Introduction to Mathematical Finance

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 500
(1) Optimization Models

- A Deterministic Optimization Model
- Probabilistic Optimization Problems

Subsection 1

A Deterministic Optimization Model

The Problem

- Suppose we have m dollars to invest among n projects.
- Investing x in project i yields a (present value) return of $f_{i}(x)$, $i=1, \ldots, n$.
- The problem is to determine the integer amounts to invest in each project so as to maximize the sum of the returns.
- Let x_{i} denote the amount to be invested in project i.
- The problem (mathematically) is to:

Choose nonnegative integers x_{1}, \ldots, x_{n},

$$
\begin{aligned}
& \text { such that } \sum_{i=1}^{n} x_{i}=m \text {, } \\
& \text { to maximize } \sum_{i=1}^{n} f_{i}\left(x_{i}\right)
\end{aligned}
$$

Solution Based on Dynamic Programming

- Let $V_{j}(x)$ denote the maximal possible sum of returns when we have a total of x to invest in projects $1, \ldots, j$.
- $V_{n}(m)$ represents the maximal value of the problem.
- We determine $V_{n}(m)$, and the optimal investment amounts, by:
- Finding first the values of $V_{1}(x)$, for $x=1, \ldots, m$;
- Finding next the values of $V_{2}(x)$, for $x=1, \ldots, m$;
- Ending with the values of $V_{n}(x)$, for $x=1, \ldots, m$.

Solution Based on Dynamic Programming (Cont'd)

- The maximal return when x must be invested in project 1 is $f_{1}(x)$. So we have

$$
V_{1}(x)=f_{1}(x)
$$

- Suppose that x must be invested between projects 1 and 2 .
- Let y be invested in project 2 .
- Then $x-y$ is available to invest in project 1 .
- The best return from investing $x-y$ in project 1 is $V_{1}(x-y)$.
- So the maximal sum of returns possible when the amount y is invested in project 2 is

$$
f_{2}(y)+V_{1}(x-y) .
$$

- The maximal sum of returns is obtained by maximizing over y,

$$
V_{2}(x)=\max _{0 \leq y \leq x}\left\{f_{2}(y)+V_{1}(x-y)\right\} .
$$

Solution Based on Dynamic Programming (Cont'd)

- In general, suppose that x must be invested among projects $1, \ldots, j$.
- Suppose we invest y in project j.
- Then a total of $x-y$ is available to invest in projects $1, \ldots, j-1$.
- The best return from investing $x-y$ in projects $1, \ldots, j-1$ is $V_{j-1}(x-y)$.
- So the maximal sum of returns possible when the amount y is invested in project j is $f_{j}(y)+V_{j-1}(x-y)$.
- The maximal sum of returns possible is obtained by maximizing the preceding over y,

$$
V_{j}(x)=\max _{0 \leq y \leq x}\left\{f_{j}(y)+V_{j-1}(x-y)\right\}
$$

- Let $y_{j}(x)$ denote the value (or a value if there is more than one) of y that maximizes the right side of the preceding equation.
- Then $y_{j}(x)$ is the optimal amount to invest in project j when we have x to invest among projects $1, \ldots, j$.

Solution Based on Dynamic Programming (Cont'd)

- The value of $V_{n}(m)$ can now be obtained by first determining $V_{1}(x)$, then $V_{2}(x), V_{3}(x), \ldots, V_{n-1}(x)$ and finally $V_{n}(m)$.
- The optimal amounts to invest are:
- $y_{n}(m)$ in project n;
- $y_{n-1}\left(m-y_{n}(m)\right)$ in project $n-1$;
- This solution approach is called dynamic programming. It views the problem as involving n sequential decisions.
It then analyzes it by determining:
- The optimal last decision;
- The optimal next to last decision;

Example

- Suppose that three investment projects with the following return functions are available:

$$
\begin{aligned}
f_{1}(x) & =\frac{10 x}{1+x}, \quad x=0,1, \ldots \\
f_{2}(x) & =\sqrt{x}, \quad x=0,1, \ldots \\
f_{3}(x) & =10\left(1-e^{-x}\right), \quad x=0,1, \ldots
\end{aligned}
$$

