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More on Games Second-Order Logic

Second Order Logic

Second order logic, SO, is an extension of first-order logic which
allows to quantify over relations.

In addition to the symbols of first-order logic, its alphabet contains,
for each n ≥ 1, countably many n-ary relation (or predicate)
variables V n

1 ,V
n
2 , . . ..

To denote relation variables we use letters X ,Y , . . ..

We define the set of second-order formulas of vocabulary τ to be the
set generated by the rules for first-order formulas extended by:

If X is n-ary and t1, . . . , tn are terms, then Xt1 . . . tn is a formula.
If ϕ is a formula and X is a relation variable, then ∃Xϕ is a formula.
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More on Games Second-Order Logic

Free Variables and Satisfaction

The free occurrence of a variable or of a relation variable in a
second order formula is defined in the obvious way.

The notion of satisfaction is extended canonically.

Then, given ϕ = ϕ(x1, . . . , xn,Y1, . . . ,Yk) with free (individual and
relation) variables among x1, . . . , xn, Y1, . . . ,Yk , a τ -structure A,
elements a1, . . . ,an ∈ A, and relations R1, . . . ,Rk over A of arities
corresponding to Y1, . . . ,Yk , respectively,

A ⊧ ϕ[a1, . . . ,an,R1, . . . ,Rk]
means that a1, . . . ,an together with R1, . . . ,Rk satisfy ϕ in A.
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More on Games Second-Order Logic

Example

For any τ the class EVEN[τ] of finite τ -structures of even cardinality
is axiomatizable in second-order logic (but not in first-order logic, as
we already saw).

In fact, EVEN[τ] =Mod(ϕ), where ϕ is a sentence expressing

“there is a binary relation which is an equivalence relation
having only equivalence classes with exactly two elements”.

E.g., ∃X (∀xXxx ∧ ∀x∀y(Xxy → Xyx)∧ ∀x∀y∀z((Xxy ∧ Xyz)→ Xxz)∧ ∀x∃=1y(Xxy ∧ y ≠ x)).
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More on Games Second-Order Logic

Monadic Second Order Logic

We are mainly interested in the fragment MSO of second order logic
known as monadic second order logic.

In formulas of MSO only unary relation variables (“set variables”) are
allowed.

We write
A ≡MSO

m B

if A and B satisfy the same monadic second order sentences of
quantifier rank ≤ m (the quantifier rank is the maximal number of
nested first-order and second-order quantifiers).

George Voutsadakis (LSSU) Finite Model Theory January 2024 7 / 119



More on Games Second-Order Logic

MSO Ehrenfeucht-Fräıssé Games

As in first-order logic, ≡MSO
m can be characterized by an

Ehrenfeucht-Fräıssé game, MSO−Gm(A,B).
The rules are the same as in the first-order Ehrenfeucht-Fräıssé game,
but now in every move the spoiler can decide whether to make a
point move or a set move.

The point moves are as the moves in the first-order case.
In a set move:

The spoiler chooses a subset P ⊆ A or Q ⊆ B;
The duplicator answers by a subset Q ⊆ B or P ⊆ A, respectively.

After m moves, elements a1, . . . ,ar and subsets P1, . . . ,Ps in A, and
corresponding elements b1, . . . ,br and subsets Q1, . . . ,Qs in B (with
m = r + s) have been chosen.

The duplicator wins if a ↦ b ∈ Part((A,P1, . . . ,Ps), (B,Q1, . . . ,Qs)).
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More on Games Second-Order Logic

Ehrenfeucht-Fräıssé Theorem

Theorem

A ≡MSO
m B iff the duplicator wins MSO−Gm(A,B).
The following is an outline of the proof of the theorem.

Given A, a (= a1 . . . ar ) in A, and P (= P1 . . .Ps) a sequence of subsets
of A, define the formulas ψj

a,P
, similar to the j-isomorphism type ϕj

a
,

but now taking into account also the second-order set quantifiers.

ψ0
a,P

∶= ⋀{ϕ(v1, . . . , vr ,V1, . . . ,Vs) ∶ ϕ atomic or negated atomic,

A ⊧ ϕ[a,P]};
ψ
j+1

a,P
∶= ⋀a∈A ∃vr+1ψj

aa,P
∧ ∀vr+1⋁ψj

aa,P∧⋀P⊆A ∃Vs+1ψ
j

a,PP
∧ ∀Vs+1⋁P⊆Aψ

j

a,PP
.
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More on Games Second-Order Logic

Ehrenfeucht-Fräıssé Theorem (Cont’d)

One can show the equivalence of:

(i) The duplicator wins MSO−Gm((A,P , a), (B,Q,b));
(ii) B ⊧ ψm

a,P
[b,Q];

(iii) a,P satisfies in A the same formulas of MSO of quantifier rank ≤ m as
b,Q in B.
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More on Games Second-Order Logic

m-Equivalence is an Equivalence Relation

Proposition

For a fixed vocabulary and m ∈N, the relation ≡MSO
m is an equivalence

relation with finitely many equivalence classes.

We may show, by induction of j , that, for varying A, a and P, there
are only finitely many different ψj

a,P
.

Since the number of those determine the number of equivalence
classes of ≡MSO

m , the relation ≡MSO
m has finitely many equivalence

classes.
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More on Games Second-Order Logic

Equivalence and Operations

Proposition

The disjoint union and the ordered sum preserve the relation ≡MSO
m , i.e.,

for relational τ we have:

(a) If A1 ≡MSO
m B1 and A2 ≡MSO

m B2, then A1 ⊍A2 ≡MSO
m B1 ⊍B2.

(b) If A1 ≡MSO
m B1 and A2 ≡MSO

m B2, then A1 ⊲ A2 ≡MSO
m B1 ⊲ B2.

Let ∗ ∈ {⊍,⊲}. Assume A1 ≡MSO
m B1, A2 ≡MSO

m B2.

By hypothesis and the last theorem there are winning strategies S1
and S2 for the duplicator in the games MSO−Gm(A1,B1) and
MSO−Gm(A2,B2), respectively.
Then the following represents a winning strategy for the duplicator in
MSO−Gm(A1 ∗A2,B1 ∗B2) (when describing it we use moves of
plays in MSO−Gm(A1,B1) and MSO−Gm(A2,B2)).
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More on Games Second-Order Logic

Equivalence and Operations (Cont’d)

Suppose, first, that the i -th move of the spoiler is a point move where
he selects, say, a ∈ A1 ∗A2.

Then the duplicator gets his answer by applying:

S1, if a ∈ A1;
S2, if a ∈ A2.

Now assume that the spoiler selects, say, P ⊆ A1 ∪A2.

Set P1 ∶= P ∩ A1 and P2 ∶= P ∩A2.

Let Q1 and Q2 be the selections of the duplicator according to S1 and
S2, respectively.

Then, in the game MSO−Gm(A1 ∗A2,B1 ∗ B2), the duplicator
chooses Q1 ∪Q2.
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More on Games Second-Order Logic

Prenex Normal Form

An (M)SO-formula is in prenex normal form if it written as

Q1α1⋯Qsαsψ,

where:

Q1, . . . ,Qs ∈ {∀,∃};
α1, . . . , αs are first order or second order variables;
ψ is quantifier free.

Equivalences that govern (M)SO-formulas include:

⊧ ¬∃Xϕ↔ ∀X¬ϕ;
⊧ (ϕ ∨ ∀Yψ)↔ ∀Y (ϕ ∨ψ), if Y is not free in ϕ.

An induction using such equivalences shows that each (M)SO-formula
is logically equivalent to an (M)SO-formula in prenex normal form.
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More on Games Second-Order Logic

Prenex Normal Form (Cont’d)

In addition, the following logical equivalences hold:

⊧ ∃xQ1α1⋯Qsαsψ↔ ∃XQ1α1⋯Qsαs(∃=1xXx ∧ ∀x(Xx → ψ))
and

⊧ ∀xQ1α1⋯Qsαsψ↔∀XQ1α1⋯Qsαs(∃=1xXx → ∀x(Xx → ψ)).

So every (M)SO-formula is logically equivalent to one in prenex
normal form in which each second order quantifier precedes all first
order quantifiers.
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More on Games Second-Order Logic

(M)Σ1
n and (M)Π1

n Formulas

A formula in prenex normal form is called a (M)Σ1
n formula, if the

string of second-order quantifiers consists of n consecutive blocks,
where:

In each block all quantifiers are of the same type i.e., all universal or all
existential;
Adjacent blocks contain quantifiers of different type;
The first block is existential.

A formula in prenex normal form is called a (M)Π1
n formula, if the

string of second-order quantifiers consists of n consecutive blocks,
where:

In each block all quantifiers are of the same type;
Adjacent blocks contain quantifiers of different type;
The first block is universal.

Example: Consider the following formula, with quantifier-free ϕ,

∃X∃Y∀Z∀x∃yϕ.

It is a Σ1
2-formula.
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More on Games Second-Order Logic

Relations Between Classes of Formulas

The negation of a Σ1
n-formula is logically equivalent to a Π1

n-formula.

The negation of a Π1
n-formula is equivalent to a Σ1

n-formula.

Denoting by ∆1
n the set of formulas that are logically equivalent to

both a Σ1
n-formula and a Π1

n-formula, we have up to logical
equivalence

Σ1
1 Σ1

2

∆1
1

⊆

∆1
2

⊆⊆

⋯

Π1
1

⊆⊆

Π1
2

⊆

This can easily be verified by adding dummy variables.

The same inclusions hold for the monadic classes.
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More on Games Second-Order Logic

Comments on the Inclusions Between Classes of Formulas

It can be shown that for arbitrary models all the inclusions above are
proper (this also holds for MSO).

The question to what extent the hierarchies are proper in the finite is
related to important questions of complexity theory (to come later).

Example: We have seen that the class of finite, connected graphs is
MΠ1

1-axiomatizable but not MΣ1
1-axiomatizable.

It follows that, in the finite, MΣ1
1 ≠MΠ1

1.

