### Introduction to Mathematical Finance

#### George Voutsadakis<sup>1</sup>

<sup>1</sup>Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)



#### Stochastic Dynamic Programming

- The Stochastic Dynamic Programming Problem
- Infinite Time Models
- Optimal Stopping Problems

#### Subsection 1

#### The Stochastic Dynamic Programming Problem

## The Setup

- In the general **stochastic dynamic programming problem**, we suppose that a system is observed at the beginning of each period and its state is determined.
- Let  $\mathcal S$  denote the set of all possible states.
- After observing the state of the system, an action must be chosen.
- If the state is x and action a is chosen, then:
  - (a) A reward r(x, a) is earned;
  - (b) The next state, call it Y(x, a), is a random variable whose distribution depends only on x and a.

## Maximal Expected Return

- Suppose our objective is to maximize the expected sum of rewards that can be earned over *N* time periods.
- Let  $V_n(x)$  denote the maximal expected sum of rewards that can be earned in the next *n* time periods given that the current state is *x*.
- If we initially choose action a, then:
  - A reward r(x, a) is immediately earned;
  - The next state will be Y(x, a).
- If Y(x, a) = y, then at that point:
  - There will be an additional n-1 time periods to go;
  - So the maximal expected additional return would be  $V_{n-1}(y)$ .

## Maximal Expected Return (Cont'd)

- Summarizing, assuming that:
  - The current state is x;
  - We initially choose action a,

the maximal expected return that could be earned over the next n time periods is

$$r(x,a) + E[V_{n-1}(Y(x,a))].$$

• Hence, the overall maximal expected return  $V_n(x)$  satisfies

$$V_n(x) = \max_{a} \{ r(x, a) + E[V_{n-1}(Y(x, a))] \}.$$

- Starting with  $V_0(x) = 0$  the preceding equation can be used to recursively solve:
  - For the function  $V_1(x)$ ;
  - For the function  $V_2(x)$ ;
  - For the function  $V_N(x)$ .

## **Optimal Value Function**

- The optimal policy, when there are *n* additional time periods to go with the current state being *x*, chooses the action (or one of the actions) that maximizes the right side of the preceding.
- We let  $a_n(x)$  be the action maximizing  $r(x, a) + E[V_{n-1}(Y(x, a))]$ .
- This is written as

$$a_n(x) = \operatorname{argmax}_a\{r(x, a) + E[V_{n-1}(Y(x, a))]\}, \quad n = 1, \dots, N.$$

- Then an optimal policy chooses, for all n and x,  $a_n(x)$ , when:
  - The state is x;
  - There are *n* time periods remaining.
- The function  $V_n(x)$  is called the **optimal value function**.
- The equation for  $V_n(x)$  is called the **optimality equation**.

#### **Discrete Form**

- Suppose  $\mathcal S$  is a subset of the set of all integers.
- Let  $P_{i,a}(j)$  denote the probability that the next state is j, when:
  - The current state is *i*;
  - Action *a* is chosen.
- In this case, the optimality equation can be written

$$V_n(i) = \max_{a} \left\{ r(i,a) + \sum_{j} P_{i,a}(j) V_{n-1}(j) \right\}.$$

## Continuous Form

- $\bullet\,$  Suppose, on the other hand, that  ${\mathcal S}$  is a continuous set.
- Let  $f_{x,a}(y)$  be the probability density of the next state given that:
  - The current state is x;
  - Action *a* is chosen.
- In this case, the optimality equation can be written

$$V_n(x) = \max_{a} \bigg\{ r(x,a) + \int f_{x,a}(y) V_{n-1}(y) dy \bigg\}.$$

#### Discounting

- In certain problems future costs may be discounted.
- Specifically, a cost incurred k time periods in the future may be discounted by the factor β<sup>k</sup>.
- In such cases the optimality equation becomes

$$V_n(x) = \max_{a} \{ r(x, a) + \beta E[V_{n-1}(Y(x, a))] \}.$$

- For instance, if we wanted to maximize the present value of the sum of rewards, then we would let  $\beta = \frac{1}{1+r}$ , where r is the interest rate per period.
- The quantity  $\beta$  is called the **discount factor**.
- It is usually assumed to satisfy  $0 \le \beta \le 1$ .

