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Valuing by Expected Utility Limitations of Arbitrage Pricing

Subsection 1

Limitations of Arbitrage Pricing
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Valuing by Expected Utility Limitations of Arbitrage Pricing

Example

Let the initial price of a security be 100.

Suppose that the price at time 1 can be any of the values 50, 200,
and 100.

That is, we also allow for the possibility that the price of the stock at
time 1 is unchanged from its initial price.

We want to price an option to purchase the stock at time 1 for the
fixed price of 150.
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Valuing by Expected Utility Limitations of Arbitrage Pricing

Example (Cont’d)

For simplicity, let the interest rate r equal zero.

The Arbitrage Theorem states that there will be no guaranteed win if
there are nonnegative numbers p50, p100, p200, such that:

(a) Their sum equals 1;
(b) The expected gains if one purchases either the stock or the option are

zero, when pi is the probability that the stock’s price at time 1 is i
(i = 50, 100, 200).

Let Gs denote the gain at time 1 from buying one share of the stock.

Let S(1) be the price of that stock at time 1.

Then

Gs =







100, if S(1) = 200,
0, if S(1) = 100,
−50, if S(1) = 50.

Hence, E [Gs ] = 100p200 − 50p50.
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Valuing by Expected Utility Limitations of Arbitrage Pricing

Example (Cont’d)

Let c be the cost of the option.

Then the gain from purchasing one option is

Go =

{

50− c , if S(1) = 200,
−c , if S(1) = 100 or S(1) = 50.

Therefore,

E [Go ] = (50 − c)p200 − c(p50 + p100) = 50p200 − c .

Equating both E [Gs ] and E [Go ] to zero shows that the conditions for
the absence of arbitrage are that there exist probabilities and a cost c
such that

p200 =
1

2
p50 and c = 50p200.
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Valuing by Expected Utility Limitations of Arbitrage Pricing

Example (Conclusion)

We found that the conditions for the absence of arbitrage are that
there exist probabilities and a cost c such that

p200 =
1

2
p50 and c = 50p200.

The first implies that p200 ≤ 1
3 .

So, for any value of c satisfying

0 ≤ c ≤ 50

3
,

we can find probabilities that make both buying the stock and buying
the option fair bets.

By the Arbitrage Theorem, for any option cost in the interval [0, 503 ],
no arbitrage is possible.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Subsection 2

Valuing Investments by Expected Utility
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Valuing by Expected Utility Valuing Investments by Expected Utility

Choice Between Two Possible Investments

Suppose we must choose one of two possible investments, each of
which can result in any of n consequences, denoted C1, . . . ,Cn.

We make the following assumptions:

If the first investment is chosen, then consequence Ci will result with
probability pi , i = 1, . . . , n, with

∑n

i=1 pi = 1;
If the second investment is chosen, then consequence Ci will result with
probability qi , i = 1, . . . , n, with

∑n

i=1 qi = 1.

We first assign numerical values to the different consequences.

Identify the least and the most desirable consequence, say c and C .

Give the consequence c the value 0;
Give the consequence C the value 1.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Utility of Consequences

Now consider any of the other n− 2 consequences, say Ci .

We want to assign a value to this consequence.

Imagine that we are given the choice between:

Receiving Ci ;
Taking part in a random experiment that earns one of the following:

Consequence C with probability u;

Consequence c with probability 1− u.

Clearly the choice will depend on the value of u.

If u = 1 then the experiment is certain to result in consequence C .
C is the most desirable consequence.
So we clearly prefer the experiment to receiving Ci .
If u = 0 then the experiment will result in c .
c is the least desirable consequence.
So in this case we prefer the consequence Ci to the experiment.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Utility of Consequences (Cont’d)

As u decreases from 1 down to 0, it seems reasonable that the choice
will at some point switch from the experiment to receiving Ci .
At that critical point, we will be indifferent between the two choices.
We adopt that indifference probability u as the value of the
consequence Ci .

So the value of Ci is that probability u such that we are indifferent
between:

Receiving the consequence Ci ;
Taking part in the experiment that returns consequence C with
probability u or consequence c with probability 1− u.

We call this indifference probability the utility of the consequence Ci ,
denoted by u(Ci).
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Valuing by Expected Utility Valuing Investments by Expected Utility

Evaluation of the Investments

Consider the first investment, which results in consequence Ci with
probability pi , i = 1, . . . , n.
We can think of the result of this investment as being determined by
a two-stage experiment.

