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The Black-Scholes Formula The Black-Scholes Formula

The Set Up

Consider a call option having:

Strike price K ;
Expiration time t.

That is, the option allows one to purchase a single unit of an
underlying security at time t for the price K .

Let the nominal interest rate be r , compounded continuously.

Suppose the price of the security follows a geometric Brownian
motion, with:

Drift parameter µ;
Volatility parameter σ.

Under these assumptions, we find the unique cost of the option that
does not give rise to an arbitrage.
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The Price Fluctuation

Let S(y) denote the price of the security at time y .

By hypothesis, {S(y), 0 ≤ y ≤ t} follows a geometric Brownian
motion with volatility parameter σ and drift parameter µ.

So the n-stage approximation of this model supposes that, every t
n

time units, the price changes.

Its new value is equal to its old value multiplied:

By the factor u = eσ
√

t/n with probability 1
2

(

1 + µ
σ

√

t
n

)

;

By the factor d = e−σ
√

t/n with probability 1
2

(

1− µ
σ

√

t
n

)

.

So the n-stage approximation model is an n-stage binomial model in
which the price at each time interval t

n
changes in one of two ways:

Goes up by a multiplicative factor u;
Goes down by a multiplicative factor d .
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Probability of Fair Bets

Let

Xi =

{

1, if S
(

i t
n

)

= uS
(

(i − 1) t
n

)

,

0, if S
(

i t
n

)

= dS
(

(i − 1) t
n

)

.

By previous results, the only probability law on X1, . . . ,Xn that makes
all security buying bets fair in the n-stage approximation model is the
one that takes the Xi to be independent with

p := P{Xi = 1} =
1 + r t

n
− d

u − d

=
1− e−σ

√
t/n + r t

n

eσ
√

t/n − e−σ
√

t/n
.
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Rewriting Using Taylor Expansions

We obtained

p =
1− e−σ

√
t/n + r t

n

eσ
√

t/n − e−σ
√

t/n
.

Recall the Taylor series expansion about 0 of the function ex

ex = 1 + x +
1

2
x2 +

1

3!
x3 + · · · .

Using the first three terms, we get

e−σ
√

t/n ≈ 1− σ
√

t
n
+ σ2 t

2n ,

eσ
√

t/n ≈ 1 + σ
√

t
n
+ σ2 t

2n .
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The Black-Scholes Formula The Black-Scholes Formula

Rewriting Using Taylor Expansions (Cont’d)

Setting e−σ
√

t/n ≈ 1− σ
√

t
n
+ σ2 t

2n and eσ
√

t/n ≈ 1 + σ
√

t
n
+ σ2 t

2n

in

p =
1− e−σ

√
t/n + r t

n

eσ
√

t/n − e−σ
√

t/n

gives

p ≈
σ
√

t
n
− σ2 t

2n + r t
n

2σ
√

t
n

=
1

2
+

r
√

t
n

2σ
−

σ
√

t
n

4

=
1

2

(

1 +
r − σ2

2

σ

√

t

n

)

.
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Risk Neutrality versus Arbitrage

The unique risk-neutral probabilities on the n-stage approximation
model result from supposing that, in each period, the price changes in
one of two ways:

Goes up by the factor eσ
√

t/n with probability p;

Goes down by the factor e−σ
√

t/n with probability 1− p.

From previous work, it follows that as n → ∞ this risk-neutral
probability law converges to geometric Brownian motion with drift
coefficient r − σ2

2 and volatility parameter σ.

So is reasonable to suppose (and can be rigorously proven) that this
risk-neutral geometric Brownian motion is the only probability law on
the evolution of prices over time that makes all security buying bets
fair.
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Risk Neutrality versus Arbitrage (Cont’d)

We have just argued that if the underlying price of a security follows a
geometric Brownian motion with volatility parameter σ, then the only
probability law on the sequence of prices that results in all security
buying bets being fair is that of a geometric Brownian motion with
drift parameter r − σ2

2 and volatility parameter σ.

Consequently, by the Arbitrage Theorem, one of the following holds:

The options are priced to be fair bets according to the risk-neutral
geometric Brownian motion probability law;
There will be an arbitrage.
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The Black-Scholes Option Pricing Formula

Suppose S(t) is a risk-neutral geometric Brownian motion.

