# Introduction to Mathematical Finance 

## George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 500

## (1) Valuing by Expected Utility

- Limitations of Arbitrage Pricing
- Valuing Investments by Expected Utility
- The Portfolio Selection Problem
- Value at Risk and Conditional Value at Risk
- The Capital Assets Pricing Model
- Rates of Return: Single-Period and Geometric Brownian Motion


## Subsection 1

## Limitations of Arbitrage Pricing

## Example

- Let the initial price of a security be 100 .
- Suppose that the price at time 1 can be any of the values 50,200 , and 100.
- That is, we also allow for the possibility that the price of the stock at time 1 is unchanged from its initial price.

- We want to price an option to purchase the stock at time 1 for the fixed price of 150 .


## Example (Cont'd)

- For simplicity, let the interest rate $r$ equal zero.
- The Arbitrage Theorem states that there will be no guaranteed win if there are nonnegative numbers $p_{50}, p_{100}, p_{200}$, such that:
(a) Their sum equals 1 ;
(b) The expected gains if one purchases either the stock or the option are zero, when $p_{i}$ is the probability that the stock's price at time 1 is $i$ ( $i=50,100,200$ ).
- Let $G_{s}$ denote the gain at time 1 from buying one share of the stock.
- Let $S(1)$ be the price of that stock at time 1 .
- Then

$$
G_{s}= \begin{cases}100, & \text { if } S(1)=200 \\ 0, & \text { if } S(1)=100 \\ -50, & \text { if } S(1)=50\end{cases}
$$

- Hence, $E\left[G_{s}\right]=100 p_{200}-50 p_{50}$.


## Example (Cont'd)

- Let $c$ be the cost of the option.
- Then the gain from purchasing one option is

$$
G_{o}= \begin{cases}50-c, & \text { if } S(1)=200 \\ -c, & \text { if } S(1)=100 \text { or } S(1)=50\end{cases}
$$

- Therefore,

$$
E\left[G_{o}\right]=(50-c) p_{200}-c\left(p_{50}+p_{100}\right)=50 p_{200}-c .
$$

- Equating both $E\left[G_{s}\right]$ and $E\left[G_{o}\right]$ to zero shows that the conditions for the absence of arbitrage are that there exist probabilities and a cost $c$ such that

$$
p_{200}=\frac{1}{2} p_{50} \quad \text { and } \quad c=50 p_{200} .
$$

## Example (Conclusion)

- We found that the conditions for the absence of arbitrage are that there exist probabilities and a cost $c$ such that

$$
p_{200}=\frac{1}{2} p_{50} \quad \text { and } \quad c=50 p_{200} .
$$

- The first implies that $p_{200} \leq \frac{1}{3}$.
- So, for any value of $c$ satisfying

$$
0 \leq c \leq \frac{50}{3}
$$

we can find probabilities that make both buying the stock and buying the option fair bets.

- By the Arbitrage Theorem, for any option cost in the interval $\left[0, \frac{50}{3}\right]$, no arbitrage is possible.


## Subsection 2

## Valuing Investments by Expected Utility

## Choice Between Two Possible Investments

- Suppose we must choose one of two possible investments, each of which can result in any of $n$ consequences, denoted $C_{1}, \ldots, C_{n}$.
- We make the following assumptions:
- If the first investment is chosen, then consequence $C_{i}$ will result with probability $p_{i}, i=1, \ldots, n$, with $\sum_{i=1}^{n} p_{i}=1$;
- If the second investment is chosen, then consequence $C_{i}$ will result with probability $q_{i}, i=1, \ldots, n$, with $\sum_{i=1}^{n} q_{i}=1$.
- We first assign numerical values to the different consequences.
- Identify the least and the most desirable consequence, say $c$ and $C$.
- Give the consequence $c$ the value 0 ;
- Give the consequence $C$ the value 1 .


## Utility of Consequences

- Now consider any of the other $n-2$ consequences, say $C_{i}$.
- We want to assign a value to this consequence.
- Imagine that we are given the choice between:
- Receiving $C_{i}$;
- Taking part in a random experiment that earns one of the following:
- Consequence $C$ with probability $u$;
- Consequence $c$ with probability $1-u$.
- Clearly the choice will depend on the value of $u$.
- If $u=1$ then the experiment is certain to result in consequence $C$. $C$ is the most desirable consequence.
So we clearly prefer the experiment to receiving $C_{i}$.
- If $u=0$ then the experiment will result in $c$.
$c$ is the least desirable consequence.
So in this case we prefer the consequence $C_{i}$ to the experiment.


## Utility of Consequences (Cont'd)

- As $u$ decreases from 1 down to 0 , it seems reasonable that the choice will at some point switch from the experiment to receiving $C_{i}$.
At that critical point, we will be indifferent between the two choices.
We adopt that indifference probability $u$ as the value of the consequence $C_{i}$.
- So the value of $C_{i}$ is that probability $u$ such that we are indifferent between:
- Receiving the consequence $C_{i}$;
- Taking part in the experiment that returns consequence $C$ with probability $u$ or consequence $c$ with probability $1-u$.
- We call this indifference probability the utility of the consequence $C_{i}$, denoted by $u\left(C_{i}\right)$.