In the first stage, one of the values 1, . . . , n is chosen according to the
probabilities p1, . . . , pn;
If value i is chosen, we receive consequence Ci .

Now Ci is equivalent to obtaining consequence C with probability
u(Ci) or consequence c with probability 1− u(Ci ).
So the result of the two-stage experiment is equivalent to an
experiment in which:

Either consequence C or consequence c is obtained;
Consequence C is obtained with probability

n
∑

i=1

piu(Ci ).
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Valuing by Expected Utility Valuing Investments by Expected Utility

Comparison of the Investments

Similarly, the result of choosing the second investment is equivalent
to taking part in an experiment in which:

Either consequence C or consequence c is obtained;
Consequence C being obtained with probability

n
∑

i=1

qiu(Ci ).

We know that C is preferable to c .

So the first investment is preferable to the second if

n
∑

i=1

piu(Ci ) >

n
∑

i=1

qiu(Ci).

In other words:
The value of an investment can be measured by the expected value of
the utility of its consequence;
The investment with the largest expected utility is most preferable.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Utility Functions and Comparison

In many investments, the consequences correspond to the investor
receiving a certain amount of money.

In this case, we let the dollar amount represent the consequence.

Thus, u(x) is the investor’s utility of receiving the amount x .

We call u(x) a utility function.
Suppose an investor must choose between two investments.

The first investment returns an amount X ;
The second investment returns an amount Y ;
The investor has utility function u.

Then the investor should choose:
The first investment, if

E [u(X )] > E [u(Y )];

The second investment, if the inequality is reversed.

Often, the possible monetary returns form an infinite set.

So we may drop the requirement that u(x) be between 0 and 1.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Nondecreasing and Concave Utility Functions

An investor’s utility function is specific to that investor.

However, a general property usually assumed of utility functions is
that u(x) is a nondecreasing function of x .

Another common (but not universal) property is that, if an investor
expects to receive x , then the extra utility gained, if they are given an
additional amount ∆, is nonincreasing in x .

That is, for fixed ∆ > 0, their utility function satisfies

u(x +∆)− u(x) is nonincreasing in x .

A utility function that satisfies this condition is called concave.

The condition of concavity is equivalent to u′′(x) ≤ 0.

That is, a function is concave if and only if its second derivative is
nonpositive.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Concave Utility Functions (Illustration)

A function is concave if and only if its second derivative is nonpositive.

The curve of a concave function has the property that the line
segment connecting any two of its points always lies below the curve.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Risk-Averse Investors

An investor with a concave utility function is said to be risk-averse.

An explanation of this terminology follows.

Jensen’s Inequality states that if u is a concave function then, for
any random variable X ,

E [u(X )] ≤ u(E [X ]).

This inequality, interpreted in terms of the return X from an
investment, says that:

Any investor with a concave utility function would prefer the certain
return of E [X ] to receiving a random return X having this mean.

This explains the term risk-averse.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Jensen’s Inequality

Theorem (Jensen’s Inequality)

If U is concave, then
E [U(X )] ≤ U(E [X ]).

The Taylor series formula with remainder of U(x) expanded about
µ = E [X ] gives, for some value of τ between x and µ, that

U(x) = U(µ) + U ′(µ)(x − µ) +
U ′′(τ)

2
(x − µ)2.

But U being concave implies that U ′′ ≤ 0, showing that

U(x) ≤ U(µ) + U ′(µ)(x − µ).

Taking expectations of both sides, we get

E [U(X )] ≤ U(µ) + U ′(µ)E [X − µ] = U(µ).
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Valuing by Expected Utility Valuing Investments by Expected Utility

Risk-Neutral Investors

An investor with a linear utility function

u(x) = a+ bx , b > 0,

is said to be risk-neutral or risk-indifferent.

For such a utility function,

E [u(X )] = a + bE [X ].

So a risk-neutral investor values an investment only through its
expected return.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Log Utility Function

A commonly assumed utility
function is the log utility function

u(x) = log (x).

Because log (x) is a concave
function, an investor with a log
utility function is risk-averse.

This is a particularly important utility function.

It can be mathematically proven in a variety of situations that an
investor faced with an infinite sequence of investments can maximize
his long-term rate of return by:

Adopting a log utility function;
Maximizing the expected utility in each period.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Maximizing Returns Under Log Utility Function

Suppose that the result of each investment is to multiply the
investor’s wealth by a random amount X .

