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Normal Random Variables Continuous Random Variables

Continuous Random Variables

We have looked at random variables whose possible values
constituted discrete sets.

There exist random variables whose sets of possible values are
continuous regions.

These continuous random variables can take on any value within
some interval.

Example: The following are continuous random variables:

The time it takes to complete an assignment;
The weight of a randomly chosen individual.
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The Probability Density Function

Every continuous random variable X has a function f associated with
it.

This function, called the probability density function of X ,
determines the probabilities associated with X in the following
manner:

For any numbers a < b, the area
under f between a and b is equal to
the probability that X assumes a value
between a and b.

That is, P{a ≤ X ≤ b} = area under
f between a and b.
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Normal Random Variable

The probability density function of a normal random variable X is
determined by two parameters, denoted by µ and σ, and is given by
the formula

f (x) =
1√
2πσ

e
−

(x−µ)2

2σ2 , −∞ < x < ∞.

A plot of f gives a bell-shaped curve that is symmetric about the
value µ, and with a variability that is measured by σ.
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Standard Normal Random Variable

The parameters µ and σ2 are equal to the expected value and to the
variance of X , respectively: µ = E [X ], σ2 = Var(X ).

A normal random variable having mean 0 and variance 1 is called a
standard normal random variable.

Let Z be a standard normal random variable.

The function Φ(x), defined for all real numbers x by

Φ(x) = P{Z ≤ x},
is called the standard normal distribution function.

Thus Φ(x), the probability that a standard normal random variable is
less than or equal to x, is equal to the area under the standard

normal density function

f (x) =
1√
2π

e−
x
2

2 , −∞ < x < ∞,

between −∞ and x .
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Using a Table to Calculate Probabilities

A table is used giving values of Φ(x) when x > 0.

Probabilities for negative x can be obtained by using the symmetry of
the standard normal density about 0.

We conclude that P{Z < −x} = P{Z > x} or, equivalently, that

Φ(−x) = 1− Φ(x).
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Example

Let Z be a standard normal random variable.

For a < b, express P{a < Z ≤ b} in terms of Φ.

We have
P{Z ≤ b} = P{Z ≤ a}+ P{a < Z ≤ b}.

Therefore

P{a < Z ≤ b} = P{Z ≤ b} − P{Z ≤ a}
= Φ(b)− Φ(a).
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Normal Random Variables Normal Random Variables

Example

For a standard normal random variable Z , calculate, using the table,
the values P{|Z | ≤ 1}, P{|Z | ≤ 2} and P{|Z | ≤ 3}.
We have

P{|Z | ≤ 1} = P{−1 ≤ Z ≤ 1}
= Φ(1)− Φ(−1)

= Φ(1)− (1− Φ(1))

= 2Φ(1)− 1

= 2 · 0.8413 − 1 = 0.6826.

Similarly,

P{|Z | ≤ 2} = 2Φ(2)− 1 = 2 · 0.9772 − 1 = 0.9544;

P{|Z | ≤ 3} = 2Φ(3)− 1 = 2 · 0.9987 − 1 = 0.9974.
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Normal Random Variables Properties of Normal Random Variables

Linear Function of Normal Variable

If X is a normal random variable then so is aX + b, when a and b are
constants.

This property enables us to transform any normal random variable X

into a standard normal random variable.

Suppose X is normal with mean µ and variance σ2.

Then

Z =
X − µ

σ

has expected value 0 and variance 1.

So Z is a standard normal random variable.

This allows computing probabilities for any normal random variable in
terms of the standard normal distribution function Φ.
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Example

IQ examination scores for sixth-graders are normally distributed with
mean value 100 and standard deviation 14.2.

What is the probability that a randomly chosen sixth-grader has an IQ
score greater than 130?

Let X be the score of a randomly chosen sixth-grader.

Then,
P{X > 130} = P{X−100

14.2 >
130−100

14.2 }
= P{X−100

14.2 > 2.113}
= 1− Φ(2.113)
= 1− 0.9834

= 0.017.
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Sum of Normal Variables

The sum of independent normal random variables is also a normal
random variable.

If X1 and X2 are independent normal random variables with means µ1

and µ2 and with standard deviations σ1 and σ2, then X1 + X2 is
normal with mean

E [X1 + X2] = E [X1] + E [X2] = µ1 + µ2

and variance

Var(X1 + X2) = Var(X1) + Var(X2) = σ
2
1 + σ

2
2 .

George Voutsadakis (LSSU) Mathematical Finance March 2024 15 / 25



Normal Random Variables Properties of Normal Random Variables

Example

The annual rainfall in Cleveland, Ohio, is normally distributed with
mean 40.14 inches and standard deviation 8.7 inches.

Find the probability that the sum of the next two years’ rainfall
exceeds 84 inches.

Let Xi denote the rainfall in year i (i = 1, 2).