- We want to maximize our return when we have 5 to invest.
- We have

$$
V_{1}(x)=f_{1}(x)=\frac{10 x}{1+x}
$$

- Moreover,

$$
y_{1}(x)=x
$$

Example (Cont'd)

- Now

$$
\begin{aligned}
V_{2}(x) & =\max _{0 \leq y \leq x}\left\{f_{2}(y)+V_{1}(x-y)\right\} \\
& =\max _{0 \leq y \leq x}\left\{\sqrt{y}+\frac{10(x-y)}{1+x-y}\right\} .
\end{aligned}
$$

- So we have

$$
\begin{aligned}
& V_{2}(1)=\max \left\{\frac{10}{2}, 1\right\}=5, y_{2}(1)=0 ; \\
& V_{2}(2)=\max \left\{\frac{20}{3}, 1+5, \sqrt{2}\right\}=\frac{20}{3}, y_{2}(2)=0 ; \\
& V_{2}(3)=\max \left\{\frac{30}{4}, 1+\frac{20}{3}, \sqrt{2}+5, \sqrt{3}\right\}=\frac{23}{3}, y_{2}(3)=1 ; \\
& V_{2}(4)=\max \left\{\frac{40}{5}, 1+\frac{30}{4}, \sqrt{2}+\frac{20}{3}, \sqrt{3}+5, \sqrt{4}\right\}=8.5, y_{2}(4)=1 ; \\
& V_{2}(5)=\max \left\{\frac{50}{6}, 1+8, \sqrt{2}+7.5, \sqrt{3}+\frac{20}{3}, \sqrt{4}+5, \sqrt{5}\right\}=9, \\
& \\
& \quad y_{2}(5)=1 .
\end{aligned}
$$

Example (Cont'd)

- Continuing, we get

$$
\begin{aligned}
V_{3}(x) & =\max _{0 \leq y \leq x}\left\{f_{3}(y)+V_{2}(x-y)\right\} \\
& =\max _{0 \leq y \leq x}\left\{10\left(1-e^{-y}\right)+V_{2}(x-y)\right\}
\end{aligned}
$$

- We compute the values:
- $1-e^{-1}=0.632$;
- $1-e^{-2}=0.865$;
- $1-e^{-3}=0.950$;
- $1-e^{-4}=0.982$;
- $1-e^{-5}=0.993$.
- So we obtain

$$
\begin{aligned}
V_{3}(5)= & \max \left\{9,6.32+8.5,8.65+\frac{23}{3}\right. \\
& \left.9.50+\frac{20}{3}, 9.82+5,9.93\right\}=16.32 \\
y_{3}(5)= & 2 .
\end{aligned}
$$

Example (Cont'd)

- Thus, the maximal sum of returns from investing 5 is 16.32 ;
- The optimal amount to invest in project 3 is $y_{3}(5)=2$;
- The optimal amount to invest in project 2 is

$$
y_{2}(5-2)=y_{2}(3)=1 ;
$$

- The optimal amount to invest in project 1 is

$$
y_{1}(5-2-1)=y_{1}(2)=2
$$

Concave Return Functions

- A function $g(i), i=0,1, \ldots$, is said to be concave if

$$
g(i+1)-g(i) \text { is nonincreasing in } i .
$$

- We will consider concave return functions $f_{i}(x)$.
- This means that the additional (or marginal) gain from each additional unit invested becomes smaller as more has already been invested.

Solution for Concave Return Functions

- Assume that the functions $f_{i}(x), i=1, \ldots, n$, are all concave.
- Consider the problem of choosing nonnegative integers x_{1}, \ldots, x_{n}, whose sum is m, to maximize $\sum_{i=1}^{n} f_{i}\left(x_{i}\right)$.
- Suppose that $x_{1}^{o}, \ldots, x_{n}^{o}$ is an optimal vector for this problem.
- I.e., a vector of nonnegative integers that sum to m, with

$$
\sum_{i=1}^{n} f_{i}\left(x_{i}^{o}\right)=\max \sum_{i=1}^{n} f_{i}\left(x_{i}\right)
$$

the maximum over all nonnegative integers x_{1}, \ldots, x_{n} that sum to m.