George Voutsadakis (LSSU) Finite Model Theory January 2024 18 / 119



More on Games Infinitary Logics L∞ω and Lω1ω

Subsection 2

Infinitary Logics L∞ω and Lω1ω
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More on Games Infinitary Logics L∞ω and Lω1ω

Infinitary Logics L∞ω and Lω1ω

The infinitary logics L∞ω and Lω1ω allow arbitrary and countable
disjunctions (and hence conjunctions), respectively.

More formally, let τ be a vocabulary.

The class of L∞ω-formulas over τ is given by the following clauses:

It contains all atomic first order formulas over τ ;
If ϕ is a formula, then so is ¬ϕ;
If ϕ is a formula and x a variable, then ∃xϕ is a formula;
If Ψ is a set of formulas, then ⋁Ψ is a formula.

For Lω1ω we replace the last clause by:

If Ψ is a countable set of formulas then ⋁Ψ is a formula.
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More on Games Infinitary Logics L∞ω and Lω1ω

Semantics of Infinitary Logics

The semantics is a direct extension of the semantics of first order logic
with ⋁Ψ being interpreted as the disjunction over all formulas in Ψ.

Neglecting the interpretation of the free variables,

A ⊧ ⋁Ψ iff for some ψ ∈ Ψ, A ⊧ ψ.

We set

⋀Ψ ∶= ¬⋁{¬ψ ∶ ψ ∈ Ψ}.
Then ⋀Ψ is interpreted as the conjunction over all formulas in Ψ.

By identifying (ϕ ∨ ψ) with ⋁{ϕ,ψ}, we see that L∞ω and Lω1ω are
extensions of first order logic.
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More on Games Infinitary Logics L∞ω and Lω1ω

Examples

(a) For any τ , the models of the Lω1ω-sentence

⋁{ϕ=n ∶ n ≥ 1},
where ϕ=n is a first order sentence expressing that the universe has
cardinality n, are the finite τ -structures.

The Lω1ω-sentence ⋁{ϕ=2n ∶ n ≥ 1} axiomatizes the class EVEN[τ].
If M is any nonempty set of positive natural numbers, then the class
of models of the Lω1ω-sentence ⋁{ϕ=k ∶ k ∈M} corresponds to the
query “∥A∥ ∈M?”.

In particular, we see that nonrecursive queries are Lω1ω-definable.
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More on Games Infinitary Logics L∞ω and Lω1ω

Examples (Cont’d)

(b) Any class of finite structures is axiomatizable in Lω1ω.

In fact, let K be a class of finite structures.

Choose a set Φ of first-order sentences such that K =Mod(Φ).
Then K =Mod(ϕ), for the Lω1ω-sentence ϕ ∶= ⋀Φ.
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More on Games Infinitary Logics L∞ω and Lω1ω

Examples (Cont’d)

(c) “Connectivity” is a property of graphs expressible in Lω1ω.

In fact, let ϕn(x , y) be a first order formula saying that there is a
path from x to y of length n,

ϕn(x , y) ∶= ∃z0⋯∃zn(z0 = x ∧ zn = y ∧ Ez0z1 ∧⋯ ∧ Ezn−1zn).
Then “connectivity” is expressed in Lω1ω by

∀x∀y(¬x = y →⋁{ϕn(x , y) ∶ n ≥ 1}).
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More on Games Infinitary Logics L∞ω and Lω1ω

Free Variables and Sentences

L∞ω-sentences are L∞ω-formulas without free variables.

Note that L∞ω-formulas may have infinitely many free variables.

Example:

⋁{¬vi = vj ∶ 1 ≤ i < j}.
On the other hand, subformulas of L∞ω-sentences only have finitely
many free variables.

In the following we restrict ourselves to L∞ω-formulas with only
finitely many free variables.
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More on Games Infinitary Logics L∞ω and Lω1ω

Equivalence of L∞ω and Lω1ω in the Finite

Proposition

(a) In the finite, every L∞ω-formula ϕ(x) is equivalent to an
Lω1ω-formula ψ(x).

(b) Assume A and B are finite. For every L∞ω-formula ϕ(x), there is an
FO-formula ψ(x), such that

A ⊧ ∀x(ϕ(x)↔ ψ(x)) and B ⊧ ∀x(ϕ(x)↔ ψ(x))
In both cases, (a) and (b), the formula ψ can be chosen such that
free(ψ) ⊆ free(ϕ) and every variable occurring in ψ (free or bound) occurs
in ϕ.

The proofs are by induction over the rules for L∞ω-formulas.

The translation procedure preserves the “structure” of formulas and
only replaces infinitary disjunctions by countable ones in Part (a) and
by finite ones in Part (b).
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More on Games Infinitary Logics L∞ω and Lω1ω

Equivalence of L∞ω and Lω1ω in the Finite (Cont’d)

In the main step, suppose that

ϕ(x) = ⋁{ϕi(x) ∶ i ∈ I}
is an L∞ω-formula.

In Part (a), consider all finite C, with universe {1,2, . . . , ∥C∥}.
In Part (b) suppose C ∈ {A,B} has universe {1,2, . . . , ∥C∥}.
For each c ∈ C , if there exists an i ∈ I , such that C ⊧ ϕi [c], choose
such an i .

Let I0 be the set of i ’s chosen in this way.

Then I0 is countable in Part (a) and finite in Part (b).

Moreover, in Part (a), ⋁{ϕi (x) ∶ i ∈ I} and ⋁{ϕi (x) ∶ i ∈ I0} are
equivalent in the finite.

And, similarly, in Part (b), ⋁{ϕi (x) ∶ i ∈ I} and ⋁{ϕi(x) ∶ i ∈ I0} are
equivalent in A and B.
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More on Games Infinitary Logics L∞ω and Lω1ω

An Improvement

Since every finite structure can be characterized in first order logic,
we obtain the following improvement of Part (a).

Proposition

In the finite, every L∞ω-formula ϕ(x) is equivalent to a countable
disjunction - and hence to a countable conjunction - of first order
formulas. In fact, in the finite, ϕ(x) is equivalent to

⋁{ϕ∥A∥+1A,a (x) ∶ A finite, a ∈ A,A ⊧ ϕ[a]} .
For simplicity we restrict ourselves to sentences. Let B be a finite

structure. If B ⊧ ϕ, then ϕ∥B∥+1B is a member of the disjunction.

So the disjunction is satisfied by B.
Conversely, suppose B satisfies the disjunction. Then, for some finite

A, with A ⊧ ϕ, we have B ⊧ ϕ∥A∥+1A . Thus, by a previous theorem,A ≅ B. Therefore, B ⊧ ϕ.
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More on Games Infinitary Logics L∞ω and Lω1ω

Equivalence and Infinitary Games

We say that A and B are L∞ω-equivalent, written

A ≡L∞ω B,
if A and B satisfy the same L∞ω-sentences.

Definition

Let A and B be structures, a ∈ As , and b ∈ B s . The game G∞(A,a,B,b)
is the same as the game Gm(A,a,B,b) up to the fact that now each
player has to make infinitely many moves. Thus, in the course of a play of
G∞(A,a,B,b), elements e1, e2, . . . ∈ A and f1, f2, . . . ∈ B are chosen.
The duplicator wins the play if ae1 . . . ei ↦ bf1 . . . fi ∈ Part(A,B), for all i .
The spoiler wins if ae1 . . . ei ↦ bf1 . . . fi ∉ Part(A,B), for some i .
The duplicator wins G∞(A,a,B,b) if he has a winning strategy.
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More on Games Infinitary Logics L∞ω and Lω1ω

Characterization of Equivalence via Games

Lemma

Suppose that the duplicator wins G∞(A,a,B,b). Then:
(a) a ↦ b ∈ Part(A,B);
(b) For a ∈ A, there is b ∈ B , such that the duplicator wins

G∞(A,aa,B,bb);
(c) For b ∈ B , there is a ∈ A, such that the duplicator wins

G∞(A,aa,B,bb).
Immediate from the definition.

George Voutsadakis (LSSU) Finite Model Theory January 2024 30 / 119



More on Games Infinitary Logics L∞ω and Lω1ω

Partial Isomorphisms

Definition

(a) A and B are said to be partially isomorphic, written

A ≅part B,
if there is a nonempty set I of partial isomorphisms from A to B with
the back and forth properties:

For every p ∈ I and every a ∈ A there is q ∈ I with q ⊇ p and a ∈ dom(q);
For every p ∈ I and every b ∈ B there is q ∈ I with q ⊇ p and b ∈ ran(q).

We then write I ∶ A ≅part B.
(b) The set of winning positions for the duplicator is

W∞(A,B) = {a ↦ b ∶ s ∈N,a ∈ As ,b ∈ B s ,

the duplicator wins G∞(A,a,B,b)}.

George Voutsadakis (LSSU) Finite Model Theory January 2024 31 / 119



More on Games Infinitary Logics L∞ω and Lω1ω

Equivalence, Games and Partial Isomorphisms

Theorem

For structures A and B, a ∈ As and b ∈ B s the following are equivalent:

(i) The duplicator wins G∞(A,a,B,b);
(ii) a ↦ b ∈W∞(A,B) and W∞(A,B) ∶ A ≅part B;
(iii) There is a set I with a ↦ b ∈ I , such that I ∶ A ≅part B;
(iv) a and b satisfy the same formulas of L∞ω in A and B, respectively,

i.e., if ϕ(x1, . . . , xs) is a formula of L∞ω, then A ⊧ ϕ[a] iff B ⊧ ϕ[b].
(i)⇒(ii) is covered by the preceding lemma.

(ii)⇒(iii) Obvious.

(iii)⇒(i) A set I with a ↦ b ∈ I and I ∶ A ≅part B can be viewed as a
winning strategy for the duplicator for the game G∞(A,a,B,b).
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More on Games Infinitary Logics L∞ω and Lω1ω

Equivalence, Games and Partial Isomorphisms (Cont’d)

(iii)⇒(iv) Let I be as in (iii). By (transfinite) induction on the
quantifier rank of the L∞ω-formula ϕ(x1, . . . , xs) we prove that, for
any e1 . . . es ↦ f1 . . . fs ∈ I ,

A ⊧ ϕ[e] iff B ⊧ ϕ[f ].
The case of quantifier rank 0 has been already covered.