Let W0 be the investor’s initial wealth;
Let Wn be the investor’s wealth after the nth investment;
Let Xn be the nth multiplication factor.

Then we have
Wn = XnWn−1, n ≥ 1.

Moreover,
Wn = XnWn−1

= XnXn−1Wn−2

= XnXn−1Xn−2Wn−3

= · · ·
= XnXn−1 · · ·X1W0.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Maximizing Returns (Cont’d)

We calculated
Wn = XnXn−1 · · ·X1W0.

Let Rn denote the rate of return (per investment) from the n

investments.

Then

Wn

(1 + Rn)n
= W0 or (1 + Rn)

n =
Wn

W0
= X1 · · ·Xn.

Taking logarithms yields that

log (1 + Rn) =

∑n
i=1 log (Xi)

n
.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Maximizing Returns (Cont’d)

Suppose Xi are independent and identically distributed.

By the Strong Law of Large Numbers, the average of the values
log (Xi), i = 1, . . . , n, converges to E [log (Xi)] as n → ∞.

Consequently,

log (1 + Rn) → E [log (X )], as n → ∞.

So the long-run rate of return is maximized by choosing the
investment that yields the largest value of E [log (X )].

Moreover, because Wn = W0X1 · · ·Xn, it follows that

log (Wn) = log (W0) +

n
∑

i=1

log (Xi).

Hence,
E [log (Wn)] = log (W0) + nE [log (X )].

This shows that maximizing E [log (X )] is equivalent to maximizing
the expectation of the log of the final wealth.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Example

Suppose an investor has capital x .

He can invest any amount y , between 0 and x .
In that case, one of the following occurs.

y is won with probability p;
y is lost with probability 1− p.

Suppose p > 1
2 and the investor has a log utility function.

We want to calculate how much should be invested.

Suppose the amount αx is invested, where 0 ≤ α ≤ 1.
Then the investor’s final fortune X , will be:

x + αx , with probability p;
x − αx , with probability 1− p.

Hence, the expected utility of his final fortune is

p log ((1 + α)x) + (1− p) log ((1 − α)x)

= p log (1 + α) + p log (x) + (1− p) log (1− α) + (1− p) log (x)

= log (x) + p log (1 + α) + (1− p) log (1− α).
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Valuing by Expected Utility Valuing Investments by Expected Utility

Example (Cont’d)

To find the optimal value of α, we differentiate

p log (1 + α) + (1− p) log (1− α).

We obtain

d

dα
(p log (1 + α) + (1− p) log (1− α)) =

p

1 + α
− 1− p

1− α
.

Setting this equal to zero yields

p − αp = 1− p + α− αp ⇒ α = 2p − 1.

The investor should always invest

100(2p − 1)%

of his present fortune.
If p = 0.6, the investor should invest 20% of his fortune;
If p = 0.7, he should invest 40% of his fortune.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Example

We modify the preceding example.

The investment αx must be paid immediately;
The payoff of 2αx (if it occurs) takes place after one period;
The amount not invested earns interest at a rate of r per period.

We want to calculate how much should be invested.

Suppose an investor invests αx and puts (1− α)x in the bank.

After one period, she will have:

(1 + r)(1 − α)x in the bank;
Either 2αx , with probability p, or 0, with probability 1− p.

Hence, the expected value of the utility of her fortune is

p log ((1 + r)(1 − α)x + 2αx) + (1− p) log ((1 + r)(1− α)x)

= log (x) + p log (1 + r + α− αr)
+ (1− p) log (1 + r) + (1− p) log (1− α).
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Valuing by Expected Utility Valuing Investments by Expected Utility

Example (Cont’d)

Hence, once again the optimal fraction of one’s fortune to invest does
not depend on the amount of that fortune.

Differentiating the previous equation yields

d

dα
(expected utility) =

p(1− r)

1 + r + α− αr
− 1− p

1− α
.

Setting equal to zero and solving yields the optimal value of α

p(1− r)(1− α)− (1− p)(1 + r + α− αr) = 0

p(1− r)− (1− p)(1 + r) = α[p(1− r) + (1− p)(1− r)]

α =
p(1− r)− (1− p)(1 + r)

1− r
=

2p − 1− r

1− r
.
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Valuing by Expected Utility Valuing Investments by Expected Utility

Example (Cont’d)

We found that the optimal value of α is

α =
2p − 1− r

1− r
.

