Introduction to Mathematical Finance

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

1 Brownian Motion and Geometric Brownian Motion

- Brownian Motion
- Brownian Motion as a Limit of Simpler Models
- Geometric Brownian Motion
- The Maximum Variable
- The Cameron-Martin Theorem

Subsection 1

Brownian Motion

Brownian Motion

- Consider a collection of random variables X(t), $t \ge 0$.
- Imagine we are observing some process as it evolves over time.
- The index parameter *t* represents time.
- X(t) is interpreted as the state of the process at time t.

Definition

The collection of random variables X(t), $t \ge 0$ is said to be a **Brownian motion** with drift parameter μ and variance parameter σ^2 if the following hold:

- (a) X(0) is a given constant.
- (b) For y, t > 0, the random variable X(y + t) X(y):
 - Is independent of the process values up to time y;
 - Has a normal distribution with mean μt and variance $t\sigma^2$.

Consequence

- Assumption (b) says that, for any history of the process up to the present time y, the change in the value of the process over the next t time units is a normal random variable with mean μt and variance $t\sigma^2$.
- Note that any future value X(y + t) is equal to the present value X(y) plus the change in value X(y + t) X(y).
- Thus, the assumption implies that it is only the present value of the process, and not any past values, that determines probabilities about future values.

Continuity Property

- An important property of Brownian motion is that X(t) will, with probability 1, be a continuous function of t.
- Althought this is a mathematically deep result, it is not difficult to see why it might be true.
- To prove that X(t) is continuous, we must show that

$$\lim_{h\to 0} \left(X(t+h) - X(t) \right) = 0.$$

- Bu the random variable X(t + h) X(t) has mean μh and variance $h\sigma^2$.
- So it converges as $h \rightarrow 0$ to a random variable with mean 0 and variance 0.
- That is, it converges to the constant 0, thus arguing for continuity.

Nowhere Differentiability

- We saw that X(t) is, with probability 1, a continuous function of t.
- However, it possesses the property of being nowhere differentiable.
- To see why this might be the case, note that

$$\frac{X(t+h)-X(t)}{h}$$

has mean μ and variance $\frac{\sigma^2}{h}$.

- The variance of this ratio is converging to infinity as $h \rightarrow 0$.
- So it is not surprising that the ratio does not converge.

Subsection 2

Brownian Motion as a Limit of Simpler Models

Brownian Motion as a Limit of Simpler Models

- Let Δ be a small increment of time.
- Set $p = \frac{1}{2}(1 + \frac{\mu}{\sigma}\sqrt{\Delta}).$
- Consider a process such that, every Δ time units, the value of the process behaves in either of two ways:
 - It increases by the amount $\sigma\sqrt{\Delta}$ with probability p;
 - It decreases by the amount $\sigma\sqrt{\Delta}$ with probability 1 p.

Successive changes in value are independent.

- Take Δ smaller and smaller.
 - The changes occur more and more frequently;
 - The change amounts become smaller and smaller.
- The process becomes a Brownian motion with drift parameter μ and variance parameter σ^2 .
- Consequently, Brownian motion can be approximated by a relatively simple process that either increases or decreases by a fixed amount at regularly specified times.

Verification

Let

 $X_i = \begin{cases} 1, & \text{if the change at time } i\Delta \text{ is an increase} \\ -1, & \text{if the change at time } i\Delta \text{ is a decrease} \end{cases}$

• Let X(0) be the process value at time 0.

• Then its value after *n* changes is

$$X(n\Delta) = X(0) + \sigma \sqrt{\Delta} (X_1 + \cdots + X_n).$$

• By time t, there would have been $n = \frac{t}{\Lambda}$ changes.