## Evaluation of the Investments

- Consider the first investment, which results in consequence $C_{i}$ with probability $p_{i}, i=1, \ldots, n$.
- We can think of the result of this investment as being determined by a two-stage experiment.
- In the first stage, one of the values $1, \ldots, n$ is chosen according to the probabilities $p_{1}, \ldots, p_{n}$;
- If value $i$ is chosen, we receive consequence $C_{i}$.
- Now $C_{i}$ is equivalent to obtaining consequence $C$ with probability $u\left(C_{i}\right)$ or consequence $c$ with probability $1-u\left(C_{i}\right)$.
- So the result of the two-stage experiment is equivalent to an experiment in which:
- Either consequence $C$ or consequence $c$ is obtained;
- Consequence $C$ is obtained with probability

$$
\sum_{i=1}^{n} p_{i} u\left(C_{i}\right)
$$

## Comparison of the Investments

- Similarly, the result of choosing the second investment is equivalent to taking part in an experiment in which:
- Either consequence $C$ or consequence $c$ is obtained;
- Consequence $C$ being obtained with probability

$$
\sum_{i=1}^{n} q_{i} u\left(C_{i}\right)
$$

- We know that $C$ is preferable to $c$.
- So the first investment is preferable to the second if

$$
\sum_{i=1}^{n} p_{i} u\left(C_{i}\right)>\sum_{i=1}^{n} q_{i} u\left(C_{i}\right)
$$

- In other words:
- The value of an investment can be measured by the expected value of the utility of its consequence;
- The investment with the largest expected utility is most preferable.


## Utility Functions and Comparison

- In many investments, the consequences correspond to the investor receiving a certain amount of money.
- In this case, we let the dollar amount represent the consequence.
- Thus, $u(x)$ is the investor's utility of receiving the amount $x$.
- We call $u(x)$ a utility function.
- Suppose an investor must choose between two investments.
- The first investment returns an amount $X$;
- The second investment returns an amount $Y$;
- The investor has utility function $u$.
- Then the investor should choose:
- The first investment, if

$$
E[u(X)]>E[u(Y)] ;
$$

- The second investment, if the inequality is reversed.
- Often, the possible monetary returns form an infinite set.
- So we may drop the requirement that $u(x)$ be between 0 and 1 .


## Nondecreasing and Concave Utility Functions

- An investor's utility function is specific to that investor.
- However, a general property usually assumed of utility functions is that $u(x)$ is a nondecreasing function of $x$.
- Another common (but not universal) property is that, if an investor expects to receive $x$, then the extra utility gained, if they are given an additional amount $\Delta$, is nonincreasing in $x$.
- That is, for fixed $\Delta>0$, their utility function satisfies

$$
u(x+\Delta)-u(x) \text { is nonincreasing in } x
$$

- A utility function that satisfies this condition is called concave.
- The condition of concavity is equivalent to $u^{\prime \prime}(x) \leq 0$.
- That is, a function is concave if and only if its second derivative is nonpositive.


## Concave Utility Functions (Illustration)

- A function is concave if and only if its second derivative is nonpositive.

- The curve of a concave function has the property that the line segment connecting any two of its points always lies below the curve.


## Risk-Averse Investors

- An investor with a concave utility function is said to be risk-averse.
- An explanation of this terminology follows.
- Jensen's Inequality states that if $u$ is a concave function then, for any random variable $X$,

$$
E[u(X)] \leq u(E[X])
$$

- This inequality, interpreted in terms of the return $X$ from an investment, says that:

Any investor with a concave utility function would prefer the certain return of $E[X]$ to receiving a random return $X$ having this mean.

- This explains the term risk-averse.


## Jensen's Inequality

## Theorem (Jensen's Inequality)

If $U$ is concave, then

$$
E[U(X)] \leq U(E[X])
$$

- The Taylor series formula with remainder of $U(x)$ expanded about $\mu=E[X]$ gives, for some value of $\tau$ between $x$ and $\mu$, that

$$
U(x)=U(\mu)+U^{\prime}(\mu)(x-\mu)+\frac{U^{\prime \prime}(\tau)}{2}(x-\mu)^{2}
$$

But $U$ being concave implies that $U^{\prime \prime} \leq 0$, showing that

$$
U(x) \leq U(\mu)+U^{\prime}(\mu)(x-\mu)
$$

Taking expectations of both sides, we get

$$
E[U(X)] \leq U(\mu)+U^{\prime}(\mu) E[X-\mu]=U(\mu)
$$

## Risk-Neutral Investors

- An investor with a linear utility function

$$
u(x)=a+b x, \quad b>0
$$

is said to be risk-neutral or risk-indifferent.

- For such a utility function,

$$
E[u(X)]=a+b E[X]
$$

- So a risk-neutral investor values an investment only through its expected return.


## Log Utility Function

- A commonly assumed utility function is the log utility function

$$
u(x)=\log (x)
$$

- Because $\log (x)$ is a concave function, an investor with a log utility function is risk-averse.
- This is a particularly important utility function.
- It can be mathematically proven in a variety of situations that an investor faced with an infinite sequence of investments can maximize his long-term rate of return by:
- Adopting a log utility function;
- Maximizing the expected utility in each period.