- Now suppose that we have a total of $m+1$ to invest.
- We argue that there is an optimal vector $y_{1}^{o}, \ldots, y_{n}^{o}$ with $\sum_{i=1}^{n} y_{i}^{\circ}=m+1$ that satisfies $y_{i}^{\circ} \geq x_{i}^{\circ}, i=1, \ldots, n$.

Solution for Concave Return Functions (Cont'd)

- Suppose we have $m+1$ to invest.
- Consider any investment strategy y_{1}, \ldots, y_{n}, such that:
- $\sum_{i=1}^{n} y_{i}=m+1$;
- For some value of $k, y_{k}<x_{k}^{o}$.
- We have $m+1=\sum_{i} y_{i}>\sum_{i} x_{i}^{o}=m$.
- Hence, there must be a j such that $x_{j}^{o}<y_{j}$.
- Consider the investment strategy that invests:
- $y_{k}+1$ in project k;
- $y_{j}-1$ in project j;
- y_{i} in project i for $i \neq k, j$.
- We argue that this strategy is at least as good as the strategy that invests y_{i} in project i for each i.

Solution for Concave Return Functions (Cont'd)

- We must show that $f_{k}\left(y_{k}+1\right)+f_{j}\left(y_{j}-1\right) \geq f_{k}\left(y_{k}\right)+f_{j}\left(y_{j}\right)$.
- Equivalently,

$$
f_{k}\left(y_{k}+1\right)-f_{k}\left(y_{k}\right) \geq f_{j}\left(y_{j}\right)-f_{j}\left(y_{j}-1\right)
$$

- Now $x_{1}^{o}, \ldots, x_{n}^{o}$ is optimal when there is m to invest.
- So

$$
f_{k}\left(x_{k}^{o}\right)+f_{j}\left(x_{j}^{o}\right) \geq f_{k}\left(x_{k}^{o}-1\right)+f_{j}\left(x_{j}^{o}+1\right)
$$

- Equivalently, we have

$$
f_{k}\left(x_{k}^{o}\right)-f_{k}\left(x_{k}^{o}-1\right) \geq f_{j}\left(x_{j}^{o}+1\right)-f_{j}\left(x_{j}^{o}\right)
$$

- Consequently,

$$
\begin{aligned}
& f_{k}\left(y_{k}+1\right)-f_{k}\left(y_{k}\right) \\
& \left.\geq f_{k}\left(x_{k}^{o}\right)-f_{k}\left(x_{k}^{o}-1\right) \quad \text { (by concavity, since } y_{k}+1 \leq x_{k}^{o}\right) \\
& \geq f_{j}\left(x_{j}^{\circ}+1\right)-f_{j}\left(x_{j}^{\circ}\right) \quad \text { (by the preceding inequlaity) } \\
& \left.\geq f_{j}\left(y_{j}\right)-f_{j}\left(y_{j}-1\right) \quad \text { (by concavity, since } x_{j}^{o}+1 \leq y_{j}\right) .
\end{aligned}
$$

Solution for Concave Return Functions (Cont'd)

- Thus, any strategy for investing $m+1$ that calls for investing less than x_{k}^{o} in some project k can be at least matched by one whose investment in project k is increased by 1 with a corresponding decrease in some project j whose investment was greater than x_{j}^{o}.
- Repeating this argument shows that, for any strategy of investing $m+1$, we can find another strategy that:
- Invests at least x_{i}^{o} in project i, for all $i=1, \ldots, n$;
- Yields a return that is at least as large as the original strategy.
- This implies that we can find an optimal strategy $y_{1}^{o}, \ldots, y_{n}^{o}$ for investing $m+1$ that satisfies the inequality claimed.