• This gives

$$X(t) - X(0) = \sigma \sqrt{\Delta} \sum_{i=1}^{t/\Delta} X_i.$$

Verification (Cont'd)

Note that:

- The X_i , $i = 1, \ldots, \frac{t}{\Delta}$, are independent;
- As Δ goes to 0 there are more and more terms in $\sum_{i=1}^{t/\Delta} X_i$.
- Thus, the Central Limit Theorem suggests that this sum converges to a normal random variable.
- Consequently, as Δ goes to 0, the process value at time t becomes a normal random variable.
- To compute its mean and variance, note that

$$E[X_i] = 1(p) - 1(1-p) = 2p - 1 = \frac{\mu}{\sigma}\sqrt{\Delta};$$

Var(X_i) = $E[X_i^2] - (E[X_i])^2 = 1 - (2p - 1)^2.$

Verification (Cont'd)

• Hence,

$$E[X(t) - X(0)] = E\left[\sigma\sqrt{\Delta}\sum_{i=1}^{t/\Delta} X_i\right]$$
$$= \sigma\sqrt{\Delta}\sum_{i=1}^{t/\Delta} E[X_i]$$
$$= \sigma\sqrt{\Delta}\frac{t}{\Delta}\frac{\mu}{\sigma}\sqrt{\Delta}$$
$$= \mu t.$$

Furthermore,

$$Var(X(t) - X(0)) = Var\left(\sigma\sqrt{\Delta}\sum_{i=1}^{t/\Delta}X_i\right)$$
$$= \sigma^2\Delta\sum_{i=1}^{t/\Delta}Var(X_i)$$
$$= \sigma^2t[1 - (2p - 1)^2].$$

We have p → ¹/₂ as Δ → 0.
So Var(X(t) - X(0)) → tσ² as Δ → 0.

Verification (Cont'd)

- Consequently, as Δ gets smaller and smaller, X(t) X(0) converges to a normal random variable with mean μ and variance σ^2 .
- In addition:
 - Successive process changes are independent;
 - Each has the same probability of being an increase.
- Hence, X(y + t) X(y) has the same distribution as does X(t) X(0).
- Moreover, it is independent of earlier process changes before time y.
- Hence, as Δ goes to 0, the collection of process values over time becomes a Brownian motion process with drift parameter μ and variance parameter σ².

Independence of the Drift Parameter

Theorem

Given that X(t) = x, the conditional probability law of the collection of prices X(y), $0 \le y \le t$, is the same for all values of μ .

• Let s = X(0) be the price at time 0.

Consider the approximating model where the price changes every Δ time units by an amount equal, in absolute value, to $c \equiv \sigma \sqrt{\Delta}$. Note that c does not depend on μ .

By time t, there would have been $\frac{t}{\Delta}$ changes.

Suppose the price has increased from time 0 to time t by x - s.

It follows that, of the $\frac{t}{\Lambda}$ changes, there have been:

- A total of $\frac{t}{2\Delta} + \frac{x-s}{2c}$ positive changes;
- A total of $\frac{\overline{t}}{2\Delta} \frac{\overline{x-s}}{2c}$ negative changes.

In fact
$$\left(\frac{t}{2\Delta} + \frac{x-s}{2c}\right)c - \left(\frac{t}{2\Delta} - \frac{x-s}{2c}\right)c = \frac{x-s}{c}c = x - s.$$

Independence of the Drift Parameter (Cont'd)

• Each change is, independently, a positive change with the same probability *p*.

So, conditional on there being a total of $\frac{t}{2\Delta} + \frac{x-s}{2c}$ positive changes out of the first $\frac{t}{\Delta}$ changes, all possible choices of the changes that were positive are equally likely.

[That is, if a coin having probability p is flipped m times, then, given that k heads resulted, the subset of trials that resulted in heads is equally likely to be any of the $\binom{m}{k}$ subsets of size k.]

Although p depends on μ , the conditional distribution of the history of prices up to time t, given that X(t) = x, does not depend on μ .

It depends on σ , because c, the size of a change, depends on σ .

So, if σ changed, then so would the number of the $\frac{t}{\Delta}$ changes that would have had to be positive for S(t) to equal x.

Letting Δ go to 0 now completes the proof.

Subsection 3

Geometric Brownian Motion

Geometric Brownian Motion

Definition

Let X(t), $t \ge 0$ be a Brownian motion process with drift parameter μ and variance parameter σ^2 , and let

$$S(t)=e^{X(t)},\quad t\geq 0.$$

The process S(t), $t \ge 0$, is said to be be a **geometric Brownian motion** process with drift parameter μ and variance parameter σ^2 .