For any quantifier rank, note that the class of formulas satisfying the
equivalence contains the atomic formulas and is closed under ¬ and ∨.

Suppose that ϕ(x1, . . . , xs) = ∃yψ(x1, . . . , xs , y).
Assume, for example, that A ⊧ ϕ[e1, . . . , es ].
Then, there exists a ∈ A, such that A ⊧ ψ[e1, . . . , es ,a].
The forth property of I yields b ∈ B , with e1 . . . esa ↦ f1 . . . fsb ∈ I .

Since qr(ψ) < qr(ϕ), by the induction hypothesis, B ⊧ ψ[f1, . . . , fs ,b].
Hence, B ⊧ ϕ[f1, . . . , fs].
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More on Games Infinitary Logics L∞ω and Lω1ω

Equivalence, Games and Partial Isomorphisms (Cont’d)

(iv)⇒(iii) Suppose that (iv) holds. Let I be the set of all partial
isomorphisms e1 . . . er ↦ f1 . . . fr (with r ≥ 0) such that, for all
L∞ω-formulas ϕ(x1, . . . , xr),

A ⊧ ϕ[e] iff B ⊧ ϕ[f ].
By (iv), a ↦ b ∈ I .

We show that I has the back and forth properties.

Let e1 . . . er ↦ f1 . . . fr ∈ I and a ∈ I .

For each b ∈ B , if there is a formula ϕ(x1, . . . , xr , x) of L∞ω such that

A ⊧ ϕ(x , x)[ea] and B ⊧ ¬ϕ(x , x)[f b],
let ϕb(x , x) be such a formula.

Otherwise, set ϕb(x , x) ∶= x = x .
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More on Games Infinitary Logics L∞ω and Lω1ω

Equivalence, Games and Partial Isomorphisms (Cont’d)

Since A ⊧ ∃x ⋀{ϕb ∶ b ∈ B}[e], we have

B ⊧ ∃x⋀{ϕb ∶ b ∈ B}[f ].
Hence, there is b′ ∈ B , such that

B ⊧⋀{ϕb ∶ b ∈ B}[f b′].
Using the definition of ϕb′ , one easily sees that ea and f b′ satisfy the
same formulas of L∞ω in A and B, respectively.
Hence, ea ↦ f b′ ∈ I .

The back property is proven similarly.
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More on Games Infinitary Logics L∞ω and Lω1ω

The Case Without Parameters

Note that W∞(A,B) ≠ ∅ iff ∅ ↦ ∅ ∈W∞(A,B).
Therefore, by the preceding theorem, we get

Corollary

For A and B the following are equivalent:

(i) The duplicator wins G∞(A,B);
(ii) W∞(A,B) ∶ A ≅part B;
(iii) A ≅part B;
(iv) A ≡L∞ω B.
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More on Games Infinitary Logics L∞ω and Lω1ω

Countable Structures

Lemma

Let A and B be countable.

(a) If A ≅part B then A ≅ B.
(b) If I ∶ A ≅part B and p0 ∈ I , then p0 can be extended to an isomorphism

from A onto B.
Let A = {a1,a2, . . .} and B = {b1,b2, . . .}. It suffices to show (b).

Suppose I ∶ A ≅part B and p0 ∈ I . By repeated application of the back
and forth properties, we get p1,p2, . . . in I , such that p0 ⊆ p1 ⊆ ⋯ and
such that a1 ∈ dom(p1), b1 ∈ ran(p2), a2 ∈ dom(p3), . . .. Then
⋃n≥0 pn is an isomorphism from A onto B.

Corollary

If A and B are countable and L∞ω-equivalent then they are isomorphic.

The claim follows from the preceding corollary and lemma.
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Example

Let τ be relational.

For r ≥ 0, let ∆r+1 be the set

∆r+1 ∶= {ϕ(v1, . . . , vr , vr+1) ∶ ϕ has the form Rx , where R ∈ τ
and where vr+1 occurs in x}.

For a subset Φ of ∆r+1, with Φc ∶=∆r+1/Φ, the sentence

χΦ ∶= ∀v1⋯∀vr(⋀1≤i<j≤r vi ≠ vj
→ ∃vr+1(⋀1≤i≤r vi ≠ vr+1 ∧⋀ϕ∈Φ ϕ ∧⋀ϕ∈Φc ¬ϕ)),

is called an extension axiom.

More precisely, it is called an (r + 1)-extension axiom.

The set Trand of all extension axioms is called the random structure

theory.

Clearly, every model of Trand is infinite.
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Example (Cont’d)

Claim: Any two models of Trand are L∞ω-equivalent.

Thus, for each L∞ω-sentence ϕ, Trand ⊧ ϕ or Trand ⊧ ¬φ.
We prove that the extension axioms in Trand guarantee, for any
models A and B of Trand, that the set

I ∶= {a ↦ b ∶ a ∈ A,b ∈ B and ϕ0
A,a = ϕ

0
B,b
}

has the back and forth properties.

Let a ↦ b ∈ I , where a = a1 . . . ar and a1, . . . ,ar can be assumed to be
distinct. Also let, say, ar+1 be in A/{a1, . . . ,ar}.
Set Φ ∶= {ϕ(v1, . . . , vr+1) ∶ ϕ ∈∆r+1,A ⊧ ϕ[aar+1]}.
Now B ⊧ χΦ. So there exists br+1 ∈ B , such that ϕ0

B,bbr+1
= ϕ0
A,aar+1

.

This show that aar+1 ↦ bbr+1 ∈ I .
Moreover, since τ is relational, the empty partial isomorphism is in I .

Hence, I ∶ A ≅part B.
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Example (Cont’d)

Claim: Trand has a countable model and, hence, by the preceding
corollary, an (up to isomorphism) unique countable model R, the
so-called infinite random structure.

Let (αn)n≥0 be an enumeration of all pairs (m, χ), where:
m is a tuple of distinct natural numbers;
χ is an (r + 1)-extension axiom, where r ∶= length(m).

Suppose that for αn = (m, χ) all entries of m are not greater than n.

By induction on n we define structures An, with An = {0, . . . ,n}, andA0 ⊆ A1 ⊆ A2 ⊆ ⋯, such that A ∶= ⋃n≥0An is a model of Trand.

Let A0 = (A0, (∅)R∈τ) (each relation symbol is interpreted as ∅);
Suppose An has been defined and αn = (m1, . . . ,mr , χ) with χ = χΦ.
Define An+1, with universe An+1, such that An ⊆ An+1 and such that,
for ϕ ∈∆r+1, An+1 ⊧ ϕ[m1, . . . ,mr ,n + 1] iff ϕ ∈ Φ (note that vr+1
occurs in every formula of ∆r+1).

This ensures that A ∶= ⋃n≥0An is a model of χ.
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Spectra of Sentences

For a sentence ϕ, let the spectrum Spec(ϕ) of ϕ be the set

Spec(ϕ) ∶= {m ≥ 1 ∶ there is A ⊧ ϕ with ∥A∥ = m}.
Proposition

For any first-order sentence ϕ, at least one of Spec(ϕ) or Spec(¬ϕ) is
cofinite, i.e., there exists n0, such that

{n ∶ n ≥ n0} ⊆ Spec(ϕ) or {n ∶ n ≥ n0} ⊆ Spec(¬ϕ).
Let Φ be the set consisting of the following sentences:

(i) ϕ≥m, for all m ≥ 1;
(ii) ∀xRx, for all R ∈ τ ;
(iii) c = d , for all c ,d ∈ τ .

Clearly, Φ is satisfiable.
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Spectra of Sentences (Cont’d)

Any two models A and B of Φ are partially isomorphic via

I ∶= {p ∈ Part(A,B) ∶ dom(p) finite}.
Hence, by a previous corollary, they are elementarily equivalent.

Therefore, given a first-order sentence ϕ, we have

Φ ⊧ ϕ or Φ ⊧ ¬ϕ.
Say Φ ⊧ ϕ.

By Compactness, there is a finite Φ0 ⊆ Φ, such that Φ0 ⊧ ϕ.

Let n0 be larger than any m such that ϕ≥m is in Φ0.

Then Φ0 and, hence, ϕ, has a model of cardinality n for each n ≥ n0.
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Subsection 3

The Logics FOs and Ls∞ω
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Introduction

In first-order logic FO, every finite structure A can be characterized
up to isomorphism by a first-order sentence ϕA which, in general,
needs ∥A∥ + 1 variables.

Hence, an arbitrary class K of finite structures can be axiomatized in
L∞ω by the sentence

⋁{ϕA ∶ A ∈ K}
which, in general, contains infinitely many variables.

Since every class of finite structures is axiomatizable in it, L∞ω is too
powerful in the finite to yield new general principles.

This motivates the restriction to formulas of L∞ω containing only
finitely many variables.
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Ls∞ω and FOs

Fix s ≥ 1.

Ls∞ω and FOs denote by the fragments of L∞ω and FO, respectively,
containing only formulas, whose free and bound variables are among
v1, . . . , vs .

Moreover, we set
Lω∞ω ∶= ⋃

s≥1

Ls∞ω.

We have FO = ⋃s≥1 FO
s .

On the other hand, Lω∞ω ≠ L∞ω.

E.g., the formula

⋁{ϕ=n ∶ n ≥ 1}
belongs to L∞ω but not to Lω∞ω.

In examples, we write x = v1, y = v2, z = v3, etc.
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Example

Let τ = {<}. There are FO2-formulas ψn(x) and χn such that for
orderings A, a ∈ A:

For n ≥ 0,

A ⊧ ψn[a] iff a is the n-th element of <A;

For n ≥ 1, A ⊧ χn iff ∥A∥ = n.