## Optimal Return from a Call Option

- Assume the following discrete time model for the price movement of a security.
- Whatever the price history so far, the price of the security during the following period is its current price multiplied by a random variable Y.
- Assume an interest rate of r > 0 per period.

• Let 
$$\beta = \frac{1}{1+r}$$
.

- We want to determine the appropriate value of an American call option having:
  - Exercise value K;
  - Expiration time at the end of *n* additional periods.

#### Comments

- We are not assuming that Y has only two possible values.
- So there will not be a unique risk-neutral probability law.
- Consequently, arbitrage considerations will not enable us to determine the value of the option.
- We make the additional assumption that the security cannot be sold short for the market price.
- So there will no longer be an arbitrage argument against early exercising.
- To determine the appropriate value of the option under these conditions, we will suppose that the successive Y's are independent with a common specified distribution.
- We aim to determine the maximal expected present-value return that can be obtained from the option.

## Available Options and Returns

- The current state of the system will be the current price.
- Define the optimal value function  $V_j(x)$  to equal the maximal expected present-value return from the option given that:
  - It has not yet been exercised;
  - A total of *j* periods remain before the option expires;
  - The current price of the security is *x*.
- Suppose the preceding describes the current situation.
  - If the option is exercised, then a return *x K* is earned and the problem ends;
  - If the option is not exercised, then the maximal expected present-value return will be  $E[\beta V_{j-1}(xY)]$ .

# **Optimal Policy**

- The overall best is the maximum of the best one can obtain under the different possible actions.
- So the optimality equation is

$$V_j(x) = \max \{ x - K, \beta E[V_{j-1}(xY)] \}.$$

• Moreover, the boundary condition is

$$V_0(x) = (x - K)^+ = \max{\{x - K, 0\}}.$$

- Consider the policy that, when the current price is x and j periods remain before the option expires:
  - Exercises if  $V_j(x) = x K$ ;
  - Does not exercise if  $V_j(x) > x K$ .
- This is an optimal policy.
- So the optimal policy exercises in state x when j periods remain if and only if V<sub>j</sub>(x) = x − K.

## Structure of the Optimal Policy

- We determine the structure of the optimal policy.
- We show that:
  - If  $E[Y] \ge 1 + r$ , then the call option should never be exercised early;
  - If E[Y] < 1 + r, then there is a nondecreasing sequence x<sub>j</sub>, j ≥ 0, such that the policy:

Exercise when j periods remain, if the current price is at least  $x_j$ .

is an optimal policy.

## First Case

#### Lemma

If  $E[Y] \ge 1 + r$ , then the policy that only exercises when no additional time remains and the price is greater than K is an optimal policy.

• It follows from the optimality equation that  $V_j(x) \ge x - K$ . We also have  $\beta E[Y] \ge \beta (1 + r) = 1$ . So, for  $j \ge 1$ ,

$$\beta E[V_{j-1}(xY)] \ge \beta E[xY - K] \ge x - \beta K > x - K.$$

Thus, it is never optimal to exercise early.

## An Auxiliary Lemma

#### Lemma

#### If E[Y] < 1 + r, then $V_j(x) - x$ is a decreasing function of x.

The proof is by induction on j.
 For j = 0, V<sub>0</sub>(x) - x = max {-K, -x}. So the result holds.
 Assume that V<sub>j-1</sub>(x) - x is decreasing in x.
 Then, by the optimality equation,

$$V_{j}(x) - x = \max \{-K, \beta E[V_{j-1}(xY)] - x\} \\ = \max \{-K, \beta (E[V_{j-1}(xY)] - xE[Y]) + \beta x E[Y] - x\} \\ = \max \{-K, \beta E[V_{j-1}(xY) - xY] + x(\beta E[Y] - 1)\}.$$

By the induction hypothesis, for all Y,  $(V_{j-1}(xY) - xY) \searrow x$ . Therefore  $E[V_{j-1}(xY) - xY]$  is also decreasing in x. As  $\beta E[Y] < 1$ ,  $x(\beta E[Y] - 1)$  is decreasing in x. So  $\beta E[V_{j-1}(xY) - xY] + x(\beta E[Y] - 1)$  is decreasing in x.