Then S(t)
S(0) is a lognormal random variable with:

Mean parameter (r − σ2

2 )t;
Variance parameter σ2t.

Hence, the unique no-arbitrage cost C of a call option to purchase
the security at time t for the specified price K , is

C = e−rtE [(S(t)− K )+] = e−rtE [(S(0)eW − K )+],

where W is a normal random variable with mean (r − σ2

2 )t and
variance σ2t.
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The Black-Scholes Formula The Black-Scholes Formula

The Black-Scholes Option Pricing Formula (Cont’d)

We have
C = e−rtE [(S(0)eW − K )+],

where W is a normal random variable with mean (r − σ2

2 )t and
variance σ2t.

The right side can be explicitly evaluated to give the following
expression, known as the Black-Scholes option pricing formula.

C = S(0)Φ(ω)− Ke−rtΦ(ω − σ
√
t),

where

ω =
rt + σ2 t

2 − log
(

K
S(0)

)

σ
√
t

and Φ(x) is the standard normal distribution function.
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The Black-Scholes Formula The Black-Scholes Formula

Example

We make the following assumptions:

A security is presently selling for a price of 30;
The nominal interest rate is 8% (unit of time being one year);
The security’s volatility is 0.20.

We want to compute the no-arbitrage cost of a call option that
expires in three months and has a strike price of 34.

We first identify the value of the parameters.

S(0) = 30;
r = 0.08;
σ = 0.20;
t = 0.25;
K = 34.
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The Black-Scholes Formula The Black-Scholes Formula

Example (Cont’d)

The parameters are

t = 0.25, r = 0.08, σ = 0.20, K = 34, S(0) = 30.

We apply the formula to find ω

ω =
rt+σ2 t

2
−log ( K

S(0)
)

σ
√
t

=
0.02+0.005−log 34

30
(0.2)(0.5)

≈ − 1.0016.

Therefore,

C = S(0)Φ(ω)− Ke−rtΦ(ω − σ
√
t)

= 30Φ(−1.0016) − 34e−0.02Φ(−1.1016)

= 30(0.15827) − 34(0.9802)(0.13532) ≈ 0.2383.

The appropriate price of the option is thus 24 cents.
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The Black-Scholes Formula The Black-Scholes Formula

Remarks

1. Another way to derive the no-arbitrage option cost C is to:

Consider the unique no-arbitrage cost of an option in the n-period
approximation model;
Let n go to infinity.

2. Let C (s, t,K ) be the no-arbitrage cost of an option having strike
price K and exercise time t when the initial price of the security is s.

That is, C (s, t,K ) is the C of the Black-Scholes, with S(0) = s.

Suppose the price of the security at time y (0 < y < t) is S(y) = sy .

The unique no-arbitrage cost of the option at time y is
C (sy , t − y ,K ).

This is because at time y :

The option will expire after an additional time t − y ;
It has the same exercise price K ;
For the next t − y units of time the security will follow a geometric
Brownian motion with initial value sy .
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The Black-Scholes Formula The Black-Scholes Formula

Remarks (Cont’d)

3. Recall from our study of pricing via arbitrage that, for no-arbitrage,

S + P − C = Ke−rt ,

where

S be the price of the stock at time 0;
P is the price of a European put option for selling one share of the
stock for the amount K at time t;
C is the price of a call option for buying one share of a stock at an
exercise price K at time t;
r is the nominal rate for continuous discounting.

So the no-arbitrage cost P(s, t,K ) of a European put option with
initial price s, strike price K , and exercise time t is given by

P(s, t,K ) = C (s, t,K ) + Ke−rt − s.

George Voutsadakis (LSSU) Mathematical Finance March 2024 16 / 63



The Black-Scholes Formula Properties of the Black-Scholes Option Cost

Subsection 2

Properties of the Black-Scholes Option Cost
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The Black-Scholes Formula Properties of the Black-Scholes Option Cost

Arbitrage Option Cost Revisited

The no-arbitrage option cost C = C (s, t,K , σ, r) is a function of five
variables:

The security’s initial price s;
The expiration time t of the option;
The strike price K ;
The security’s volatility parameter σ;
The interest rate r .