## Maximizing Returns Under Log Utility Function

- Suppose that the result of each investment is to multiply the investor's wealth by a random amount $X$.
- Let $W_{0}$ be the investor's initial wealth;
- Let $W_{n}$ be the investor's wealth after the $n$th investment;
- Let $X_{n}$ be the $n$th multiplication factor.
- Then we have

$$
W_{n}=X_{n} W_{n-1}, \quad n \geq 1
$$

- Moreover,

$$
\begin{aligned}
W_{n} & =X_{n} W_{n-1} \\
& =X_{n} X_{n-1} W_{n-2} \\
& =X_{n} X_{n-1} X_{n-2} W_{n-3} \\
& =\cdots \\
& =X_{n} X_{n-1} \cdots X_{1} W_{0}
\end{aligned}
$$

## Maximizing Returns (Cont'd)

- We calculated

$$
W_{n}=X_{n} X_{n-1} \cdots X_{1} W_{0}
$$

- Let $R_{n}$ denote the rate of return (per investment) from the $n$ investments.
- Then

$$
\frac{W_{n}}{\left(1+R_{n}\right)^{n}}=W_{0} \quad \text { or } \quad\left(1+R_{n}\right)^{n}=\frac{W_{n}}{W_{0}}=X_{1} \cdots X_{n}
$$

- Taking logarithms yields that

$$
\log \left(1+R_{n}\right)=\frac{\sum_{i=1}^{n} \log \left(X_{i}\right)}{n}
$$

## Maximizing Returns (Cont'd)

- Suppose $X_{i}$ are independent and identically distributed.
- By the Strong Law of Large Numbers, the average of the values $\log \left(X_{i}\right), i=1, \ldots, n$, converges to $E\left[\log \left(X_{i}\right)\right]$ as $n \rightarrow \infty$.
- Consequently,

$$
\log \left(1+R_{n}\right) \rightarrow E[\log (X)], \text { as } n \rightarrow \infty
$$

- So the long-run rate of return is maximized by choosing the investment that yields the largest value of $E[\log (X)]$.
- Moreover, because $W_{n}=W_{0} X_{1} \cdots X_{n}$, it follows that

$$
\log \left(W_{n}\right)=\log \left(W_{0}\right)+\sum_{i=1}^{n} \log \left(X_{i}\right)
$$

- Hence,

$$
E\left[\log \left(W_{n}\right)\right]=\log \left(W_{0}\right)+n E[\log (X)] .
$$

- This shows that maximizing $E[\log (X)]$ is equivalent to maximizing the expectation of the log of the final wealth.


## Example

- Suppose an investor has capital $x$.
- He can invest any amount $y$, between 0 and $x$.
- In that case, one of the following occurs.
- $y$ is won with probability $p$;
- $y$ is lost with probability $1-p$.
- Suppose $p>\frac{1}{2}$ and the investor has a log utility function.
- We want to calculate how much should be invested.
- Suppose the amount $\alpha x$ is invested, where $0 \leq \alpha \leq 1$.
- Then the investor's final fortune $X$, will be:
- $x+\alpha x$, with probability $p$;
- $x-\alpha x$, with probability $1-p$.
- Hence, the expected utility of his final fortune is

$$
\begin{aligned}
& p \log ((1+\alpha) x)+(1-p) \log ((1-\alpha) x) \\
& =p \log (1+\alpha)+p \log (x)+(1-p) \log (1-\alpha)+(1-p) \log (x) \\
& =\log (x)+p \log (1+\alpha)+(1-p) \log (1-\alpha)
\end{aligned}
$$

## Example (Cont'd)

- To find the optimal value of $\alpha$, we differentiate

$$
p \log (1+\alpha)+(1-p) \log (1-\alpha)
$$

- We obtain

$$
\frac{d}{d \alpha}(p \log (1+\alpha)+(1-p) \log (1-\alpha))=\frac{p}{1+\alpha}-\frac{1-p}{1-\alpha}
$$

- Setting this equal to zero yields

$$
p-\alpha p=1-p+\alpha-\alpha p \Rightarrow \alpha=2 p-1 .
$$

- The investor should always invest

$$
100(2 p-1) \%
$$

of his present fortune.

- If $p=0.6$, the investor should invest $20 \%$ of his fortune;
- If $p=0.7$, he should invest $40 \%$ of his fortune.


## Example

- We modify the preceding example.
- The investment $\alpha x$ must be paid immediately;
- The payoff of $2 \alpha x$ (if it occurs) takes place after one period;
- The amount not invested earns interest at a rate of $r$ per period.
- We want to calculate how much should be invested.
- Suppose an investor invests $\alpha x$ and puts $(1-\alpha) x$ in the bank.
- After one period, she will have:
- $(1+r)(1-\alpha) x$ in the bank;
- Either $2 \alpha x$, with probability $p$, or 0 , with probability $1-p$.
- Hence, the expected value of the utility of her fortune is

$$
\begin{aligned}
& p \log ((1+r)(1-\alpha) x+2 \alpha x)+(1-p) \log ((1+r)(1-\alpha) x) \\
& =\log (x)+p \log (1+r+\alpha-\alpha r) \\
& \quad+(1-p) \log (1+r)+(1-p) \log (1-\alpha)
\end{aligned}
$$

