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The Ehrenfeucht-Fräıssé Method Elementary Classes

Subsection 1

Elementary Classes
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The Ehrenfeucht-Fräıssé Method Elementary Classes

Expressivity of First-Order Logic in the Finite

Proposition

Every finite structure can be characterized in first-order logic up to
isomorphism. I.e., for every finite structure A, there is a sentence ϕA of
first-order logic, such that for all structures B, we have

B ⊧ ϕA iff A ≅ B.

Suppose A = {a1, . . . ,an}. Set a = a1 . . . an. Let

Θn ∶= {ψ ∶ ψ has the form Rx1 . . . xk , x = y or c = x ,

and variables among v1, . . . , vn}.

Finally set

ϕA ∶= ∃v1⋯∃vn(⋀{ψ ∶ ψ ∈ Θn,A ⊧ ψ[a]}
∧⋀{¬ψ ∶ ψ ∈ Θn,A ⊧ ¬ψ[a]}
∧ ∀vn+1(vn+1 = v1 ∨⋯∨ vn+1 = vn)).
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The Ehrenfeucht-Fräıssé Method Elementary Classes

Generalized Axiomatizability

Corollary

Let K be a class of finite structures. Then there is a set Φ of first-order
sentences such that K =Mod(Φ), i.e., K is the class of finite models of Φ.

Let K be a class of finite structures. For each n, there is only a finite
number of pairwise nonisomorphic structures of cardinality n. Let{A1, . . . ,Ak} be a maximal subset of K of pairwise nonisomorphic
structures of cardinality n. Set

ψn ∶= (ϕ=n → (ϕA1 ∨⋯∨ ϕAk
)),

where ϕ=n is a first-order sentence expressing “there are exactly n

elements”. Then K =Mod({ψn ∶ n ≥ 1}).
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The Ehrenfeucht-Fräıssé Method Elementary Classes

Elementary Classes and m-Equivalence

Definition

Let K be a class of finite structures. K is called axiomatizable in

first-order logic or elementary, if there is a sentence ϕ of first-order logic
such that K =Mod(ϕ).

Some remarks:
In the literature, instead of axiomatizable one often uses the term
finitely axiomatizable.
In (general) model theory a class of arbitrary structures K is called
elementary if, for some ϕ, K is the class of arbitrary models of ϕ.
And given classes K0 and K with K0 ⊇ K , it is said that K is elementary

relative to K0 if, for some ϕ, K is the class of models of ϕ in K0.
In this terminology our notion of elementary corresponds to elementary
relative to the class of finite structures.

For structures A and B and m ∈N, we write A ≡m B and say that A
and B are m-equivalent, if A and B satisfy the same first-order
sentences of quantifier rank ≤ m.
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The Ehrenfeucht-Fräıssé Method Elementary Classes

Necessary Condition for Axiomatizability

Theorem

Let K be a class of finite structures. Suppose that for every m, there are
finite structures A and B, such that A ∈ K , B ∉ K , and A ≡m B. Then K

is not axiomatizable in first-order logic.

Let ϕ be any first-order sentence.

Set m ∶= qr(ϕ).
By hypothesis, there are A, B, such that A ∈ K , B ∉ K , and A ≡m B.

Hence, K ≠Mod(ϕ).
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Subsection 2

Ehrenfeucht’s Theorem
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Partial Isomorphisms

Definition

Assume A and B are structures. Let p be a map with dom(p) ⊆ A and
ran(p) ⊆ B , where dom(p) and ran(p) denote the domain and the range
of p, respectively. Then p is a partial isomorphism from A to B if:

p is injective;

for every c ∈ τ , cA ∈ dom(p) and p(cA) = cB;

for every n-ary R ∈ τ , and all a1, . . . ,an ∈ dom(p),
RAa1 . . . an iff RBp(a1) . . . p(an).

We write Part(A,B) for the set of partial isomorphisms from A to B.

We identify a map p with its graph {(a,p(a)) ∶ a ∈ dom(p)}.
Then p ⊆ q means that q is an extension of p.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Remarks

(a) The empty map, p = ∅, is a partial isomorphism from A to B just in
case the vocabulary contains no constants.

(b) If p ≠ ∅ is a map with dom(p) ⊆ A and ran(p) ⊆ B , then p is a partial
isomorphism from A to B iff

dom(p) contains cA, for all constants c ∈ τ , and
p ∶ dom(p)A ≅ ran(p)B, where dom(p)A and ran(p)B denote the
substructures of A and B with universes dom(p) and ran(p),
respectively.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Remarks (Cont’d)

(c) For a = a1 . . . as ∈ A and b = b1 . . . bs ∈ B , the following statements are
equivalent:

(i) The clauses p(ai) = bi , for i = 1, . . . , s and p(cA) = cB, for c in τ ,
define a map, which is a partial isomorphism from A to B (henceforth
denoted by a ↦ b, a notation that suppresses the constants).

(ii) For all quantifier-free ϕ(v1, . . . , vs), A ⊧ ϕ[a] iff B ⊧ ϕ[b].
(iii) For all atomic ϕ(v1, . . . , vs), A ⊧ ϕ[a] iff B ⊧ ϕ[b].
Note that for an arbitrary structure D and d in D,

di = dj iff D ⊧ vi = vj[d];
cD = dj iff D ⊧ c = vj[d];
RDcDdidj iff D ⊧ Rcvivj[d], c ,R ∈ τ,R ternary.

Using such equivalences, we can show that (i) and (iii) are equivalent.

Clearly, (ii) implies (iii).

(ii) follows from (iii), since every quantifier-free formula is a boolean
combination of atomic formulas.

George Voutsadakis (LSSU) Finite Model Theory January 2024 11 / 82



The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Partial Isomorphisms and Quantifiers

In general, a partial isomorphism does not preserve the validity of
formulas with quantifiers.

Example: Let τ = {<}, A = ({0,1,2},<), B = ({0,1,2,3},<), where in
both cases < denotes the natural ordering.

p0 ∶= 02↦ 01 is a partial isomorphism from A to B.

Note that
A ⊧ ∃v3(v1 < v3 ∧ v3 < v2)[0,2]

but
B /⊧ ∃v3(v1 < v3 ∧ v3 < v2)[p0(0),p0(2)].

Since A ⊧ (v1 < v3 ∧ v3 < v2)[0,2,1], we see that, for any
p ∈ Part(A,B), with dom(p) = {0,2}, the validity of
B ⊧ ∃v3(v1 < v3 ∧ v3 < v2)[p(0),p(2)] is equivalent to the existence
of some q ∈ Part(A,B) which extends p and has 1 in its domain.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Ehrenfeucht Games: The Play

Let A and B be τ -structures, a ∈ As , b ∈ B s , and m ∈N.

The Ehrenfeucht game Gm(A,a,B ,b) is played by two players
called the spoiler and the duplicator.

Each player has to make m moves in the course of a play and the
players take turns.

In his i -th move the spoiler first selects a structure, A or B, and an
element in this structure.

In his i -th move:

If the spoiler chooses ei in A, then the duplicator must choose an
element fi in B;
If the spoiler chooses fi in B, then the duplicator must choose an
element ei in A.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Ehrenfeucht Games: Winners and Losers

At the end of the game Gm(A,a,B,b) elements e1, . . . , em in A and
f1, . . . , fm in B have been chosen.