Geometric Brownian Motion Features

- Let S(t), t ≥ 0 be a geometric Brownian motion process with drift parameter μ and variance parameter σ².
- We have, by definition, that $\log (S(t))$, $t \ge 0$, is a Brownian motion.
- Moreover,

$$\log (S(t+y)) - \log (S(y)) = \log \left(\frac{S(t+y)}{S(y)}\right).$$

- Thus, by definition, for all y, t > 0, the quantity $\log \left(\frac{S(t+y)}{S(y)}\right)$:
 - Is independent of the process values up to time y;
 - Has a normal distribution with mean μt and variance $t\sigma^2$.

Advantages for Modeling Prices of Securities

- When used to model the price of a security over time, the geometric Brownian motion process has some advantages over the Brownian motion process:
 - First, it is the logarithm of the stock's price, assumed to be a normal random variable.
 - So the model does not allow for negative stock prices.
 - Second, it consists of ratios, rather than differences, of prices separated by a fixed amount of time that have the same distribution.
 So it makes what many feel is the more reasonable assumption of a percentage, rather than absolute, change in price whose probabilities do not depend on the current price.

Remarks

When geometric Brownian motion is used to model the price of a security over time, it is common to call σ the volatility parameter.
If S(0) = s, then we can write

$$S(t) = se^{X(t)}, \quad t \ge 0,$$

where X(t), t ≥ 0, is a Brownian motion process with X(0) = 0.
If X is a normal random variable, then it can be shown that

$$E[e^X] = \exp\left\{E[X] + \frac{\operatorname{Var}(X)}{2}\right\}.$$

Remarks (Cont'd)

- Assume, now, that S(t), $t \ge 0$, is a geometric Brownian motion process with:
 - Drift μ ;
 - Volatility σ ;
 - S(0) = s.
- Then

$$E[S(t)] = se^{\mu t + \frac{t\sigma^2}{2}} = se^{(\mu + \frac{\sigma^2}{2})t}.$$

- Thus, under geometric Brownian motion, the expected price of a security grows at rate $\mu + \frac{\sigma^2}{2}$.
- $\mu + \frac{\sigma^2}{2}$ is often called the **rate** of the geometric Brownian motion.
- Consequently, a geometric Brownian motion with rate parameter μ_r and volatility σ would have drift parameter $\mu_r - \frac{\sigma^2}{2}$.

Geometric Brownian Motion as a Limit

- Let S(t), $t \ge 0$ be a geometric Brownian motion process with drift parameter μ and volatility parameter σ .
- Because X(t) = log (S(t)), t ≥ 0, is Brownian motion, we can use its approximating process to obtain an approximating process for geometric Brownian motion.
- We have

$$\frac{S(y+\Delta)}{S(y)}=e^{X(y+\Delta)-X(y)}.$$

It follows that

$$S(y + \Delta) = S(y)e^{X(y+\Delta)-X(y)}.$$

Geometric Brownian Motion as a Limit (Cont'd)

Set

$$u = e^{\sigma \sqrt{\Delta}}, \quad d = e^{-\sigma \sqrt{\Delta}}, \quad p = \frac{1}{2} \left(1 + \frac{\mu}{\sigma} \sqrt{\Delta} \right).$$

- We can approximate geometric Brownian motion by a model for the price of a security in which:
 - Price changes occur only at times that are integral multiples of Δ;
 - Price changes occur in one of two possible ways:
 - The price is multiplied by the factor *u* with probability *p*;
 - The price is multiplied by the factor d with probability 1 p.
- As Δ goes to 0, this model becomes geometric Brownian motion.
- Consequently, geometric Brownian motion can be approximated by a relatively simple process that goes either up or down by fixed factors at regularly spaced times.

Subsection 4

The Maximum Variable

The Maximum Variable

- Let X(v), $v \ge 0$, be a Brownian motion process with drift parameter μ and variance parameter σ^2 .
- Suppose that X(0) = 0, so that the process starts at state 0.
- Now, define

$$M(t) = \max_{0 \le v \le t} X(v)$$

to be the maximal value of the Brownian motion up to time t.

- We derive the conditional distribution of M(t) given the value of X(t).
- We then use this to derive the unconditional distribution of M(t).