## Second Case

#### Proposition

If E[Y] < 1 + r, then there is a increasing sequence  $x_j$ ,  $j \ge 0$ , such that the policy that exercises when j periods remain, whenever the current price is at least  $x_j$ , is an optimal policy.

Let x<sub>j</sub> = min {x : V<sub>j</sub>(x) = x − K} be the minimal price at which it is optimal to exercise when j periods remain.
 By the preceding lemma, for x' > x<sub>i</sub>,

$$V_j(x')-x' \leq V_j(x_j)-x_j = -K.$$

But the optimality equation yields that  $V_j(x') \ge x' - K$ . So we see that

$$V_j(x') = x' - K.$$

This shows that it is optimal to exercise when j stages remain and the current price is x' if and only if  $x' \ge x_j$ .

## Second Case (Cont'd)

• We show, next, that  $x_j$  increases in j.

```
We use that V_j(x) is increasing in j.
```

This follows from the fact that having additional time before the option expires cannot reduce the maximal expected return. Using  $V_i(x) \nearrow j$ , yields

$$V_{j-1}(x_j) \leq V_j(x_j) = x_j - K.$$

By the optimality equation,  $V_{j-1}(x_j) \ge x_j - K$ . So the preceding equation shows that  $V_{j-1}(x_j) = x_j - K$ . But  $x_{j-1}$  is the smallest value of x for which  $V_{j-1}(x) = x - K$ . So the preceding yields that  $x_{j-1} \le x_j$  and completes the proof.

### Example

- An urn initially has:
  - n red balls;
  - *m* blue balls.
- At each stage the player may randomly choose a ball from the urn.
  - If the ball is red, then 1 is earned;
  - If it is blue, then 1 is lost.
- The chosen ball is discarded.
- At any time the player can decide to stop playing.
- We maximize the player's total expected net return.
- We analyze this as a dynamic programming problem with the state equal to the current composition of the urn.

## Example (Optimality Equation)

- We let V(r, b) denote the maximum expected additional return given that there are currently:
  - r red balls in the urn;
  - *b* blue balls in the urn.
- The expected immediate reward if a ball is chosen in state (r, b) is

$$\frac{r}{r+b} - \frac{b}{r+b} = \frac{r-b}{r+b}.$$

- The best one can do after the initial draw is:
  - V(r-1, b) if a red ball is chosen;
  - V(r, b-1) if a blue ball is chosen.
- So the optimality equation is

$$V(r,b) = \max\left\{0, rac{r-b}{r+b} + rac{r}{r+b}V(r-1,b) + rac{b}{r+b}V(r,b-1)
ight\}.$$

• We start with V(r,0) = r and V(0,b) = 0.

• Then use the optimality equation to obtain V(n, m).

#### Example

- Suppose we can make up to *n* bets in sequence.
- Each bet consists of choosing a stake amount *s*, which can be any nonnegative value less than or equal to the current fortune.
- The result of the bet is that the amount *sY* is returned, where *Y* is a nonnegative random variable with a known distribution.
- We wish to maximize the expected value of the logarithm of the final fortune after *n* bets have taken place.
- The state is the current fortune.
- Let  $V_n(x)$  be the maximal expected logarithm of the final fortune if:
  - The current fortune is *x*;
  - *n* bets remain.
- Let the decision be the fraction  $\alpha$  of the current wealth to stake.

## Example (Optimality Equation)

- After betting the amount  $\alpha x$ :
  - The fortune is  $\alpha xY + x \alpha x = x(\alpha Y + 1 \alpha);$
  - n-1 bets remain.
- So the optimality equation becomes

$$V_n(x) = \max_{0 \le \alpha \le 1} E[V_{n-1}(x(\alpha Y + 1 - \alpha))].$$

## Example (Fist Step)

- We assumed  $V_0(x) = \log(x)$ .
- So we get

$$\begin{aligned} /_1(x) &= \max_{0 \le \alpha \le 1} E[\log \left( x(\alpha Y + 1 - \alpha) \right)] \\ &= \log \left( x \right) + \max_{0 \le \alpha \le 1} E[\log \left( \alpha Y + 1 - \alpha \right)] \\ &= \log \left( x \right) + C, \end{aligned}$$

where  $C = \max_{0 \le \alpha \le 1} E[\log (\alpha Y + 1 - \alpha)].$ 

• Denote again the value of  $\alpha$  that maximizes  $E[\log (\alpha Y + 1 - \alpha)]$  by

$$\alpha^* = \operatorname{argmax}_{\alpha} E[\log\left(\alpha Y + 1 - \alpha\right)].$$

 Then the optimal policy when only one bet can be made is to bet α<sup>\*</sup>x if your current wealth is x.