In fact, define inductively:

ψ0(x) ∶= ∀y¬y < x ;

ψn+1(x) ∶= ∀y(y < x ↔ ⋁i≤n ∃x(x = y ∧ψi(x))).
Moreover, set

χn ∶= ∃xψn−1(x) ∧ ¬∃xψn(x).
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Example

For each n ≥ 1, there is an FO3-formula ϕn(x , y) that in digraphs
expresses that there is a path of length at most n from x to y .

Define inductively:

ϕ1(x , y) ∶= Exy ;

ϕn+1(x , y) ∶= ϕn(x , y) ∨ ∃z(Ezy ∧ ∃y(y = z ∧ϕn(x , y))).
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Example: Improving the Quantifier Rank (Cont’d)

Concerning the quantifier rank we can do better than in ψn and ϕn.

Let ϕ be an Ls∞ω-formula and π a permutation of 1, . . . , s.

By simultaneously replacing both the free and the bound occurrences
of v1, . . . , vs by vπ(1), . . . , vπ(s) one obtains a formula

ϕ( vπ(1) ⋯ vπ(s)
v1 ⋯ vs

) .
Clearly,

A ⊧ ϕ( vπ(1) ⋯ vπ(s)
v1 ⋯ vs

) [a] iff A ⊧ ϕ[aπ(1), . . . ,aπ(s)].
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Example: Improving the Quantifier Rank (Cont’d)

Now in the preceding examples we can replace ψn by the formula ψ′n
of quantifier rank ≤ n + 1, where:

ψ′0 ∶= ψ0;

ψ′n+1 ∶= ∀y (y < x ↔ ⋁i≤nψ
′
i ( yx

xy
)) .

Moreover, we can replace ϕn by the formula ϕ′n of quantifier rank
≤ n + 1, where:

ϕ′1 ∶= ϕ1;

ϕ′n+1 ∶= ϕ′n ∨ ∃z (Ezy ∧ ϕ′n ( xzy

xyz
)) .

.
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Passing from Ls∞ω to FOs

Using previous results, we get

Proposition

Assume A and B are finite. For every Ls∞ω-formula ϕ, there is an
FOs-formula ψ with free(ψ) ⊆ free(ϕ) such that

A ⊧ ∀x1⋯∀xs(ϕ↔ ψ) iff B ⊧ ∀x1⋯∀xs(ϕ↔ ψ).
Corollary

If A and B are finite then A ≡s B implies A ≡L
s
∞ω B.

Given an Ls∞ω-sentence ϕ, choose ψ according to the preceding
proposition. Then

A ⊧ ϕ iff A ⊧ ψ iff B ⊧ ψ iff B ⊧ ϕ.
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Characterization of Formulas in FOs

If ϕ ∈ FOs (or, ϕ ∈ Ls∞ω), then every subformula of ϕ contains at most
s free variables (namely, at most v1, . . . , vs).

This property characterizes the formulas of FOs up to logical
equivalence.

Proposition

Assume s ≥ 1. If every subformula of ϕ(v1, . . . , vs) ∈ FO has at most s free
variables, then ϕ is logically equivalent to a formula of FOs . The statement
remains true, if we replace FO and FOs by L∞ω and Ls∞ω, respectively.

By induction (on the quantifier rank) we associate with every formula
ϕ(v1, . . . , vs) all of whose subformulas have at most s free variables, a
formula ϕ∗ ∈ FOs , with free(ϕ) = free(ϕ∗), such that

⊧ ϕ↔ ϕ∗.
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Characterization of Formulas in FOs (Cont’d)

For atomic ϕ, set ϕ∗ ∶= ϕ.

For ϕ = ¬χ, set ϕ∗ = ¬χ∗.

For ϕ = (χ1 ∨ χ2), set ϕ∗ = (χ∗1 ∨ χ∗2).
Let ϕ = ∃yχ. Then, free(χ) ⊆ {v1, . . . , vs , y} and ∥free(χ)∥ ≤ s.

If y ∉ free(χ), then χ = χ(v1, . . . , vs). Then, χ∗ is defined by induction
hypothesis. We set ϕ∗ ∶= χ∗.
If y ∈ free(χ) and y ∈ {v1, . . . , vs} then, again, χ = χ(v1, . . . , vs). So χ∗
is again defined. We set ϕ∗ ∶= ∃yχ∗.
If y ∈ free(x) and y ∉ {v1, . . . , vs}, then, there is an i such vi ∉ free(χ).
Set χ0 ∶= χ( vi y

y vi
) (as before, χ0 ∶= χ( vi y

y vi
) is obtained from

x by simultaneously replacing all occurrences of y and vi by vi and y ,
respectively). Then, ⊧ ϕ↔ ∃viχ0, free(χ0) ⊆ {v1, . . . , vs}, and every
subformula of χ0 has at most s free variables. Thus, χ∗0 is defined. We
set ϕ∗ ∶= ∃viχ∗0 .
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Pebble Games: Example

Consider the formula

ϕ = ∃x∃y(x < y ∧ ∃xy < x).
Let A ∶= ({a,b},<) and B ∶= ({c ,d , e},<) be the orderings with a < b

and c < d < e.

Since A ⊧ ¬ϕ and B ⊧ ϕ, the spoiler has a winning strategy in
G3(A,B).
How is the fact that ϕ only contains two variables reflected in the
course of a play?

A play won by the spoiler is given in the
table, where his selections are in red.
There is no third move of the duplicator
leading to a partial isomorphism.

A B
first move a c

second move b d

third move ? e
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Pebble Games: Example (Cont’d)

The strategy of the spoiler consists in choosing, for the first two
quantifiers ∃x∃y , the elements c for x and d for y in B in order to
have B ⊧ (x < y ∧ ∃xy < x)[c ,d].
The only selections for the duplicator leading to a partial isomorphism
are a for x and b fox y .

For the second quantifier ∃x , the spoiler selects in B the element e,
thereby getting a witness for B ⊧ ∃xy < x[d].
Obviously the old value c for x is no longer relevant.
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Pebble Games: Example (Cont’d)

Therefore, the play above may be represented more informatively by

first move second move third moveA B A B A B
x-box a c a c ? e

y -box ∗ ∗ b d b d

In the table, the x-boxes and the y -boxes always contain the actual
value for x and y , respectively, and ∗ stands for an empty box.
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Partial Isomorphisms

Fix a vocabulary τ .

By convention, ∗ will not belong to the universe of any structure.

For a ∈ (A ∪ {∗})s , a = a1 . . . as , define the support supp(a) of a by

supp(a) ∶= {i ∶ ai ∈ A}.
If a ∈ A, let a a

i
denote a1 . . . ai−1aai+1 . . . as .

For a ∈ (A ∪ {∗})s and b ∈ (B ∪ {∗})s , we say that a ↦ b is an
s-partial isomorphism from A to B, if:

supp(a) = supp(b);
a′ ↦ b

′
is a partial isomorphism from A to B, where a′ and b

′
are the

subsequences of a and b with indices in the support.
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Pebble Games

Let A and B be structures.

Let a ∈ (A ∪ {∗})s and b ∈ (B ∪ {∗})s , with supp(a) = supp(b).
In the pebble game G s

m(A,a,B,b) we have:

s pebbles α1, . . . , αs for A;
s pebbles β1, . . . , βs for B.

Initially, αi is placed on ai if ai ∈ A, and off the board if ai = ∗.

Similarly, βi is placed on bi ∈ B or off the board if bi = ∗.
Each play consists of m moves.

In his j-th move, the spoiler selects a structure, A or B, and a pebble
for this structure (being off the board or already placed on an element).
If he selects A and αi , he places αi on some element of A.
Then the duplicator places βi on some element of B.
If the spoiler selects B and βi , he places βi on an element of B.
The duplicator places αi on some element of A.

Note that there may be several pebbles on the same element.
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Winning and Losing a Pebble Game

The duplicator wins the pebble game G s
m(A,a,B,b) if, for each

j ≤ m, we have that e ↦ f is an s-partial isomorphism, where:

e = e1 . . . es are the elements marked by α1, . . . , αs after the j-th move
(ei = ∗ in case αi is off the board);
f = f1 . . . fs are the corresponding values given by β1, . . . , βs .

For j = 0 this means that a ↦ b is an s-partial isomorphism.

The pebble game G s
∞(A,a,B,b), with infinitely many moves, is

defined similarly.

G s
m(A,B) abbreviates G s

m(A,∗ . . . ∗,B,∗ . . . ∗).
G s
∞(A,B) abbreviates G s

∞(A,∗ . . . ∗,B,∗ . . . ∗).
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Logics and Pebble Games

We show that logics and the games fit together.

When writing A ⊧ ϕ[a] for a ∈ (A ∪ {∗})s we assume that the free
variables of ϕ have indices in supp(a), i.e., z ∈ supp(a) if vi ∈ free(ϕ).

Theorem

For structures A and B, and for a ∈ (A ∪ {∗})s and b ∈ (B ∪ {∗})s , with
supp(a) = supp(b), the following hold:

(a) a satisfies in A the same FOs -formulas of quantifier rank ≤ m as b in B iff
the duplicator wins G s

m(A, a,B,b).
(b) a satisfies in A the same Ls∞ω-formulas as b in B iff the duplicator wins

G s
∞(A, a,B,b).

In particular:

(c) A ≡sm B iff the duplicator wins G s
m(A,B).

(d) A ≡L
s
∞ω B iff the duplicator wins G s

∞(A,B).
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Examples

(a) Let τ = ∅.

Let A and B be τ -structures (i.e., sets).

If ∥A∥, ∥B∥ ≥ s, then the duplicator wins G s
∞(A,B).

Equivalently, A ≡L
s
∞ω B.

For arbitrary A and B, the duplicator wins G s
∞(A,B) iff he wins

G s
s (A,B).

George Voutsadakis (LSSU) Finite Model Theory January 2024 60 / 119



More on Games The Logics FOs and Ls
∞ω

Examples (Cont’d)

(b) Suppose ℓ ≥ 3.

Let Gℓ be the graph consisting of one cycle of length ℓ + 1.