A,a B,b

Move 1 e1 f1
Move 2 e2 f2

⋮ ⋮ ⋮
Move m em fm

The duplicator wins iff a e ↦ b f ∈ Part(A,B).
In case m = 0, we just require that a ↦ b ∈ Part(A,B).
Otherwise, the spoiler wins.

Equivalently, the spoiler wins if, after some i ≤ m, ae1 . . . ei ↦ bf1 . . . fi
is not a partial isomorphism.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Ehrenfeucht Games: Winning Strategies

We say that a player, the spoiler or the duplicator, has a winning

strategy in Gm(A,a,B,b), or shortly, that he wins Gm(A,a,B,b), if
it is possible for him to win each play whatever choices are made by
the opponent.

If s = 0 (and hence a and b are empty), we denote the game by
Gm(A,B).
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Duplicator Win

Lemma

(a) If A ≅ B then the duplicator wins Gm(A,B).
(b) If the duplicator wins Gm+1(A,B) and ∥A∥ ≤ m, then A ≅ B.
(a) Suppose π ∶ A ≅ B.

A winning strategy for the duplicator consists in always choosing the
image or preimage under π of the spoiler’s selection:

If the spoiler chooses a ∈ A, then the duplicator chooses π(a);
If the spoiler chooses b ∈ B, then the duplicator answers with π−1(b).
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Duplicator Win (Cont’d)

(b) Suppose that the duplicator wins Gm+1(A,B) and ∥A∥ ≤ m.

Assume A = {a1, . . . ,am}.
Consider a play where the spoiler, in his first m moves, chooses
a1, . . . ,am.

Let b1, . . . ,bm be the responses of the duplicator according to his
winning strategy.

Then p ∶ a ↦ b ∈ Part(A,B) with dom(p) = A.

Claim: p is an isomorphism from A onto B.

Suppose, to the contrary, that ran(p) ≠ B .

Then the spoiler, in the last move, chooses some b ∈ B/ran(p).
Now there is no answer for the duplicator.

So the spoiler wins, a contradiction.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Properties of Ehrenfeucht Games

The following lemma collects some facts about the Ehrenfeucht game.

Lemma

Let A and B be structures, a ∈ As , b ∈ B s , and m ≥ 0.

(a) The duplicator wins G0(A, a,B,b) iff a ↦ b is a partial isomorphism.

(b) For m > 0 the following are equivalent:

(i) The duplicator wins Gm(A,a,B,b).
(ii) For all a ∈ A, there is b ∈ B, such that the duplicator wins the game

Gm−1(A,aa,B,bb) and for all b ∈ B, there is a ∈ A, such that the duplicator
wins Gm−1(A,aa,B,bb).

(c) If the duplicator wins Gm(A, a,B,b) and m′ < m, then the duplicator wins
Gm′(A, a,B,b).
The proofs are immediate from the definition.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Introducing the Hintikka Formula

Let A be given.

For a = a1 . . . as ∈ A and m ≥ 0, we introduce a formula

ϕm
a (v1, . . . , vs)

that describes the game theoretic properties of a in any game
Gm(A,a, . . .).
More precisely, we want to define ϕm

a in such a way that for any B
and b = b1 . . . bs ∈ B ,

B ⊧ ϕm
a [b] iff the duplicator wins Gm(A,a,B,b).

If the structure A is not clear from the context, we use the notation
ϕm
A,a for ϕm

a .

We also allow s = 0, the case of the empty sequence ∅ of elements in
A, and write ϕm

A
for the sentence ϕm

A,∅.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

The Hintikka Formula

Definition

Let v be v1, . . . , vs . Set

ϕ0
a(v) ∶=⋀{ϕ(v) ∶ ϕ atomic or negated atomic, A ⊧ ϕ[a]}.

For m > 0, set
ϕm
a (v) ∶= ⋀

a∈A

∃vs+1ϕ
m−1
aa (v , vs+1) ∧ ∀vs+1 ⋁

a∈A

ϕm−1
aa (v , vs+1).

v0a describes the isomorphism type of the substructure generated by a

in A.

For m > 0 the formula ϕm
a tells us to which isomorphism types the

tuple a can be extended in m steps adding one element in each step.

ϕm
a is called the m-isomorphism type (or m-Hintikka formula) of a

in A.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Properties of the Hintikka Formula

Since {ϕ(v1, . . . , vs) ∶ ϕ atomic or negated atomic} is finite, a simple
induction on m shows

Lemma

For s,m ≥ 0, the set {ϕm
A,a ∶ A a structure and a ∈ As} is finite.

In particular, the conjunctions and disjunctions in the above definition
are finite.

Lemma

(a) qr(ϕm
a ) = m;

(b) A ⊧ ϕm
a [a];

(c) For any B and b in B, B ⊧ ϕ0
a[b] iff a ↦ b ∈ Part(A,B).

The proofs of (a) and (b) are straightforward.

(c) holds by Part (c) of previous remarks.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Ehrenfeucht’s Theorem

Theorem (Ehrenfeucht’s Theorem)

Given A, B, a ∈ As , b ∈ B s , and m ≥ 0, the following are equivalent:

(i) The duplicator wins Gm(A,a,B,b);
(ii) B ⊧ ϕm

a [b];
(iii) a and b satisfy the same formulas of quantifier rank ≤ m, that is, if

ϕ(x1, . . . , xs) is of quantifier rank ≤ m, then A ⊧ ϕ[a] iff B ⊧ ϕ[b].
(iii)⇒(ii): We have qr(ϕm

a ) = m and A ⊧ ϕm
a [a].

It follows, using (iii), that B ⊧ ϕm
a [b].

(i)⇔(ii): This is done by induction on m.

Assume m = 0.
The duplicator wins G0(A,a,B,b) iff a ↦ b ∈ Part(A,B) iff
B ⊧ ϕ0

a[b].
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Ehrenfeucht’s Theorem (Cont’d)

Assume, next, m > 0.
The duplicator wins Gm(A,a,B,b) iff
for all a ∈ A, there is b ∈ B , such that the duplicator wins
Gm−1(A,aa,B,bb), and
for all b ∈ B , there is a ∈ A, such that the duplicator wins
Gm−1(A,aa,B,bb) iff
for all a ∈ A, there is b ∈ B , with B ⊧ ϕm−1

aa [bb] and
for all b ∈ B , there is a ∈ A, with B ⊧ ϕm−1

aa [bb] iff
B ⊧ ⋀a∈A ∃vs+1ϕ

m−1
aa (v , vs+1) ∧ ∀vs+1⋁a∈Aϕ

m−1
aa (v , vs+1)[b] iff

B ⊧ ϕm
a [b].

George Voutsadakis (LSSU) Finite Model Theory January 2024 23 / 82



The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Ehrenfeucht’s Theorem (Cont’d)

(i)⇒(iii): The proof proceeds by induction on m.

The case m = 0 is handled as above.

Let m > 0 and suppose that the duplicator wins Gm(A,a,B,b).
Clearly, the set of formulas ϕ(x1, . . . , xs) satisfying the equivalence in
(iii) contains the atomic formulas and is closed under ¬ and ∨.

Suppose that ϕ(x) = ∃yψ and qr(ϕ) ≤ m.