Conditional Distribution

Theorem

For y > x,

$$P(M(t) \ge y | X(t) = x) = e^{-2y(y-x)/t\sigma^2}, \quad y \ge 0.$$

• Because X(0) = 0, it follows that $M(t) \ge 0$.

So the result is true when y = 0 (both sides are equal to 1). Suppose that y > 0.

By a previous theorem, $P(M(t) \ge y | X(t) = x)$ does not depend on μ . So let us take $\mu = 0$.

Let T_y denote the first time the Brownian motion reaches y. Brownian motion is continuous.

So before the process can exceed y it must pass through y.

So the event $M(t) \ge y$ is equivalent to $T_y \le t$.

Conditional Distribution (Cont'd)

• Let h be a small positive number for which y > x + h. Then

$$P(M(t) \ge y, x \le X(t) \le x + h)$$

= $P(T_y \le t, x \le X(t) \le x + h)$
= $P(x \le X(t) \le x + h | T_y \le t) P(T_y \le t).$

Now, given $T_y \leq t$, the event $x \leq X(t) \leq x + h$ will occur if, after hitting y, the additional amount $X(t) - X(T_y) = X(t) - y$ by which the process changes by time t is between x - y and x + h - y. The distribution of this change is symmetric about 0 ($\mu = 0$). The distribution of a normal variable is symmetric about its mean. So the additional change is just as likely to be between -(x + h - y)and -(x - y) as it is to be between x - y and x + h - y.

Conditional Distribution (Cont'd)

Consequently,

$$P(x \le X(t) \le x + h | T_y \le t)$$

= $P(x - y \le X(t) - y \le x + h - y | T_y \le t)$
= $P(-(x + h - y) \le X(t) - y \le -(x - y) | T_y \le t).$

Combining the preceding equalities gives

$$\begin{split} & P(M(t) \ge y, x \le X(t) \le x + h) \\ &= P(2y - x - h \le X(t) \le 2y - x | T_y \le t) P(T_y \le t) \\ &= P(2y - x - h \le X(t) \le 2y - x, T_y \le t) \\ &= P(2y - x - h \le X(t) \le 2y - x). \end{split}$$

By hypothesis, y > x + h. This implies that 2y - x - h > y. So, by continuity, $2y - x - h \le X(t)$ implies $T_y \le t$.

Conditional Distribution (Cont'd)

Now we have

$$P(M(t) \ge y | x \le X(t) \le x+h) = \frac{P(2y-x-h \le X(t) \le 2y-x)}{P(x \le X(t) \le x+h)}$$

$$\approx \frac{f_{X(t)}(2y-x)h}{f_{X(t)}(x)h} \text{ (for } h \text{ small}),$$

where $f_{X(t)}$, the density function of X(t), is the density of a normal random variable with mean 0 and variance $t\sigma^2$.

On letting $h \rightarrow 0$ in the preceding, we obtain that

$$P(M(t) \ge y | X(t) = x) = \frac{f_{X(t)}(2y - x)}{f_{X(t)}(x)}$$
$$= \frac{e^{-(2y - x)^2/2t\sigma^2}}{e^{-x^2/2t\sigma^2}}$$
$$= e^{-2y(y - x)/t\sigma^2}.$$

Distribution

• With Z being a standard normal distribution function, let

$$\overline{\Phi}(x) = 1 - \Phi(x) = P(Z > x).$$

Corollary

For $y \ge 0$

$$P(M(t) \ge y) = e^{2y\mu/\sigma^2}\overline{\Phi}\left(\frac{\mu t + y}{\sigma\sqrt{t}}\right) + \overline{\Phi}\left(\frac{y - \mu t}{\sigma\sqrt{t}}\right).$$

• Conditioning on X(t), and using the theorem gives

$$\begin{array}{lll} P(M(t) \geq y) &=& \int_{-\infty}^{\infty} P(M(t) \geq y | X(t) = x) f_{X(t)}(x) dx \\ &=& \int_{-\infty}^{y} P(M(t) \geq y | X(t) = x) f_{X(t)}(x) dx \\ &+& \int_{y}^{\infty} P(M(t) \geq y | X(t) = x) f_{X(t)}(x) dx \end{array} \\ &=& \int_{-\infty}^{y} e^{-2y(y-x)/t\sigma^2} f_{X(t)}(x) dx + \int_{y}^{\infty} f_{X(t)}(x) dx. \end{array}$$