## Example (Next Step)

- Now suppose the current fortune is x and two bets remain.
- Then the maximal expected logarithm of the final fortune is

$$V_2(x) = \max_{0 \le \alpha \le 1} E[V_1(x(\alpha Y + 1 - \alpha))]$$
  
= 
$$\max_{0 \le \alpha \le 1} E[\log (x(\alpha Y + 1 - \alpha)) + C]$$
  
= 
$$\log (x) + C + \max_{0 \le \alpha \le 1} E[\log (\alpha Y + 1 - \alpha)]$$
  
= 
$$\log (x) + 2C.$$

- Once again, it is optimal to stake the fraction  $\alpha^*$  of the total wealth.
- Using mathematical induction, we can show:
  - For all n,

$$V_n(x) = \log(x) + nC;$$

• It is optimal, no matter how many bets remain, to always stake the fraction  $\alpha^*$  of the total wealth.

#### Subsection 2

#### Infinite Time Models

#### Setup

- We look at stochastic dynamic programming problems in which the total expected reward earned over an infinite time horizon is to be maximized.
- The problem begins at time 0.
- X<sub>n</sub> is the state at time n.
- A<sub>n</sub> is the action chosen at time n.
- A policy  $\pi$  is a rule for choosing actions.
- $E_{\pi}$  indicates that we are taking the expectation under the assumption that policy  $\pi$  is employed.
- We want to choose the policy  $\pi$  that maximizes

$$V_{\pi}(x) = E_{\pi}\left[\sum_{n=0}^{\infty} r(X_n, A_n) | X_0 = x\right].$$

• We will assume that the sum is well defined and finite.

# Setup (Cont'd)

- Suppose the one stage rewards r(x, a) are bounded, |r(x, a)| < M.
- Assume a discount factor  $\beta$ , with  $0 \leq \beta < 1$ .
- The expected total discounted cost of a policy  $\pi$  is  $\leq \frac{M}{1-\beta}$ .
- Now consider the optimal value function

$$V(x) = \max_{\pi} V_{\pi}(x).$$

• V(x) satisfies the optimality equation

$$V(x) = \max_{a} \{ r(x, a) + E[V(Y(x, a))] \}.$$

## Example: An Optimal Asset Selling Problem

- Suppose we receive an offer each day for an asset we want to sell.
- When the offer is received, we must:
  - Pay a cost *c* > 0;
  - Decide whether to accept or to reject the offer.
- Suppose that successive offers are independent with probability mass function

$$p_j = P(\text{offer is } j), \quad j \ge 0.$$

- We want to determine the policy that maximizes the expected net return.
- The state is the current offer.
- Let V(i) denote the maximal additional net return from here on, given that an offer of *i* has just been received.

## Example (Optimality Equation)

- If the offer is accepted, then -c + i is received and the problem ends.
- If the offer is rejected, then c is paid and we wait for the next offer.
- The next offer will equal j with probability  $p_j$ .
- If the next offer is *j*, then the maximal expected return from that point on would be *V*(*j*).
- So the maximal expected net return if the offer of *i* is rejected is  $-c + \sum_{j} p_{j} V(j)$ .
- The maximum expected net return is the maximum of the maximum in the two cases.
- So the optimality equation is

$$V(i) = \max\left\{-c+i, -c+\sum_{j}p_{j}V(j)\right\}.$$

• Setting  $v = \sum_{j} p_{j}V(j)$ , we get  $V(i) = -c + \max\{i, v\}$ 

## Example (Solution)

- It follows from the preceding that the optimal policy is to accept offer *i* if and only if it is at least *v*.
- To determine v, note that

$$V(i) = \begin{cases} -c + v, & \text{if } i \leq v, \\ -c + i, & \text{if } i > v. \end{cases}$$