Since y ∉ free(ϕ), we can assume that y is distinct from x . Hence,
ψ = ψ(x , y).
Assume, for instance, A ⊧ ϕ[a].
Then there is a ∈ A, such that A ⊧ ψ[aa].
By (i), the duplicator wins Gm(A,a,B,b).
So there is b ∈ B , such that the duplicator wins Gm−1(A,aa,B,bb).
Since qr(ψ) ≤ m − 1, the induction hypothesis yields B ⊧ ψ[b,b].
Hence B ⊧ ϕ[b].
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

The Case s = 0

Corollary

For structures A,B and m ≥ 0 the following are equivalent:

(i) The duplicator wins Gm(A,B).
(ii) B ⊧ ϕm

A
.

(iii) A ≡m B.

Moreover, by Part (b) of a previous lemma, we get

Corollary

Let A be a structure with ∥A∥ ≤ m. Then for all B,

B ⊧ ϕm+1
A iff A ≅ B.
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Satisfiability of a Formula

The next result shows that the formulas ϕm
a give a clear picture of the

expressive power of first-order logic.

Theorem

Let ϕ(v1, . . . , vs) be a formula of quantifier rank ≤ m. Then

⊧ ϕ ↔ ⋁{ϕm
A,a ∶ A a structure, a ∈ A, and A ⊧ ϕ[a]}.

Suppose first that B ⊧ ϕ[b]. Then the formula ϕm

B,b
is a member of

the disjunction on the right side of the equivalence. So the latter is
satisfied by b.

Conversely, suppose B ⊧ ⋁{ϕm
A,a}[b].

Then, for some A and a, such that A ⊧ ϕ[a], we have B ⊧ ϕm
A,a[b].

By Ehrenfeucht’s Theorem, a and b satisfy the same formulas of
quantifier rank ≤ m. Therefore, B ⊧ ϕ[b].
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The Ehrenfeucht-Fräıssé Method Ehrenfeucht’s Theorem

Characterization of Axiomatizable Classes

Theorem

For a class K of finite structures the following are equivalent:

(i) K is not axiomatizable in first-order logic.

(ii) For each m there are finite structures A and B such that

A ∈ K , B ∉ K and A ≡m B.

(ii) ⇒ (i) was proven previously.

(i) ⇒ (ii) Suppose that (ii) does not hold.

For some m and all finite A and B, A ∈ K and A ≡m B imply B ∈ K .

Then K =Mod(⋁{ϕm
A
∶ A ∈ K}).

Thus K is axiomatizable.
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Subsection 3

Examples and Fräıssé’s Theorem
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The Ehrenfeucht-Fräıssé Method Examples and Fräıssé’s Theorem

The Back and Forth Properties

Given structures A,B and m ∈N, let

Wm(A,B) ∶= {a↦ b ∶ s ≥ 0, a ∈ As ,b ∈ Bs , the duplicator wins Gm(A, a,B,b)}
be the set of winning positions for the duplicator.

Definition

Structures A and B are said to be m-isomorphic, written A ≅m B, if there
is a sequence (Ij)j≤m with the following properties:

(a) Every Ij is a nonempty set of partial isomorphisms from A to B.

(b) (Forth Property) For every j <m, p ∈ Ij+1, and a ∈ A, there is q ∈ Ij , such
that q ⊇ p and a ∈ dom(q).

(c) (Back Property) For every j < m, p ∈ Ij+1, and b ∈ B, there is q ∈ Ij , such
that q ⊇ p and b ∈ ran(g).

If (Ij)j≤m has the properties (a), (b), and (c), we write (Ij)j≤m ∶ A ≅m B
and say that A and B are m-isomorphic via (Ij)j≤m.
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The Ehrenfeucht-Fräıssé Method Examples and Fräıssé’s Theorem

Property of m-Isomorphism

Proposition

Suppose (Ij)j≤m ∶ A ≅m B. Then (Ĩj)j≤m ∶ A ≅m B with

Ĩj ∶= {q ∈ Part(A,B) ∶ q ⊆ p for some p ∈ Ij}.
In particular, ∅↦ ∅ ∈ Ĩj , for all j ≤ m. Moreover, ̃Wj(A,B) =Wj(A,B).

We first show that (Ĩj)j≤m ∶ A ≅m B.

(a) Note that Ij ≠ ∅ and Ij ⊆ Ĩj . So Ĩj ≠ ∅.
If p̃ ∈ Ĩj , then, by definition, it is a partial isomorphism.

(b) Suppose j < m, p̃ ⊆ Ĩj+1 and a ∈ A.
Then, there is p ∈ Ij+1, with p̃ ⊆ p.
Since (Ij)j≤m ∶ A ≅m B, there exists q ∈ Ij , such that p ⊆ q and
a ∈ dom(q).
Then, by definition, q̃ = q ∈ Ĩj , such that p̃ ⊆ p ⊆ q̃ and a ∈ dom(q̃).

(c) Similar to (b).
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The Ehrenfeucht-Fräıssé Method Examples and Fräıssé’s Theorem

Property of m-Isomorphism (Cont’d)

We next show that ̃Wj(A,B) =Wj(A,B).
Clearly, Wj(A,B) ⊆ ̃Wj(A,B).
Suppose p̃ ∈ ̃Wj(A,B).
Then, there exists p ∈Wj(A,B), such that p̃ ⊆ p.
So the duplicator wins Gj(A,dom(p),B, ran(p)).
A fortiori, the duplicator wins Gj(A,dom(p̃),B, ran(p̃)).
This shows that p̃ ∈Wj(A,B).
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The Ehrenfeucht-Fräıssé Method Examples and Fräıssé’s Theorem

Isomorphisms and Games

Theorem

For structures A and B, a ∈ As , b ∈ B s , and m ≥ 0, the following are
equivalent:

(i) The duplicator wins Gm(A,a,B,b);
(ii) a ↦ b ∈Wm(A,B) and (Wj(A,B))j≤m ∶ A ≅m B;

(iii) There is (Ij)j≤m, with a ↦ b ∈ Im, such that (Ij)j≤m ∶ A ≅m B;

(iv) B ⊧ ϕm
a [b];

(v) a satisfies in A the same formulas of quantifier rank ≤ m as b in B.

By the definition of Wm(A,B) and a previous result, (i) implies (ii).

Obviously, (ii) implies (iii).

Therefore it suffices to show the implication (iii) ⇒ (i), the remaining
equivalences being clear from previous results.
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The Ehrenfeucht-Fräıssé Method Examples and Fräıssé’s Theorem

Isomorphisms and Games ((iii) ⇒ (i))

Suppose that (Ij)j≤m ∶ A ≅m B and a ↦ b ∈ Im.
We describe a winning strategy in Gm(A,a,B,b) for the duplicator.

In his i -th move he should choose the element ei (or fi , respectively),
such that for

pi ∶ ae1 . . . ei ↦ bf1 . . . fi

it is true that pi ⊆ q, for some q ∈ Im−i .
This is always possible because of the back and forth properties of(Ij)j≤m.
Looking at i = m we see that the duplicator wins.
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The Case s = 0

For s = 0, in view of a previous proposition, the preceding theorem
yields the following corollary.

Corollary

For structures A,B and m ≥ 0 the following are equivalent:

(i) The duplicator wins Gm(A,B);
(ii) (Wj(A,B))j≤m ∶ A ≅m B;
(iii) A ≅m B;
(iv) B ⊧ ϕm

A
;

(v) A ≡m B.

The equivalence of (iii) and (v) is known as Fräıssé’s Theorem.
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The Ehrenfeucht-Fräıssé Method

Ehrenfeucht’s Theorem and Fräıssé’s Theorem are different
formulations of the same fact.