## Example (Cont'd)

- Hence, once again the optimal fraction of one's fortune to invest does not depend on the amount of that fortune.
- Differentiating the previous equation yields

$$
\frac{d}{d \alpha}(\text { expected utility })=\frac{p(1-r)}{1+r+\alpha-\alpha r}-\frac{1-p}{1-\alpha}
$$

- Setting equal to zero and solving yields the optimal value of $\alpha$

$$
\begin{gathered}
p(1-r)(1-\alpha)-(1-p)(1+r+\alpha-\alpha r)=0 \\
p(1-r)-(1-p)(1+r)=\alpha[p(1-r)+(1-p)(1-r)] \\
\alpha=\frac{p(1-r)-(1-p)(1+r)}{1-r}=\frac{2 p-1-r}{1-r} .
\end{gathered}
$$

## Example (Cont'd)

- We found that the optimal value of $\alpha$ is

$$
\alpha=\frac{2 p-1-r}{1-r} .
$$

- Let $p=0.6$ and $r=0.05$.
- The expected rate of return on the investment is $20 \%$, whereas the bank pays only $5 \%$.
- Still, the optimal fraction of money to be invested is

$$
\alpha=\frac{2 \cdot 0.6-1-0.05}{1-0.05}=\frac{0.15}{0.95} \approx 0.158
$$

- That is, the investor should invest approximately $15.8 \%$ of his capital and put the remainder in the bank.


## The Exponential Utility Function

- Another commonly used utility function is the exponential utility function

$$
u(x)=1-e^{-b x}, \quad b>0 .
$$



- The exponential is also a risk-averse utility function.


## Subsection 3

## The Portfolio Selection Problem

## Portfolio

- Suppose one has the positive amount $w$ to be invested among $n$ different securities.
- Suppose the amount $a$ is invested in security $i(i=1, \ldots, n)$.
- Then, after one period, that investment returns $a X_{i}$, where $X_{i}$ is a nonnegative random variable.
- So if $R_{i}$ is the the rate of return from investment $i$, then

$$
a=\frac{a X_{i}}{1+R_{i}} \quad \text { or } \quad R_{i}=X_{i}-1
$$

- Suppose $w_{i}$ is invested in each security $i=1, \ldots, n$.
- Then the end-of-period wealth is

$$
W=\sum_{i=1}^{n} w_{i} X_{i}
$$

- The vector $w_{1}, \ldots, w_{n}$ is called a portfolio.


## Maximizing the Expected Utility

- Let $U$ be the investor's utility function for the end-of-period wealth.
- The problem of determining the portfolio that maximizes the expected utility of one's end-of-period wealth can be expressed mathematically as follows:

$$
\begin{aligned}
& \text { choose } w_{1}, \ldots, w_{n} \text { satisfying } w_{i} \geq 0, i=1, \ldots, n, \\
& \quad \text { and } \sum_{i=1}^{n} w_{i}=w \text {, to maximize } E[U(W)] .
\end{aligned}
$$

- We assume that the end-of-period wealth $W$ is a normal random variable.
- This is a reasonable approximation if many securities are not too highly correlated.
- It is exactly true if the $X_{i}, i=1, \ldots, n$, have a multivariate normal distribution.


## Using the Exponential Utility Function

- Suppose now that the investor has an exponential utility function

$$
U(x)=1-e^{-b x}, \quad b>0
$$

- So the utility function is concave.
- If $Z$ is a normal random variable, then $e^{Z}$ is lognormal and has expected value

$$
E\left[e^{Z}\right]=\exp \left\{E[Z]+\frac{\operatorname{Var}(Z)}{2}\right\} .
$$

- Hence, as $-b W$ is normal with mean $-b E[W]$ and variance $b^{2} \operatorname{Var}(W)$, it follows that

$$
E[U(W)]=1-E\left[e^{-b W}\right]=1-\exp \left\{-b E[W]+\frac{b^{2} \operatorname{Var}(W)}{2}\right\}
$$

- Therefore, the investor's expected utility will be maximized by choosing a portfolio that maximizes $E[W]-\frac{b \operatorname{Var}(W)}{2}$.


## Comparing Portfolios

- Suppose two portfolios give rise to random end-of-period wealths $W_{1}$ and $W_{2}$.
- If $W_{1}$ has a larger mean and a smaller variance than does $W_{2}$, then the first portfolio results in a larger expected utility than does the second.

$$
E\left[W_{1}\right] \geq E\left[W_{2}\right] \& \operatorname{Var}\left(W_{1}\right) \leq \operatorname{Var}\left(W_{2}\right) \text { imply } E\left[U\left(W_{1}\right)\right] \geq E\left[U\left(W_{2}\right)\right]
$$

- In fact, provided that all end-of-period fortunes are normal random variables, this implication remains valid even when the utility function is not exponential, as long as it is nondecreasing and concave.
- Consequently, if one investment portfolio offers a risk-averse investor an expected return that is at least as large as that offered by a second investment portfolio and with a variance that is no greater than that of the second portfolio, then the investor prefers the first portfolio.