To see what happens to the cost as a function of each of these
variables, we use the equation

C (s, t,K , σ, r) = e−rtE [(seW − K )+],

where W is a normal random variable with mean (r − σ2

2 )t and
variance σ2t.
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The Black-Scholes Formula Properties of the Black-Scholes Option Cost

Properties of the Cost Function (1)

1. C is an increasing, convex function of s.

This means that if the other four variables remain the same, then the
no-arbitrage cost of the option is:

An increasing function of the security’s initial price;
A convex function of the security’s initial price.

For any positive constant a,
the function

e−rt(sa − K )+

is an increasing, convex func-
tion of s.

But the probability distribution of W does not depend on s.

So e−rt(seW − K )+ is, for all W , increasing and convex in s.

Thus, so is its expected value.
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The Black-Scholes Formula Properties of the Black-Scholes Option Cost

Properties of the Cost Function (2-3)

2. C is a decreasing, convex function of K .

This follows from the fact that

e−rt(seW − K )+

is, for all W , decreasing and
convex in K .
Thus, so is its expectation.

3. C is increasing in t.

It is immediate that the option cost would be increasing in t if the
option were an American call option (any additional time to exercise
could not hurt, since one could always elect not to use it).

The value of a European call option is the same as that of an
American call option.

So we obtain the result for both options.
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The Black-Scholes Formula Properties of the Black-Scholes Option Cost

Properties of the Cost Function (4)

4. C is increasing in σ.

The result seems at first sight to be quite intuitive.

This is because an option holder:

Will greatly benefit from very large prices at the exercise time;
Will not incur any additional loss for any additional price decrease
below the exercise price.

However, it is more subtle than it appears.

Since E
[

log S(t)
S(0)

]

=
(

r − σ2

2

)

t, an increase in σ results not only in

an increase in the variance of the logarithm of the final price under
the risk-neutral valuation but also in a decrease in the mean.

Nevertheless, the result is true and will be shown mathematically later.
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The Black-Scholes Formula Properties of the Black-Scholes Option Cost

Properties of the Cost Function (5)

5. C is increasing in r .

We can express W , a normal random variable with mean (r − σ2

2 )t
and variance tσ2, as

W = rt − σ2t

2
+ σ

√
tZ ,

where Z is a standard normal random variable with mean 0 and
variance 1.

Hence, from the cost equation we have that

C = E

[

(

se−
σ
2t
2

+σ
√
tZ − Ke−rt

)+
]

.

The result now follows because

(

se−
σ
2t
2

+σ
√
tZ − Ke−rt

)+

, and, thus,

its expected value, is increasing in r .
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The Black-Scholes Formula Properties of the Black-Scholes Option Cost

Rate of Change With Respect to Price

The rate of change in the value of the call option as a function of a
change in the price of the underlying security is described by the
quantity delta, denoted as ∆.

Formally, if C (s, t,K , σ, r) is the Black-Scholes cost valuation of the
option, then ∆ is its partial derivative with respect to s,

∆ =
∂

∂s
C (s, t,K , σ, r).

We will show later that
∆ = Φ(ω),

where, ω =
rt+σ

2t
2

−log
(

K
S(0)

)

σ
√
t

.
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The Black-Scholes Formula Properties of the Black-Scholes Option Cost

Using Rate of Change for Investment

Delta can be used to construct investment portfolios that hedge
against risk.

For instance, suppose that an investor feels that a call option is
underpriced and consequently buys the call.

To protect himself against a decrease in its price, he can
simultaneously sell a certain number of shares of the security.

Suppose the price of the security decreases by the small amount h.
Then the worth of the option will decrease by the amount h∆.
So the investor would be covered if he sold ∆ shares of the security.

Therefore, a reasonable hedge might be to sell ∆ shares of the
security for each option purchased.

This will be made precise by the delta hedging arbitrage strategy.

This strategy can, in theory, be used to construct an arbitrage if a call
option is not priced according to the Black-Scholes formula.
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Subsection 3

The Delta Hedging Arbitrage Strategy
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

The Set Up

Consider a security whose initial price is s.

Suppose that, after each time period, its price changes in one of two
ways:

Goes up by the multiple u;
Goes down by the multiple d .

We determine the amount of money x that we must have at time 0 in
order to meet the following payment at time 1:

a, if the price of the stock is us at time 1;
b, if the price of the stock is ds at time 1.

Suppose we purchase y shares of the stock and:

Put the remaining x − ys in the bank, if x − ys ≥ 0;
Borrow ys − x from the bank, if x − ys < 0.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

Initial Cost

Suppose that:

S(1) is the price of the security at time 1;
r is the interest rate per period.