Hence,

$$v = \sum_{i} p_{i}V(i) = -c + \sum_{i \leq v} vp_{i} + \sum_{i > v} ip_{i}$$
$$v \sum p_{i} - v \sum_{i \leq v} p_{i} = -c + \sum_{i > v} ip_{i}$$
$$v \sum_{i > v} p_{i} = -c + \sum_{i > v} ip_{i}$$
$$\sum_{i > v} (i - v)p_{i} = c$$
$$c = \sum_{i} (i - v)^{+}p_{i}.$$

# Example (Optimal Policy)

- Let X be a random variable having the distribution of an offer.
- Then the preceding states that

$$c = E[(X - v)^+].$$

- That is, v is that value that makes  $E[(X v)^+]$  equal to c.
- In most cases, v will have to be numerically determined.
- The optimal policy is to accept the first offer that is at least v.
- Since  $v = \sum_{i} p_i V(i)$ , v is the maximum expected net return before the initial offer is received.

### Example: A Machine Replacement Model

- Suppose that at the beginning of each period a machine is evaluated to be in some state *i*, *i* = 0, ..., *M*.
- After the evaluation, one must decide whether to pay the amount *R* and replace the machine or leave it alone.
  - If the machine is replaced, then a new machine, whose state is 0, will be in place at the beginning of the next period.
  - If a machine in state i is not replaced, then at the beginning of the next time period that machine will be in state j with probability P<sub>i,j</sub>.
- Suppose that an operating cost C(i) is incurred whenever the machine in use is evaluated as being in state *i*.
- Assume a discount factor  $0 < \beta < 1$ .
- The objective is to minimize the total expected discounted cost over an infinite time horizon.

## Example (Optimality Equation)

- Let V(i) be the minimal expected discounted cost when starting in *i*.
- If the machine is replaced:
  - We incur an immediate cost C(i) + R;
  - The minimal expected additional cost from then on is  $\beta V(0)$ .
- If the machine is not replaced:
  - Our immediate cost is C(i);
  - The best we can do, if the next state is j, is  $\beta V(j)$ .

So, if we continue in state *i*, the minimal expected total discounted cost is  $C(i) + \beta \sum_{j} P_{i,j}V(j)$ .

• The optimality equation is

$$V(i) = C(i) + \min\left\{R + \beta V(0), \beta \sum_{j} P_{i,j} V(j)\right\}.$$

• Moreover, the policy that replaces a machine in state *i* if and only if  $\beta \sum_{j} P_{i,j} V(j) \ge R + \beta V(0)$  is an optimal policy.

## Example (Increasing Minimal Expected Discounted Cost)

- Suppose we want to determine conditions that imply that V(i) is increasing in i.
- One condition we might want to assume is that the operating costs C(i) are increasing in *i*.

**Assumption 1**:  $C(i + 1) \ge C(i), i \ge 0$ .

- After some thought, we can see that Assumption 1 by itself would not imply that V(i) increases in *i*.
  - Assume, e.g., that C(10) < C(11).
  - Even though state 11 has a higher operating cost than state 10, it may be more likely to get us to a better state.
  - So it is possible that state 11 is preferable to state 10.

## Example (Assumption 2)

• To rule this out, we assume that N(i), the next state of a not replaced machine, currently in state *i*, is stochastically increasing in *i*.

**Assumption 2**:  $N_{i+1} \ge_{st} N_i$ ,  $i \ge 0$ .

• Recall that  $N_{i+1} \ge_{st} N_i$  means

$$\mathsf{P}(\mathsf{N}_{i+1} \geq k) \geq \mathsf{P}(\mathsf{N}_i \geq k), \quad ext{for all } k.$$

• This can be written as

$$\sum_{j\geq k} P_{i+1,j} \geq \sum_{j\geq k} P_{i,j}, \quad \text{for all } k.$$

By a previous proposition, Assumption 2 is equivalent to
 Assumption 2: E[h(N<sub>i</sub>)] increases in *i* whenever *h* is an increasing function.