We assume that the rainfalls in successive years are independent.
Then X1 + X2 is normal with:

Mean 40.14 + 40.14 = 80.28;
Variance (8.7)2 + (8.7)2 = 151.38.

Therefore, with Z denoting a standard normal random variable,

P{X1 + X2 > 84} = P{Z >
84−80.28
√

151.38
}

= P{Z > 0.3023}
= 1− Φ(0.3023)

≈ 0.3812.
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Lognormal Random Variables

The random variable Y is said to be a lognormal random variable

with parameters µ and σ if log (Y ) is a normal random variable
with mean µ and variance σ2.

That is, Y is lognormal if it can be expressed as

Y = eX ,

where X is a normal random variable.

The mean and variance of a lognormal random variable are as follows:

E [Y ] = eµ+
σ
2

2 ;

Var(Y ) = e2µ+2σ2 − e2µ+σ
2

= e2µ+σ
2
(eσ

2 − 1).
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Normal Random Variables Properties of Normal Random Variables

Example

Starting at some fixed time, let S(n) denote the price of a certain
security at the end of n additional weeks, n ≥ 1.

A popular model for the evolution of these prices assumes that the
price ratios S(n)

S(n−1) , for n ≥ 1, are independent and identically

distributed (i.i.d.) lognormal random variables.

Assuming this model, with lognormal parameters µ = 0.0165 and
σ = 0.0730, what is the probability that:

(a) The price of the security increases over each of the next two weeks;
(b) The price at the end of two weeks is higher than it is today?
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Example (Part (a))

Let Z be a standard normal random variable.

We have

P
{

S(2)
S(1) > 1, S(1)

S(0) > 1
}

= P
{

S(2)
S(1) > 1

}

P
{

S(1)
S(0) > 1

}

= P
{

S(1)
S(0) > 1

}2

= P
{

log
(

S(1)
S(0)

)

> 0
}2

= P
{

Z >
−0.0165
0.0730

}2

= P{Z > −0.2260}2

= P{Z < 0.2260}2

≈ 0.58942 = 0.3474.
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Normal Random Variables Properties of Normal Random Variables

Example (Part (b))

To solve part (b), reason as follows:

P
{

S(2)
S(0) > 1

}

= P
{

S(2)
S(1)

S(1)
S(0) > 1

}

= P
{

log
(

S(2)
S(1)

)

+ log
(

S(1)
S(0)

)

> 0
}

= P
{

Z >
−0.0165−0.0165
√

0.07302+0.07302

}

= P
{

Z >
−0.0330
0.0730

√

2

}

= P{Z > −0.31965}
= P{Z < 0.31965}
≈ 0.6254.
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Normal Random Variables The Central Limit Theorem

The Central Limit Theorem

Suppose that X1,X2, . . . is a sequence of i.i.d. random variables, each
with expected value µ and variance σ2.

Define

Sn =

n
∑

i=1

Xi .

Central Limit Theorem

For large n, Sn will approximately be a normal random variable with
expected value nµ and variance nσ2. As a result, for any x , we have

P

{

Sn − nµ

σ
√
n

≤ x

}

≈ Φ(x),

with the approximation becoming exact as n becomes larger and larger.
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Normal Random Variables The Central Limit Theorem

Binomial Random Variables Revisited

Suppose that X is binomial with parameters n and p.

X represents the number of successes in n independent trials, each of
which is a success with probability p.

Thus, it can be expressed as

X =
n

∑

i=1

Xi ,

where Xi is 1 if trial i is a success and is 0 otherwise.

We know that

E [Xi ] = p and Var(Xi ) = p(1− p).

By the Central Limit Theorem, when n is large, X will approximately
have a normal distribution with mean np and variance np(1− p).
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Normal Random Variables The Central Limit Theorem

Example

A fair coin is tossed 100 times. What is the probability that heads
appears fewer than 40 times?

Let X denote the number of heads.

Then X is binomial with parameters n = 100 and p = 1
2 .

So np = 50 and np(1− p) = 25.

Now we have

P{X < 40} = P
{

X−50
√

25
<

40−50
√

25

}

= P
{

X−50
√

25
< −2

}

≈ Φ(−2) = 0.0228.
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Normal Random Variables The Central Limit Theorem

Example (Comments)

The preceding is not quite as acccurate as we might like.

We could improve the approximation by noting that, since X is an
integral-valued random variable, the event that X < 40 is equivalent
to the event that X < 39 + c for any c , 0 < c ≤ 1.

Consequently, a better approximation may be obtained by writing the
desired probability as P{X < 39.5}.
This gives

P{X < 39.5} = P
{

X−50
√

25
<

39.5−50
√

25

}

= P
{

X−50
√

25
< −2.1

}

≈ Φ(−2.1) = 0.0179.

This is indeed a better approximation.
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