Let Gℓ ⊍ Gℓ be the graph consisting of two cycles of length ℓ + 1.

Then the duplicator wins G 2
∞(Gℓ,Gℓ ⊍ Gℓ).

Hence, by the theorem, Gℓ ≡L2∞ω Gℓ ⊍ Gℓ.
On the other hand, Gℓ /≡L3∞ω Gℓ ⊍ Gℓ.
Consider the L3∞ω-sentence

∀x∀y(x = y ∨ ⋁
n>0

ϕn(x , y)),
where ϕn(x , y) was introduced in a previous example.

It expresses connectivity.

Moreover, the spoiler wins G 3
∞(Gℓ,Gℓ ⊍ Gℓ).
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s-m-Isomorphisms

Definition

Structures A and B are s-m-isomorphic, written A ≅sm B, iff there is a
sequence {Ij}j≤m of nonempty sets of s-partial isomorphisms with the
following properties:

s-forth property: For j < m, a ↦ b ∈ Ij+1, 1 ≤ i ≤ s, and a ∈ A, there is
b ∈ B , such that a a

i
↦ b b

i
∈ Ij .

s-back property: For j < m, a ↦ b ∈ Ij+1, 1 ≤ i ≤ s, and b ∈ B , there is
a ∈ A, such that a a

i
↦ b b

i
∈ Ij .

We then write (Ij)j≤m ∶ A ≅sm B.
The notions s-partially isomorphic, A ≅spart B, and I ∶ A ≅spart B are
defined similarly.
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s-m-Isomorphism Types

For m ∈N, any structure A, and a ∈ (A ∪ {∗})s , the
s-m-isomorphism type ψm

a (= sψm
A,a) of a in A is given by:

ψ0
a(v) ∶= ⋀{ψ ∶ ψ atomic or negated atomic, and A ⊧ ψ[a]}

(recall that when writing A ⊧ ψ[a] we assume that the free variables
of ψ have indices in supp(a));

ψm+1
a ∶= ψ0

a ∧ ⋀
1≤i≤s

(⋀
a∈A

∃viψ
m
a a
i
∧ ∀vi ⋁

a∈A

ψm
a a
i
).

In particular, ψm
A ∶= ψm

∗...∗ is an FOs-sentence of quantifier rank m.
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s-Partial Isomorphisms for Winning Positions

The set W s
m(A,B) of s-partial isomorphisms corresponding to

winning positions in the game G s
m(A,a,B,b) is given by

W s
m(A,B) ∶= {a ↦ b ∶ the duplicator wins G s

m(A,a,B,b)}.
The set W s

∞(A,B) of s-partial isomorphisms corresponding to
winning positions in the game G s

∞(A,a,B,b) is given by

W s
∞(A,B) ∶= {a ↦ b ∶ the duplicator wins G s

∞(A,a,B,b)}.
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Formulas of FOs , Games, Isomorphisms and Types

Theorem

Let a ∈ (A ∪ {∗})s and b ∈ (B ∪ {∗})s , with supp(a) = supp(b).
(a) The following are equivalent:

(i) The duplicator wins G s
m(A, a,B,b);

(ii) a ↦ b ∈W s
m(A,B) and (W s

j (A,B))j≤m ∶ A ≅sm B;
(iii) There is (Ij)j≤m with a ↦ b ∈ lm, such that (Ij)j≤m ∶ A ≅sm B;
(iv) B ⊧ ψm

a [b];
(v) a satisfies in A the same FOs -formulas of quantifier rank ≤ m as b in B.

(b) The following are equivalent:

(i) The duplicator wins G s
∞(A, a,B,b);

(ii) a ↦ b ∈W s
∞(A,B) and W s

∞(A,B) ∶ A ≅spart B;
(iii) There is I , with a ↦ b ∈ I , such that I ∶ A ≅spart B;
(iv) a satisfies in A the same Ls∞ω-formulas as b in B.
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The Special Case of Empty Sequences

Corollary

(a) The following are equivalent:

(i) The duplicator wins G s
m(A,B);

(ii) (W s
j (A,B))j≤m ∶A ≅sm B;

(iii) A ≅sm B;
(iv) B ⊧ ψm

A;
(v) A ≡sm B.

(b) The following are equivalent:

(i) The duplicator wins G s
∞(A,B);

(ii) W s
∞(A,B) ∶ A ≅spart B;

(iii) A ≅spart B;
(iv) A ≡L

s
∞ω B.
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Example

For r ≥ 0, let ∆r+1 be the set

∆r+1 ∶= {ϕ(v1, . . . , vr , vr+1) ∶ ϕ has the form Rx , where R ∈ τ
and where vr+1 occurs in x}.

For a subset Φ of ∆r+1, with Φc ∶=∆r+1/Φ, recall that the sentence

χΦ ∶= ∀v1⋯∀vr(⋀1≤i<j≤r vi ≠ vj
→ ∃vr+1(⋀1≤i≤r vi ≠ vr+1 ∧⋀ϕ∈Φ ϕ ∧⋀ϕ∈Φc ¬ϕ)),

is called an (r + 1)-extension axiom.

For s ≥ 1, let ǫs be the conjunction of the finitely many r -extension
axioms with r ≤ s. Clearly, ǫs ∈ FO

s . We have:
Every model of ǫs has at least s elements.
Every two models A and B of ǫs are s-partially isomorphic.

Therefore, by the corollary, any two models of ǫs are Ls∞ω-equivalent.

Consequently, or every Ls∞ω-sentence ϕ, either ǫs ⊧ ϕ or ǫs ⊧ ¬ϕ.
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Axiomatizability in Ls∞ω and Lω∞ω

Theorem

Let K be a class of finite structures.

(a) For s ≥ 1 the following are equivalent:

(i) K is not axiomatizable in Ls∞ω;
(ii) There are finite A and B such that A ∈ K , B ∉ K , and A ≅spart B.

(b) The following are equivalent:

(i) K is not axiomatizable in Lω∞ω;
(ii) For every s ≥ 1, there are finite A and B such that A ∈ K , B ∉ K andA ≅spart B.
Clearly, (b) follows from (a). To show (ii)⇒(i) in (a), suppose by
contradiction, that K =Mod(ϕ), for some ϕ ∈ Ls∞ω. Choose A and B
as given by (ii). Since A ∈ K , A ⊧ ϕ. Since B ∉ K , B /⊧ ϕ. SinceA ≅spart B, A ≡L

s
∞ω B. This gives a contradiction.
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Axiomatizability in Ls∞ω and Lω∞ω (Cont’d)

Conversely, suppose that the condition in (ii) is not satisfied. Then
for all finite A and B,

A ∈ K and A ≡L
s
∞ω B imply B ∈ K .

Claim: K =Mod(ϕ) for the Ls∞ω-sentence ϕ ∶= ⋁A∈K ⋀m≥0ψ
m
A .

Clearly, K ⊆Mod(ϕ), since B ⊧ ⋀m≥0ψ
m
B holds for any B.

To obtain Mod(ϕ) ⊆ K , assume that B is a finite model of ϕ.

Then, for some A ∈ K and all m ≥ 0, we have B ⊧ ψm
A .

This gives A ≡sm B. Thus, A ≡s B.
By a previous theorem, we get A ≡L

s
∞ω B.

By hypothesis, we get B ∈ K .
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Example

Let τ be the empty vocabulary.

For s ≥ 1, consider structures A and B with

∥A∥ = s and ∥B∥ = s + 1.

We have:

A ∈ EVEN[τ] iff B ∉ EVEN[τ];A ≡L
s
∞ω B, by a previous example.

We conclude that EVEN[τ] is not Lω∞ω-axiomatizable.
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The Equivalence Relation ∼

For simplicity, let τ be relational.

Let A be a τ -structure.

The binary relation ∼ defined on As by

a ∼ b iff a and b satisfy the same Ls∞ω-formulas in A
is an equivalence relation on As .

By a previous theorem, a ∼ b iff the duplicator wins G s
∞(A,a,A,b).

Let [a] denote the equivalence class of a.

Let
A/s ∶= {[a] ∶ a ∈ As}

be the set of equivalence classes.
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The s-Invariant A/s of A

We endow A/s with a τ/s-structure A/s.
For every [a] ∈ A/s, the relations on A/s capture the properties of a in
any game G s

∞(A,a, . . .).
The relation symbols in τ/s (and their meaning in A/s) are:

For every k-ary R ∈ τ ∪ {=} and any i1, . . . , ik with 1 ≤ i1, . . . , ik ≤ s, a
unary relation symbol Ri1...ik ;

R
A/s
i1...ik

∶= {[a] ∶ a ∈ As ,RAai1 . . . aik}
(the R

A/s
i1...ik

capture the isomorphism type of a);
For i = 1, . . . , s a binary relation symbol Si ;

S
A/s
i ∶= {([a], [a′]) ∶ a, a′ ∈ As , there is a ∈ A such that [a′] = [a a

i
]}

(S
A/s
i encodes the possible moves of the i-th pebble).

A/s is called the s-invariant of A.
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Equivalence and s-Invariant Structures

Theorem

For structures A and B, A ≡Ls∞ω B iff A/s ≅ B/s.
Suppose, first, that π ∶ A/s ≅ B/s. Set

I ∶= {a ↦ b ∶ a ∈ As ,b ∈ B s , π([a]) = [b]}.
We show that I ∶ A ≅spart B. This guarantees A ≡Ls∞ω B.
I is a nonempty set of s-partial isomorphisms (use the Ri1...ik ’s).

For the s-forth property, assume that a ↦ b ∈ I , 1 ≤ i ≤ s, and a ∈ A.
Then S

A/s
i
[a][a a

i
]. Hence S

B/s
i
[b]π([a a

i
]).

By the definition of S
B/s
i

, there is b ∈ B , such that [b b
i
] = π([a a

i
]).

Hence a a
i
↦ b b

i
∈ I .
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Equivalence and s-Invariant Structures (Converse)

Conversely suppose that A ≡Ls∞ω B. Then W s
∞(A,B) ∶ A ≅spart B.