# Example (Theorem)

#### Theorem

Under Assumptions 1 and 2:

- (a) V(i) is increasing in *i*.
- (b) For some  $0 \le i^* \le \infty$ , the policy that replaces when in state *i* if and only if  $i \ge i^*$  is an optimal policy.
  - Let  $V_n(i)$  denote the minimal expected discounted costs over an *n*-period problem that starts with a machine in state *i*. Then

$$V_n(i) = C(i) + \min\left\{R + \beta V_{n-1}(0), \beta \sum_j P_{i,j} V_{n-1}(j)\right\}, \ n \ge 1.$$

We argue by induction that  $V_n(i)$  is increasing in *i*, for all *n*.

# Example (Part (a))

• Suppose n = 1. We have  $V_1(i) = C(i)$ .

By Assumption 1, the result holds when n = 1. Assume that  $V_{n-1}(i)$  is increasing in *i*. By Assumption 2,  $E[V_{n-1}(N_i)]$  increases in *i*. But we have:

• 
$$E[V_{n-1}(N_i)] = \sum_j P_{i,j}V_{n-1}(j);$$
  
•  $V_n(i) = C(i) + \min \left\{ R + \beta V_{n-1}(0), \beta \sum_j P_{i,j}V_{n-1}(j) \right\}.$   
Hence, using Assumption 1,  $V_n(i)$  increases in *i*.  
Now  $V(i) = \lim_{n \to \infty} V_n(i).$   
So  $V(i)$  increases in *i*.

S

# Example (Part (b))

• We prove (b) by using that the optimal policy is to replace the machine in state *i* if and only if

$$\beta \sum_{j} P_{i,j} V(j) \geq R + \beta V(0).$$

This can be written as

$$E[V(N_i)] \geq \frac{R + \beta V(0)}{\beta}$$

But  $E[V(N_i)]$  is, by Part (a) and Assumption 2, increasing in *i*. Let

$$i^* = \min\left\{i: E[V(N_i)] \geq \frac{R+\beta V(0)}{\beta}\right\}.$$

Then  $E[V(N_i)] \ge \frac{R+\beta V(0)}{\beta}$  if and only if  $i \ge i^*$ .

#### Subsection 3

#### **Optimal Stopping Problems**

## **Optimal Stopping Problems**

- An optimal stopping problem is a two-action problem.
- When in state x, one can choose between:
  - Pay c(x) and continue to the next state Y(x), whose distribution depends only on x;
  - Stop and earn a final reward r(x).
- Let V(x) be the maximal expected net additional return given that the current state is x.
- The optimality equation is

$$V(x) = \max\{r(x), -c(x) + E[V(Y(x))]\}.$$

## A Special Case

- Suppose the state space is the set of integers.
- Let  $P_{i,j}$  be the probability of going from state *i* to state *j*, if one decides not to stop in state *i*.
- Then the optimality equation takes the form

$$V(i) = \max\left\{r(i), -c(i) + \sum_{j} P_{i,j}V(j)\right\}.$$

## The Finite Time Version

• Let  $V_n(i)$  denote the maximal expected net return given that:

- The current state is *i*;
- One is only allowed to go at most *n* additional time periods before stopping.
- Then, by the usual argument,

$$V_0(i) = r(i); V_n(i) = \max \{r(i), -c(i) + \sum_j P_{i,j} V_{n-1}(j)\}.$$

Having additional time periods before one must stop cannot hurt.

- So we get that:
  - $V_n(i)$  increases in n;
  - $V_n(i) \leq V(i)$ .

### Stability

#### Definition

- If  $\lim_{n \to \infty} V_n(i) = V(i)$ , the stopping problem is said to be **stable**.
  - Most, though not all, stopping-rule problems that arise are stable.
  - A sufficient condition for the stopping problem to be stable is the existence of constants c > 0 and  $r < \infty$  such that

$$c(x) > c$$
 and  $r(x) < r$ , for all  $x$ .