Then the return at time 1 is given by

return at time 1 =

{

yus + (x − ys)(1 + r), if S(1) = us,

yds + (x − ys)(1 + r), if S(1) = ds.

We choose x and y , such that

yus + (x − ys)(1 + r) = a,

yds + (x − ys)(1 + r) = b.

Then, after taking our money out of the bank (or meeting our loan
payment), we will have the desired amount.

Subtracting, we get y = a−b
s(u−d) .
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

Initial Cost (Cont’d)

We obtained y = a−b
s(u−d) .

Substituting into the first equation yields

a − b

u − d
[u − (1 + r)] + x(1 + r) = a.

So we have

x = 1
1+r

(

a
[

1− u−(1+r)
u−d

]

+ b u−1−r
u−d

)

= 1
1+r

(

a 1+r−d
u−d

+ b u−1−r
u−d

)

= p a
1+r

+ (1− p) b
1+r

,

where p = 1+r−d
u−d

.

The amount of money needed at time 0 equals the expected present
value, under the risk-neutral probabilities, of the payoff at time 1.

The investment strategy calls for purchasing of y = a−b
s(u−d) shares of

the security and putting the remainder in the bank.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

The Case at Time 2 (Step 1)

Consider the problem of determining how much money is needed at
time 0 to meet a payoff at time 2 of xi ,2 if the price of the security at
time 2 is uid2−is (i = 0, 1, 2).

We first determine, for each possible price of the security at time 1,
the amount that is needed at time 1 to meet the payment at time 2.

If the price at time 1 is us, then the amount needed at time 2 is:

x2,2, if the price at time 2 is u2s;
x1,2, if the price at time 2 is uds.

Thus, it follows from our preceding analysis that, if the price at time
1 is us, then we would, at time 1, need the amount

x1,1 = p
x2,2

1 + r
+ (1− p)

x1,2

1 + r
.

Moreover the strategy is to purchase y1,1 =
x2,2−x1,2
us(u−d) shares of the

security and put the remainder in the bank.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

The Case at Time 2 (Step 1 Cont’d)

Similarly, if the price at time 1 is ds, then to meet the final payment
at time 2 we would, at time 1, need the amount

x0,1 = p
x1,2

1 + r
+ (1− p)

x0,2

1 + r
.

Moreover, the strategy is to purchase

y0,1 =
x1,2 − x0,2

ds(u − d)

shares of the security and put the remainder in the bank.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

The Case at Time 2 (Step 2)

At time 0 we need to have enough to invest so as to be able to have:

x1,1 at time 1, if the price of the security is us at time 1;
x0,1 at time 1, if the price of the security is ds at time 1.

Consequently, at time 0 we need the amount

x0,0 = p
x1,1
1+r

+ (1− p)
x0,1
1+r

= p2
x2,2

(1+r)2
+ 2p(1− p)

x1,2
(1+r)2

+ (1− p)2
x0,2

(1+r)2
.

Once again, the amount needed is the expected present value, under
the risk-neutral probabilities, of the final payoff.

The strategy is to:

Purchase y0,0 =
x1,1−x0,1
s(u−d) shares of the security;

Put the remainder in the bank.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

The n-Period Case

The preceding is easily generalized to an n-period problem, where the
payoff at the end of period n is xi ,n if the price at that time is uidn−i s.

The amount xi ,j needed at time j , given that the price of the security
at that time is uid j−is, is equal to the conditional expected time-j
value of the final payoff, where the expected value is computed under
the assumption that the successive changes in price are governed by
the risk-neutral probabilities.

That is, the successive changes are independent, with each new price
equal to the previous period’s price multiplied either by the factor u
with probability p or by the factor d with probability 1− p.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

The n-Period Case (No-Arbitrage)

If the payoff results from paying the holder of a call option that has
strike price K and expiration time n, then the payoff at time n is

xi ,n = (uidn−is − K )+, i = 0, . . . , n,

when the price of the security at time n is uidn−is.

Our investment strategy replicates the payoff from this option.

By the Law of One Price (as well as from the Arbitrage Theorem),
x0,0, the initial amount needed, is equal to the unique no-arbitrage
cost of the option.

