√
y + 10(x−y)

1+x−y

}

.

So we have

V2(1) = max
{

10
2 , 1

}

= 5, y2(1) = 0;

V2(2) = max
{

20
3 , 1 + 5,

√
2
}

= 20
3 , y2(2) = 0;

V2(3) = max
{

30
4 , 1 +

20
3 ,

√
2 + 5,

√
3
}

= 23
3 , y2(3) = 1;

V2(4) = max
{

40
5 , 1 +

30
4 ,

√
2 + 20

3 ,
√
3 + 5,

√
4
}

= 8.5, y2(4) = 1;

V2(5) = max
{

50
6 , 1 + 8,

√
2 + 7.5,

√
3 + 20

3 ,
√
4 + 5,

√
5
}

= 9,
y2(5) = 1.
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Optimization Models A Deterministic Optimization Model

Example (Cont’d)

Continuing, we get

V3(x) = max0≤y≤x {f3(y) + V2(x − y)}
= max0≤y≤x {10(1 − e−y ) + V2(x − y)}.

We compute the values:
1− e−1 = 0.632;
1− e−2 = 0.865;
1− e−3 = 0.950;
1− e−4 = 0.982;
1− e−5 = 0.993.

So we obtain

V3(5) = max {9, 6.32 + 8.5, 8.65 + 23
3 ,

9.50 + 20
3 , 9.82 + 5, 9.93} = 16.32,

y3(5) = 2.
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Optimization Models A Deterministic Optimization Model

Example (Cont’d)

Thus, the maximal sum of returns from investing 5 is 16.32;

The optimal amount to invest in project 3 is y3(5) = 2;

The optimal amount to invest in project 2 is

y2(5− 2) = y2(3) = 1;

The optimal amount to invest in project 1 is

y1(5− 2− 1) = y1(2) = 2.
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Optimization Models A Deterministic Optimization Model

Concave Return Functions

A function g(i), i = 0, 1, . . ., is said to be concave if

g(i + 1)− g(i) is nonincreasing in i .

We will consider concave return functions fi(x).

This means that the additional (or marginal) gain from each
additional unit invested becomes smaller as more has already been
invested.
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Optimization Models A Deterministic Optimization Model

Solution for Concave Return Functions

Assume that the functions fi (x), i = 1, . . . , n, are all concave.

Consider the problem of choosing nonnegative integers x1, . . . , xn,
whose sum is m, to maximize

∑n
i=1 fi(xi ).

Suppose that xo1 , . . . , x
o
n is an optimal vector for this problem.

I.e., a vector of nonnegative integers that sum to m, with

n
∑

i=1

fi (x
o
i ) = max

n
∑

i=1

fi(xi ),

the maximum over all nonnegative integers x1, . . . , xn that sum to m.

Now suppose that we have a total of m + 1 to invest.

We argue that there is an optimal vector yo1 , . . . , y
o
n with

∑n
i=1 y

o
i = m + 1 that satisfies yoi ≥ xoi , i = 1, . . . , n.
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Optimization Models A Deterministic Optimization Model

Solution for Concave Return Functions (Cont’d)

Suppose we have m + 1 to invest.

Consider any investment strategy y1, . . . , yn, such that:
∑n

i=1 yi = m + 1;
For some value of k , yk < xok .

We have m + 1 =
∑

i yi >
∑

i x
o
i = m.

Hence, there must be a j such that xoj < yj .

Consider the investment strategy that invests:

yk + 1 in project k ;
yj − 1 in project j ;
yi in project i for i 6= k , j .

We argue that this strategy is at least as good as the strategy that
invests yi in project i for each i .

George Voutsadakis (LSSU) Mathematical Finance March 2024 15 / 41



Optimization Models A Deterministic Optimization Model

Solution for Concave Return Functions (Cont’d)

We must show that fk(yk + 1) + fj(yj − 1) ≥ fk(yk) + fj(yj).

Equivalently,

fk(yk + 1)− fk(yk) ≥ fj(yj)− fj(yj − 1).

Now xo1 , . . . , x
o
n is optimal when there is m to invest.

So
fk(x

o
k ) + fj(x

o
j ) ≥ fk(x

o
k − 1) + fj(x

o
j + 1).

Equivalently, we have

fk(x
o
k )− fk(x

o
k − 1) ≥ fj(x

o
j + 1)− fj(x

o
j ).

Consequently,

fk(yk + 1)− fk(yk)
≥ fk(x

o
k )− fk(x

o
k − 1) (by concavity, since yk + 1 ≤ xok )

≥ fj(x
o
j + 1)− fj(x

o
j ) (by the preceding inequlaity)

≥ fj(yj)− fj(yj − 1) (by concavity, since xoj + 1 ≤ yj).
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Optimization Models A Deterministic Optimization Model

Solution for Concave Return Functions (Cont’d)

Thus, any strategy for investing m + 1 that calls for investing less
than xok in some project k can be at least matched by one whose
investment in project k is increased by 1 with a corresponding
decrease in some project j whose investment was greater than xoj .