The preceding proof exhibits the close relationship between:

Sequences (Ij)j≤m;
Winning strategies for the duplicator in Gm(A, a,B,b).

Therefore, one often speaks of the Ehrenfeucht-Fräıssé game or the
Ehrenfeucht-Fräıssé method.
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Example

Let τ be the empty vocabulary.

Let A and B be τ -structures, i.e., nonempty sets.

Suppose ∥A∥ ≥m and ∥B∥ ≥ m.

Then A ≅m B.

In fact, (Ij)j≤m ∶ A ≅m B, with

Ij ∶= {p ∈ Part(A,B) ∶ ∥dom(p)∥ ≤ m − j}.
As a consequence the class EVEN[τ] of finite τ -structures of even
cardinality is not axiomatizable in first-order logic.

In fact, for each m > 0, let Am be a structure of cardinality m.

Then, Am ∈ EVEN[τ] iff Am+1 ∉ EVEN[τ].
But Am ≅m Am+1.

Now, we apply the Axiomatizability Theorem.
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Example

Let τ = {<,min,max} be a vocabulary for finite orderings.

Let m ≥ 1.
Let A and B be finite orderings, with ∥A∥ > 2m and ∥B∥ > 2m.
We show, next, that A ≅m B.

I follows that the class of finite orderings of even cardinality is not
axiomatizable in first-order logic.

This statement remains true, if we consider orderings as{<,S ,min,max}-structures.
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Example (Cont’d)

Given any ordering C, we define its distance function d by

d(a,a′) ∶= ∥{b ∈ C ∶ (a < b ≤ a′) or (a′ < b ≤ a)}∥.
For j ≥ 0, we introduce the “truncated” j-distance function dj on
C ×C by

dj(a,a′) ∶= { d(a,a′), if d(a,a′) < 2j ,
∞, otherwise.

Suppose that A and B are finite orderings with ∥A∥, ∥B∥ > 2m.
For j ≤ m, set

Ij ∶= {p ∈ Part(A,B) ∶ dj(a,a′) = dj(p(a),p(a′)) for a,a′ ∈ dom(p)}.
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Example (Cont’d)

Claim: (Ij)j≤m ∶ A ≅m B.
By assumption on the cardinalities of A and B, we have{(minA,minB), (maxA,maxB)} ∈ Ij , for every j ≤ m.

We prove the forth property of (Ij)j≤m.
The back property is shown similarly.

Suppose j < m, p ∈ Ij+1, and a ∈ A. We distinguish two cases,
depending on whether or not “there is an a′ ∈ dom(p), such that
dj(a,a′) < 2j”.

If the condition holds, there is exactly one b ∈ B for which p ∪ {(a,b)}
is a partial isomorphism preserving dj -distances.
Suppose the condition does not hold. Let dom(p) = {a1, . . . , ar} with
a1 < . . . < ar . We restrict ourselves to the case ai < a < ai+1, for some i .
Then, dj(ai , a) =∞ and dj(a, ai+1) =∞. Hence, dj+1(ai , ai+1) =∞.
Therefore, dj+1(p(ai),p(ai+1)) =∞. Thus, there is a b, such that
p(ai) < b < p(ai+1), dj(p(ai),b) =∞, and dj(b,p(ai+1)) =∞.
We can now verify that q ∶= p ∪ {(a,b)} is a partial isomorphism in Ij .
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Example

Let τ = {<,min,max} be a vocabulary for finite orderings.

Let σ = τ ∪ {E}, with a binary relation symbol E .

For n ≥ 3, let An be the ordered τ -structure with

An = {0, . . . ,n},
such that:

minAn = 0 and maxAn = n;
<An is the natural ordering on An;
E is interpreted as

EAn = {(i , j) ∶ ∣i − j ∣ = 2} ∪ {(0,n), (n,0), (1,n − 1), (n − 1,1)}.
(An,E

An) is a graph that is connected iff n is odd.
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Example (Cont’d)

Let m ≥ 2 and ℓ,k ≥ 2m.
Let Ij be the set of partial isomorphisms from Aℓ∣τ to Ak ∣τ as in the
preceding example.

For j ≥ 2 any p ∈ Ij preserves E as well.

I.e., Ij ⊆ Part(Ai ,Ak).
Hence, (Ij+2)j≤m−2 ∶ Aℓ ≅m−2 Ak .

By the Axiomatizability Theorem, the class of finite connected
ordered graphs is not first-order axiomatizable.
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Example

For ℓ ≥ 1, let Gℓ be the graph given by a cycle of length ℓ + 1.

To be precise, set:

Gℓ ∶= {0, . . . , ℓ};
EGℓ ∶= {(i , i + 1) ∶ i < ℓ} ∪ {(i + 1, i) ∶ i < ℓ} ∪ {(0, ℓ), (ℓ,0)}.

Thus, for ℓ,k ∈N, the disjoint union Gℓ ⊍ Gk consists of:

A cycle of length ℓ + 1;
A cycle of length k + 1.

Note that for Aℓ, as defined in the preceding example, we have:

Aℓ/{E} ≅ Gℓ for ℓ odd;
Aℓ/{E} ≅ G ℓ

2 −1
⊍ G ℓ

2
for ℓ even.
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Example (Cont’d)

Claim: If ℓ,k ≥ 2m, then Gℓ ≅m Gk and Gℓ ≅m Gℓ ⊍ Gℓ.
For j ∈N, define the distance function dj on a graph G by

dj(a,a′) ∶= { d(a,b), if d(a,b) < 2j+1
∞, otherwise

,

where d denotes the distance function on G introduced previously.

We define Ij as the set of p ∈ Part(Gℓ,Gℓ ⊍ Gℓ), with:∥dom(p)∥ ≤ m − j ;
dj(a,b) = dj(p(a),p(b)), for a,b ∈ dom(p).

We can verify that (Ij)j≤m ∶ Gℓ ≅m Gℓ ⊍ Gℓ.

This proves that Gℓ and Gℓ ⊍ Gℓ are m-isomorphic.
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Example: Consequences (Cont’d)

Claim: The class CONN of connected finite graphs is not
axiomatizable in first order logic.

By the Axiomatization Theorem, CONN is not axiomatizable, since
for each m we have

G2m ∈ CONN, G2m ⊍ G2m ∉ CONN, G2m ≡m G2m ⊍ G2m .

Claim: The global relation TC, the relation of transitive closure on
the class GRAPH of finite graphs, is not first-order definable.

Suppose ψ(x , y) is a first-order formula defining TC on GRAPH.

Then CONN would be the class of finite models of

∀x∀y(¬x = y → ψ(x , y))
together with the graph axioms.

George Voutsadakis (LSSU) Finite Model Theory January 2024 44 / 82
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Equivalence Invariance of Operations

Proposition

The product, the disjoint union, and the ordered sum preserve ≡m:
(a) If A1 ≡m B1 and A2 ≡m B2, then A1 ×A2 ≡m B1 × B2;
(b) If A1 ≡m B1 and A2 ≡m B2, then A1 ⊍A2 ≡m B1 ⊍ B2;
(c) If A1 ≡m B1 and A2 ≡m B2, then A1 ⊲ A2 ≡m B1 ⊲ B2.