Distribution (Cont'd)

f_{X(t)} is the density function of a normal random variable with mean μt and variance tσ²:

$$P(M(t) \ge y) = \int_{-\infty}^{y} e^{-2y(y-x)/t\sigma^{2}} \frac{1}{\sqrt{2\pi t\sigma^{2}}} e^{-(x-\mu t)^{2}/2t\sigma^{2}} dx + P(X(t) > y)$$

$$= \frac{1}{\sqrt{2\pi t\sigma}} e^{-2y^{2}/t\sigma^{2}} e^{-\mu^{2}t^{2}/2t\sigma^{2}} \times \int_{-\infty}^{y} \exp\left\{-\frac{1}{2t\sigma^{2}}(x^{2} - 2\mu tx - 4yx)\right\} dx + P(X(t) > y)$$

$$= \frac{1}{\sqrt{2\pi t\sigma}} e^{-(4y^{2} + \mu^{2}t^{2})/2t\sigma^{2}} \times \int_{-\infty}^{y} \exp\left\{-\frac{1}{2t\sigma^{2}}(x^{2} - 2x(\mu t + 2y))\right\} dx + P(X(t) > y).$$
ow, $x^{2} - 2x(\mu t + 2y) = (x - (\mu t + 2y))^{2} - (\mu t + 2y)^{2}.$ So
$$P(M(t) \ge y) = e^{-(4y^{2} + \mu^{2}t^{2} - (\mu t + 2y)^{2}/2t\sigma^{2}} \frac{1}{\sqrt{2\pi t\sigma}} \times \int_{-\infty}^{y} e^{-(x-\mu t - 2y)^{2}/2t\sigma^{2}} dx + P(X(t) > y).$$

Ν

Distribution (Cont'd)

• We got

$$P(M(t) \ge y) = e^{-(4y^2 + \mu^2 t^2 - (\mu t + 2y)^2)/2t\sigma^2} \frac{1}{\sqrt{2\pi t\sigma}} \\ \times \int_{-\infty}^{y} e^{-(x - \mu t - 2y)^2/2t\sigma^2} dx + P(X(t) > y).$$

Let Z be a standard normal random variable. Change variables $w = \frac{x - \mu t - 2y}{\sigma \sqrt{t}}$. Then $dx = \sigma \sqrt{t} dw$ and

$$\begin{split} P(M(t) \geq y) &= e^{2y\mu/\sigma^2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{-\mu t - y}{\sigma\sqrt{t}}} e^{-w^2/2} dw \\ &+ P\left(\frac{X(t) - \mu t}{\sigma\sqrt{t}} > \frac{y - \mu t}{\sigma\sqrt{t}}\right) \\ &= e^{2y\mu/\sigma^2} P\left(Z < \frac{-\mu - y}{\sigma\sqrt{t}}\right) + P\left(Z > \frac{y - \mu t}{\sigma\sqrt{t}}\right) \\ &= e^{2y\mu/\sigma^2} P\left(Z > \frac{\mu t + y}{\sigma\sqrt{t}}\right) + P\left(Z > \frac{y - \mu t}{\sigma\sqrt{t}}\right). \end{split}$$

Distribution of Hitting Time

- In the proof of the theorem we let T_y denote the first time the Brownian motion is equal to y.
- That is,

$$T_y = \left\{egin{array}{ll} \infty, & ext{if } X(t)
eq y ext{ for all } t \geq 0 \ \min{(t:X(t)=y)}, & ext{otherwise} \end{array}
ight.$$

 In addition, it follows from the continuity of Brownian motion paths that, for y > 0, the process would have hit y by time t if and only if the maximum of the process by time t is at least y. That is,

$$T_y \leq t \quad \Leftrightarrow \quad M(t) \geq y.$$

Hence, the corollary yields that

$$P(T_{y} \leq t) = e^{2y\mu/\sigma^{2}}\overline{\Phi}\left(\frac{y+\mu t}{\sigma\sqrt{t}}\right) + \overline{\Phi}\left(\frac{y-\mu t}{\sigma\sqrt{t}}\right).$$