## Expectation and Variance of Wealth

- We now compute, for a given portfolio, the mean and variance of $W$.
- Let $R_{i}=X_{i}-1$ be security $i$ 's rate of return.
- Let $r_{i}=E\left[R_{i}\right]$ and $v_{i}^{2}=\operatorname{Var}\left(R_{i}\right)$.
- We have

$$
W=\sum_{i=1}^{n} w_{i}\left(1+R_{i}\right)=w+\sum_{i=1}^{n} w_{i} R_{i}
$$

- Hence, we obtain

$$
\begin{aligned}
E[W] & =w+\sum_{i=1}^{n} E\left[w_{i} R_{i}\right]=w+\sum_{i=1}^{n} w_{i} r_{i} ; \\
\operatorname{Var}(W) & =\operatorname{Var}\left(\sum_{i=1}^{n} w_{i} R_{i}\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(w_{i} R_{i}\right)+\sum_{i=1}^{n} \sum_{j \neq i} \operatorname{Cov}\left(w_{i} R_{i}, w_{j} R_{j}\right) \\
& =\sum_{i=1}^{n} w_{i}^{2} v_{i}^{2}+\sum_{i=1}^{n} \sum_{j \neq i} w_{i} w_{j} c(i, j),
\end{aligned}
$$

where $c(i, j)=\operatorname{Cov}\left(R_{i}, R_{j}\right)$.

## Example (Multivariate Normal Distribution)

## Definition

Let $Z_{1}, \ldots, Z_{m}$ be independent standard normal random variables. If for some constants $\mu_{i}, i=1, \ldots, n$ and $a_{i j}, i=1, \ldots, n, j=1, \ldots, m$,

$$
\begin{aligned}
X_{1} & =\mu_{1}+a_{11} Z_{1}+a_{12} Z_{2}+\cdots+a_{1 m} Z_{m} \\
X_{2} & =\mu_{2}+a_{21} Z_{1}+a_{22} Z_{2}+\cdots+a_{2 m} Z_{m} \\
& \vdots \\
X_{i} & =\mu_{i}+a_{i 1} Z_{1}+a_{i 2} Z_{2}+\cdots+a_{i m} Z_{m} \\
& \vdots \\
X_{n} & =\mu_{n}+a_{n 1} Z_{1}+a_{n 2} Z_{2}+\cdots+a_{n m} Z_{m}
\end{aligned}
$$

we say that $\left(X_{1}, \ldots, X_{n}\right)$ has a multivariate normal distribution.
Because any linear combination $\sum_{i=1}^{n} w_{i} X_{i}$ is also a linear combination of the independent normal random variables $Z_{1}, \ldots, Z_{m}$, it follows that $\sum_{i=1}^{n} w_{i} X_{i}$ is a normal random variable.

## Example

- We are investing a fortune of 100 in two securities.
- Let our utility function be

$$
U(x)=1-e^{-0.005 x}
$$

- The rates of return have the following expected values and standard deviations:
- $r_{1}=0.15$ and $v_{1}=0.20$;
- $r_{2}=0.18$ and $v_{2}=0.25$.
- The correlation between the rates of return is $\rho=-0.4$.
- We want to calculate the optimal portfolio.


## Example (Cont'd)

- Suppose $w_{1}=y$ and $w_{2}=100-y$.
- We know $E[W]=w+\sum_{i=1}^{2} w_{i} r_{i}$.
- So we obtain

$$
E[W]=100+0.15 y+0.18(100-y)=118-0.03 y
$$

- We also have

$$
c(1,2)=\rho v_{1} v_{2}=-0.02
$$

- We know $\operatorname{Var}(W)=\sum_{i=1}^{2} w_{i}^{2} v_{i}^{2}+2 w_{1} w_{2} c(1,2)$.
- So we get

$$
\begin{aligned}
\operatorname{Var}(W) & =y^{2}(0.04)+(100-y)^{2}(0.0625)-2 y(100-y)(0.02) \\
& =0.1425 y^{2}-16.5 y+625
\end{aligned}
$$

## Example (Cont'd)

- We must choose $y$ to maximize

$$
\begin{aligned}
E[W]-\frac{b \operatorname{Var}(W)}{2} & =118-0.03 y-\frac{0.005\left(0.1425 y^{2}-16.5 y+625\right)}{2} \\
& =0.01125 y-\frac{0.0007125 y^{2}}{2} .
\end{aligned}
$$

- Using calculus, we get $y=\frac{0.01125}{0.0007125}=15.789$.
- So we must invest:
- 15.789 in investment 1
- 84.211 in investment 2 .
- The value $y=15.789$ gives:
- $E[W]=18-0.03 \cdot 15.789=117.526$;
- $\operatorname{Var}(W)=0.1425 \cdot(15.789)^{2}-16.5 \cdot 15.789+625=400.006$.
- So the maximal expected utility is

$$
1-\exp \left\{-0.005\left(117.526+\frac{0.005(400.006)}{2}\right)\right\}=0.4416
$$