Solution for Concave Return Functions (Cont'd)

- We argued that the optimal strategy for investing $m+1$ invests at least as much in each project as does the optimal strategy for investing m.
- It follows that the optimal strategy for $m+1$ can be found by using the optimal strategy for m and then investing the extra dollar in that project whose marginal increase is largest.
- Therefore, we can find the optimal investment (when we have m) by:
- First solving the optimal investment problem when we have 1 to invest;
- Then solving the optimal investment problem when we have 2 to invest;
- Then solving the optimal investment problem when we have 3 to invest;

Example Revisited

- We reconsider the preceding example.
- We have 5 to invest among three projects, with return functions

$$
f_{1}(x)=\frac{10 x}{1+x}, \quad f_{2}(x)=\sqrt{x}, \quad f_{3}(x)=10\left(1-e^{-x}\right)
$$

- Let $x_{i}(j)$ denote the optimal amount to invest in project i when we have a total of j to invest.
- We have

$$
\max \left\{f_{1}(1), f_{2}(1), f_{3}(1)\right\}=\max \{5,1,6.32\}=6.32
$$

- So

$$
x_{1}(1)=0, \quad x_{2}(1)=0, \quad x_{3}(1)=1 .
$$

Example (Cont'd)

- Now

$$
\max _{i}\left\{f_{i}\left(x_{i}(1)+1\right)-f_{i}\left(x_{i}(1)\right)\right\}=\max \{5,1,8.65-6.32\}=5
$$

- So we have

$$
x_{1}(2)=1, \quad x_{2}(2)=0, \quad x_{3}(2)=1
$$

- Further,

$$
\begin{aligned}
\max _{i}\left\{f_{i}\left(x_{i}(2)+1\right)-f_{i}\left(x_{i}(2)\right)\right\} & =\max \left\{\frac{20}{3}-5,1,8.65-6.32\right\} \\
& =2.33
\end{aligned}
$$

- So we get

$$
x_{1}(3)=1, \quad x_{2}(3)=0, \quad x_{3}(3)=2 .
$$

Example (Cont'd)

- Continuing,

$$
\begin{aligned}
\max _{i}\left\{f_{i}\left(x_{i}(3)+1\right)-f_{i}\left(x_{i}(3)\right)\right\} & =\max \left\{\frac{20}{3}-5,1,9.50-8.65\right\} \\
& =1.67
\end{aligned}
$$

- Therefore,

$$
x_{1}(4)=2, \quad x_{2}(4)=0, \quad x_{3}(4)=2 .
$$

- Finally,

$$
\begin{aligned}
\max _{i}\left\{f_{i}\left(x_{i}(4)+1\right)-f_{i}\left(x_{i}(4)\right)\right\} & =\max \left\{\frac{30}{4}-\frac{20}{3}, 1,9.50-8.65\right\} \\
& =1
\end{aligned}
$$

- This gives

$$
x_{1}(5)=2, \quad x_{2}(5)=1, \quad x_{3}(5)=2 .
$$

- Thus, the maximal return is

$$
6.32+5+2.33+1.67+1=16.32
$$

Algorithm

- The following algorithm can be used to solve the problem when m is to be invested among n projects, each with a concave return function.
- The quantity k will represent the current amount to be invested.
- x_{i} will represent the optimal amount to invest in project i when a total of k is to be invested.
(1) Set $k=0$ and $x_{i}=0, i=1, \ldots, n$.
(2) $m_{i}=f_{i}\left(x_{i}+1\right)-f_{i}\left(x_{i}\right), i=1, \ldots, n$.
(3) $k=k+1$.
(4) Let J be such that $m_{J}=\max _{i} m_{i}$.
(5) If $J=j$, then $x_{j} \rightarrow x_{j}+1, m_{j} \rightarrow f_{j}\left(x_{j}+1\right)-f_{j}\left(x_{j}\right)$.
(6) If $k<m$, go to step (3).
- Step (5) means that if the value of J is j, then:
(a) The value of x_{j} should be increased by 1 ;
(b) The value of m_{j} should be reset to equal the difference of f_{j} evaluated at 1 plus the new value of x_{j} and f_{j} evaluated at the new value of x_{j}.