## One-Stage Lookahead Policy

- **One-Stage Lookahead Policy**: Stop in state *i* if stopping would give a return that is at least as large as the expected return obtained by continuing for exactly one more period and then stopping.
- Suppose we are at state *i*.
  - Immediate stopping yields a final return r(i);
  - Going exactly one more period and then stopping results in an expected additional return of  $-c(i) + \sum_{i} P_{i,j}r(j)$ .

Let

$$B = \left\{ i: r(i) \geq -c(i) + \sum_{j} P_{i,j}r(j) \right\}$$

be the set of states for which immediate stopping is at least as good as continuing for one period and then stopping.

- The one-stage lookahead policy is the policy that:
  - Stops when the current state *i* is in *B*;
  - Continues when the current state *i* is not in *B*.

George Voutsadakis (LSSU)

## Optimality of One-Stage Lookahead

- Consider an optimal stopping problem.
- Assume that it is stable.
- Assume that the set of states *B* is closed.
- This means that, if the current state is in *B*, and one chooses to continue, then the next state will necessarily also be in *B*.
- We show that, for optimal stopping problems satisfying those two conditions, the one state lookahead policy is an optimal policy.

#### Theorem

Suppose the problem satisfies the following:

- It is stable;
- $P_{i,j} = 0$  for  $i \in B$ ,  $j \notin B$ .

Then the one stage lookahead policy is an optimal policy.

## Optimality of One-Stage Lookahead (Cont'd)

Note first that it cannot be optimal to stop in state *i* when *i* ∉ *B*.
 This is so because better than stopping is to continue exactly one additional stage and then stop.

So we need to prove that it is optimal to stop in state *i* when  $i \in B$ . I.e., that  $V(i) = r(i), i \in B$ .

We prove this by showing, by induction, that for all n,

$$V_n(i) = r(i), \quad i \in B.$$

We have  $V_0(i) = r(i)$ . So the preceding is true when n = 0. Assume that  $V_{n-1}(i) = r(i)$ , for all  $i \in B$ .

## Optimality of One-Stage Lookahead (Cont'd)

• Then, for  $i \in B$ ,

$$V_n(i) = \max\left\{r(i), -c(i) + \sum_j P_{i,j} V_{n-1}(j)\right\}$$
  
= 
$$\max\left\{r(i), -c(i) + \sum_{j \in B} P_{i,j} V_{n-1}(j)\right\} (B \text{ closed})$$
  
= 
$$\max\left\{r(i), -c(i) + \sum_{j \in B} P_{i,j} r(j)\right\} (\text{induction})$$
  
= 
$$r(i). \quad (i \in B)$$

Hence,  $V_n(i) = r(i)$  for  $i \in B$ . By stability, we obtain the result.

#### Example

- Consider a burglar each of whose attempted burglaries is successful with probability *p*.
  - If successful, the amount of loot earned is j with probability  $p_j$ , j = 0, ..., m.
  - If unsuccessful, the burglar is caught and loses everything he has accumulated to that time, and the problem ends.
- The burglar's problem is to decide whether to attempt another burglary or to stop and enjoy his accumulated loot.
- We find the optimal policy.

### Example (Optimality Equation)

• The state is the total loot so far collected.

- If the current total loot is *i* and the burglar decides to stop, then he receives a reward *i* and the problem ends.
- If he decides to continue, then, if successful, the new state will be i + j with probability  $p_j$ .
- Let V(i) is the burglar's maximal expected reward, given that the current state is *i*.
- The optimality equation is

$$V(i) = \max\left\{i, p\sum_{j} p_{j}V(i+j)\right\}.$$

# Example (Cont'd)

Define

$$B = \left\{ i : i \ge p \sum_{j} p_j(i+j) \right\}.$$

The one-stage lookahead policy calls for stopping in state *i* if *i* ∈ *B*.
Let μ = ∑<sub>j</sub> jp<sub>j</sub> be the expected return from a successful burglary.
Then

$$B = \{i : i \ge p(i+\mu)\} = \left\{i : i \ge \frac{p\mu}{1-p}\right\}$$

- The state cannot decrease (unless the burglar is caught and then no additional decisions are needed).
- So B is closed.
- It follows that the one-stage lookahead policy that stops when the total loot is at least <sup>pµµ</sup>/<sub>1-p</sub> is an optimal policy.