## Example

- Suppose only two securities are under consideration, both with normally distributed returns that have same expected rate of return.
- Every portfolio will yield the same expected value.
- The best portfolio for any concave utility function is the one whose end-of-period wealth has minimal variance.
- Suppose $\alpha w$ is invested in security 1 and $(1-\alpha) w$ is invested in security 2.
- With $c=c(1,2)$ we have

$$
\begin{aligned}
\operatorname{Var}(W) & =\alpha^{2} w^{2} v_{1}^{2}+(1-\alpha)^{2} w^{2} v_{2}^{2}+2 \alpha(1-\alpha) w^{2} c \\
& =w^{2}\left[\alpha^{2} v_{1}^{2}+(1-\alpha)^{2} v_{2}^{2}+2 c \alpha(1-\alpha)\right]
\end{aligned}
$$

- Thus, the optimal portfolio is obtained by choosing the value of $\alpha$ that minimizes

$$
\alpha^{2} v_{1}^{2}+(1-\alpha)^{2} v_{2}^{2}+2 c \alpha(1-\alpha)
$$

## Example (Cont'd)

- We want to minimize

$$
\alpha^{2} v_{1}^{2}+(1-\alpha)^{2} v_{2}^{2}+2 c \alpha(1-\alpha) .
$$

- Differentiating this quantity and setting the derivative equal to zero yields

$$
2 \alpha v_{1}^{2}-2(1-\alpha) v_{2}^{2}+2 c-4 c \alpha=0
$$

- Solving for $\alpha$ gives the optimal fraction to invest in security 1 :

$$
\alpha=\frac{v_{2}^{2}-c}{v_{1}^{2}+v_{2}^{2}-2 c} .
$$

## Example (Special Case)

- If the rates of returns are independent, then $c=0$.
- So the optimal fraction to invest in security 1 is

$$
\alpha=\frac{v_{2}^{2}}{v_{1}^{2}+v_{2}^{2}}=\frac{\frac{1}{v_{1}^{2}}}{\frac{1}{v_{1}^{2}}+\frac{1}{v_{2}^{2}}}
$$

- In this case, the optimal percentage of capital to invest in a security is determined by a weighted average, where the weight given to a security is inversely proportional to the variance of its rate of return.
- This result also remains true when there are $n$ securities whose rates of return are uncorrelated and have equal means.
- Under these conditions, the optimal fraction of one's capital to invest in security $i$ is

$$
\frac{\frac{1}{v_{i}^{2}}}{\sum_{j=1}^{n} \frac{1}{v_{j}^{2}}} .
$$

## Estimating Covariances

- In order to create good portfolios, we must first use historical data to estimate, for all $i$ and $j$, the values of

$$
r_{i}=E\left[R_{i}\right], \quad v_{i}^{2}=\operatorname{Var}\left(R_{i}\right) \quad \text { and } \quad c(i, j)=\operatorname{Cov}\left(R_{i}, R_{j}\right)
$$

- Suppose we have historical data that covers $m$ periods.
- Let $r_{i, k}$ and $r_{j, k}$ denote (respectively) the rates of return of security $i$ and of security $j$ for period $k, k=1, \ldots, m$.
- Then we take:
- $\bar{r}_{i}=\frac{\sum_{k=1}^{m} r_{i, k}}{m}$;
- $\bar{v}_{i}^{2}=\frac{\sum_{k=1}^{m}\left(r_{i, k}-\bar{r}_{i}\right)^{2}}{m-1} ;$
$-\bar{c}(i, j)=\frac{\sum_{k=1}^{m}\left(r_{i, k}-\bar{r}_{i}\right)\left(r_{j, k}-\bar{r}_{j}\right)}{m-1}$.


## Subsection 4

## Value at Risk and Conditional Value at Risk

## Value at Risk Criterion

- Suppose an investment:
- Calls for an initial payment of $c$;
- Returns $X$ after one period.
- Let $G$ denote the present value gain from the investment.

$$
G=\frac{X}{1+r}-c .
$$

- The value at risk (VAR) of the investment is the value $v$, such that there is only a 1-percent chance that the loss from the investment will be greater than $v$.
- Because $-G$ is the loss, the value at risk is the value $v$ such that

$$
P\{-G>v\}=0.01
$$

- The VAR criterion for choosing among different investments selects the investment having the smallest VAR.


## Example

- Suppose that the gain $G$ from an investment is a normal random variable with mean $\mu$ and standard deviation $\sigma$.
- Then $-G$ is normal with mean $-\mu$ and standard deviation $\sigma$.
- So the VAR of this investment is the value of $v$, such that

$$
\begin{aligned}
0.01 & =P\{-G>v\} \\
& =P\left\{\frac{-G+\mu}{\sigma}>\frac{v+\mu}{\sigma}\right\} \\
& =P\left\{Z>\frac{v+\mu}{\sigma}\right\},
\end{aligned}
$$

where $Z$ is a standard normal random variable.

- From the table we see that $P\{Z>2.33\}=0.01$.
- Therefore, $\frac{v+\mu}{\sigma}=2.33$, which gives $\operatorname{VAR}=-\mu+2.33 \sigma$.
- So, among investments whose gains are normally distributed, the VAR criterion selects the one having the largest value of $\mu-2.33 \sigma$.


## Conditional Value at Risk Criterion

- The VAR gives a value that has only a 1-percent chance of being exceeded by the loss from an investment.
- The VAR criterion chooses the investment having the smallest VAR.
- An alternative proposal considers the conditional expected loss, given that it exceeds the VAR.
- In other words, we consider the amount lost, given that the 1-percent event occurs and there is a large loss.
- This a quantity larger than the VAR.
- The conditional expected loss, given that it exceeds the VAR, is called the conditional value at risk or CVAR.
- The CVAR criterion selects the investment having the smallest CVAR.