Let p = 0.6 and r = 0.05.

The expected rate of return on the investment is 20%, whereas the
bank pays only 5%.

Still, the optimal fraction of money to be invested is

α =
2 · 0.6 − 1− 0.05

1− 0.05
=

0.15

0.95
≈ 0.158.

That is, the investor should invest approximately 15.8% of his capital
and put the remainder in the bank.
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Valuing by Expected Utility Valuing Investments by Expected Utility

The Exponential Utility Function

Another commonly used utility function is the exponential utility

function

u(x) = 1− e−bx , b > 0.

The exponential is also a risk-averse utility function.
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Valuing by Expected Utility The Portfolio Selection Problem

Subsection 3

The Portfolio Selection Problem
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Valuing by Expected Utility The Portfolio Selection Problem

Portfolio

Suppose one has the positive amount w to be invested among n

different securities.

Suppose the amount a is invested in security i (i = 1, . . . , n).

Then, after one period, that investment returns aXi , where Xi is a
nonnegative random variable.

So if Ri is the the rate of return from investment i , then

a =
aXi

1 + Ri
or Ri = Xi − 1.

Suppose wi is invested in each security i = 1, . . . , n.

Then the end-of-period wealth is

W =

n
∑

i=1

wiXi .

The vector w1, . . . ,wn is called a portfolio.
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Valuing by Expected Utility The Portfolio Selection Problem

Maximizing the Expected Utility

Let U be the investor’s utility function for the end-of-period wealth.

The problem of determining the portfolio that maximizes the
expected utility of one’s end-of-period wealth can be expressed
mathematically as follows:

choose w1, . . . ,wn satisfying wi ≥ 0, i = 1, . . . , n,
and

∑n
i=1 wi = w , to maximize E [U(W )].

We assume that the end-of-period wealth W is a normal random
variable.

This is a reasonable approximation if many securities are not too highly
correlated.
It is exactly true if the Xi , i = 1, . . . , n, have a multivariate normal
distribution.
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Valuing by Expected Utility The Portfolio Selection Problem

Using the Exponential Utility Function

Suppose now that the investor has an exponential utility function

U(x) = 1− e−bx , b > 0.

So the utility function is concave.

If Z is a normal random variable, then eZ is lognormal and has
expected value

E [eZ ] = exp

{

E [Z ] +
Var(Z )

2

}

.

Hence, as −bW is normal with mean −bE [W ] and variance
b2Var(W ), it follows that

E [U(W )] = 1− E [e−bW ] = 1− exp

{

−bE [W ] +
b2Var(W )

2

}

.

Therefore, the investor’s expected utility will be maximized by
choosing a portfolio that maximizes E [W ]− bVar(W )

2 .
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Valuing by Expected Utility The Portfolio Selection Problem

Comparing Portfolios

Suppose two portfolios give rise to random end-of-period wealths W1

and W2.

If W1 has a larger mean and a smaller variance than does W2, then
the first portfolio results in a larger expected utility than does the
second.

E [W1] ≥ E [W2] & Var(W1) ≤ Var(W2) imply E [U(W1)] ≥ E [U(W2)].

In fact, provided that all end-of-period fortunes are normal random
variables, this implication remains valid even when the utility function
is not exponential, as long as it is nondecreasing and concave.

Consequently, if one investment portfolio offers a risk-averse investor
an expected return that is at least as large as that offered by a second
investment portfolio and with a variance that is no greater than that
of the second portfolio, then the investor prefers the first portfolio.
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Valuing by Expected Utility The Portfolio Selection Problem

Expectation and Variance of Wealth

We now compute, for a given portfolio, the mean and variance of W .

Let Ri = Xi − 1 be security i ’s rate of return.

Let ri = E [Ri ] and v2i = Var(Ri).

We have

W =

n
∑

i=1

wi (1 + Ri ) = w +

n
∑

i=1

wiRi .