#### Example

- Recall the Optimal Asset Selling Problem.
- We receive an offer each day for an asset we desire to sell.
- When the offer is received, we must:
  - Pay a cost *c* > 0;
  - Decide whether to accept or reject the offer.
- Successive offers are independent with probability mass function

$$p_j = P(\text{offer is } j), \quad j \ge 0.$$

• The problem is to determine the policy that maximizes the expected net return.

## Example (One-Stage Lookahead Policy)

- Let *E*[*X*] be the expected value of a new offer.
- Define

$$B = \{j : j \ge -c + E[X]\}.$$

- The one-stage lookahead policy of a previous example calls for accepting an offer j if j ∈ B.
- *B* is not a closed set of states (because successive offers need not be increasing).
- So the one-stage lookahead policy would not necessarily be an optimal policy.

## The Recall Problem

- Suppose we allow the seller to be able to recall any past offer.
- So a rejected offer is not lost, but may be accepted at any future time.
- In this case, the state after a new offer is observed would be the maximum offer ever received.
- Suppose *j* is the current state.
- Suppose X is the offer in the final stage.
- The selling price, if we go exactly one more stage, is  $j + (X j)^+$ .
- Hence, the set of stopping states of the one-stage lookahead policy is

$$B = \{j : j \ge j + E[(X - j)^+] - c\} = \{j : E[(X - j)^+] \le c\}.$$

- We have
  - $E[(X j)^+]$  is a decreasing function of *j*;
  - The state, being the maximum offer so far received, cannot decrease.
- So B is a closed set of states.
- Hence, the one-stage lookahead policy is optimal in this problem.

## The Recall Problem (Cont'd)

Let v be such that

$$E[(X-v)^+]=c.$$

- Then the one-stage lookahead policy in the recall problem is to accept the first offer that is at least *v*.
- But this policy can be employed even when no recall is allowed.
- So it must also be an optimal policy in the no recall problem.
   Suppose it were not an optimal policy for the no-recall problem.
   Then the maximum expected net return in the no-recall problem would be strictly larger than in the recall problem.

This is clearly not possible.

## Example

- Consider a tournament involving k players, in which player i, i = 1, ..., k, starts with an initial fortune of  $n_i > 0$ .
- In each period, two of the players are chosen to play a game.
- The game is equally likely to be won by either player.
- The winner of the game receives 1 from the loser.
- A player whose fortune drops to 0 is eliminated.
- The tournament continues until one player has the entire fortune of

$$\sum_{i=1}^k n_i.$$

- For fixed i and j, let  $N_{i,j}$  be the number of games in which i plays j.
- We are interested in  $E[N_{i,j}]$ .

## Example (Cont'd)

- We set up a stopping rule problem.
- After two players have been chosen for a game, they may:
  - Stop and receive a final reward equal to the product of the current fortunes of players *i* and *j*;
  - Continue, receiving a reward of:
    - 1 in that period, if the two contestants are *i* and *j*;
    - 0, if the contestants are not *i* and *j*.
- Suppose the current fortunes of *i* and *j* are *n* and *m*.
  - Stopping at this time will yield a final reward of *nm*.
  - If we continue for one additional period and then stop, we receive:
    - A total reward of *nm*, if *i* and *j* are not the competitors in the current round (0 during that period and, then, *nm* when we stop the following period);
    - The expected amount  $1 + \frac{1}{2}(n+1)(m-1) + \frac{1}{2}(n-1)(m+1) = nm$ , if *i* and *j* are the competitors.

# Example (Cont'd)

- Hence, in all cases the return from immediately stopping is exactly the same as the expected return from going exactly one more period and then stopping.
- Thus, the one-stage lookahead policy always calls for stopping.
- So its set of stopping states is closed.
- It follows that it is an optimal policy.
- But continuing on for an additional period and then stopping yields the same expected return as immediately stopping.
- So always continuing is also optimal.
- Now observe that:
  - The total return from the policy that always continues is the number  $N_{i,j}$  of times that *i* and *j* play each other;
  - The return from immediately stopping is  $n_i n_j$ .
- We conclude that  $E[N_{i,j}] = n_i n_j$ .
- This holds no matter how the contestants in each round are chosen.