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Preliminaries Structures

Vocabularies

Vocabularies are finite sets that consist of:

Relation symbols P ,Q,R , . . .;
Every relation symbol is equipped with a natural number ≥ 1, its arity.
Constant symbols (constants for short) c ,d , . . ..

We denote vocabularies by τ, σ, . . ..

A vocabulary is relational, if it does not contain constants.
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Preliminaries Structures

Structures

A structure A of vocabulary τ , or a τ -structure, consists of:

A nonempty set A, the universe or domain of A;
An n-ary relation RA on A for every n-ary relation symbol R in τ ;
An element cA of A for every constant c in τ .

Mostly we use the notations RA for RA and cA for cA.

An n-ary relation RA on A is a subset of An, the set of n-tuples of
elements of A.

We mostly write RAa1 . . . an instead of (a1, . . . ,an) ∈ RA.

A structure A is finite, if its universe A is a finite set.
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Preliminaries Structures

Example: Graphs

Let τ = {E} with a binary relation symbol E .

A graph, or undirected graph, is a τ -structure G = (G ,EG)
satisfying:

(1) For all a ∈ G , not EGaa;
(2) For all a,b ∈ G , if EGab then EGba.

By GRAPH we denote the class of finite graphs.

If only (1) is required, we speak of a digraph, or directed graph.

The elements of G are sometimes called points, or vertices, and the
elements of EG edges.
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Preliminaries Structures

Examples

The figure on the left represents the graph

({a,b, c ,d},{(a,b), (b,a), (b, c), (c ,b), (b,d), (d ,b), (c ,d), (d , c)}).

The figure on the right represents the digraph

({a,b, c ,d},{(a,b), (b,a), (b, c), (b,d), (d , c)}).
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Preliminaries Structures

Cliques, Paths, Cycles and Hamiltonian Circuits

A subset X of the universe of a graph G is a clique, if

EGab, for all a,b ∈ X , a ≠ b.

Let G be a digraph. If n ≥ 1 and

EGa0a1,E
Ga1a2, . . . ,E

Gan−1an,

then a0,a1, . . . ,an is a path from a0 to an of length n.

If a0 = an then a0, . . . ,an is a cycle.

G is acyclic if it has no cycle.

A path a0,a1, . . . ,an is Hamiltonian if G = {a0, . . . ,an} and ai ≠ aj ,
for i ≠ j .

If, in addition, EGana0, we speak of a Hamiltonian circuit.
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Preliminaries Structures

Connected Components

Let G be a graph.

Write a ∼ b if a = b or if there is a path from a to b.

Clearly, ∼ is an equivalence relation.

The equivalence class of a is called the (connected) component of a.

G is connected if a ∼ b, for all a,b ∈ G .

I.e., G is connected if there is only one connected component.

Let CONN be the class of finite connected graphs.

George Voutsadakis (LSSU) Finite Model Theory January 2024 9 / 59



Preliminaries Structures

Distance Function

Denote by d(a,b) the length of a shortest path from a to b.

More precisely, define the distance function d ∶ G ×G →N∪ {∞} by

d(a,b) =∞ iff a ≁ b; d(a,b) = 0 iff a = b;

and otherwise

d(a,b) = min {n ≥ 1 ∶ there is a path from a to b of length n}.

Obviously,
d(a, c) ≤ d(a,b) + d(b, c),

where we use the natural conventions for ∞.
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Preliminaries Structures

Degrees

The following definitions apply only for finite digraphs.

A vertex b is a successor of a vertex a (and a a predecessor of b) if
EGab.

The in-degree of a vertex is the number of its predecessors.

The out-degree of a vertex is the number of its successors.

In graphs the in-degree and the out-degree of a vertex a coincide and
are called the degree of a.

A root of a digraph is a vertex with in-degree 0.

A leaf is a vertex with out-degree 0.

George Voutsadakis (LSSU) Finite Model Theory January 2024 11 / 59



Preliminaries Structures

Trees and Forests

A forest is an acyclic digraph where each vertex has in-degree at
most 1.

A tree is a forest with connected underlying graph, i.e., a forest
(G ,EG ), such that (G ,{(a,b) ∶ EGab or EGba}) is connected.

Note that a finite tree has exactly one root.

Let TREE be the class of finite trees.
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Preliminaries Structures

Example: Orderings

Let τ = {<}, with a binary relation symbol <.