For a ∈ As and b ∈ B s set

π([a]) ∶= [b] iff a ↦ b ∈W s
∞(A,B).

Hence, by a previous theorem, π([a]) = [b] iff a in A satisfies the

same Ls∞ω-formulas as b in B.
By this equivalence and by the definition of ∼, π is well-defined and
injective.
dom(π) = A/s, by the s-forth property of W s

∞(A,B).
ran(π) = B/s, by the s-back property of W s

∞(A,B).
Obviously, π is compatible with the interpretations of the Ri1...ik .

It is also compatible with the interpretations of the Si (use once more
the s-back and s-forth properties of W s

∞(A,B)).
Therefore, π ∶ A/s ≅ B/s.
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Results Involving FOs

For finite structures we can replace Ls∞ω by FOs .

Recall that, for finite A, B, for every Ls∞ω-formula ϕ, there is an
FOs-formula ψ, with free(ψ) ⊆ free(ϕ), such that

A ⊧ ∀x1⋯∀xs(ϕ↔ ψ) and A ⊧ ∀x1⋯∀xs(ϕ↔ ψ).
So, by the theorem, we get

Proposition

Let A and B be finite structures, a ∈ (A ∪ {∗})s and b ∈ (B ∪ {∗})s , with
supp(a) = supp(b). If for all ϕ ∈ FOs ,

A ⊧ ϕ[a] iff B ⊧ ϕ[b],
then for all ϕ ∈ Ls∞ω,

A ⊧ ϕ[a] iff B ⊧ ϕ[b].
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Results Involving FOs

Corollary

(a) Let A be a finite structure and ∼ be defined as before. Then, for
a,b ∈ As ,

a ∼ b iff a and b satisfy the same FOs-sentences.

(b) For finite structures A and B, A ≡s B iff A/s ≅ B/s.
(a) This is immediate from the preceding proposition.

(b) This follows from the preceding theorem and the fact, shown
previously, that, for finite A and B,

A ≡s B implies A ≡Ls∞ω B.
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Hierarchy of Winning Sets

Proposition

Let A and B be structures. Then:

(a) W s
0 (A,B) ⊇W s

1 (A,B) ⊇ ⋯.

(b) If A and B are finite, then there is an m ≤ (∥A∥ + 1)s ⋅ (∥B∥ + 1)s ,
such that W s

m(A,B) =W s
m+1(A,B).

(c) For m ≥ 0, if W s
m(A,B) =W s

m+1(A,B) and W s
m(A,B) is nonempty,

then W s
m(A,B) ∶ A ≅part B.

(a) Follows immediately from the definition of the W s
j (A,B).

(b) Follows from (a), since there are at most (∥A∥ + 1)s ⋅ (∥B∥ + 1)s
s-partial isomorphisms from A to B.
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Hierarchy of Winning Sets (Cont’d)

(c) Suppose that W s
m(A,B) =W s

m+1(A,B).
We claim that W s

m(A,B) has the s-back and the s-forth property.

We show, say, the s-forth property.

Let a ↦ b ∈W s
m(A,B), 1 ≤ i ≤ s, and a ∈ A.

By assumption, a ↦ b ∈W s
m+1(A,B).

Thus, there is b ∈ B , such that a a
i
↦ b b

i
∈W s

m(A,B).
By hypothesis, W s

m(A,B) ≠ ∅.
So we have W s

m(A,B) ∶ A ≅part B.
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The s-Rank of a Finite Structure

Fix a finite structure A.
Let a, b range over (A ∪ {∗})s .
By the proposition we know that:

W s
0 (A,A) ⊇W s

1 (A,A) ⊇ ⋯ ⊇W s
m(A,A) ⊇ ⋯

There exists j , such that W s
j (A,A) =W s

j+1(A,A).
The minimal such j is called the s-rank r(A) of A, r(A) = r(s,A).
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The s-Scott Formula of a Tuple in a Finite Structure

Fix a finite structure A.
Let a ∈ (A ∪ {∗})s .
Consider the formula

σa ∶= ψr(A)
a

∧ ⋀
b∈(A∪{∗})s

∀v1⋯∀vs(ψr(A)

b
→ ψ

r(A)+1

b
)

(more exactly, σa = sσA,a).

σa is called the s-Scott formula of a in A.
It is an FOs-formula of quantifier rank r(A) + 1 + s.

In particular, σA ∶= σ∗...∗ is an FOs -sentence.

We show that it captures the whole Ls∞ω-theory of A.
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Property of the s-Scott Formula

Theorem

Let A be finite.

(a) For any structure B, B ⊧ σA iff A ≡Ls∞ω B.
(b) For a ∈ (A ∪ {∗})s , any structure B and b ∈ (B ∪ {∗})s with

supp(a) = supp(b), B ⊧ σa[b] iff a satisfies in A the same
Ls∞ω-formulas as b in B.
We only prove Part (a).

Since A ⊧ σA, we have that A ≡Ls∞ω B implies B ⊧ σA.
Next, supose B ⊧ ψr(A)

A ∧⋀b∈(A∪{∗})s ∀v1⋯∀vs(ψr(A)

b
→ ψ

r(A)+1

b
).

Since B ⊧ ψr(A)
A , we get ∗ . . . ∗↦ ∗ . . . ∗ ∈W s

r(A)(A,B).
Since the second conjunct holds in B, W s

r(A)(A,B) ⊆W s
r(A)+1(A,B).

Hence, W s
r(A)(A,B) =W s

r(A)+1(A,B). Therefore, by the preceding

proposition, W s
r(A)(A,B) ∶ A ≅spart B. Thus, A ≡Ls∞ω B.
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A Consequence

Corollary

In the finite, each Ls∞ω-formula ϕ is equivalent to a countable disjunction
of FOs-formulas. In fact, ϕ is equivalent to the Ls∞ω-formula

⋁{σa ∶ A finite, a ∈ A,A ⊧ ϕ[a]}.
Moreover, if K is any class of finite structures, then ϕ and

⋁{σa ∶ A ∈ K ,a ∈ A,A ⊧ ϕ[a]}
are equivalent in all structures of K .
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Boundedness

Let K be a class of finite structures.

We say that K is s-bounded if the set {r(A) ∶ A ∈ K} of s-ranks of
structures in K is bounded.

The class K is bounded if it is s-bounded for every s ≥ 1.
Theorem

Let K he a class of finite structures.

(a) For s ≥ 1 the following are equivalent:

(i) K is s-bounded.
(ii) On K , every Ls

∞ω
-formula is equivalent to an FOs -formula.

(iii) On K , every Ls
∞ω

-formula is equivalent to an FO-formula.

(b) K is hounded iff FO and Lω∞ω have the same expressive power on K .

Part (b) is a consequence of (a). So it suffices to prove (a).

Assume K is s-bounded. Set m ∶= sup{r(A) ∶ A ∈ K} <∞.

Thus, for A ∈ K and a in A the quantifier rank of σa is ≤ m + s + 1.
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Boundedness (Cont’d)

Let ϕ be any Ls∞ω-formula.

Then the disjunction in the preceding corollary is a disjunction of
formulas of quantifier rank ≤ m + s + 1. Hence, it is a finite one.

This shows that (i) implies (ii).

The implication from (ii) to (iii) is trivial.

Finally, we show that (iii) implies (i)

Assume, towards a contradiction, that K is not s-bounded.

Let A0,A1, . . . be structures in K of pairwise distinct s-rank.

For M ⊆N, let ϕM ∶= ⋁{σAi
∶ i ∈M}.

By the preceding proposition, if L,M ⊆N and L ≠M, then it is not
the case that

K ⊧ ϕL ↔ ϕM .

Hence on K , Ls∞ω contains uncountably many pairwise nonequivalent
sentences. So on K , Ls∞ω is more expressive than FO.
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Example

Suppose τ = ∅.
Let A be a τ -structure.

Then W s
0 (A,A) =W s

1 (A,A).
Hence, r(A) = 0.
So the class K of finite τ -structures is bounded.

Therefore, FO and Lω∞ω have the same expressive power on K .
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Subsection 4

Logics with Counting Quantifiers
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Example

To express in first-order logic that there are, say, seven elements with
the property ϕ(x) we need, in general, at least seven quantifiers:

∃x1⋯∃x7(ϕ(x1) ∧⋯∧ ϕ(x7) ∧ ⋀
1≤i<j≤7

¬xi = xj).
By a previous example, we see that in case ϕ(x) ∶= x = x we really
need seven quantifiers.
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The Logics FO(C) and L∞ω(C)

Let FO(C), first-order logic with counting quantifiers, be the
logic obtained from FO by adding, for every ℓ ≥ 1, a new quantifier
∃
≥ℓ with the intended interpretation “there exist at least ℓ”.

Let L∞ω(C) (for short, C∞ω), L∞ω with counting quantifiers, be
the logic obtained from L∞ω by adding, for every ℓ ≥ 1, a new
quantifier ∃≥ℓ with the intended interpretation “there exist at least ℓ”.

More precisely, extend the calculus of formulas for first-order or
infinitary logic by the following rule:

If ϕ is a formula and ℓ ≥ 1, then ∃≥ℓxϕ is a formula.

∃
≥ℓx is considered as a new quantifier and not as an abbreviation.
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The Logics FO(C) and L∞ω(C) (Cont’d)

For the interpretation of these quantifiers we add, for ϕ = ϕ(x , x) and
a ∈ A, the clause

A ⊧ ∃≥ℓxϕ[a] iff ∥{b ∈ A ∶ A ⊧ ϕ[a,b]}∥ ≥ ℓ.
Since the quantifiers ∃≥ℓ are first-order definable, the languages
FO(C) and C∞ω have the same expressive power as FO and L∞ω,
respectively.
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The Logics FO(C)s , C s
∞ω and Cω

∞ω

The situation concerning expressive power changes if we restrict to
FO(C)s and C s

∞ω, the fragments consisting of the formulas with
variables among v1, . . . , vs .