Remark

- When $g(x)$ is defined for all x in an interval, then g is concave if $g^{\prime}(t)$ is a decreasing function of t (that is, if $g^{\prime \prime}(t) \leq 0$).
- Hence, for g concave

$$
\int_{i}^{i+1} g^{\prime}(s) d s \leq \int_{i-1}^{i} g^{\prime}(s) d s
$$

- So

$$
g(i+1)-g(i) \leq g(i)-g(i-1) .
$$

- This is the definition of concavity we used for g defined on the integers.

The Knapsack Problem

- Assume we can invest at most m in the n projects.
- Suppose one invests in project i by buying an integral number of shares in that project, with each share:
- Costing c_{i};
- Returning v_{i}.
- Let x_{i} denote the number of shares of project i that are purchased.
- Then the problem is to:

$$
\begin{aligned}
& \text { Choose nonnegative integers } x_{1}, \ldots, x_{n}, \\
& \text { such that } \sum_{i=1}^{n} x_{i} c_{i} \leq m, \\
& \text { to maximize } \sum_{i=1}^{n} v_{i} x_{i} .
\end{aligned}
$$

- We will use a dynamic programming approach to solve this problem.

The Knapsack Problem (Cont'd)

- Let $V(x)$ be the maximal return possible when we have x to invest.
- If we start by buying one share of project i, then a return v_{i} will be received and we will be left with a capital of $x-c_{i}$.
- $V\left(x-c_{i}\right)$ is the maximal return from investing $x-c_{i}$.
- So the maximal return possible if we have x and begin investing by buying one share of project i is
maximal return if start by purchasing one share of i

$$
=v_{i}+V\left(x-c_{i}\right)
$$

- Hence, the maximal return $V(x)$ that can be obtained from the investment capital x, satisfies

$$
V(x)=\max _{i: c_{i} \leq x}\left\{v_{i}+V\left(x-c_{i}\right)\right\} .
$$

The Knapsack Problem (Cont'd)

- Let $i(x)$ denote the value of i that maximizes $v_{i}+V\left(x-c_{i}\right)$.
- Starting with x, it is optimal to purchase one share of project $i(x)$.
- Starting with

$$
V(1)=\max _{i: c_{i} \leq 1} v_{i}
$$

it is easy to determine the values of $V(1)$ and $i(1)$.

- This will then enable us to use

$$
V(x)=\max _{i: c_{i} \leq x}\left\{v_{i}+V\left(x-c_{i}\right)\right\}
$$

to determine $V(2)$ and $i(2)$.

- And so on.

The Name

- We introduced the problem:

Choose nonnegative integers x_{1}, \ldots, x_{n},

$$
\begin{aligned}
& \text { such that } \sum_{i=1}^{n} x_{i} c_{i} \leq m, \\
& \text { to maximize } \sum_{i=1}^{n} v_{i} x_{i} .
\end{aligned}
$$

- This problem is called a knapsack problem.

It is mathematically equivalent to determining the set of items to be put in a knapsack that can carry a total weight of at most m when there are n different types of items, with each type i item having:

- Weight c_{i};
- Value v_{i}.

Example

- Suppose you have 25 to invest among three projects whose cost and return values are as on the right.