A τ -structure A = (A,<A) is called an ordering if, for all a,b, c ∈ A:
(1) not a <A a;
(2) a <A b or b <A a or a = b;
(3) if a <A b and b <A c , then a <A c .
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Preliminaries Structures

Second View of Orderings

Sometimes we consider finite orderings also as
{<,S ,min,max}-structures where:

S is a binary relation symbol representing the successor relation;
min and max are constants for the first and the last element of the
ordering.

When considering the natural ordering on {0, . . . ,n} we often refer to
min as the zero-th element.

Thus, a finite {<,S ,min,max}-structure A is an ordering if, in
addition to Conditions (1), (2), (3), for all a,b ∈ A:
(4) SAab iff (a <A b and for all c , if a <A c , then b <A c or b = c);
(5) minA <A a or minA = a;
(6) a <A maxA or a = maxA.
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Preliminaries Structures

Finite Ordered Structures

It might be advantageous to consider finite orderings as
{<,min,max}-structures.

Suppose that τ0 is a vocabulary with {<} ⊆ τ0 ⊆ {<,S ,min,max}.

Let σ be an arbitrary vocabulary with τ0 ⊆ σ.

A finite σ-structure A is said to be ordered if the reduct A ∣τ0 , i.e.,
the τ0-structure obtained from A by forgetting the interpretations of
the symbols in σ/τ0, is an ordering.

The class of finite ordered σ-structures is denoted O[σ].
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Preliminaries Structures

Isomorphic Structures

Let A and B be two τ -structures.

An isomorphism from A to B, is a bijection π ∶ A→ B preserving
relations and constants, that is:

For n-ary R ∈ τ and a1, . . . , an ∈ A,

RAa1 . . . an iff RBπ(a1) . . . π(an);

For c ∈ τ ,
π(cA) = cB .

Two τ -structures A and B are isomorphic, written A ≅ B, if there is
an isomorphism from A to B.
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Preliminaries Structures

Products of Structures

For τ -structures A and B, the product A×B of A and B is the
τ -structure with domain

A × B ∶= {(a,b) ∶ a ∈ A,b ∈ B},
which is given by:

For n-ary R in τ and (a1,b1), . . . , (an,bn) ∈ A × B,

RA×B(a1,b1) . . . (an,bn) iff RAa1 . . . an and RBb1 . . . bn;

For c in τ ,
cA×B ∶= (cA, cB).
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Preliminaries Structures

Union of Structures

For relational τ , we introduce the union (or disjoint union) of
structures.

Assume that A and B are τ -structures with A ∩ B = ∅.

Then A⊍B, the union of A and B, is the τ -structure with domain
A ∪ B and for any R in τ

RA⊍B ∶= RA ∪RB.

In case A and B are structures with A ∩ B ≠ ∅, we take isomorphic
copies A′ of A and B ′ of B with disjoint universes (e.g., with
universes A × {1} and B × {2}) and set

A⊍B ∶= A′ ⊍ B′.

Note that the union of ordered structures is not an ordered structure.
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Preliminaries Structures

Ordered Sum of Structures

Let τ , with < ∈ τ , be a relational vocabulary.

Let A and B be ordered τ -structures.

Assume that A ∩ B = ∅.

Define A ⊲ B, the ordered sum of A and B, as A⊍B but setting

<A⊲B ∶= <A ∪ <B ∪ {(a,b) ∶ a ∈ A,b ∈ B},
that is, in A ⊲ B all elements of A precede all elements of B .

We have:

A × B ≅ B ×A;
A⊍B ≅ B ⊍A;
However, in general, A ⊲ B ≇ B ⊲ A.
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Preliminaries Structures

Operations on Multiple Structures

The definition of product, union and ordered sum can easily be
extended to more than two structures.

For example, we set

A ⊲ B ⊲ C ∶= ((A ⊲ B) ⊲ C).
For a finite nonempty set I , we denote by

A
I , ⊍

I

A and ⊲I A

the product, the union and the ordered sum, respectively, of ∥I∥
copies of A, where ∥I∥ denotes the cardinality of I .
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Preliminaries Syntax and Semantics of First-Order Logic

Symbols and Terms of First-Order Logic

Fix a vocabulary τ .

Each formula of first-order logic will be a string of symbols taken
from the alphabet consisting of:

v1, v2, v3, . . . (the variables);
¬,∨ (the connectives not, or);
∃ (the existential quantifier);
= (the equality symbol);
), (;
the symbols in τ .