Suppose A1 ≡m B1 and A2 ≡ B2.
By Ehrenfeucht’s Theorem there are winning strategies S1 and S2 for
the duplicator in Gm(A1,B1) and Gm(A2,B2), respectively.
(a) The following gives a winning strategy for the duplicator in the game

Gm(A1 ×A2,B1 ×B2). We simultaneously play games in Gm(A1,B1)
and Gm(A2,B2). Suppose that in his i-th move the spoiler chooses,
say, (a1, a2) ∈ A1 ×A2. Let b1 ∈ B1 and b2 ∈ B2 be answers to a1 and a2
according to S1 and S2, respectively. Then the duplicator chooses(b1,b2).
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Equivalence Invariance of Operations (Cont’d)

(b),(c) Let ∗ ∈ {⊍,⊲}. The following represents a winning strategy for the
duplicator in Gm(A1 ∗A2,B1 ∗B2) (when describing it we use moves of
plays in Gm(A1,B1) and Gm(A2,B2)).

Suppose that in his i-th move the spoiler selects, say, a ∈ A1 ∗A2.
Then the duplicator responds by applying S1 if a ∈ A1, and S2 if a ∈ A2.

The proof above yields more:

Corollary

(a) If (A1, a1) ≡m (B1,b1) and (A2, a2) ≡m (B2,b2), then(A1 ⊍A2, a1, a2) ≡m (B1 ⊍B2,b1,b2).
(b) If (A1, a1) ≡m (B1,b1) and (A2, a2) ≡m (B2,b2), then(A1 ⊲ A2, a1, a2) ≡m (B1 ⊲ B2,b1,b2).
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Remark

Let Z ∶= (Z,<) and Q ∶= (Q,<) be the integers and the rationals with
their orderings. Let ϕ ∶= ∃x∃y(x < y ∧ ∀z¬(x < z ∧ z < y)).
We have Z ⊧ ϕ and Q /⊧ ϕ. Hence, Z /≡3 Q. Therefore, Z /≅3 Q.
The spoiler can “transform” this information into a
winning strategy for the game G3(Z,Q).
This is given by the table on the right, where the
selections of the spoiler are in red.

Z Q

5 a

6 b

? a+b
2

Note that no third move of the duplicator will lead to a partial
isomorphism (since for a < b we have a < a+b

2 < b and there is no
integer between 5 and 6). In this strategy of the spoiler:

His selections in Z correspond to the existential quantifiers in ϕ;
His selections in Q correspond to the universal quantifiers in ϕ.

For this reason moves in Gm(A,B) in which the spoiler chooses an
element of A (of B) are sometimes called ∃-moves (∀-moves).
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On the Importance of the Isomorphism Types

The formulas ϕm
A,a, the m-isomorphism type of a in A, will also play a

crucial role in subsequent considerations.

Their methodological importance stems from the following two facts:

(1) They have a clear algebraic meaning.
(2) Every first-order formula is equivalent to a disjunction of such formulas.

Classical model theory has been characterized by the equation

model theory = universal algebra + logic.

By (1) and (2) above, it is clear that the formulas ϕj
A,a

provide a
bridge between structures and first-order formulas, i.e., between the
main notions from (universal) algebra and from (first-order) logic,
respectively.

Their value as a tool in model theory is therefore not surprising.

George Voutsadakis (LSSU) Finite Model Theory January 2024 48 / 82
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Alternative Way to View Isomorphism Types

There is a more algebraic, sort of logic-free, way to define
m-isomorphism types.

For a = a1 . . . as in A, set:

IT0(A,a) ∶= {ϕ ∶ A ⊧ ϕ[a], ϕ(v1, . . . , vs) atomic};
ITm+1(A,a) ∶= {ITm(A,aa) ∶ a ∈ A}.

It can be verified that, for any B and b ∈ B,

ITm(A,a) = ITm(B,b) iff ϕm
A,a = ϕm

B,b
.
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The Ehrenfeucht-Fräıssé Method Hanf’s Theorem

Subsection 4

Hanf’s Theorem
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The Gaifman Graph of a Structure

All vocabularies in this section will be relational unless stated
otherwise.

Let M be a nonempty subset of a structure A.

We denote byM the substructure of A with universe M.

Given a structure A, we define the binary relation EA on A by

EA ∶= {(a,b) ∶ a ≠ b and there are R in τ and c ∈ A such that RAc

and a and b are components of the tuple c}.
The structure G(A) ∶= (A,EA) is called the Gaifman graph of A.

Obviously, if A itself is a graph then G(A) = A.
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Balls and Ball Types

For a in A and r ∈N, we denote by S(r ,a) (or SA(r ,a)) the r -ball of
a,

S(r ,a) ∶= {b ∈ A ∶ d(a,b) ≤ r}.
S(r ,a) (or SA(r ,a)) stands for the substructure of A with universe
S(r ,a).
Note that for b, c ∈ S(r ,a), we have d(b, c) ≤ 2r .
For a = a1 . . . as , we set

S(r ,a) ∶= S(r ,a1) ∪⋯∪ S(r ,as).
We define the r -ball type of a point a in A to be the isomorphism
type of (S(r ,a),a).
I.e., points a in A and b in B have the same r -ball type iff(SA(r ,a),a) ≅ (SB(r ,b),b).
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Introducing Hanf’s and Gaifman’s Theorems

We showed that certain graphs are m-isomorphic and hence,
m-equivalent, using a sequence (Ij)j≤m, where - in the terminology
just introduced - for each p ∈ Ij and a ∈ dom(p), there was an
isomorphism of S(2j − 1,a) onto S(2j − 1,p(a)) compatible with p.

We use generalizations of this idea to show two further theorems on
the expressive power of first-order logic.

The first one (Hanf’s Theorem) is obtained by applying the idea just
mentioned to graphs of structures.
In the second one (Gaifman’s Theorem) the requirement of
isomorphism of corresponding balls is weakened to ℓ-equivalence for a
suitable ℓ.
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Hanf’s Theorem

Theorem (Hanf’s Theorem)

Let A and B be τ -structures and let m ∈N. Suppose that for some e ∈N:

The 3m-balls in A and B have less than e elements;

For each 3m-ball type ι, one of the following holds:

(i) A and B have the same number of elements of 3m-ball type ι;
(ii) Both A and B have more than m ⋅ e elements of 3m-ball type ι.

Then A ≡m B.
For n < ℓ the ℓ-ball type of an element determines its n-ball type.

So for n < 3m and every n-ball type ι, one of following holds:
A and B have the same number of elements of n-ball type ι;
Both A and B have more than m ⋅ e elements of n-ball type ι.

We show that (Ij)j≤m ∶ A ≅m B, where Ij is the set

{a↦ b ∈ Part(A,B) ∶ (S(3j , a), a) ≅ (S(3j ,b),b) and length(a) ≤m − j}.
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Hanf’s Theorem (Cont’d)

For length(a) = 0, we set (S(3j ,a),a) = ∅ and agree that ∅ ≅ ∅.
Therefore, we have ∅↦ ∅ ∈ Im.
Concerning the back and forth properties it is enough, by symmetry,
to prove the forth property. Thus, suppose that 0 ≤ j ≤m, a ∈ A and
a ↦ b ∈ Ij+1, say, π ∶ (S(3j+1,a),a) ≅ (S(3j+1,b),b).