Moreover, xi ,j , the amount needed at time j , when the price at that
time is suid j−i , is the unique no-arbitrage cost of the option at that
time and price.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

The n-Period Case (Arbitrage I)

Suppose C , the cost of the option at time 0, is larger than x0,0.

Then we may effect an arbitrage.

Sell the option;
Use x0,0 from this sale to meet the option payoff at time n;
Walk away with a positive profit of C − x0,0.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

The n-Period Case (Arbitrage II)

Suppose that C < x0,0.

By reversing the procedure (changing buying into selling, and vice
versa) we can transform an initial debt of x0,0 into a time-n debt of
xi ,n, when the price at time n is suidn−i .

So we can also make an arbitrage.

Borrow the amount x0,0;
Use C of this amount to buy the option;
Use the investment procedure to transform the initial debt into a time-n
debt whose amount is exactly that of the return from the option.

In either case we can:

Gain |C − x0,0| at time 0;
Follow an investment strategy that guarantees we have no additional
losses or gains by hedging all future risks.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

The Case of Geometrical Brownian Motion

Suppose a security follows a geometric Brownian motion with
volatility σ.

Let a call option for the security have:

Strike price K ;
Expiration time t.

We determine the hedging strategy for the call option.

We first consider a finite-period approximation.

In each h time units the price of the security changes in one of two
ways.

Increases by the factor eσ
√
h;

Decreases by the factor e−σ
√
h.

Suppose the present price of the stock is s.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

Amount Needed in Next Period

Let C (s, t) be the no-arbitrage cost of the call option.

The notation suppresses the dependence of C on K , r and σ.

The price after an additional time h is either seσ
√
h or se−σ

√
h.

So the amount we will need in the next period to utilize the hedging
strategy is:

C (seσ
√
h, t − h) if the price is seσ

√
h;

C (seσ
√
h, t − h) if the price is se−σ

√
h.

When the price of the security is s and time t remains before the
option expires, the hedging strategy calls for owning

C (seσ
√
h, t − h)− C (se−σ

√
h, t − h)

seσ
√
h − se−σ

√
h

shares of the security.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

Number of Shares to be Owned

To determine the number of shares that should be owned, we need to
let h go to zero.

Thus, we need to determine

lim
h→0

C (seσ
√
h, t − h)− C (se−σ

√
h, t − h)

seσ
√
h − se−σ

√
h

= lim
a→0

C (seσa, t − a2)− C (se−σa, t − a2)

seσa − se−σa

L’Hôpital
= lim

a→0

sσeσa ∂
∂y C (y , t)|y=seσa + sσe−σa ∂

∂y C (y , t)|y=se−σa

sσeσa + sσeσa

= ∂
∂y C (y , t)|y=s

= ∂
∂sC (s, t).

George Voutsadakis (LSSU) Mathematical Finance March 2024 38 / 63



The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

Number of Shares to be Owned (Cont’d)

Therefore, the return from a call option having strike price K and
exercise time T can be replicated by an investment strategy that:

Requires an investment capital of C (S(0),T ,K );
Calls for owning exactly ∂

∂sC (s, t,K ) shares of the security, when its
current price is s and time t remains before the option expires;
The absolute value of the remaining capital at that time being:

In the bank, if the remaining capital is positive;

Borrowed, if the remaining capital is negative.
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The Black-Scholes Formula The Delta Hedging Arbitrage Strategy

Attaining an Arbitrage

Suppose the market price of the (K ,T ) call option is greater than
C (S(0),T ,K );

Then an arbitrage can be made.

Sell the option;
Use C (S(0),T ,K ) from this sale along with the preceding strategy to
replicate the return from the option.

Suppose the market cost C is less than C (S(0),T ,K ).

An arbitrage is obtained by doing the reverse.

Borrow C (S(0),T ,K );
Use C of this amount to buy a (K ,T ) call option;
Maintain a short position of ∂

∂sC (s, t,K ) shares of the security when
its current price is s and time t remains before the option expires.

The invested money from these short positions, along with your call
option, will cover your loan of C (S(0),T ,K ) and also pay off your
final short position.
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Subsection 4

Some Derivations
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The Black-Scholes Formula Some Derivations

The Set Up

Consider a security that:

Has initial price s;
Follows a geometric Brownian motion with volatility parameter σ.

Consider a call option for the security, with:

Strike price K ;
Expiration time t.

Let r be the interest rate.