A term of vocabulary τ is a variable or a constant in τ .

Henceforth, we shall often use the letters x , y , z , . . . for variables and
t, t1, . . . for terms.
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Preliminaries Syntax and Semantics of First-Order Logic

Formulas of First-Order Logic

The formulas of first-order logic of vocabulary τ are those strings
which are obtained by finitely many applications of the following
rules:

(F1) If t0 and t1 are terms, then t0 = t1 is a formula.
(F2) If R in τ is n-ary and t1, . . . , tn are terms, then Rt1 . . . tn is a formula.
(F3) If ϕ is a formula then ¬ϕ is a formula.
(F4) If ϕ and ψ are formulas, then (ϕ ∨ ψ) is a formula.
(F5) If ϕ is a formula and x a variable, then ∃xϕ is a formula.

FO[τ] denotes the set of formulas of first-order logic of vocabulary τ .

Formulas obtained by (F1) or (F2) are called atomic formulas.
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Preliminaries Syntax and Semantics of First-Order Logic

Abbreviations and Conventions

For formulas ϕ and ψ we use the following abbreviations:

(ϕ ∧ψ) for ¬(¬ϕ ∨ ¬ψ);
(ϕ→ ψ) for (¬ϕ ∨ψ);
(ϕ↔ ψ) for ((¬ϕ ∨ψ) ∧ (¬ψ ∨ϕ)).

We shall often omit parentheses in formulas if they are not essential
such as the outermost parentheses in disjunctions (ϕ ∨ ψ).
In examples, different letters x , y , z , . . . will always stand for different
variables.
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Preliminaries Syntax and Semantics of First-Order Logic

Axioms for Graphs and Orderings

The axioms for graphs stated above have the following formalizations
in FO[{E}]:

∀x¬Exx ;
∀x∀y(Exy → Eyx).

The axioms for orderings have the following formalizations in
FO[{<}]:

∀x¬x < x ;
∀x∀y(x < y ∨ y < x ∨ x = y);
∀x∀y∀z((x < y ∧ y < z) → x < z).

For orderings as {<,S ,min,max}-structures we need in addition:

∀x∀y(Sxy ↔ (x < y ∧ ∀z(x < z → (y < z ∨ y = z))));
∀x(min < x ∨min = x);
∀x(x < max∨x = max).
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Preliminaries Syntax and Semantics of First-Order Logic

Sentences, Free and Bound Variables

Formulas in which every variable in an atomic subformula is in the
scope of a corresponding quantifier are called sentences.

Such occurrences of a variable are called bound occurrences.

Example: The last occurrence of x in (∀x¬Exx ∧ ∃yExy) is not in the
scope of a quantifier binding it.

Such occurrences are called free.

The notion of a free variable of a formula ϕ is made precise by the
following definition by induction on (the length of) ϕ.

The set free(ϕ) of free variables of a formula ϕ is defined by:

If ϕ is atomic then the set free(ϕ) of free variables of ϕ is the set of
variables occurring in ϕ;
free(¬ϕ) ∶= free(ϕ);
free(ϕ ∨ψ) ∶= free(ϕ) ∪ free(ψ);
free(∃xϕ) ∶= free(ϕ)/{x}.
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Preliminaries Syntax and Semantics of First-Order Logic

Notation for Formulas with Free Variables

It is common practice to use the notation ϕ(x1, . . . , xn) to indicate
that:

x1, . . . , xn are distinct;
free(ϕ) ⊆ {x1, . . . , xn} without implying that all xi are actually free in ϕ.

In some chapters we give another meaning to this notation.

Often we abbreviate an n-tuple x1, . . . , xn of variables by x .

Example: Writing ϕ(x) for ϕ(x1, . . . , xn).
Usually we do not make explicit the length of x (here n), its size
either being inessential or clear from the context.

We often omit commas writing, for example, x = x1 . . . xn
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Preliminaries Syntax and Semantics of First-Order Logic

Assignments

Let A be a τ -structure.

An assignment in A is a function α with domain the set of variables
and with values in A,

α ∶ {vn ∶ n ≥ 1} → A.

Think of α as assigning the meaning α(x) to the variable x .

Extend α to a function defined for all terms by setting

α(c) ∶= cA, for c in τ .