Repeating this argument shows that, for any strategy of investing
m + 1, we can find another strategy that:

Invests at least xoi in project i , for all i = 1, . . . , n;
Yields a return that is at least as large as the original strategy.

This implies that we can find an optimal strategy yo1 , . . . , y
o
n for

investing m + 1 that satisfies the inequality claimed.
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Optimization Models A Deterministic Optimization Model

Solution for Concave Return Functions (Cont’d)

We argued that the optimal strategy for investing m + 1 invests at
least as much in each project as does the optimal strategy for
investing m.

It follows that the optimal strategy for m + 1 can be found by using
the optimal strategy for m and then investing the extra dollar in that
project whose marginal increase is largest.

Therefore, we can find the optimal investment (when we have m) by:

First solving the optimal investment problem when we have 1 to invest;
Then solving the optimal investment problem when we have 2 to invest;
Then solving the optimal investment problem when we have 3 to invest;
...
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Optimization Models A Deterministic Optimization Model

Example Revisited

We reconsider the preceding example.

We have 5 to invest among three projects, with return functions

f1(x) =
10x

1 + x
, f2(x) =

√
x , f3(x) = 10(1 − e−x).

Let xi(j) denote the optimal amount to invest in project i when we
have a total of j to invest.

We have

max {f1(1), f2(1), f3(1)} = max {5, 1, 6.32} = 6.32.

So
x1(1) = 0, x2(1) = 0, x3(1) = 1.
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Optimization Models A Deterministic Optimization Model

Example (Cont’d)

Now

max
i

{fi (xi (1) + 1)− fi(xi (1))} = max {5, 1, 8.65 − 6.32} = 5.

So we have
x1(2) = 1, x2(2) = 0, x3(2) = 1.

Further,

maxi {fi (xi (2) + 1)− fi (xi(2))} = max
{

20
3 − 5, 1, 8.65 − 6.32

}

= 2.33.

So we get
x1(3) = 1, x2(3) = 0, x3(3) = 2.
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Optimization Models A Deterministic Optimization Model

Example (Cont’d)

Continuing,

maxi {fi (xi (3) + 1)− fi (xi(3))} = max
{

20
3 − 5, 1, 9.50 − 8.65

}

= 1.67.

Therefore,
x1(4) = 2, x2(4) = 0, x3(4) = 2.

Finally,

maxi {fi (xi (4) + 1)− fi(xi (4))} = max
{

30
4 − 20

3 , 1, 9.50 − 8.65
}

= 1.

This gives
x1(5) = 2, x2(5) = 1, x3(5) = 2.

Thus, the maximal return is

6.32 + 5 + 2.33 + 1.67 + 1 = 16.32.
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Optimization Models A Deterministic Optimization Model

Algorithm

The following algorithm can be used to solve the problem when m is
to be invested among n projects, each with a concave return function.

The quantity k will represent the current amount to be invested.

xi will represent the optimal amount to invest in project i when a
total of k is to be invested.

(1) Set k = 0 and xi = 0, i = 1, . . . , n.
(2) mi = fi (xi + 1)− fi (xi ), i = 1, . . . , n.
(3) k = k + 1.
(4) Let J be such that mJ = maxi mi .
(5) If J = j , then xj → xj + 1, mj → fj (xj + 1)− fj(xj ).
(6) If k < m, go to step (3).

Step (5) means that if the value of J is j , then:

(a) The value of xj should be increased by 1;
(b) The value of mj should be reset to equal the difference of fj evaluated

at 1 plus the new value of xj and fj evaluated at the new value of xj .
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Optimization Models A Deterministic Optimization Model

Remark

When g(x) is defined for all x in an interval, then g is concave if
g ′(t) is a decreasing function of t (that is, if g ′′(t) ≤ 0).

Hence, for g concave

∫ i+1

i

g ′(s)ds ≤
∫ i

i−1
g ′(s)ds.

So
g(i + 1)− g(i) ≤ g(i)− g(i − 1).

This is the definition of concavity we used for g defined on the
integers.
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Optimization Models A Deterministic Optimization Model

The Knapsack Problem

Assume we can invest at most m in the n projects.

Suppose one invests in project i by buying an integral number of
shares in that project, with each share:

Costing ci ;
Returning vi .

Let xi denote the number of shares of project i that are purchased.

Then the problem is to:

Choose nonnegative integers x1, . . . , xn,

such that

n
∑

i=1

xici ≤ m,

to maximize

n
∑

i=1

vixi .