Hence, we obtain

E [W ] = w +
∑n

i=1 E [wiRi ] = w +
∑n

i=1 wi ri ;

Var(W ) = Var(
∑n

i=1 wiRi)

=
∑n

i=1 Var(wiRi) +
∑n

i=1

∑

j 6=i Cov(wiRi ,wjRj)

=
∑n

i=1 w
2
i v

2
i +

∑n
i=1

∑

j 6=i wiwjc(i , j),

where c(i , j) = Cov(Ri ,Rj).
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Valuing by Expected Utility The Portfolio Selection Problem

Example (Multivariate Normal Distribution)

Definition

Let Z1, . . . ,Zm be independent standard normal random variables. If for
some constants µi , i = 1, . . . , n and aij , i = 1, . . . , n, j = 1, . . . ,m,

X1 = µ1 + a11Z1 + a12Z2 + · · · + a1mZm

X2 = µ2 + a21Z1 + a22Z2 + · · · + a2mZm

...
Xi = µi + ai1Z1 + ai2Z2 + · · ·+ aimZm

...
Xn = µn + an1Z1 + an2Z2 + · · ·+ anmZm

we say that (X1, . . . ,Xn) has a multivariate normal distribution.
Because any linear combination

∑n
i=1 wiXi is also a linear combination of

the independent normal random variables Z1, . . . ,Zm, it follows that
∑n

i=1 wiXi is a normal random variable.
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Valuing by Expected Utility The Portfolio Selection Problem

Example

We are investing a fortune of 100 in two securities.

Let our utility function be

U(x) = 1− e−0.005x .

The rates of return have the following expected values and standard
deviations:

r1 = 0.15 and v1 = 0.20;
r2 = 0.18 and v2 = 0.25.

The correlation between the rates of return is ρ = −0.4.

We want to calculate the optimal portfolio.
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Valuing by Expected Utility The Portfolio Selection Problem

Example (Cont’d)

Suppose w1 = y and w2 = 100 − y .

We know E [W ] = w +
∑2

i=1 wi ri .

So we obtain

E [W ] = 100 + 0.15y + 0.18(100 − y) = 118− 0.03y .

We also have
c(1, 2) = ρv1v2 = − 0.02.

We know Var(W ) =
∑2

i=1w
2
i v

2
i + 2w1w2c(1, 2).

So we get

Var(W ) = y2(0.04) + (100 − y)2(0.0625) − 2y(100 − y)(0.02)

= 0.1425y2 − 16.5y + 625.
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Valuing by Expected Utility The Portfolio Selection Problem

Example (Cont’d)

We must choose y to maximize

E [W ]− bVar(W )
2 = 118 − 0.03y − 0.005(0.1425y2−16.5y+625)

2

= 0.01125y − 0.0007125y2

2 .

Using calculus, we get y = 0.01125
0.0007125 = 15.789.

So we must invest:
15.789 in investment 1
84.211 in investment 2.

The value y = 15.789 gives:
E [W ] = 18− 0.03 · 15.789 = 117.526;
Var(W ) = 0.1425 · (15.789)2 − 16.5 · 15.789 + 625 = 400.006.

So the maximal expected utility is

1− exp

{

−0.005

(

117.526 +
0.005(400.006)

2

)}

= 0.4416.
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Valuing by Expected Utility The Portfolio Selection Problem

Example

Suppose only two securities are under consideration, both with
normally distributed returns that have same expected rate of return.

Every portfolio will yield the same expected value.

The best portfolio for any concave utility function is the one whose
end-of-period wealth has minimal variance.

Suppose αw is invested in security 1 and (1− α)w is invested in
security 2.

With c = c(1, 2) we have

Var(W ) = α2w2v21 + (1− α)2w2v22 + 2α(1 − α)w2c

= w2[α2v21 + (1− α)2v22 + 2cα(1 − α)].

Thus, the optimal portfolio is obtained by choosing the value of α
that minimizes

α2v21 + (1− α)2v22 + 2cα(1 − α).
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Valuing by Expected Utility The Portfolio Selection Problem

Example (Cont’d)

We want to minimize

α2v21 + (1− α)2v22 + 2cα(1 − α).

Differentiating this quantity and setting the derivative equal to zero
yields

2αv21 − 2(1− α)v22 + 2c − 4cα = 0.

Solving for α gives the optimal fraction to invest in security 1:

α =
v22 − c

v21 + v22 − 2c
.
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Valuing by Expected Utility The Portfolio Selection Problem

Example (Special Case)

If the rates of returns are independent, then c = 0.

So the optimal fraction to invest in security 1 is

α =
v22

v21 + v22
=

1
v2
1

1
v2
1
+ 1

v2
2

.

In this case, the optimal percentage of capital to invest in a security is
determined by a weighted average, where the weight given to a
security is inversely proportional to the variance of its rate of return.