Denote by α a
x
the assignment that agrees with α except that

α a
x
(x) = a.
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Preliminaries Syntax and Semantics of First-Order Logic

Satisfaction

We define the relation A ⊧ ϕ[α] (“the assignment α satisfies the
formula ϕ in A” or “ϕ is true in A under α”) as follows:

A ⊧ t1 = t2[α] iff α(t1) = α(t2);
A ⊧ Rt1 . . . tn[α] iff RAα(t1) . . . α(tn);
A ⊧ ¬ϕ[α] iff not A ⊧ ϕ[α];
A ⊧ (ϕ ∨ψ)[α] iff A ⊧ ϕ[α] or A ⊧ ψ[α];
A ⊧ ∃xϕ[α] iff there is an a ∈ A, such that A ⊧ φ[α a

x
].
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Preliminaries Syntax and Semantics of First-Order Logic

Satisfaction and Free Variables

Note that the truth or falsity of A ⊧ ϕ[α] depends only on the values
of α for those variables x which are free in ϕ.

That is, if α1(x) = α2(x), for all x ∈ free(ϕ), then
A ⊧ ϕ[a1] iff A ⊧ ϕ[α2].

Thus, if ϕ = ϕ(x1, . . . , xn), and a1 = α(x1), . . . ,an = α(xn), then we
may write

A ⊧ ϕ[a1, . . . ,an]
for A ⊧ ϕ[α].
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Preliminaries Syntax and Semantics of First-Order Logic

Models and Satisfiability

If ϕ is a sentence, then the truth or falsity of A ⊧ ϕ[α] is completely
independent of α.

Thus, we may write
A ⊧ ϕ,

read A is a model of ϕ, or A satisfies ϕ, if, for some (hence every)
assignment α, A ⊧ ϕ[α].
For a set Φ of formulas, A ⊧ Φ[α] means that A ⊧ ϕ[α], for all ϕ ∈ Φ.
Φ is satisfiable if, there exists a structure A and an assignment α in
A, such that

A ⊧ Φ[α].
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Preliminaries Syntax and Semantics of First-Order Logic

Consequence, Validity and Equivalence

A formula ψ is a consequence of Φ, written Φ ⊧ ψ, if

A ⊧ Φ[α] implies A ⊧ ψ[α].
The formula ψ is logically valid, written ⊧ ψ, if ∅ ⊧ ψ.

I.e., ψ is logically valid if ψ is true in all structures under all
assignments.

Formulas ϕ and ψ are logically equivalent if ⊧ ϕ↔ ψ.

When only taking into consideration finite structures, we use the
notations Φ ⊧fin ψ and ⊧fin ψ, and speak of equivalent formulas.

Hence, ϕ and ψ are equivalent if ⊧fin ϕ↔ ψ.

I.e., ϕ and ψ are equivalent if ϕ↔ ψ holds in all finite structures
under all assignments.
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Preliminaries Syntax and Semantics of First-Order Logic

Truth and Falsity

At some places it will be convenient to assume that first-order logic
contains two zero-ary relation symbols T ,F .

In every structure, T and F are interpreted as TRUE (i.e., as being
true) and FALSE, respectively.

Hence:
The atomic formula T is logically equivalent to ∃xx = x ;
The atomic formula F is logically equivalent to ¬∃xx = x .

If Φ = {ϕ1, . . . , ϕn}, we sometimes write:

⋀Φ for ϕ1 ∧⋯ ∧ϕn;

⋁Φ for ϕ1 ∨⋯ ∨ϕn.

In case Φ = ∅, we set ⋀Φ = T and ⋁Φ = F .

Then, for arbitrary finite Φ,

A ⊧⋀Φ iff for all ϕ ∈ Φ, A ⊧ ϕ.
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Preliminaries Syntax and Semantics of First-Order Logic

Quantifier Rank

The quantifier rank qr(ϕ) of a formula ϕ is the maximum number
of nested quantifiers occurring in it:

qr(ϕ) ∶= 0, if ϕ is atomic;
qr(¬ϕ) ∶= qr(ϕ);
qr(ϕ ∨ψ) ∶= max {qr(ϕ),qr(ψ)};
qr(∃xϕ) ∶= qr(ϕ) + 1.
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Σn, Πn and ∆n Formulas

It can be shown that every first-order formula is logically equivalent to
a formula in prenex normal form, i.e., to a formula of the form

Q1x1⋯Qsxsψ,

where Q1, . . . ,Qs ∈ {∀,∃} and where ψ is quantifier-free.