Denote by
C (s, t,K , σ, r) = E

[

e−rt(S(t)− K )+
]

the risk-neutral cost of the security.
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The Goals and Some Notation

We wish to derive:

The Black-Scholes option pricing formula;
The partial derivatives of C .

We use the fact that, under the risk-neutral probabilities, S(t) can be
expressed as

S(t) = s exp

{(

r − σ2

2

)

t + σ
√
tZ

}

,

where Z is a standard normal random variable.

Let I be the indicator random variable for the event that the option
finishes in the money:

I =

{

1, if S(t) > K ,

0, if S(t) ≤ K .
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Expression for I

Lemma

We have

I =

{

1, if Z > σ
√
t − ω,

0, otherwise,

where ω =
rt + σ2t

2 − log K
s

σ
√
t

.

We have

S(t) > K ⇔ exp {(r − σ2

2 )t + σ
√
tZ} > K

s

⇔ Z >
log K

s
−(r−σ

2

2
)t

σ
√
t

⇔ Z > σ
√
t − ω.
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Expression for E (I )

Lemma

We have
E [I ] = P{S(t) > K} = Φ(ω − σ

√
t),

where Φ is the standard normal distribution function.

It follows from its definition that

E [I ] = P{S(t) > K}
= P{Z > σ

√
t − ω} (from preceding lemma)

= P{Z < ω − σ
√
t}

= Φ(ω − σ
√
t).
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Expression for E [IS(t)]

Lemma

We have
e−rtE [IS(t)] = sΦ(ω).

Using the formula for S(t) and the expression for I , with
c = σ

√
t − ω,

E [IS(t)] =
∫∞
c

s exp {(r − σ2

2 )t + σ
√
tx} 1√

2π
e−x2/2dx

= 1√
2π
s exp {rt}

∫∞
c

exp {− x2−2σ
√
tx+σ2t

2 }dx

= 1√
2π
sert

∫∞
c

exp {− (x−σ
√
t)2

2 }dx

= sert 1√
2π

∫∞
−ω e−y2/2dy (by letting y = x − σ

√
t)

= sertP{Z > −ω}
= sertΦ(ω).
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The Black-Scholes Pricing Formula

Theorem (The Black-Scholes Pricing Formula)

We have
C (s, t,K , σ, r) = sΦ(ω)− Ke−rtΦ(ω − σ

√
t).

We obtain

C (s, t,K , σ, r) = e−rtE [(S(t)− K )+]

= e−rtE [I (S(t) − K )]

= e−rtE [IS(t)]− Ke−rtE [I ]

= sΦ(ω)− Ke−rtΦ(ω − σ
√
t)

(by the preceding lemmas).
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The Black-Scholes Call Option Formula Revisited

Let Z be a normal random variable with mean 0 and variance 1.

Let W = (r − σ2

2 )t + σ
√
tZ .

Thus, W is normal with mean (r − σ2

2 )t and variance tσ2.

The Black-Scholes call option formula can be written as

C = C (s, t,K , σ, r) = e−rtE [(S(t)− K )+] = E [e−rt I (seW − K )],

where I =

{

1, if seW > K

0, if seW ≤ K
is the indicator of seW > K .

We have

e−rt I (seW − K ) =

{

e−rt(seW − K ), if seW > K ,

0, if seW ≤ K .
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Partial Derivatives of C

The preceding is, for given Z , a differentiable function of the
parameters s, t,K , σ, r .

So for x equal to any one of these variables,

∂

∂x
e−rt I (seW − K ) =

{

∂
∂x e

−rt(seW − K ), if seW > K ,

0, if seW ≤ K .

That is, ∂
∂x e

−rt I (seW − K ) = I ∂
∂x e

−rt(seW − K ).

Using that the partial derivative and the expectation operation can be
interchanged, the preceding gives that

∂C
∂x = ∂

∂x E [e
−rt I (seW − K )]

= E [ ∂
∂x e

−rt I (seW − K )]

= E [I ∂
∂x e

−rt(seW − K )].
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Partial Derivative of C With Respect to K

Proposition

We have
∂C

∂K
= −e−rtΦ(ω − σ

√
t).

Because S(t) does not depend on K ,

∂

∂K
e−rt(S(t)− K ) = −e−rt .