The Minimum Variable

- Let $M_{\mu,\sigma}(t)$ denote a random variable having the distribution of the maximum value up to time t of a Brownian motion process that starts at 0 and has drift parameter μ and variance parameter σ^2 .
- The distribution of $M_{\mu,\sigma}(t)$ is given by the corollary.
- Suppose we want the distribution of

$$M^*(t) = \min_{0 \le v \le t} X(v).$$

 The process −X(v), v ≥ 0, is a Brownian motion with drift parameter −µ and variance parameter σ². So, for y > 0,

$$P(M^*(t) \le -y) = P(\min_{0 \le v \le t} X(v) \le -y)$$

= $P(-\max_{0 \le v \le t} -X(v) \le -y)$
= $P(\max_{0 \le v \le t} -X(v) \ge y)$
= $P(M_{-\mu,\sigma}(t) \ge y)$
= $e^{-2y\mu/\sigma^2}\overline{\Phi}(\frac{-\mu t + y}{\sigma\sqrt{t}}) + \overline{\Phi}(\frac{y + \mu t}{\sigma\sqrt{t}}).$

Subsection 5

The Cameron-Martin Theorem

Notation

- Consider a Brownian motion process with variance parameter σ^2 .
- We use the notation

 E_{μ}

to denote taking expectations under the assumption that the drift parameter is $\boldsymbol{\mu}.$

• E.g.,

E_0

signifies that the expectation is taken under the assumption that the drift parameter is 0.

The Cameron-Martin Theorem

Theorem

Let W be a random variable whose value is determined by the history of the Brownian motion up to time t. That is, the value of W is determined by a knowledge of the values of X(s), $0 \le s \le t$. Then,

$$E_{\mu}[W] = e^{-\mu^2 t/2\sigma^2} E_0[W e^{\mu X(t)/\sigma^2}].$$

Condition on X(t), which is normal with mean μt and variance tσ².
 Take into account that, given X(t) = x, the conditional distribution of the process W up to time t is the same for all values μ.

The Cameron-Martin Theorem (Cont'd)

We obtain

$$\begin{aligned} E_{\mu}[W] &= \int_{-\infty}^{\infty} E_{\mu}[W|X(t) = x] \frac{1}{\sqrt{2\pi t \sigma^{2}}} e^{-(x-\mu t)^{2}/2t\sigma^{2}} dx \\ &= \int_{-\infty}^{\infty} E_{0}[W|X(t) = x] \frac{1}{\sqrt{2\pi t \sigma^{2}}} e^{-(x-\mu t)^{2}/2t\sigma^{2}} dx \\ &= \int_{-\infty}^{\infty} E_{0}[W|X(t) = x] \frac{1}{\sqrt{2\pi t \sigma^{2}}} e^{-x^{2}/2t\sigma^{2}} e^{(2\mu x - \mu^{2}t)/2\sigma^{2}} dx. \end{aligned}$$

Define

$$Y = e^{-\mu^2 t/2\sigma^2} e^{\mu X(t)/\sigma^2} = e^{(2\mu X(t) - \mu^2 t)/2\sigma^2}$$

Then

$$E_0[WY] = \int_{-\infty}^{\infty} E_0[WY|X(t) = x] \frac{1}{\sqrt{2\pi t \sigma^2}} e^{-x^2/2t\sigma^2} dx.$$

The Cameron-Martin Theorem (Cont'd)

We have

$$E_0[WY] = \int_{-\infty}^{\infty} E_0[WY|X(t) = x] \frac{1}{\sqrt{2\pi t \sigma^2}} e^{-x^2/2t\sigma^2} dx.$$

But, given that X(t) = x, the random variable Y is equal to the constant $e^{(2\mu x - \mu^2 t)/2\sigma^2}$.

So the preceding yields

$$\begin{aligned} E_0[WY] &= \int_{-\infty}^{\infty} e^{(2\mu x - \mu^2 t)/2\sigma^2} E_0[W|X(t) = x] \frac{1}{\sqrt{2\pi t\sigma^2}} e^{-x^2/2t\sigma^2} dx \\ &= E_{\mu}[W], \end{aligned}$$

where the final equality used the equality of the preceding slide.