Such a formula is called a Σn formula, if the string of quantifiers
consists of n consecutive blocks, where in each block all quantifiers are
of the same type (i.e., all universal or all existential), adjacent blocks
contain quantifiers of different type, and the first block is existential.

Πn formulas are defined in the same way, but now we require that
the first block consists of universal quantifiers.

A ∆n-formula is a formula logically equivalent to both a Σn-formula
and a Πn-formula.
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Permissible Substitutions

If ϕ(x1, . . . , xn) is a formula and t1, . . . , tn are terms, then

ϕ
t1 . . . tn

x1 . . . xn
or, more simply, ϕ(t1, . . . , tn)

denotes the result of simultaneously replacing all free occurrences of
x1, . . . , xn by t1, . . . , tn, respectively.

This presupposes that none of the variables in t1, . . . , tn gets into the
scope of a corresponding quantifier.

If the latter happens, the bound variables in ϕ must be renamed in
some canonical fashion before replacing.
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Preliminaries Syntax and Semantics of First-Order Logic

Numerical Existential Abbreviations

Given a formula ϕ(x , z) and n ≥ 1,

∃
≥nxϕ(x , z)

is an abbreviation for the formula

∃x1⋯∃xn
⎛
⎝ ⋀1≤i≤nϕ(xi , z) ∧ ⋀

1≤i<j≤n

¬xi = xj
⎞
⎠ .

It expresses that there are at least n elements x with ϕ(x , z).
We define similarly the abbreviations:

∃=nxϕ(x , z);
∃≤nxϕ(x , z).
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Cardinality Formulas

We set
ϕ≥n ∶= ∃≥nxx = x ;

ϕ=n ∶= ∃=nxx = x ;

ϕ≤n ∶= ∃≤nxx = x .

Clearly, we have:

A ⊧ ϕ≥n iff ∥A∥ ≥ n;
A ⊧ ϕ=n iff ∥A∥ = n;
A ⊧ ϕ≤n iff ∥A∥ ≤ n.
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Subsection 3

Some Classical Results of First-Order Logic
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Gödel’s Completeness Theorem

We assume given a finite system of formal rules for first-order logic.

Let τ be a vocabulary, ψ a τ -formula and Φ a set of τ -formulas.

A formal proof of ψ from Φ consists of a sequence of applications of
the rules leading from the formulas in Φ to ψ.

We say ψ is formally provable from Φ if there exists a formal proof
of ψ from Φ.

Theorem (Gödel’s Completeness Theorem)

Let τ be a vocabulary, ψ a τ -formula and Φ a set of τ -formulas. ψ is a
consequence of Φ iff ψ is formally provable from Φ.
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Preliminaries Some Classical Results of First-Order Logic

Consequences

Theorem

The set of logically valid sentences of first-order logic is recursively
enumerable.

Theorem (Compactness Theorem)

(a) If ψ is a consequence of Φ, then ψ is already a consequence of a finite
subset of Φ.

(b) If every finite subset of Φ is satisfiable, then Φ is satisfiable.

The proof of the Completeness Theorem often leads to a proof of

Theorem (Löwenheim-Skolem Theorem)

If Φ has a model, then Φ has an at most countable model.
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The Case of Finite Structures

Neither Recursive Enumerability nor Compactness remain valid if one
only considers finite structures.

Example: Consider the set

Φ∞ = {ϕ≥n ∶ n ≥ 1}.
Each finite subset of Φ∞ has a finite model.

However, Φ∞ has no finite model.

The failure of recursive enumerability is documented by

Theorem (Trahtenbrot’s Theorem)

The set of sentences of first-order logic valid in all finite structures is not
recursively enumerable.

A proof of this result will be presented later.
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A Consequence of Compactness

Lemma

Let ϕ ∈ FO[τ] and for i ∈ I , let Φi ⊆ FO[τ]. Assume that ⊧ ϕ↔ ⋁i∈I ⋀Φi .
Then there is a finite I0 ⊆ I and, for every i ∈ I0, a finite Φi

0 ⊆ Φ
i such that

⊧ ϕ↔ ⋁i∈I0 ⋀Φi
0.

For simplicity we assume that ϕ is a sentence and that every Φi is a
set of sentences. By hypothesis, for i ∈ I we have Φi ⊧ ϕ. Hence, by
the Compactness Theorem, Φi

0 ⊧ ϕ for some finite Φi
0 ⊆ Φ

i .
Therefore, ⊧ ⋁i∈I0 ⋀Φi

0 → ϕ, for each finite subset I0 ⊆ I .