Project	Cost/Share	Return/Share
1	5	7
2	9	12
3	15	22

$$
\begin{aligned}
& V(x)=0, x \leq 4 ; \\
& V(x)=7, i(x)=1, x=5,6,7,8 ; \\
& V(9)=\max \{7+V(4), 12+V(0)\}=12, i(9)=2 ; \\
& V(x)=\max \{7+V(x-5), 12+V(x-9)\}=14, i(x)=1, \\
& \quad x=10,11,12,13 ; \\
& V(14)=\max \{7+V(9), 12+V(5)\}=19, i(x)=1 \text { or } 2 ; \\
& V(15)=\max \{7+V(10), 12+V(6), 22+V(0)\}=22, i(15)=3 ; \\
& V(16)=\max \{7+V(11), 12+V(7), 22+V(1)\}=22, i(16)=3 ; \\
& V(17)=\max \{7+V(12), 12+V(8), 22+V(2)\}=22, i(17)=3 ; \\
& V(18)=\max \{7+V(13), 12+V(9), 22+V(3)\}=24, i(18)=2 ;
\end{aligned}
$$

and so on.

Subsection 2

Probabilistic Optimization Problems

A Gambling Model with Unknown Win Probabilities

- Suppose that an investment's win probability can be one of three possible values: $p_{1}=0.45, p_{2}=0.55$ or $p_{3}=0.65$.
- Suppose also that it will be:
- p_{1} with probability $\frac{1}{4}$;
- p_{2} with probability $\frac{1}{2}$;
- p_{3} with probability $\frac{1}{4}$.
- An investor, without any information about which p_{i} has been chosen, will take the win probability to be

$$
p=\frac{1}{4} p_{1}+\frac{1}{2} p_{2}+\frac{1}{4} p_{3}=0.55 .
$$

Gambling with Unknown Win Probabilities (Cont'd)

- Assume the investor has:
- Initial fortune x;
- A log utility function.
- By a previous example, we know that the investor:
- Will invest $100(2 p-1)=10 \%$ of her fortune;
- Will have expected utility of her final fortune

$$
\begin{aligned}
\log (x)+0.55 \log & (1.1)+0.45 \log (0.9) \\
& =\log (x)+0.0050=\log \left(e^{0.0050} x\right) .
\end{aligned}
$$

Gambling with Unknown Win Probabilities (Cont'd)

- Suppose now that the investor is able to learn, before making her investment, which p_{i} is the win probability.
- If 0.45 is the win probability, then the investor will not invest.

The conditional expected utility of her final fortune will be $\log (x)$.

- If 0.55 is the win probability, the investor will do as shown previously.

The conditional expected utility of her final fortune will be $\log (x)+0.0050$.

- If 0.65 is the win probability, the investor will invest 30% of her fortune.

The conditional expected utility of her final fortune will be

$$
\log (x)+0.65 \log (1.3)+0.35 \log (0.7)=\log (x)+.0456
$$

- Therefore, the expected final utility of an investor who will learn which p_{i} is the win probability before making her investment is

$$
\begin{array}{r}
\frac{1}{4} \log (x)+\frac{1}{2}(\log (x)+0.0050)+\frac{1}{4}(\log (x)+0.0456) \\
=\log (x)+0.0139=\log \left(e^{0.0139} x\right)
\end{array}
$$

An Investment Allocation Model

- An investor has the amount D available to invest.
- During each of N time instants, an opportunity to invest will (independently) present itself with probability p.
- If the opportunity occurs, the investor must decide how much of her remaining wealth to invest.
- If y is invested in an opportunity then $R(y)$, a specified function of y, is earned at the end of the problem.
- Both the amount invested and the return from that investment become unavailable for future investment.
- The investor's final wealth is equal to the sum of all the investment returns and the amount that was never invested.
- We determine how much to invest at each opportunity so as to maximize the expected value of the investor's final wealth.

Notation

- Let $W_{n}(x)$ denote the maximal expected final wealth when:
- The investor has x to invest;
- There are n time instants in the problem.
- Let $V_{n}(x)$ denote the maximal expected final wealth when:
- The investor has x to invest;
- There are n time instants in the problem;
- An opportunity is at hand.