Using the equation obtained in the preceding slide, this gives

∂C

∂K
= E [−Ie−rt ] = − e−rtE [I ] = − e−rtΦ(ω − σ

√
t),

the final equality by a previous lemma.
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Partial Derivative of C With Respect to s

Proposition

We have
∂C

∂s
= Φ(ω).

Using the representation S(t) = s exp {(r − σ2

2 )t + σ
√
tZ}, we see

that
∂

∂s
e−rt(S(t)− K ) = e−rt ∂S(t)

∂s
=

S(t)

s
e−rt .

Hence, using ∂C
∂s = E [I ∂

∂s e
−rt(seW − K )],

∂C

∂s
=

e−rt

s
E [IS(t)] = Φ(ω),

the final equality using a previous lemma.
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Partial Derivative of C With Respect to r

Proposition

We have
∂C

∂r
= Kte−rtΦ(ω − σ

√
t).

We have

∂
∂r [e

−rt(S(t)− K )] = − te−rt(S(t)− K ) + e−rt ∂S(t)
∂r

= − te−rt(S(t)− K ) + e−rttS(t)

= Kte−rt .

Using ∂C
∂r = E [I ∂

∂r e
−rt(seW − K )] and the expression for E [I ],

∂C

∂r
= Kte−rtE [I ] = Kte−rtΦ(ω − σ

√
t).
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The Black-Scholes Formula Some Derivations

Auxiliary Lemma

Lemma

With S(t) = s exp {(r − σ2

2 )t + σ
√
tZ},

e−rtE [IS(t)Z ] = s(Φ′(ω) + σ
√
tΦ(ω)).

With c = σ
√
t − ω, it follows from a previous lemma that

E [IZS(t)] =
∫∞
c

xs exp {(r − σ2

2 )t + σ
√
tx} 1√

2π
e−x2/2dx

= 1√
2π
s exp {rt}

∫∞
c

x exp {− x2−2σ
√
tx+σ2t

2 }dx

= 1√
2π
sert

∫∞
c

x exp {− (x−σ
√
t)2

2 }dx

= 1√
2π
sert

∫∞
−ω (y + σ

√
t)e−y2/2dy (y = x − σ

√
t)

= sert [
∫∞
−ω

1√
2π
ye−y2/2dy + σ

√
t 1√

2π

∫∞
−ω e−y2/2dy ]

= sert [ 1√
2π
e−ω2/2 + σ

√
tΦ(ω)].
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Partial Derivative of C With Respect to σ

Proposition

We have
∂C

∂σ
= s

√
tΦ′(ω).

The equation S(t) = s exp {(r − σ2

2 )t + σ
√
tZ} yields

∂

∂σ
[e−rt(S(t)− K )] = e−rtS(t)(−tσ +

√
tZ ).

Hence, by ∂C
∂σ = E [I ∂

∂σe
−rt(seW − K )], we get

∂C
∂σ = E [e−rt IS(t)(−tσ +

√
tZ )]

= − tσe−rtE [IS(t)] +
√
te−rtE [IS(t)Z ]

= − tσsΦ(ω) + s
√
t(Φ′(ω) + σ

√
tΦ(ω))

(by previous lemmas)

= s
√
tΦ′(Ω).
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Partial Derivative of C With Respect to t

Proposition

We have
∂C

∂t
=

σ

2
√
t
sΦ′(ω) + Kre−rtΦ(ω − σ

√
t).

We get

∂
∂t [e

−rt(S(t)− K )] = e−rt ∂S(t)
∂t − re−rtS(t) + Kre−rt

= e−rtS(t)(r − σ2

2 + σ
2
√
t
Z )

− re−rtS(t) + Kre−rt

= e−rtS(t)(−σ2

2 + σ
2
√
t
Z ) + Kre−rt .
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Partial Derivative of C With Respect to t (Cont’d)

Therefore, using ∂C
∂t = E [I ∂

∂t e
−rt(seW − K )],

∂C
∂t = − e−rtE [IS(t)]σ

2

2 + e−rtE [IZS(t)] σ
2
√
t
+ Kre−rtE [I ]

= − sΦ(ω)σ
2

2 + σ
2
√
t
s(Φ′(ω) + σ

√
tΦ(ω))

+ Kre−rtΦ(ω − σ
√
t)

= σ
2
√
t
sΦ′(ω) + Kre−rtΦ(ω − σ

√
t).