Suppose there is no such I0, with ⊧ ϕ→ ⋁i∈I0 ⋀Φi
0.

Then each finite subset of {ϕ} ∪ {¬⋀Φi
0 ∶ i ∈ I} has a model.

Hence, by the Compactness Theorem, there is a model of ϕ which,
for all i ∈ I , satisfies ¬⋀Φi

0. But this contradicts the hypothesis
⊧ ϕ↔ ⋁i∈I ⋀Φi .
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Elementary Equivalence

Structures A and B (of the same vocabulary) are said to be
elementarily equivalent, written A ≡ B , if they satisfy the same
first-order sentences.

Corollary

Let Φ be a set of first-order sentences. Assume that any two structures
that satisfy the same sentences of Φ are elementarily equivalent.
Then any first-order sentence is equivalent to a boolean combination of
sentences of Φ (that is, is equivalent to a sentence obtainable by closing Φ
under ¬ and ∨).

For any structure A, set

Φ(A) ∶= {ψ ∶ ψ ∈ Φ,A ⊧ ψ} ∪ {¬ψ ∶ ψ ∈ Φ,A ⊧ ¬ψ}.
Let ϕ be any first-order sentence. By the preceding lemma it suffices
to show that ⊧ ϕ↔ ⋁A⊧ϕ⋀Φ(A).
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Elementary Equivalence (Cont’d)

We must show ⊧ ϕ↔ ⋁A⊧ϕ⋀Φ(A).
Suppose B ⊧ ϕ.

Then B ∈ {A ∶ A ⊧ ϕ} and B ⊧ Φ(B).
Thus, B ⊧ ⋁A⊧ϕ⋀Φ(A).
For the converse, suppose B ⊧ ⋁A⊧ϕ⋀Φ(A).
Then, for some model A of ϕ, B ⊧ Φ(A).
By definition of Φ(A), A and B satisfy the same sentences of Φ.

Hence, by hypothesis, A and B are elementarily equivalent.

Therefore, B ⊧ ϕ.
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Subsection 4

Model Classes and Global Relations
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Invariance of Class of Finite Models Under Isomorphisms

Fix a vocabulary τ .

Let ϕ be a sentence of FO[τ].
The class of finite models of ϕ is denoted by

Mod(ϕ).
If π is an isomorphism from A to B, ϕ(x1, . . . , xn) ∈ FO[τ], and
a1, . . . ,an ∈ A, then an easy induction on formulas shows

A ⊧ ϕ[a1, . . . ,an] iff B ⊧ ϕ[π(a1), . . . , π(an)].
In particular, if ϕ is a sentence then A ⊧ ϕ iff B ⊧ ϕ.

Hence, Mod(ϕ) is closed under isomorphisms, i.e.,

A ∈Mod(ϕ) and A ≅ B imply B ∈Mod(ϕ).
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Definable Tuples in Structures

For ϕ(x1, . . . , xn) ∈ FO[τ] and a structure A let

ϕA(−) ∶= {(a1, . . . ,an) ∶ A ⊧ ϕ[a1, . . . ,an]}
be the set of n-tuples defined by ϕ in A.

For n = 0 this should be read as

ϕA ∶= { TRUE, if A ⊧ ϕ,

FALSE, if A /⊧ ϕ.
Using this notation we can rewrite, for A ≅ B, the equivalence
A ⊧ ϕ[a1, . . . ,an] iff B ⊧ ϕ[π(a1), . . . , π(an)] as

if π ∶ A ≅ B, then π(ϕA(−)) = ϕB(−),
where for X ⊆ An, π(X ) ∶= {(π(a1), . . . , π(an)) ∶ (a1, . . . ,an) ∈ X}.
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Convention of Classes of Structures

We saw that only classes of structures closed under isomorphisms can
be axiomatizable in FO[τ].
Only such classes will be of interest.

We agree that, throughout the slides, all classes K of structures
considered will tacitly be assumed to be closed under isomorphisms,
i.e.,

A ∈ K and A ≅ B imply B ∈ K .
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Global Relations

We saw that properties expressible in logics correspond to so-called
global relations.