Case 1: a ∈ S(2 ⋅ 3j+1, a). Then S(3j , aa) ⊆ S(3j+1, a). Setting
b ∶= π(a), we have π ∶ (S(3j , aa), aa) ≅ (S(3j ,bb),bb). Hence
aa ↦ bb ∈ Ij .
Case 2: a ∉ S(2 ⋅ 3j , a) (and, hence, S(3j , a) ∩ S(3j , a) = ∅). Let ι be
the 3j -ball type of a. By hypothesis, S(2 ⋅ 3j , a) and S(2 ⋅ 3j ,b) contain
the same number of elements of 3j -ball type ι. By our assumption on
the cardinality of balls, this is ≤ length(a) ⋅ e ≤ m ⋅ e. Therefore, by (i)
or (ii), there must be an element b ∉ S(2 ⋅ 3j ,b), with 3j -ball type ι.
Choose π′ ∶ (S(3j , a), a) = (S(3j ,b),b). Then the corresponding
restriction of π ∪ π′ is an isomorphism of (S(3j , aa), aa) onto(S(3j ,bb),bb).
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An Application: Graph Connectedness

Note that a graph G is connected if each nonempty subset of G
closed under the graph relation EG contains all elements of G .

Equivalently, if G is a model of the “second-order sentence”

∀P((∃xPx ∧ ∀x∀y((Px ∧ Exy)→ Py))→ ∀zPz).
Claim: The class of connected graphs is not axiomatizable by a
second-order sentence of the form ∃P1⋯∃Prψ, where P1, . . . ,Pr are
unary and ψ is first-order.

For ℓ ≥ 1, let Dℓ = (Dℓ,Eℓ) be a digraph consisting of a cycle of
length ℓ + 1. E.g.,

Dℓ ∶= {0, . . . , ℓ}, Eℓ ∶= {(i , i + 1) ∶ i < ℓ} ∪ {(ℓ,0)}.
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Lemma 1

Lemma 1

Suppose τ = {E ,P1, . . . ,Pr}, where P1, . . . ,Pr are unary, and let m ≥ 0.
Then there is an ℓ0 ≥ 1, such that for any ℓ ≥ ℓ0 and any τ -structure of the
form (Dℓ,P1, . . . ,Pr), there are a,b ∈ Dℓ with disjoint and isomorphic
3m-balls.

For the structures under consideration any 3m-ball contains exactly
2 ⋅ 3m + 1 elements (note that P1, . . . ,Pr are unary and therefore do
not influence the distances induced by the underlying digraphs).

Let i be the number of possible isomorphism types of 3m-balls.

Then in a structure of cardinality ≥ ℓ0 ∶= (i + 1)(2 ⋅ 3m + 1) there must
be two points with disjoint 3m-balls of the same isomorphism type.
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Lemma 2

Lemma 2

Suppose (Dℓ,P1, . . . ,Pr) is a τ -structure
(τ as in Lemma 1) containing elements
a and b with disjoint and isomorphic 3m-
balls. Denote by a− and b− the elements
of Dℓ with Eℓa−a and Eℓb−b, respectively.

Let (Dℓ,E
′
ℓ ,P1, . . . ,Pr ) be the structure obtained by splitting the cycle(Dℓ,P1, . . . ,Pr ) into two cycles by removing the edges (a−,a), (b−,b) and

adding edges (b−,a), (a−,b) instead; more formally:

E ′ℓ ∶= (Eℓ/{(a−,a), (b−,b)}) ∪ {(b−,a), (a−,b)}.
Then (Dℓ,P1, . . . ,Pr ) ≅m (Dℓ,E

′
ℓ ,P1, . . . ,Pr ).

Immediate by Hanf’s Theorem, since both structures have the same
number of 3m-balls of any given isomorphism type.
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Lemma 3

Lemma 3

For τ = {E ,P1, . . . ,Pr} and m ≥ 0, choose ℓ0 according to Lemma 1. Let
ℓ ≥ ℓ0 and (Gℓ,P1, . . . ,Pr) be a τ -structure, where Gℓ is the Gaifman graph
G(Dℓ) of Dℓ, that is, Dℓ is a cycle of length ℓ + 1. Let G′ℓ be the Gaifman
graph G((Dℓ,E

′
ℓ)), where (Dℓ,E

′
ℓ) is defined as in Lemma 2. Then

(Gℓ,P1, . . . ,Pr) ≡m (G′ℓ,P1, . . . ,Pr).
Note that a partial isomorphism between digraphs is a partial
isomorphism of the associated graphs.

So the result follows from the two preceding lemmas.
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Finite Connected Graphs: A Negative Result

Proposition

The class of finite and connected graphs cannot be axiomatized by a
formula of the form

∃P1⋯∃Prψ,

where P1, . . . ,Pr are unary relation symbols and ψ is a first-order sentence
over the vocabulary {E ,P1, . . . ,Pr}.

Suppose for the sentence ∃P1⋯∃Prψ and any finite graph G,

G is connected iff for some P1, . . . ,Pr ⊆ G , (G,P1, . . . ,Pr ) ⊧ ψ.
For m ∶= qr(ψ), choose ℓ0 as in Lemma 1.

As Gℓ0 is connected, there are P1, . . . ,Pr , with (Gℓ0 ,P1, . . . ,Pr) ⊧ ψ.
Then, by Lemma 3, (G′ℓ0 ,P1, . . . ,Pr ) ⊧ ψ.
However, G′ℓ0 is not connected, a contradiction.
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Finite Connected Graphs: A Positive Result

Proposition

The class of finite and connected graphs can he axiomatized by a formula
of the form ∃Rψ, where R is binary and ψ is a first-order sentence over
the vocabulary {E ,R}.

Let ψ be a sentence expressing that:

R is an irreflexive and transitive relation;
R has a minimal element;
Exy holds for any immediate R-successor y of x .

I.e., ψ is the conjunction of

∀x¬Rxx ∧ ∀x∀y∀z((Rxy ∧ Ryz)→ Rxz);
∃x∀y(x = y ∨Rxy);
∀x∀y((Rxy ∧ ∀z¬(Rxz ∧ Rzy))→ Exy).
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Finite Connected Graphs: A Positive Result (Cont’d)

Let G be a graph. Suppose G is a model of ∃Rψ, say (G,RA) ⊧ ψ.
Then, for any element of G, there is a path connecting it with the
minimal element. Hence, G is connected.

Conversely, suppose G is connected.

Choose an arbitrary a ∈ G .

For n ∈N, set
Ln ∶= {b ∶ d(a,b) = n}.

Take as R the transitive closure of

{(b, c) ∶ EGbc and, for some n,b ∈ Ln and c ∈ Ln+1}.
Then (G,R) ⊧ ψ.
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Subsection 5

Gaifman’s Theorem
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Introducing Gaifman’s Theorem

Let τ be a relational signature.

Let A be a τ -structure.

A subset M of A is ℓ-scattered, if the distance (in the Gaifman graph
G(A)) between any two elements of M exceeds ℓ.

Given r ,n ≥ 1 and a τ -formula ψ(x), it is easy to write down a
first-order sentence asserting that there is a 2r -scattered subset M of
cardinality at least n, such that S(r ,a) ⊧ ψ[a], for all a ∈M.

Note that due to 2r -scatteredness, the balls S(r ,a), for a ∈M are
pairwise disjoint.

Gaifman’s Theorem states that every first-order sentence is logically
equivalent to a boolean combination of such sentences.