## The Conditional Expectation Formula

- For a standard normal random variable $Z$,

$$
E[Z \mid Z>a]=\frac{1}{\sqrt{2 \pi} P\{Z \geq a\}} e^{-a^{2} / 2}
$$

- The conditional density of $Z$, given that $Z>a$, is

$$
f_{Z \mid Z>a}(x)=\frac{1}{\sqrt{2 \pi}} \frac{e^{-x^{2} / 2}}{P(Z>a)}, \quad x>a
$$

- This gives

$$
\begin{aligned}
E[Z \mid Z>a] & =\frac{1}{\sqrt{2 \pi} P(Z>a)} \int_{a}^{\infty} x e^{-x^{2} / 2} d x \\
& =\frac{1}{\sqrt{2 \pi} P(Z>a)} e^{-a^{2} / 2}
\end{aligned}
$$

## Example

- Suppose the gain $G$ from an investment is a normal random variable with mean $\mu$ and standard deviation $\sigma$.
- Then the CVAR is given by

$$
\begin{aligned}
\mathrm{CVAR} & =E[-G \mid-G>V A R] \\
& =E[-G \mid-G>-\mu+2.33 \sigma] \\
& =E\left[-G \left\lvert\, \frac{-G+\mu}{\sigma}>2.33\right.\right] \\
& =E\left[\left.\sigma\left(\frac{-G+\mu}{\sigma}\right)-\mu \right\rvert\, \frac{-G+\mu}{\sigma}>2.33\right] \\
& =\sigma E\left[\frac{-G+\mu}{\sigma} \left\lvert\, \frac{-G+\mu}{\sigma}>2.33\right.\right]-\mu \\
& =\sigma E[Z \mid Z>2.33]-\mu,
\end{aligned}
$$

where $Z$ is a standard normal random variable.

## Example (Cont'd)

- We computed

$$
\mathrm{CVAR}=\sigma E[Z \mid Z>2.33]-\mu
$$

- We showed that, for a standard normal random variable $Z$,

$$
E[Z \mid Z>a]=\frac{1}{\sqrt{2 \pi} P\{Z \geq a\}} e^{-a^{2} / 2}
$$

- Hence we obtain that

$$
\begin{aligned}
\operatorname{CVAR} & =\sigma \frac{1}{\sqrt{2 \pi} P\{Z \geq 2.33\}} e^{-(2.33)^{2} / 2}-\mu \\
& =\sigma \frac{100}{\sqrt{2 \pi}} \exp \left\{-\frac{(2.33)^{2}}{2}\right\}-\mu \\
& =2.64 \sigma-\mu .
\end{aligned}
$$

- So, the CVAR, which attempts to maximize $\mu-2.64 \sigma$, gives a little more weight to the variance than does the VAR.


## Subsection 5

## The Capital Assets Pricing Model

## The Capital Assets Pricing Model

- Let $R_{i}$ be the one-period rate of return of a specified security $i$.
- Let $R_{m}$ be the one-period rate of return of the entire market (as measured, say, by the Standard and Poor's index of 500 stocks).
- The Capital Assets Pricing Model (CAPM) relates $R_{i}$ to $R_{m}$.
- Let $r_{f}$ be the risk-free interest rate (usually taken to be the current rate of a U.S. Treasury bill).
- The model assumes that, for some constant $\beta_{i}$,

$$
R_{i}=r_{f}+\beta_{i}\left(R_{m}-r_{f}\right)+e_{i}
$$

where $e_{i}$ is a normal random variable with mean 0 that is assumed to be independent of $R_{m}$.

## Expected Rates of Return

- Let $r_{i}$ be the expected value of $R_{i}$.
- Let $r_{m}$ be the expected value of $R_{m}$.
- The CAPM model (which treats $r_{f}$ as a constant) implies that

$$
r_{i}=r_{f}+\beta_{i}\left(r_{m}-r_{f}\right)
$$

- Equivalently, we have

$$
r_{i}-r_{f}=\beta_{i}\left(r_{m}-r_{f}\right)
$$

- That is, the difference between the expected rate of return of the security and the risk-free interest rate is assumed to equal $\beta_{i}$ times the difference between the expected rate of return of the market and the risk-free interest rate.
- The quantity $\beta_{i}$ is known as the beta of security $i$.