Example: ∃≥ℓxx = x is a sentence in FO(C)1 not equivalent to any
sentence in FO1.

The sentence

⋁
ℓ≥1

(∃≥2ℓxx = x ∧ ¬∃≥2ℓ+1xx = x)
is a C 1

∞ω-sentence axiomatizing the class EVEN[τ] of structures of
even cardinality that is not equivalent to any sentence of Lω∞ω.

Define
Cω
∞ω ∶= ⋃

s≥1

C s
∞ω.
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The Quantifiers ∃≥ℓ versus ∃=ℓ

For ℓ ≥ 1, set
∃
=ℓxϕ ∶= ∃≥ℓxϕ ∧ ¬∃≥ℓ+1xϕ.

Let
∃
=0xϕ ∶= ∀x¬ϕ.

Then ∃≥ℓxϕ is equivalent to ¬⋁j<ℓ ∃
=jxϕ.

Hence, we would obtain logics of the same expressive power when
adding the quantifiers ∃=ℓ instead of ∃≥ℓ.
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Examples

(a) Suppose A and B are finite structures, such that A ≡FO(C)1 B.
That is, A and B satisfy the same sentences of FO(C)1.
Then ∥A∥ = ∥B∥.
It suffices to observe that ∃=∥A∥xx = x is a sentence in FO(C)1.

(b) Let τ = {<}.
Consider the sentence of FO[τ]

∀x¬x < x ∧ ∀x∀y∀z((x < y ∧ y < z)→ x < z)∧
∀x∀y∀z((y < x ∧ z < x) → (y < z ∨ y = z ∨ z < y)).

It asserts that < is irreflexive and transitive, and the predecessors of
any element are linearly ordered.

Its finite models are called finite <-forests.
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Examples (Cont’d)

For a <-forest A and a ∈ A the height hA(a) is defined by

hA(a) ∶= ∥{b ∈ A ∶ b < a}∥.
The height h(A) is defined by

h(A) ∶= max{hA(a) ∶ a ∈ A}.
The element a is a root if hA(a) = 0.
Every finite <-forest can be characterized, up to isomorphism, in
FO(C)2.
Claim: For every finite <-forest A, there is a sentence ϕ in FO(C)2,
such that for all finite <-forests B, B ⊧ ϕ iff B ≅ A.
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Examples (Cont’d)

To prove this one shows by induction on the height, that for <-forestsA, with exactly one root, there is a formula ψA(x) in FO(C)2, such
that, for any <-forest B and b ∈ B ,

B ⊧ ψA[b] iff Bb ≅ A,
where Bb is the substructure of B with universe{b′ ∈ B ∶ b = b′ ∨ b < b′}.
In the induction step, for A with root a, ψA(x) gives:

The number of elements of A;
For any isomorphism type of some Ab with b ∈ A/{a}, the number of
trees Ac , with c ∈ A/{a}, that are of this type.

(c) For s ≥ 1 there are <-forests A and B that satisfy the same sentences
in FOs but are not isomorphic. E.g., <-forests consisting only of roots,
the first one having s roots, the second one s + 1 roots.
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Ehrenfeucht-Fräıssë Games for Counting Quantifers

We consider the pebble games C-Gs
m(A,a,B,b), with m moves, and

C-Gs
∞(A,a,B,b), with infinitely many moves.

In each of these games, each move consists of two steps:
1. The spoiler chooses:

One of the two structures, say A;
A corresponding pebble, say αi ;
A subset X of A.

The duplicator must answer with a subset Y of B, with ∥Y ∥ = ∥X∥.
2. The spoiler places βi on some element b ∈ Y .

The duplicator answers by placing αi on some a ∈ X .
(X and Y can now be forgotten.)

The definition for winning is given as in the previous pebble games.

It only takes into consideration the chosen elements, not the subsets.
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Explanation

We explain the significance of the two steps of a move in
C-Gs

m(A,a,B,b), and C-Gs
∞(A,a,B,b).

Suppose that the spoiler attempts to show that

A ⊧ ∃≥ℓxϕ(x), but not B ⊧ ∃≥ℓxϕ(x).
He chooses a subset X consisting of ℓ elements witnessing thatA ⊧ ∃≥ℓxϕ(x).
The duplicator claims that the elements of the subset Y witness thatB ⊧ ∃≥ℓxϕ(x).
According to the spoilers conviction, there is a b ∈ Y with notB ⊧ ϕ[b].
The duplicator means that some element a in X behaves as b.
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Equivalence and Games

In a way that parallels previous results, one can show the following

Theorem

Let A and B be structures, a ∈ (A ∪ {∗})s and b ∈ (B ∪ {∗})s , with
supp(a) = supp(b).
(a) The following are equivalent:

(i) For all ϕ(x) ∈ FO(C)sm, A ⊧ ϕ[a] iff B ⊧ ϕ[b].
(ii) The duplicator wins C-Gs

m(A,a,B,b).

(b) A ≡FO(C)sm B iff the duplicator wins C-Gs
m(A,B).

(c) The following are equivalent:

(i) For all ϕ(x) ∈ C s
∞ω

, A ⊧ ϕ[a] iff B ⊧ ϕ[b].
(ii) The duplicator wins C-Gs

∞(A,a,B,b).

(d) A ≡C s
∞ω B iff the duplicator wins C-Gs

∞(A,B).
George Voutsadakis (LSSU) Finite Model Theory January 2024 97 / 119



More on Games Logics with Counting Quantifiers

Colored Graphs and Color Types

Let C1,C2, . . . be unary relation symbols, the “color relations”.

A colored graph is, for some r , an {E ,C1, . . . ,Cr}-structure G,
where, for G = (G ,EG ,CG

1 , . . . ,C
G
r ), the following holds:

(G ,EG) is a graph;
CG
1 ⊍⋯ ⊍ CG

r = G , i.e., each vertex satisfies exactly one color relation.

For a ∈ G , the color type ct(a) is defined as

ct(a) ∶= (i ,n1, . . . ,nr),
where:

a ∈ CG
i ;

nj ∶= ∥{b ∈ CG
j ∶ EGab}∥.

G is stable if for a,b ∈ G , ct(a) = ct(b) iff a,b ∈ Ci , for some i .
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Property of Stable Colored Graphs

Proposition

Let G = (G ,EG ,CG
1 , . . . ,C

G
r ) be a stable colored graph and a,b ∈ G . Then

the following are equivalent:

(i) For j = 1, . . . , r , a ∈ Cj iff b ∈ Cj .

(ii) The duplicator has a winning strategy in the game
C-G2

∞(G,a∗,G,b∗).
Suppose, first, that the duplicator wins C-G2

∞(G,a∗,G,b∗).
Then, by the preceding theorem, for all ϕ(x) in C 2

∞ω, G ⊧ ϕ[a] iffG ⊧ ϕ[b].
Taking ϕ(x) to be Cj(x), we obtain G ⊧ Cj[a] iff G ⊧ Cj[b].
Equivalently, a ∈ CG

j iff b ∈ CG
j .
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Property of Stable Colored Graphs (Cont’d)

Suppose, conversely, that, for all j , a ∈ CG
j iff b ∈ CG

j .

It suffices to show that a and b satisfy the same C 2
∞ω formulas in G.

We do this by induction on the structure of a C 2
∞ω formula.

The hypothesis ensures that G ⊧ Cj[a] iff G ⊧ Cj[b].
By the definition of E and stability, (a,a), (b,b) ∉ EG , (a,b) ∈ EG iff(b,a) ∈ EG and G ⊧ E [a, c] iff G ⊧ E [b, c], for all c ≠ a,b.

The cases of ¬ and ⋁ are easy.
Consider now the formula ∃yϕ(x , y). Assume G ⊧ ∃yϕ(x , y)[a]. Then
there exists c , such that G ⊧ ϕ[a, c].

If c = a, then, by the induction hypothesis, G ⊧ ϕ[b,b].
So G ⊧ ∃yϕ(x , y)[b].
If c = b, then, by the induction hypothesis, G ⊧ ϕ[b,a].
So G ⊧ ∃yϕ(x , y)[b].
If c ≠ a,b, then, by the induction hypothesis, G ⊧ ϕ[b, c].
So G ⊧ ∃yϕ(x , y)[b].

∃
≥ℓyϕ(x , y) may be handled similarly.
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From a Colored Graph to a Stable Colored Graph

We introduce a process of color refinement leading from a colored
graph G = (G ,EG ,CG

1 , . . . ,C
G
r ) to a stable colored graph.

Let m ∶= ∥{ct(a) ∶ a ∈ G}∥.
Order the set {ct(a) ∶ a ∈ G} lexicographically.
Set G′ ∶= (G ,EG ,C ′1, . . . ,C

′
m), where C ′k is the set of elements a ∈ G ,

such that ct(a) is the k-th element in this ordering.

Clearly, each CG
i is the union of some C ′k .

Let C ′k be the color class of elements of color type (i ,n1, . . . ,nr).
C ′k is definable in G by a formula of C 2

∞ω of quantifier rank ≤ 1

C ′k =
⎧⎪⎪⎨⎪⎪⎩a ∈ G ∶ G ⊧ ⎛⎝Cix ∧ ⋀

j=1,...,r

∃
=nj y(Exy ∧ Cjy)

⎞
⎠ [a]

⎫⎪⎪⎬⎪⎪⎭ .
Note that we have extended the definition of quantifier rank for
first-order logic by the clause qr(∃≥ℓxϕ) ∶= 1 + qr(ϕ).
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The Stable Colored Refinement of a Colored Graph

Obviously, G is stable if m = r , i.e., if there is no proper color
refinement.

If G′ is not stable, we define G(2) ∶= (G′)′.
We continue by defining

G(i+1) ∶= (G(i))′, i = 2,3, . . . .

Since each CG
i is the union of some C ′k , after finitely many, say n,

steps, we must reach a stable colored graph G(n).
G(n) is called the stable colored refinement of G.