This further formalizes the fact, already present in Hanf’s Theorem,
that first-order sentences only capture local properties of structures.
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Distance Formulas

Note that there is an τ -formula θn(x , y), such that for any
τ -structure A and a,b ∈ A,

A ⊧ θn(x , y)[a,b] iff d(a,b) ≤ n.
In fact, set θ0(x , y) ∶= x = y .
Denoting by ar(R) the arity of R , set

θn+1(x , y) ∶= θn(x , y) ∨ ∃z(θn(x , z) ∧⋁R∈τ ∃u1⋯∃uar(R)(Ru1 . . . uar(R) ∧⋁1≤i ,j≤ar(R)(ui = z ∧ uj = y))).
In formulas, we introduce the shorthand d(x , y) ≤ n for θn(x , y).
For x = x1 . . . xm, let

d(x , y) ≤ n ∶= (d(x1, y) ≤ n ∨⋯ ∨ d(xm, y) ≤ n).
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The Ehrenfeucht-Fräıssé Method Gaifman’s Theorem

Relativization of Quantifiers

Let k ∈N. With every τ -formula ϕ = ϕ(x , y), we associate a formula
ϕS(k,x)(x , y), such that for any τ -structure A, a ∈ A, and b ∈ S(k ,a),

A ⊧ ϕS(k,x)[a,b] iff S(k ,a) ⊧ ϕ[a,b].
To define ϕS(k,x)(x , y):

First, replace any bound occurrence in ϕ of a variable in x by a new
variable;
Then, inductively relativize the quantifiers to S(k , x).
E.g., [∃zϕ]S(k,x) ∶= ∃z(d(x , z) ≤ k ∧ϕS(k,x)).
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Local Sentences

Call a sentence basic local if it has the form

∃x1⋯∃xn ⋀
1≤i<j≤n

(d(xi , xj) > 2r ∧ ψS(r ,xi)(xi)),
where ψ = ψ(x) is a first-order formula.

Note that for ℓ < k ,

⊧ ϕS(ℓ,x)
↔ [ϕS(k,x)]S(ℓ,x) and ⊧ ϕS(ℓ,x)

↔ [ϕS(ℓ,x)]S(k,x).
In particular, any sentence of the form

∃x1⋯∃xn ⋀
1≤i<j≤n

(d(xi , xj) > 2r ∧ψS(ℓ,xi)(xi)),
with ℓ ≤ r , is logically equivalent to a basic local sentence.

A local sentence is a boolean combination of basic local sentences.
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Gaifman’s Theorem

Theorem (Gaifman’s Theorem)

Every first-order sentence is logically equivalent to a local sentence.

By a result we saw in the first set, it suffices to show

Lemma

Suppose A and B satisfy the same basic local sentences. Then A ≡ B.
We show that A ≅m B, for m ∈N.

The argument parallels that for Hanf’s Theorem.

There, the sets Ij consisted of partial isomorphisms a ↦ b, such that
length(a) ≤ m − j and (S(3j ,a),a) ≅ (S(3j ,b),b).
Here, we replace ≅ by ≡g(j) and take balls of radius 7j .

The values g(0),g(1), . . . of g can be defined by induction.

g(j) only has to be greater than some values which one gets in the
course of the proof.
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Gaifman’s Theorem (Cont’d)

Let Ij comprise all the partial isomorphisms a ↦ b from A to B, such
that length(a) ≤ m − j and (S(7j ,a),a) ≡g(j) (S(7j ,b),b).
Again, in case length(a) = 0, we set (S(7j ,a),a) = ∅ and agree that
∅ ≡k ∅, for all k . In particular, ∅↦ ∅ ∈ Im.
We show (Ij)j≤m ∶ A ≅m B.
By symmetry, we can restrict ourselves to the forth property.

Suppose 0 ≤ j < m, a ∈ A, a ↦ b ∈ Ij+1. Hence
(S(7j+1,a),a) ≅g(j+1) (S(7j+1,b),b).

For d in a structure D, let

ψ
j

d
(x) ∶= [ϕg(j)

S(7j ,d),d
(x)]S(7

j ,x)

.

Recall that ϕℓ

D,d
denotes the ℓ-isomorphism type of d in D.

So ψj

d
(x) expresses that (S(7j ,d),d) ≡g(j) (S(7j , x), x).

George Voutsadakis (LSSU) Finite Model Theory January 2024 69 / 82
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Gaifman’s Theorem (Case 1)

Case 1: Suppose a ∈ S(2 ⋅ 7j ,a). Then
S(7j+1,a) ⊧ ∃z(d(a, z) ≤ 2 ⋅ 7j ∧ ψj

aa
(az)).

We assume that the quantifier rank of this formula is ≤ g(j + 1).
(This gives us a first condition on the value of g(j + 1).)
Hence, by the hypothesis,

S(7j+1,b) ⊧ ∃z(d(b, z) ≤ 2 ⋅ 7j ∧ψj
aa
(bz)).

So, for some b, we have

(S(7j ,aa),aa) ≡g(j) (S(7j ,bb),bb).
Therefore, aa ↦ bb ∈ Ij .
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Gaifman’s Theorem (Case 2)

Case 2: Suppose a ∉ S(2 ⋅ 7j ,a), i.e., S(7j ,a) ∩ S(7j ,a) = ∅.
For s ≥ 1, the following formula δs(x1, . . . , xs) expresses that{x1, . . . , xs} is a 4 ⋅ 7j -scattered set of elements whose 7j -ball has the
same g(j)-isomorphism type as that of a:

δs ∶= ⋀
1≤ℓ<k≤s

d(xℓ, xk) > 4 ⋅ 7j ∧ ⋀
1≤ℓ≤s

ψj
a(xℓ).

Compare the cardinalities (e and i below) of maximal 4 ⋅ 7j -scattered
sets in S(2 ⋅ 7j ,a) and in A, respectively, consisting of such elements.
More precisely, let e and i be such that:

1. S(7j+1, a) ⊧ ∃x1⋯∃xe(⋀1≤k≤e d(a, xk) ≤ 2 ⋅ 7j ∧ δe);
2. S(7j+1, a) /⊧ ∃x1⋯∃xe+1(⋀1≤k≤e+1 d(a, xk) ≤ 2 ⋅ 7j ∧ δe+1);
3. A ⊧ ∃x1⋯∃xi δi ;
4. A /⊧ ∃x1⋯∃xi+1 δi+1.

If no such i exists, set i =∞.
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Gaifman’s Theorem (Case 2 Cont’d)

Note that e is bounded by the length of a (and hence by m), since
any two elements of the same ball of radius 2 ⋅ 7j have a distance at
most 4 ⋅ 7j .
Clearly, e ≤ i .
Claim: The corresponding numbers e and i determined in S(7j+1,b)
and B, respectively, are the same.

Concerning B, this holds since the sentences in 3 and 4 are basic local
up to logical equivalence.

Concerning S(7j+1,b), note that:

(S(7j+1, a), a) ≡g(j+1) (S(7j+1,b),b);
g(j + 1) is greater than the quantifier rank of the sentences in 1 and 2.
(This gives a second condition on the value of g(j + 1); recall that e is
bounded by m.)
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Gaifman’s Theorem (Case 2.1)

Case 2.1: e = i .
Then all elements satisfying ψj

a(x) have distance from a

≤ 4 ⋅ 7j + 2 ⋅ 7j = 6 ⋅ 7j < 7j+1.

Suppose to the contrary that one such a′ satisfies d(a,a′) > 6 ⋅ 7j .
Then a′ together with e many witnesses for 1 show that i ≥ e + 1.

In particular, this holds for a.

Since a ∉ S(2 ⋅ 7j+1,a),
S(t j+1,a) ⊧ ∃z(2 ⋅ 7j < d(a, z) ≤ 6 ⋅ 7j ∧ψj

a(z) ∧ ψj
a
(a)).