Definition

Let K be a class of τ -structures. An n-ary global relation Γ on K is a
mapping assigning to each A ∈ K an n-ary relation Γ(A) on A satisfying

Γ(A)a1 . . . an iff Γ(B)π(a1) . . . π(an),
for every isomorphism π ∶ A ≅ B and every a1, . . . ,an ∈ A.
If K is the class of all finite τ -structures, then we just speak of an n-ary
global relation.
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Examples

(a) Any formula ϕ(x1, . . . , xn) of FO[τ] defines the global relation

A ↦ ϕA(−).
(b) The “transitive closure relation” TC is the binary global relation on

GRAPH with

TC(G) ∶= {(a,b) ∶ a,b ∈ G , there is a path from a to b}.
(c) For m ≥ 0, Γm is a unary global relation on GRAPH, where

Γm(G) ∶= {a ∶ ∥{b ∈ G ∶ EGab}∥ = m}
is the set of elements of G of degree m.
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The Case n = 0

In the definition of a global relation, we also allow the case n = 0.

There are only two 0-ary relations on a structure, TRUE and FALSE.

One identifies a 0-ary global relation Γ on K with the class

{A ∈ K ∶ Γ(A) = TRUE}.
By this identification, the global relation associated with a first-order
sentence ϕ is the class Mod(ϕ) of finite models of ϕ.
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Accommodating Function Symbols

Nearly all the methods and results we study can directly be extended
to vocabularies containing function symbols.

Moreover, by replacing functions by their graphs, one can always pass
to function-free vocabularies.

Consider a vocabulary τ .

For every n-ary function symbol f ∈ τ , we introduce a new (n + 1)-ary
relation symbol F .

Let the vocabulary τ r consist of the relation symbols and constants
from τ together with the new relation symbols.

Thus, τ r is function-free.
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Accommodating Function Symbols (Cont’d)

For a τ -structure A, let Ar be the τ r -structure obtained from A by
replacing every n-ary function f A by its graph FA,

FA
∶= {(a1, . . . ,an, f A(a1, . . . ,an)) ∶ a1, . . . ,an ∈ A}.

Example: Consider a group (G ,○G , eG ).
We can perceive it as an {R , e}-structure, where R is a ternary
relation symbol.

Then, we look at the structure (G ,RG , eG ), where the ternary
relation R is interpreted as the graph of ○G , i.e.,

RG = {(a,b,a ○G b) ∶ a,b ∈ G}.
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Accommodating Function Symbols (Cont’d)

The class of τ r -structures of the form Ar is the class of models of the
conjunction of the formulas

∀x1⋯∀xn∃
=1yFx1 . . . xny , f ∈ τ.

For every τ -sentence ϕ, there is a τ r -sentence ϕr and, for every
τ r -sentence ψ, there is a τ -sentence ψ−r , such that for every
τ -structure A, we have

A ⊧ ϕ iff Ar ⊧ ϕr ,

A ⊧ ψ−r iff Ar ⊧ ψ.
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Accommodating Function Symbols (Cont’d)

Example: Consider the sentence

ϕ ∶= ∃x∀yf (g(y)) = x .
Then

ϕr = ∃x∀y∃u(Gyu ∧ Fux).
Consider now the sentence

ψ ∶= ∀x∃y(Fxc ∧ ¬Gcy).
Then

ψ−r = ∀x∃y(f (x) = c ∧ ¬g(c) = y).
Note that, in general, qr(ϕr) > qr(ϕ).
A class K of τ -structures is the class of models of a first-order
sentence iff K r ∶= {Ar ∶ A ∈ K} is the class of models of a first-order
sentence.
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Subsection 5

Relational Databases and Query Languages
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Relational Databases and Query Languages

Suppose that a database contains:

The names of the main cities in the world;
The pairs (a,b) of such cities such that a given airline offers service
from a to b without stopover.

We can view the database as a first-order structure, namely as a
digraph G = (G ,EG ), where:

G is the set of cities;
EGab means that there is a flight without stopover from a to b.

First-order logic can be considered as a query language.

Example: Let ϕ(x , y) ∶= Exy ∨ ∃z(Exz ∧ Ezy).
If ϕ is thought of as a query to the database, then the response is the
set of pairs (a,b) of cities such that b can be reached from a with at
most one stop.

We obtain a global relation if we assign to any database (digraph) the
response corresponding to the query ϕ.
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Limitations of First-Order Logic

First-order logic provides a rich class of database queries.

But some plausible queries are not first-order expressible.

Example: It is impossible to express the query

“Can one fly from x to y?”

by a first-order formula such that we get the right answer in all
possible databases (digraphs).

As a consequence, we are led to study stronger logics (or, query
languages).
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