## Covariance of Specific and Market Return

- Recall that:
- Covariance is linear;
- The covariance of a random variable and a constant is 0 .
- As a result, we get

$$
\begin{aligned}
\operatorname{Cov}\left(R_{i}, R_{m}\right) & =\operatorname{Cov}\left(r_{f}+\beta_{i}\left(R_{m}-r_{f}\right)+e_{i}, R_{m}\right) \\
& =\beta_{i} \operatorname{Cov}\left(R_{m}, R_{m}\right)+\operatorname{Cov}\left(e_{i}, R_{m}\right) \\
& =\beta_{i} \operatorname{Var}\left(R_{m}\right) . \quad\left(e_{i} \text { and } R_{m} \text { independent }\right)
\end{aligned}
$$

- Therefore, letting $v_{m}^{2}=\operatorname{Var}\left(R_{m}\right)$, we see that

$$
\beta_{i}=\frac{\operatorname{Cov}\left(R_{i}, R_{m}\right)}{v_{m}^{2}}
$$

## Example

- Suppose that:
- The current risk-free interest rate is $6 \%$;
- The expected value of the market rate of return is 0.10 ;
- The standard deviation of the market rate of return is 0.20 ;
- The covariance of the rate of return of a given stock and the market's rate of return is 0.05 .
- We compute the expected rate of return of the stock based on CAPM.
- We have

$$
\beta=\frac{\operatorname{Cov}\left(R_{i}, R_{m}\right)}{\operatorname{Var}\left(R_{m}\right)}=\frac{0.05}{(0.20)^{2}}=1.25
$$

It follows that

$$
r_{i}=r_{f}+\beta_{i}\left(r_{m}-r_{f}\right)=0.06+1.25(0.10-0.06)=0.11
$$

That is, the stock's expected rate of return is $11 \%$.

## Systematic and Specific Risks

- We are still in the framework of CAPM.
- Again, let $v_{i}^{2}=\operatorname{Var}\left(R_{i}\right)$ and $v_{m}^{2}=\operatorname{Var}\left(R_{m}\right)$.
- Recall that $R_{m}$ and $e_{i}$ are independent.
- Then we have

$$
\begin{aligned}
v_{i}^{2} & =\operatorname{Var}\left(R_{i}\right) \\
& =\operatorname{Var}\left(r_{f}+\beta_{i}\left(R_{m}-r_{f}\right)+e_{i}\right) \\
& =\beta_{i}^{2} v_{m}^{2}+\operatorname{Var}\left(e_{i}\right)
\end{aligned}
$$

- Think of the variance of a rate of return as the risk of a security.
- Then the equation states that the risk of a security is the sum of:
- The systematic risk $\beta_{i}^{2} v_{m}^{2}$, due to the combination of the security's beta and the inherent risk in the market;
- The specific risk $\operatorname{Var}\left(e_{i}\right)$, due to the specific stock being considered.


## Subsection 6

## Rates of Return: Single-Period and Geometric Brownian Motion

## One Period Returns

- Let $S_{i}(t)$ be the price of security $i$ at time $t(t \geq 0)$.
- Assume these prices follow a geometric Brownian motion with:
- Drift parameter $\mu_{i}$;
- Volatility parameter $\sigma_{i}$.
- Let $R_{i}$ be the one-period rate of return for security $i$.
- Then we have

$$
\frac{S_{i}(1)}{1+R_{i}}=S_{i}(0)
$$

- Equivalently,

$$
R_{i}=\frac{S_{i}(1)}{S_{i}(0)}-1
$$

## Expectation and Variance of Return

- Now $\frac{S_{i}(1)}{S_{i}(0)}$ has the same probability distribution as $e^{X}$, where $X$ is a normal random variable with mean $\mu_{i}$ and variance $\sigma_{i}^{2}$.
- So we get

$$
r_{i}=E\left[R_{i}\right]=E\left[\frac{S_{i}(1)}{S_{i}(0)}\right]-1=E\left[e^{x}\right]-1=\exp \left\{\mu_{i}+\frac{\sigma_{i}^{2}}{2}\right\}-1
$$

- Also,

$$
\begin{aligned}
v_{i}^{2}=\operatorname{Var}\left(R_{i}\right) & =\operatorname{Var}\left(\frac{S_{i}(1)}{S_{i}(0)}\right) \\
& =\operatorname{Var}\left(e^{X}\right) \\
& =E\left[e^{2 X}\right]-\left(E\left[e^{X}\right]\right)^{2} \\
& =\exp \left\{2 \mu_{i}+2 \sigma_{i}^{2}\right\}-\left(\exp \left\{\mu_{i}+\frac{\sigma_{i}^{2}}{2}\right\}\right)^{2} \\
& =\exp \left\{2 \mu_{i}+2 \sigma_{i}^{2}\right\}-\exp \left\{2 \mu_{i}+\sigma_{i}^{2}\right\} .
\end{aligned}
$$

## Expected Value and Variance of One-Period Yield

- The average spot rate of return by time $t, \bar{R}_{i}(t)$, satisfies

$$
\frac{S_{i}(t)}{S_{i}(0)}=e^{t \bar{R}_{i}(t)}
$$

- This implies that

$$
\bar{R}_{i}(t)=\frac{1}{t} \log \left(\frac{S_{i}(t)}{S_{i}(0)}\right) .
$$

- Now $\log \left(\frac{S_{i}(t)}{S_{i}(0)}\right)$ is a normal random variable with:
- Mean $\mu_{i} t$;
- Variance $t \sigma_{i}^{2}$.
- So $\bar{R}_{i}(t)$ is a normal random variable with

$$
E\left[\bar{R}_{i}(t)\right]=\mu_{i}, \quad \operatorname{Var}\left(\bar{R}_{i}(t)\right)=\frac{\sigma_{i}^{2}}{t}
$$

- The expected value and variance of the one-period yield function for geometric Brownian motion are its parameters $\mu_{i}$ and $\sigma_{i}^{2}$.