We will use a dynamic programming approach to solve this problem.
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Optimization Models A Deterministic Optimization Model

The Knapsack Problem (Cont’d)

Let V (x) be the maximal return possible when we have x to invest.

If we start by buying one share of project i , then a return vi will be
received and we will be left with a capital of x − ci .

V (x − ci ) is the maximal return from investing x − ci .

So the maximal return possible if we have x and begin investing by
buying one share of project i is

maximal return if start by purchasing one share of i
= vi + V (x − ci ).

Hence, the maximal return V (x) that can be obtained from the
investment capital x , satisfies

V (x) = max
i :ci≤x

{vi + V (x − ci )}.
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Optimization Models A Deterministic Optimization Model

The Knapsack Problem (Cont’d)

Let i(x) denote the value of i that maximizes vi + V (x − ci ).

Starting with x , it is optimal to purchase one share of project i(x).

Starting with
V (1) = max

i :ci≤1
vi ,

it is easy to determine the values of V (1) and i(1).

This will then enable us to use

V (x) = max
i :ci≤x

{vi + V (x − ci )}

to determine V (2) and i(2).

And so on.
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Optimization Models A Deterministic Optimization Model

The Name

We introduced the problem:

Choose nonnegative integers x1, . . . , xn,

such that
n

∑

i=1

xici ≤ m,

to maximize
n

∑

i=1

vixi .

This problem is called a knapsack problem.

It is mathematically equivalent to determining the set of items to be
put in a knapsack that can carry a total weight of at most m when
there are n different types of items, with each type i item having:

Weight ci ;
Value vi .
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Optimization Models A Deterministic Optimization Model

Example

Suppose you have 25 to invest
among three projects whose cost
and return values are as on the
right.

Project Cost/Share Return/Share

1 5 7
2 9 12
3 15 22

V (x) = 0, x ≤ 4;
V (x) = 7, i(x) = 1, x = 5, 6, 7, 8;
V (9) = max {7 + V (4), 12 + V (0)} = 12, i(9) = 2;
V (x) = max {7 + V (x − 5), 12 + V (x − 9)} = 14, i(x) = 1,

x = 10, 11, 12, 13;
V (14) = max {7 + V (9), 12 + V (5)} = 19, i(x) = 1 or 2;
V (15) = max {7 + V (10), 12 + V (6), 22 + V (0)} = 22, i(15) = 3;
V (16) = max {7 + V (11), 12 + V (7), 22 + V (1)} = 22, i(16) = 3;
V (17) = max {7 + V (12), 12 + V (8), 22 + V (2)} = 22, i(17) = 3;
V (18) = max {7 + V (13), 12 + V (9), 22 + V (3)} = 24, i(18) = 2;
and so on.
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Optimization Models Probabilistic Optimization Problems

Subsection 2

Probabilistic Optimization Problems
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Optimization Models Probabilistic Optimization Problems

A Gambling Model with Unknown Win Probabilities

Suppose that an investment’s win probability can be one of three
possible values: p1 = 0.45, p2 = 0.55 or p3 = 0.65.

Suppose also that it will be:

p1 with probability 1
4 ;

p2 with probability 1
2 ;

p3 with probability 1
4 .

An investor, without any information about which pi has been
chosen, will take the win probability to be

p =
1

4
p1 +

1

2
p2 +

1

4
p3 = 0.55.
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Optimization Models Probabilistic Optimization Problems

Gambling with Unknown Win Probabilities (Cont’d)

Assume the investor has:

Initial fortune x ;
A log utility function.

By a previous example, we know that the investor:

Will invest 100(2p− 1) = 10% of her fortune;
Will have expected utility of her final fortune

log (x) + 0.55 log (1.1) + 0.45 log (0.9)
= log (x) + 0.0050 = log (e0.0050x).
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Optimization Models Probabilistic Optimization Problems

Gambling with Unknown Win Probabilities (Cont’d)

Suppose now that the investor is able to learn, before making her
investment, which pi is the win probability.

If 0.45 is the win probability, then the investor will not invest.
The conditional expected utility of her final fortune will be log (x).
If 0.55 is the win probability, the investor will do as shown previously.
The conditional expected utility of her final fortune will be
log (x) + 0.0050.
If 0.65 is the win probability, the investor will invest 30% of her fortune.
The conditional expected utility of her final fortune will be

log(x) + 0.65 log (1.3) + 0.35 log (0.7) = log (x) + .0456.

Therefore, the expected final utility of an investor who will learn
which pi is the win probability before making her investment is

1
4 log (x) +

1
2(log (x) + 0.0050) + 1

4(log (x) + 0.0456)
= log (x) + 0.0139 = log (e0.0139x).