Terminology: Terms used for the partial derivatives:

delta for ∂C
∂s ;

rho for ∂C
∂r ;

vega for ∂C
∂σ ;

theta for ∂C
∂t .
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Monotonicity and Convexity

Corollary

C (s, t,K , σ, r) is:

(a) Decreasing and convex in K ;

(b) Increasing and convex in s;

(c) Increasing, but neither convex nor concave, in r , σ and t.

(a) From a previous proposition ∂C
∂K = −e−rtΦ(ω − σ

√
t) < 0.

Moreover, recalling that ω =
rt+σ

2t
2

−log K
s

σ
√
t

,

∂2C
∂K 2 = − e−rtΦ′(ω − σ

√
t) ∂ω∂K

= e−rtΦ′(ω − σ
√
t) 1

Kσ
√
t
> 0.

So C is decreasing and convex in K .
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Monotonicity and Convexity (Cont’d)

(b) By a previous proposition, we get ∂C
∂s = Φ(ω) > 0.

Moreover, taking again into account ω =
rt+σ

2t
2

−log K
s

σ
√
t

,

∂2C

∂s2
= Φ′(ω)

∂ω

∂s
= Φ′(ω)

1

sσ
√
t
> 0.

(c) By previous propositions, we have:
∂C
∂r = Kte−rtΦ(ω − σ

√
t) > 0;

∂C
∂σ = s

√
tΦ′(ω) > 0;

∂C
∂t = σ

2
√
t
sΦ′(ω) + Kre−rtΦ(ω − σ

√
t) > 0.

Each of the second derivatives can be shown to be sometimes positive
and sometimes negative. So C is neither convex nor concave in r , σ
or t.

George Voutsadakis (LSSU) Mathematical Finance March 2024 58 / 63



The Black-Scholes Formula Some Derivations

Remarks

The results that C (s, t,K , σ, r) is decreasing and convex in K and
increasing in t would be true no matter what model we assumed for
the price evolution of the security.

The results that C (s, t,K , σ, r) is increasing and convex in s,
increasing in r and increasing in σ depend on the assumption that the
price evolution follows a geometric Brownian motion with volatility
parameter σ.

The second partial derivative of C with respect to s, whose value is
given by

∂2C

∂s2
= Φ′(ω)

1

sσ
√
t

is called gamma.
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Subsection 5

European Put Options
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No-Arbitrage Cost of European Options

The put call option parity formula, in conjunction with the
Black-Scholes equation, yields the unique no arbitrage cost of a
European (K , t) put option:

P(s, t,K , r , σ) = C (s, t,K , r , σ) + Ke−rt − s.

This formula is useful for computational purposes.

To determine monotonicity and convexity properties of
P = P(s, t,K , r , σ) we use the fact that P(s, t,K , r , σ) must equal
the expected return from the put under the risk neutral geometric
Brownian motion process.

Consequently, with Z being a standard normal random variable,

P(s, t,K , r , σ) = e−rtE [(K − se(r−
σ
2

2
)t+σ

√
tZ )+]

= E [(Ke−rt − se−
σ
2

2
t+σ

√
tZ )+].
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Properties of P

Consider Z fixed.

The function (Ke−rt − se−
σ
2

2
t+σ

√
tZ )+ is decreasing and convex in s.

For b > 0, (a − bs)+ is decreasing and convex in s.

The function (Ke−rt − se−
σ
2

2
t+σ

√
tZ )+ is decreasing and convex in r .

For a > 0, (ae−rt − b)+ is decreasing and convex in r .

The function (Ke−rt − se−
σ
2

2
t+σ

√
tZ )+ is increasing and convex in K .

For a > 0, (aK − b)+ is increasing and convex in K .
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Properties of P (Cont’d)

Because the preceding properties remain true when we take
expectations, we infer the following:

P(s, t,K , r , σ) is decreasing and convex in s;
P(s, t,K , r , σ) is decreasing and convex in r ;
P(s, t,K , r , σ) is increasing and convex in K .

Because C (s, t,K , r , σ) is increasing in σ, it follows

P(s, t,K , r , σ) is increasing in σ.

P(s, t,K , r , σ) is not necessarily increasing or decreasing in t.

The partial derivatives of P(s, t,K , r , σ) can be obtained by using the
corresponding partial derivatives of C (s, t,K , r , σ).
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