Determining $V_{n}(x)$

- Suppose y is initially invested;
- Then the investor's maximal expected final wealth will be $R(y)$ plus the maximal expected amount that she can obtain in $n-1$ time instants when her investment capital is $x-y$.
- The latter quantity is $W_{n-1}(x-y)$.
- So the maximal expected final wealth when y is invested is

$$
R(y)+W_{n-1}(x-y)
$$

- The investor can now choose y to maximize this sum,

$$
V_{n}(x)=\max _{0 \leq y \leq x}\left\{R(y)+W_{n-1}(x-y)\right\}
$$

Determining $W_{n}(x)$

- Suppose the investor has x to invest.
- Suppose there are n time instants to go.
- One of the following two cases arises:
- An opportunity occurs and the maximal expected final wealth is $V_{n}(x)$;
- An opportunity does not occur and the maximal expected final wealth is $W_{n-1}(x)$.
- Each opportunity occurs with probability p.
- So we have

$$
W_{n}(x)=p V_{n}(x)+(1-p) W_{n-1}(x)
$$

Solution Method

- Start with $W_{0}(x)=x$.
- We first use the former equation to obtain $V_{1}(x)$, for all $0 \leq x \leq D$;
- Then use the latter equation to obtain $W_{1}(x)$, for all $0 \leq x \leq D$;
- Then use the former equation to obtain $V_{2}(x)$ for all $0 \leq x \leq D$;
- Then use the latter equation to obtain $W_{2}(x)$;
- Let $y_{n}(x)$ be the value of y that maximizes the right side of the former equation.
- The optimal policy is to invest the amount $y_{n}(x)$ if:
- Our current investment capital is x;
- There are n time instants remaining;
- An opportunity is present.

Example

- We work under the following hypotheses:
- We have 10 to invest;
- There are two time instants;
- An opportunity presents itself each instant with probability $p=0.7$, and $R(y)=y+10 \sqrt{y}$.
- We find the maximal expected final wealth and the optimal policy.
- We start with $W_{0}(x)=x$.
- We then get

$$
\begin{aligned}
V_{1}(x) & =\max _{0 \leq y \leq x}\{y+10 \sqrt{y}+x-y\} \\
& =x+\max _{0 \leq y \leq x}\{10 \sqrt{y}\} \\
& =x+10 \sqrt{x}
\end{aligned}
$$

- Moreover, $y_{1}(x)=x$.
- Thus,

$$
W_{1}(x)=0.7(x+10 \sqrt{x})+0.3 x=x+7 \sqrt{x}
$$

Example (Cont'd)

- Now we have

$$
\begin{aligned}
V_{2}(x) & =\max _{0 \leq y \leq x}\{y+10 \sqrt{y}+x-y+7 \sqrt{x-y}\} \\
& =x+\max _{0 \leq y \leq x}\{10 \sqrt{y}+7 \sqrt{x-y}\} \\
& =x+\sqrt{149 x},
\end{aligned}
$$

where calculus gives the final equation, as well as

$$
y_{2}(x)=\frac{100}{149} x
$$

- The preceding now yields

$$
\begin{aligned}
W_{2}(x) & =0.7(x+\sqrt{149 x})+0.3(x+7 \sqrt{x}) \\
& =x+0.7 \sqrt{149 x}+2.1 \sqrt{x}
\end{aligned}
$$

Example (Conclusion)

- Starting with 10 , the maximal expected final wealth is

$$
W_{2}(10)=10+0.7 \sqrt{1490}+2.1 \sqrt{10}=43.66
$$

- The optimal policy is to invest:
- $\frac{1000}{149}=6.71$, if an opportunity presents itself at the initial time instant;
- Whatever of your fortune remains, if an opportunity presents itself at the final time instant.

Properties of $W_{n}(x)$ and $V_{n}(x)$

Theorem

If $R(y)$ is a nondecreasing concave function, then:
(a) $V_{n}(x)$ and $W_{n}(x)$ are both nondecreasing concave functions;
(b) $y_{n}(x)$ is a nondecreasing function of x;
(c) $x-y_{n}(x)$ is a nondecreasing function of x;
(d) $y_{n}(x)$ is a nonincreasing function of n.

- Part (b) states that the more you have the more you should invest.
- Part (c) states that the more you have the more you should conserve.
- Part (d) says that the more time you have the less you should invest each time.