George Voutsadakis (LSSU) Mathematical Finance March 2024 32 / 41



Optimization Models Probabilistic Optimization Problems

An Investment Allocation Model

An investor has the amount D available to invest.

During each of N time instants, an opportunity to invest will
(independently) present itself with probability p.

If the opportunity occurs, the investor must decide how much of her
remaining wealth to invest.

If y is invested in an opportunity then R(y), a specified function of y ,
is earned at the end of the problem.

Both the amount invested and the return from that investment
become unavailable for future investment.

The investor’s final wealth is equal to the sum of all the investment
returns and the amount that was never invested.

We determine how much to invest at each opportunity so as to
maximize the expected value of the investor’s final wealth.
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Optimization Models Probabilistic Optimization Problems

Notation

Let Wn(x) denote the maximal expected final wealth when:

The investor has x to invest;
There are n time instants in the problem.

Let Vn(x) denote the maximal expected final wealth when:

The investor has x to invest;
There are n time instants in the problem;
An opportunity is at hand.
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Optimization Models Probabilistic Optimization Problems

Determining Vn(x)

Suppose y is initially invested;

Then the investor’s maximal expected final wealth will be R(y) plus
the maximal expected amount that she can obtain in n− 1 time
instants when her investment capital is x − y .

The latter quantity is Wn−1(x − y).

So the maximal expected final wealth when y is invested is

R(y) +Wn−1(x − y).

The investor can now choose y to maximize this sum,

Vn(x) = max
0≤y≤x

{R(y) +Wn−1(x − y)}.
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Optimization Models Probabilistic Optimization Problems

Determining Wn(x)

Suppose the investor has x to invest.

Suppose there are n time instants to go.

One of the following two cases arises:

An opportunity occurs and the maximal expected final wealth is Vn(x);
An opportunity does not occur and the maximal expected final wealth
is Wn−1(x).

Each opportunity occurs with probability p.

So we have
Wn(x) = pVn(x) + (1− p)Wn−1(x).
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Optimization Models Probabilistic Optimization Problems

Solution Method

Start with W0(x) = x .

We first use the former equation to obtain V1(x), for all 0 ≤ x ≤ D;
Then use the latter equation to obtain W1(x), for all 0 ≤ x ≤ D;
Then use the former equation to obtain V2(x) for all 0 ≤ x ≤ D;
Then use the latter equation to obtain W2(x);
...

Let yn(x) be the value of y that maximizes the right side of the
former equation.

The optimal policy is to invest the amount yn(x) if:

Our current investment capital is x ;
There are n time instants remaining;
An opportunity is present.
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Optimization Models Probabilistic Optimization Problems

Example

We work under the following hypotheses:
We have 10 to invest;
There are two time instants;
An opportunity presents itself each instant with probability p = 0.7,
and R(y) = y + 10

√
y .

We find the maximal expected final wealth and the optimal policy.

We start with W0(x) = x .

We then get

V1(x) = max0≤y≤x {y + 10
√
y + x − y}

= x +max0≤y≤x {10
√
y}

= x + 10
√
x .

Moreover, y1(x) = x .

Thus,
W1(x) = 0.7(x + 10

√
x) + 0.3x = x + 7

√
x .
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Optimization Models Probabilistic Optimization Problems

Example (Cont’d)

Now we have

V2(x) = max0≤y≤x {y + 10
√
y + x − y + 7

√
x − y}

= x +max0≤y≤x {10
√
y + 7

√
x − y}

= x +
√
149x ,

where calculus gives the final equation, as well as

y2(x) =
100

149
x .

The preceding now yields

W2(x) = 0.7(x +
√
149x) + 0.3(x + 7

√
x)

= x + 0.7
√
149x + 2.1

√
x .
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Optimization Models Probabilistic Optimization Problems

Example (Conclusion)

Starting with 10, the maximal expected final wealth is

W2(10) = 10 + 0.7
√
1490 + 2.1

√
10 = 43.66.

The optimal policy is to invest:
1000
149 = 6.71, if an opportunity presents itself at the initial time instant;
Whatever of your fortune remains, if an opportunity presents itself at
the final time instant.
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Optimization Models Probabilistic Optimization Problems

Properties of Wn(x) and Vn(x)

Theorem

If R(y) is a nondecreasing concave function, then:

(a) Vn(x) and Wn(x) are both nondecreasing concave functions;

(b) yn(x) is a nondecreasing function of x ;

(c) x − yn(x) is a nondecreasing function of x ;

(d) yn(x) is a nonincreasing function of n.

Part (b) states that the more you have the more you should invest.

Part (c) states that the more you have the more you should conserve.

Part (d) says that the more time you have the less you should invest
each time.
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