Then, by the hypothesis,

S(7j+1,b) ⊧ ∃z(2 ⋅ 7j < d(b, z) < 6 ⋅ 7j ∧ ψj
a(z) ∧ ψj

a
(b)).

(This gives us a third condition on the value of g(j + 1).)
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Gaifman’s Theorem (Case 2.1 Cont’d)

Thus, there is b, with 2 ⋅ 7j < d(b,b) < 6 ⋅ 7j , such that

(S(7j ,a),a) ≡g(j) (S(7j ,b),b).
Moreover, (S(7j ,a),a) ≡g(j) (S(7j ,b),b).
Note that the universes of the structures on the left sides in the
displayed equivalences are disjoint, and the same applies to the right
sides.

So, by the fact that disjoint unions preserve ≡m, we obtain

(S(7j ,aa),aa) ≡g(j) (S(7j ,bb),bb).
Thus, aa ↦ bb ∈ Ij .

George Voutsadakis (LSSU) Finite Model Theory January 2024 74 / 82
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Gaifman’s Theorem (Case 2.2)

Case 2.2: e < i .
Then

B ⊧ ∃x1⋯∃xe+1 δe+1.
Hence there must be an element b in B , such that

S(7j ,b) ∩ S(7j ,b) = ∅ and B ⊧ ψj
a(x)[b].

In particular, (S(7j ,a),a) ≡g(j) (S(7j ,b),b).
Now one can argue as at the end of the preceding case.
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Homomorphisms

In the rest of this subsection all structures are assumed to be finite.

Recall that τ is a relational vocabulary.

Given τ -structures A and B, a mapping h ∶ A→ B is a
homomorphism if, for all R ∈ τ and a ∈ A,

RAa implies RBh(a).
The homomorphism is said to be strict if, in addition, for all R ∈ τ
and a ∈ A, with RBh(a), there is e ∈ A, such that RAe and
h(e) = h(a).
A sentence ϕ is preserved under (strict) homomorphisms if for all
A,B and any (strict) homomorphism h ∶ A→ B ,

A ⊧ ϕ implies B ⊧ ϕ.
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Preservation of Existential Positive Sentences

Proposition

Every existential positive sentence, that is, every sentence built up from
atomic formulas with the connectives ∧ and ∨, and the quantifier ∃, is
preserved under homomorphisms.

We show by structural induction on a positive formula ϕ(x) that
A ⊧ ϕ(x)[a] implies B ⊧ ϕ(x)[h(a)].

A ⊧ xi = xj[a] iff ai = aj implies h(ai) = h(aj) iff B ⊧ xi = xj[h(a)];
A ⊧ Rx[a] iff RAa implies RB[h(a)] iff B ⊧ Rx[h(a)];
A ⊧ (φ ∧ ψ)(x)[a] iff A ⊧ φ(x)[a] and A ⊧ ψ(x)[a] imply
B ⊧ φ(x)[h(a)] and B ⊧ ψ(x)[h(a)] iff B ⊧ (φ ∧ψ)(x)[h(a)];
Similarly for ∨;
A ⊧ ∃xϕ(x)[a] iff A ⊧ ϕ(x) [a a

x
], for some a ∈ A, implies

B ⊧ ϕ(x) [h(a) h(a)
x
], for some a ∈ A, implies B ⊧ ∃xϕ(x)[h(a)].
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Minimal Models

A model A of a sentence ϕ is said to be minimal if no proper
substructure is a model of ϕ, i.e., if B ⊆ A and B ⊧ ϕ imply B = A.

Proposition

For any ϕ, every model of ϕ contains a minimal model, that is, if B ⊧ ϕ,
then there is A ⊆ B, such that A is a minimal model of ϕ (recall that we
restrict ourselves to finite structures).

Let B be a model of ϕ.

If it is minimal, we are done.

Otherwise, there exists B1 ⊂ B, such that B1 ⊧ ϕ.

We continue in the same way.

Since B is finite, the process must stop with a substructure A of B,
which is a minimal model of ϕ.
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Application of Gaifman’s Theorem

Theorem

If ϕ is preserved under strict homomorphisms, there are ℓ and m, such that
no minimal model of ϕ contains an ℓ-scattered subset of cardinality m.

By Gaifman’s Theorem, ϕ is logically equivalent to a boolean
combination of basic local sentences ϕ1, . . . , ϕk . Suppose

ϕi = ∃x1⋯∃xni ⋀
1≤s<t≤ni

(d(xs , xt) > 2ri ∧ψS(ri ,xs)
i

(xs)).
Set r ∶= max {ri ∶ 1 ≤ i ≤ k}, ℓ ∶= 2r and m ∶= 2k + 1.

Let A be a minimal model of ϕ.
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The Ehrenfeucht-Fräıssé Method Gaifman’s Theorem

Application of Gaifman’s Theorem (Cont’d)

Claim: A contains no ℓ-scattered subset of cardinality m.

By contradiction, suppose that M is ℓ-scattered and ∥M∥ ≥ m.

For i = 1, . . . ,k , let ρi(u) express
“there is v such that d(u, v) ≤ ri and ψS(ri ,v)

i
(v)”.

By choice of m, there are a,a′ ∈M, such that a ≠ a′ and for
i = 1, . . . ,k ,

A ⊧ ρi [a] iff A ⊧ ρi[a′].
Let B be the substructure of A with universe A/{a}.
Then B /⊧ ϕ, since A is a minimal model of ϕ.
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Application of Gaifman’s Theorem (Cont’d)

Set n ∶= max{ni ∶ i = 1, . . . ,k}, Bn ∶= ⊍n
j=1B (the disjoint union of n

copies of B), and An ∶= A ⊍ Bn.
The projection of Bn to B is a strict homomorphism.

Therefore, since B /⊧ ϕ, Bn /⊧ ϕ either.

The inclusion map of A to An is also a strict homomorphism.

Thus, since A ⊧ ϕ, we have An ⊧ ϕ.

We obtain the desired contradiction, if we show that for i = 1, . . . ,k ,
An ⊧ ϕi iff Bn ⊧ ϕi .

(⇐) Fix i . Suppose first that Bn ⊧ ϕi .

Then, for some b ∈ Bn, S
Bn(ri ,b) ⊧ ψi [b].

View b as an element of B.

Then the Bn-part of An contains ni - even n - copies of the element
b, which are pairwise at infinite distance.

Since SBn(ri ,b) ≅ SAn(ri ,b), we obtain An ⊧ ϕi .
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Application of Gaifman’s Theorem (Conclusion)

(⇒) Assume now that An ⊧ ϕi .

Choose e ∈ An, such that SAn(ri , e) ⊧ ψi [e].
If a ∉ SA(ri , e), then SAn(ri , e) ≅ SB(ri , e).
Now we argue as above.
Assume that a ∈ SA(ri , e).
Then, A ⊧ ρi [a]. Hence, A ⊧ ρi [a′].
Thus, there is e ′ ∈ A, such that d(e ′, a′) ≤ r and SA(ri , e ′) ⊧ ψi[e ′].
Now

d(e ′, a) ≥ d(a′, a) − d(a′, e ′) > ℓ − r = 2r − r ≥ ri .

Therefore, a ∉ SA(ri , e ′).
Hence, SA(ri , e ′) ≅ SB(ri , e ′).
So Bn contains ni copies of e

′.
Thus, Bn ⊧ ϕi .
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