George Voutsadakis (LSSU) Finite Model Theory January 2024 102 / 119



More on Games Logics with Counting Quantifiers

Colored Graph and Colored Refinement

Theorem

For elements a and b of a colored graph G the following are equivalent:

(i) a,b are in the same color class of the stable colored refinement of G.
(ii) For all ϕ(x) ∈ C 2

∞ω, G ⊧ ϕ[a] iff G ⊧ ϕ[b].
An induction, using the formula defining C ′k shows that each color
class of G(n) is definable by a C 2

∞ω-formula of quantifier rank ≤ n.
This fact yields (ii)⇒(i) of the theorem.

Conversely, note that a winning strategy for the colored refinement ofG is a winning strategy for G.
Consequently, (i)⇒(ii) follows from the preceding proposition.
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A Consequence

For a graph G = (G ,EG), let the stable colored refinement be that of
the colored graph (G ,EG ,G).

Corollary

For elements a and b of a graph G the following are equivalent:

(i) a,b are in the same color class of the stable colored refinement of G.
(ii) For all ϕ(x) ∈ C 2

∞ω, G ⊧ ϕ[a] iff G ⊧ ϕ[b].
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Subsection 5

Failure of Classical Theorems in the Finite
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Introduction

Many known first-order logic results and techniques fail in the finite:

The Compactness Theorem fails (as we have seen);
There is no sound and complete proof calculus;
Ultraproducts and saturated structures become useless;
Beth’s Definability Theorem and Craig’s Interpolation Theorem fail
when restricted to finite structures.

Nevertheless, new methods and results intrinsic to the finite
compensate for this loss.

Combinatorics has a strong impact, in particular, in connection with
probabilities;
The restriction to the finite motivates the use of other languages, for
example languages that are able to grasp notions of recursion or
induction, building a bridge to computational aspects.
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Implicit and Explicit Definability

Let L be any logic considered so far, e.g., FO, L∞ω, . . ..

Let R be an n-ary relation symbol not contained in the vocabulary τ .

An L[τ ∪ {R}]-sentence ϕ defines R implicitly (in the finite) if
every (finite) τ -structure A has at most one expansion (A,RA) to a
τ ∪ {R}-structure satisfying ϕ.

We say that R is explicitly definable (in the finite) relative to ϕ, if
there is an L[τ]-formula ψ(x) such that

ϕ ⊧(fin) ∀x(Rx ↔ ψ(x)).
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The Beth Property

Obviously, if R is explicitly definable relative to ϕ then ϕ defines R
implicitly.

We say that L has the Beth property (in the finite) if the converse
holds.

That is, L has the Beth property (in the finite) if whenever anL-sentence ϕ defines a relation symbol implicitly (in the finite), then
there is an explicit definition of it (in the finite) relative to ϕ.
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Failure of the Beth Property in the Finite

Proposition

First-order logic does not have the Beth property in the finite.

We consider orderings in the vocabulary τ ∶= {<,S ,min,max}.
Let R be a unary relation symbol.
Let ϕ be the conjunction of:

The ordering axioms;
The following sentence fixing R as the set of even points,

¬Rmin∧∀x∀y(Sxy → (Rx ↔ ¬Ry)).
Clearly, ϕ defines R implicitly in the finite.

Suppose, for some FO[τ]-formula ψ(x), ϕ ⊧fin ∀x(Rx ↔ ψ(x)).
Then ψ(max) together with the ordering axioms would define the
class of finite orderings of even cardinality.

This contradicts non-axiomatizability of finite orderings of even
cardinality in first-order logic.
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The Craig Interpolation Property

The Beth property is a consequence of the interpolation property (or,
Craig property).

The logic L has the interpolation property (in the finite) iff for all
vocabularies σ and τ and any L-sentences ϕ and ψ in the
vocabularies σ and τ , respectively, such that ϕ ⊧(fin) ψ, there is an
interpolant, that is, an L[σ ∩ τ]-sentence χ, such that

ϕ ⊧(fin) χ and χ ⊧(fin) ψ.

Craig’s Theorem states that first-order logic has the interpolation
property.
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Closure Under Order-Invariant Sentences in the Finite

Let L be a logic.

Let K be a class of finite τ -structures.

It may happen that K is axiomatizable in L, if we equip the
structures in K with an arbitrary ordering.

Consider the vocabulary τ ⊍ {<}.
Define

K< ∶= {(A,<) ∶ A ∈ K ,< an ordering on A}.
Then a sentence ϕ of L[τ ⊍ {<}] may exists, such that

K< =Mod(ϕ).
The logic L is said to be closed under order-invariant sentences in

the finite, whenever, in this situation, there is an L[τ]-sentence ψ
such that Mod(ψ) = K .
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Interpolation and Closure Under Order-Invariant Sentences

Claim: A logic with the interpolation property is closed under
order-invariant sentences in the finite.

Suppose ϕ = ϕ(<) axiomatizes K<.

Let <′ is a new binary relation symbol.

Then
ϕ(<) ⊧fin (“<′ is an ordering”→ ϕ(<′)).

By hypothesis, there is an interpolant ψ.

That is, there exists ψ in L, such that

ϕ(<) ⊧fin ψ and ψ ⊧fin (“<′ is an ordering”→ ϕ(<′)).
Clearly, Mod(ψ) = K .
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The Interpolation Property in the Finite

Proposition

(a) First-order logic is not closed under order-invariant sentences in the
finite.

(b) First-order logic does not have the interpolation property in the finite.

Part (b) follows from Part (a) by the claim. We sketch a proof of (a).
Let K be the class of finite Boolean algebras with an even number of
atoms.

Using the Ehrenfeucht-Fräıssé method, one can show that K is not
axiomatizable in first-order logic.
However, K< is axiomatizable in first-order logic.
In fact, let ϕ be the conjunction of:

The axioms for Boolean algebras;
The axioms for orderings;
A sentence expressing that there is an element containing exactly the
atoms at an even position (in the ordering induced on the atoms) and
containing the last atom.
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Universal and Existential Formulas

Call a first-order formula universal (existential) if it is built up from
atomic and negated atomic formulas using only the connectives ∧,∨
and the universal (existential) quantifier.

If ϕ is a universal sentence, a simple inductive proof shows that ϕ is
preserved under substructures, i.e.,

B ⊆ A and A ⊧ ϕ imply B ⊧ ϕ.
If ϕ is existential then it is preserved under extensions, i.e.,

B ⊆ A and B ⊧ ϕ imply A ⊧ ϕ.

In classical model theory one proves that every FO-sentence preserved
under substructures is logically equivalent to a universal FO-sentence.
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Universal Formulas and Substructures in the Finite

We create an FO-sentence that, in the finite, is preserved under
substructures but is not equivalent to a universal first-order sentence.

Let the universal sentence ϕ0 be the conjunction of:

The ordering axioms in {<,min,max};
The following sentence expressing that R is a “partial successor
relation”,

∀x∀y(Rxy → x < y) ∧ ∀x∀y∀z((Rxy ∧ x < z) → (y = z ∨ y < z)).
Let ϕ1 be the sentence

∀x(¬x = max→ ∃yRxy)
expressing that R is the “total” successor relation.
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Universal Formulas and Substructures (Cont’d)

For finite structures A and B,
A ⊧ ϕ0, B ⊧ (ϕ0 ∧ϕ1) and B ⊆ A imply A = B.

Using a new unary relation symbol Q, we set

ϕ ∶= ϕ0 ∧ (ϕ1 → ∃yQy).
Claim: In finite models, ϕ is preserved under substructures.

Suppose (A,QA) ⊧ ϕ and (B,QB) ⊆ (A,QB).
Since ϕ0 is universal, B ⊧ ϕ0.

If B /⊧ ϕ1, then (B,QB) ⊧ ϕ.
If B ⊧ ϕ1, then B = A. Therefore, (B,QB) = (A,QA).
Hence, (B,QB) ⊧ ϕ.
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Universal Formulas and Substructures (Cont’d)

Claim: ϕ is not equivalent to a universal first-order sentence.

Assume, to the contrary, that ψ = ∀x1⋯∀xnχ, with quantifier-free χ,
is a universal first-order sentence with

⊧fin ϕ↔ ψ.

Consider a {<,min,max,R}-structure A with n + 3 elements.
(A,<A,minA,maxA) is an ordering;
RA is the successor relation.

Set QA = ∅. Then (A,QA) /⊧ ϕ.
Hence, (A,QA) ⊧ ∃x1⋯∃xn¬χ, say, (A,QA) ⊧ ¬χ[a1, . . . ,an].
Choose a ∈ A/{a1, . . . ,an,minA,maxA} and set Q ′ = {a}.
Since χ is quantifier-free, (A,Q ′) ⊧ ¬χ[a1, . . . ,an].
Therefore, (A,Q ′) /⊧ ∀x1⋯∀xnχ.
On the the other hand, (A,Q ′) ⊧ ϕ.
Hence ϕ and ψ are not equivalent in the finite.
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Universal and Existential Formulas in the Finite

Proposition

(a) There is a first-order sentence which, in the finite, is preserved under
substructures but not equivalent to a universal first-order sentence.

(b) There is a first-order sentence which, in the finite, is preserved under
extensions but not equivalent to an existential first-order sentence.

(a) By the preceding example.

(b) Let ϕ be according to (a). Then ¬ϕ is preserved under extensions and
not equivalent to an existential sentence.
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Monotone Formulas

Fix a relation symbol R of τ of arity r .

A sentence ϕ is monotone in R (in the finite) if

(A,R1) ⊧ ϕ (A finite) and R1 ⊆ R2 ⊆ Ar imply (A,R2) ⊧ ϕ.
A first-order formula ϕ is positive in R if ϕ is built up from atomic
formulas using ¬,∧,∨,∀,∃ and any occurrence of the relation symbol
R in ϕ is within the scope of an even number of negation symbols.

An inductive argument shows that a sentence positive in R is
monotone.

While any first-order sentence monotone in R is logically equivalent
to a formula positive in R , this is no longer true in the finite.

Proposition

There is a first-order sentence which, in the finite, is monotone in R , but
not equivalent to a first-order sentence positive in R .
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