This result also remains true when there are n securities whose rates
of return are uncorrelated and have equal means.

Under these conditions, the optimal fraction of one’s capital to invest
in security i is

1
v2
i

∑n
j=1

1
v2
j

.
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Estimating Covariances

In order to create good portfolios, we must first use historical data to
estimate, for all i and j , the values of

ri = E [Ri ], v2i = Var(Ri) and c(i , j) = Cov(Ri ,Rj).

Suppose we have historical data that covers m periods.

Let ri ,k and rj ,k denote (respectively) the rates of return of security i

and of security j for period k , k = 1, . . . ,m.

Then we take:

r i =

∑m

k=1 ri ,k

m
;

v2
i =

∑m

k=1(ri ,k − r i )
2

m − 1
;

c(i , j) =

∑m

k=1(ri ,k − r i)(rj,k − r j)

m − 1
.
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Subsection 4

Value at Risk and Conditional Value at Risk
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Value at Risk Criterion

Suppose an investment:
Calls for an initial payment of c ;
Returns X after one period.

Let G denote the present value gain from the investment.

G =
X

1 + r
− c .

The value at risk (VAR) of the investment is the value v , such that
there is only a 1-percent chance that the loss from the investment will
be greater than v .

Because −G is the loss, the value at risk is the value v such that

P{−G > v} = 0.01.

The VAR criterion for choosing among different investments selects
the investment having the smallest VAR.
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Example

Suppose that the gain G from an investment is a normal random
variable with mean µ and standard deviation σ.

Then −G is normal with mean −µ and standard deviation σ.

So the VAR of this investment is the value of v , such that

0.01 = P{−G > v}
= P

{

−G+µ
σ > v+µ

σ

}

= P
{

Z > v+µ
σ

}

,

where Z is a standard normal random variable.

From the table we see that P{Z > 2.33} = 0.01.

Therefore, v+µ
σ = 2.33, which gives VAR = −µ+ 2.33σ.

So, among investments whose gains are normally distributed, the VAR
criterion selects the one having the largest value of µ− 2.33σ.
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Conditional Value at Risk Criterion

The VAR gives a value that has only a 1-percent chance of being
exceeded by the loss from an investment.

The VAR criterion chooses the investment having the smallest VAR.

An alternative proposal considers the conditional expected loss, given
that it exceeds the VAR.

In other words, we consider the amount lost, given that the 1-percent
event occurs and there is a large loss.

This a quantity larger than the VAR.

The conditional expected loss, given that it exceeds the VAR, is called
the conditional value at risk or CVAR.

The CVAR criterion selects the investment having the smallest
CVAR.
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The Conditional Expectation Formula

For a standard normal random variable Z ,

E [Z |Z > a] =
1√

2πP{Z ≥ a}
e−a2/2.

The conditional density of Z , given that Z > a, is

fZ |Z>a(x) =
1√
2π

e−x2/2

P(Z > a)
, x > a.

This gives

E [Z |Z > a] =
1√

2πP(Z > a)

∫ ∞

a

xe−x2/2dx

=
1√

2πP(Z > a)
e−a2/2.
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Example

Suppose the gain G from an investment is a normal random variable
with mean µ and standard deviation σ.

Then the CVAR is given by

CVAR = E [−G | − G > VAR ]

= E [−G | − G > −µ+ 2.33σ]

= E
[

−G |−G+µ
σ > 2.33

]

= E
[

σ(−G+µ
σ )− µ|−G+µ

σ > 2.33
]

= σE
[

−G+µ
σ |−G+µ

σ > 2.33
]

− µ

= σE [Z |Z > 2.33] − µ,

where Z is a standard normal random variable.
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Example (Cont’d)

We computed
CVAR = σE [Z |Z > 2.33] − µ.

We showed that, for a standard normal random variable Z ,

E [Z |Z > a] =
1√

2πP{Z ≥ a}
e−a2/2.

Hence we obtain that

CVAR = σ 1√
2πP{Z≥2.33}e

−(2.33)2/2 − µ

= σ 100√
2π

exp
{

− (2.33)2

2

}

− µ

= 2.64σ − µ.

So, the CVAR, which attempts to maximize µ− 2.64σ, gives a little
more weight to the variance than does the VAR.
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Subsection 5

The Capital Assets Pricing Model
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The Capital Assets Pricing Model

Let Ri be the one-period rate of return of a specified security i .

Let Rm be the one-period rate of return of the entire market (as
measured, say, by the Standard and Poor’s index of 500 stocks).

The Capital Assets Pricing Model (CAPM) relates Ri to Rm.

Let rf be the risk-free interest rate (usually taken to be the current
rate of a U.S. Treasury bill).

The model assumes that, for some constant βi ,

Ri = rf + βi (Rm − rf ) + ei ,

where ei is a normal random variable with mean 0 that is assumed to
be independent of Rm.
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Expected Rates of Return

Let ri be the expected value of Ri .

Let rm be the expected value of Rm.

The CAPM model (which treats rf as a constant) implies that

ri = rf + βi (rm − rf ).

Equivalently, we have

ri − rf = βi (rm − rf ).

That is, the difference between the expected rate of return of the
security and the risk-free interest rate is assumed to equal βi times
the difference between the expected rate of return of the market and
the risk-free interest rate.

The quantity βi is known as the beta of security i .
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Covariance of Specific and Market Return

Recall that:

Covariance is linear;
The covariance of a random variable and a constant is 0.

As a result, we get

Cov(Ri ,Rm) = Cov(rf + βi (Rm − rf ) + ei ,Rm)

= βiCov(Rm,Rm) + Cov(ei ,Rm)

= βiVar(Rm). (ei and Rm independent).

Therefore, letting v2m = Var(Rm), we see that

βi =
Cov(Ri ,Rm)

v2m
.
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Example

Suppose that:

The current risk-free interest rate is 6%;
The expected value of the market rate of return is 0.10;
The standard deviation of the market rate of return is 0.20;
The covariance of the rate of return of a given stock and the market’s
rate of return is 0.05.

We compute the expected rate of return of the stock based on CAPM.

We have

β =
Cov(Ri ,Rm)

Var(Rm)
=

0.05

(0.20)2
= 1.25.

It follows that

ri = rf + βi (rm − rf ) = 0.06 + 1.25(0.10 − 0.06) = 0.11.

That is, the stock’s expected rate of return is 11%.
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Systematic and Specific Risks

We are still in the framework of CAPM.

Again, let v2i = Var(Ri ) and v2m = Var(Rm).

Recall that Rm and ei are independent.

Then we have

v2i = Var(Ri )

= Var(rf + βi (Rm − rf ) + ei )

= β2
i v

2
m + Var(ei ).

Think of the variance of a rate of return as the risk of a security.

Then the equation states that the risk of a security is the sum of:

The systematic risk β2
i v

2
m, due to the combination of the security’s

beta and the inherent risk in the market;
The specific risk Var(ei), due to the specific stock being considered.
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Subsection 6

Rates of Return: Single-Period and Geometric Brownian Motion
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One Period Returns

Let Si(t) be the price of security i at time t (t ≥ 0).

Assume these prices follow a geometric Brownian motion with:

Drift parameter µi ;
Volatility parameter σi .

Let Ri be the one-period rate of return for security i .

Then we have
Si(1)

1 + Ri
= Si(0).

Equivalently,

Ri =
Si(1)

Si(0)
− 1.
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Expectation and Variance of Return

Now Si (1)
Si (0)

has the same probability distribution as eX , where X is a

normal random variable with mean µi and variance σ2
i .

So we get

ri = E [Ri ] = E

[

Si (1)

Si (0)

]

− 1 = E [eX ]− 1 = exp

{

µi +
σ2
i

2

}

− 1.

Also,

v2i = Var(Ri) = Var
(

Si (1)
Si (0)

)

= Var(eX )

= E [e2X ]− (E [eX ])2

= exp {2µi + 2σ2
i } −

(

exp
{

µi +
σ2
i

2

})2

= exp {2µi + 2σ2
i } − exp {2µi + σ2

i }.
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Expected Value and Variance of One-Period Yield

The average spot rate of return by time t, R i(t), satisfies

Si(t)

Si(0)
= etR i (t).

This implies that

R i (t) =
1

t
log

(

Si(t)

Si(0)

)

.

Now log
(

Si (t)
Si (0)

)

is a normal random variable with:

Mean µi t;
Variance tσ2

i .

So R i (t) is a normal random variable with

E [R i(t)] = µi , Var(R i(t)) =
σ2
i

t
.

The expected value and variance of the one-period yield function for
geometric Brownian motion are its parameters µi and σ2

i .
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