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0-1 Laws 0-1 Laws for FO and Lω
∞ω

Labeled Structures

Let τ be a fixed vocabulary.

Let K be a class of τ -structures.

Let Ln(K) be the number of structures in K with universe
{1,2, . . . ,n},

Ln(K) ∶= ∥{A ∈ K ∶ A = {1, . . . ,n}}∥.
Sometimes, structures A with A = {1, . . . ,n} are called labeled

structures, since every element in such a structure is labeled with a
natural number.

Ln(K) is the number of labeled structures in K of cardinality n.

If K is the class of models of a sentence ϕ, we write Ln(ϕ) ∶= Ln(K).
If K is the class of all τ -structures, we write Ln(τ) ∶= Ln(K).
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Labeled Asymptotic Probabilities and 0-1 Laws

Let ℓn(K) be the fraction of structures with universe {1, . . . ,n} which
are in K ,

ℓn(K) ∶= Ln(K)
Ln(τ) .

In case it exists, ℓ(K) ∶= limn→∞ ℓn(K) is called the labeled

asymptotic probability of K .

ℓn(ϕ) stands for ℓn(Mod(ϕ)).
ℓ(ϕ) stands for ℓ(Mod(ϕ)).
If ℓ(ϕ) = 1 we say that ϕ holds in almost all finite structures or that
ϕ almost surely holds.

A class Ψ of sentences of a logic is said to satisfy the labeled 0-1

law if ℓ(ϕ) = 1 or ℓ(ϕ) = 0 holds for every ϕ ∈ Ψ or, equivalently, for
ϕ ∈ Ψ either ϕ or ¬ϕ holds in almost all finite structures.
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Example

Suppose τ = {P , c}, where P is unary.

For any τ -structure (A,PA, cA),
(A,PA, cA) ⊧ Pc iff (A,A/PA, cA) /⊧ Pc .

Thus, we see that ℓn(Pc) = 1
2 .

It follows that ℓ(Pc) = 1
2 .
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Example

Let τ ∶= {f } be the “vocabulary” with a unary function symbol f .

Consider the first-order sentence

∀xf (x) ≠ x ,

expressing that f has no fixed-point.

Note that, on the universe {1, . . . ,n}:
One can assign the values of f independently;
For each argument i , the n − 1 possible values ≠ i do not lead to a
fixed-point.

It follows that

ℓn(∀xf (x) ≠ x) = (n − 1

n
)
n

= (1 − 1

n
)
n

.

Hence, ℓ(∀xf (x) ≠ x) = e−1.
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Example

If K is the class EVEN[τ] of all τ -structures of even finite cardinality,
then

ℓn(K) = { 1, if n is even
0, if n is odd.

Hence, ℓ(K) does not exist.
Therefore, ℓ(ϕ) does not exist for the following sentences:

The second order sentence ϕ expressing

“there is a binary relation which is an equivalence relation
having only equivalence classes with exactly two elements”;

The Lω1ω-sentence ⋁
k≥1

ϕ=2k .
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Example

Let τ be a relational vocabulary.

Let K be a class of τ -structures.

Construct a “random” structure of vocabulary τ on {1, . . . ,n} by the
following experiment:

For every m-ary relation symbol R in τ and for every i1, . . . , im ∈{1, . . . ,n}, toss a fair coin to decide whether Ri1 . . . im is true.

Then ℓn(K) is the probability for the outcome A of the experiment to
belong to K .
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Extension Axioms Revisited

In the following suppose that τ is relational.

Recall that an (r + 1)-extension axiom is a sentence

χΦ = ∀v1⋯∀vr ⎛⎝ ⋀1≤i<j≤r

vi ≠ vj → ∃vr+1 ⎛⎝ ⋀1≤i≤r vi ≠ vr+1 ∧ ⋀
ϕ∈Φ

ϕ ∧ ⋀
ϕ∈Φc

¬ϕ⎞⎠
⎞
⎠ ,

where Φ is a subset of

∆r+1 = {ϕ(v1, . . . , vr , vr+1) ∶ ϕ has the form Rx , where R ∈ τ
and where vr+1 occurs in x}.
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Asymptotic Behavior of Extension Axioms

Lemma

Any extension axiom holds in almost all finite structures.

Given Φ, we show that the asymptotic labeled probability ℓ(χΦ)
equals 1.

Let a1, . . . ,ar be distinct elements in a structure A.

Imagine the following experiment:

Add a further object a to A as a new element;
Randomly fix the truth values of Rb for any R in τ and any sequence b

in A ∪ {a} containing a.

Let δ be the probability that a1, . . . ,ar ,a satisfies

Φ ∪ {¬ϕ ∶ ϕ ∈ Φc}.
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Asymptotic Behavior of Extension Axioms (Cont’d)

Clearly, if c is the number of subsets of ∆r+1, then δ = 1
c
.

In particular, δ > 0.
Thus,

ℓn(¬χΦ) = ℓn(∃v1⋯∃vr(⋀1≤i<j≤r vi ≠ vj ∧
∀vr+1(⋁1≤i≤r vi = vr+1 ∨⋁ϕ∈Φ ¬ϕ ∨⋁ϕ∈Φc ϕ)))

≤ nr ( c−1
c
)n−r

= nr(1 − δ)n−r .
Therefore,

ℓ(¬χΦ) = lim
n→∞

ℓn(¬χΦ) = 0.
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Random Theories and 0-1 Laws

Recall that Trand(= Trand(τ)) denotes the set of extension axioms.

Corollary

Let ϕ be a first-order sentence.

(a) If Trand ⊧ ϕ, then ℓ(ϕ) = 1.

(b) If Trand ⊧ ¬ϕ, then ℓ(ϕ) = 0.

(a) Suppose that Trand ⊧ ϕ.

By compactness, T0 ⊧ ϕ, for some finite subset T0 of Trand.

Now T0 is a set of extension axioms.

Thus, ℓ(⋀T0) = 1, by the preceding lemma.

Hence, ℓ(ϕ) = 1.

(b) Suppose, next, Trand ⊧ ¬ϕ. Then, by Part (a), ℓ(¬ϕ) = 1.

Therefore, ℓ(ϕ) = 0.
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Finite Sets of Extension Axioms

For s ≥ 1, let ǫs be the conjunction of the finitely many r -extension
axioms with r ≤ s.

Corollary

Let ϕ be an Lω∞ω-sentence.

(a) If ǫs ⊧ ϕ, then ℓ(ϕ) = 1.

(b) If ǫs ⊧ ¬ϕ, then ℓ(ϕ) = 0.

This follows from ℓ(ǫs) = 1.
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0-1 Law for FO and Lω∞ω

Theorem

Let τ be relational. Then both FO[τ] and Lω∞ω[τ] satisfy the labeled 0-1
law.

From previous work on infinitary games and on pebble games,
respectively, we know that:

For ϕ in FO[τ],
Trand ⊧ ϕ or Trand ⊧ ¬ϕ;

For ϕ ∈ Ls∞ω
[τ],

ǫs ⊧ ϕ or ǫs ⊧ ¬ϕ.

So the assertions follow from the preceding corollaries.
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Subsection 2

Parametric Classes
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Labeled Asymptotic Conditional Probabilities

Suppose that K and H are classes of τ -structures.

Define the labeled probability ℓn(K ∣H) by
ℓn(K ∣H) ∶= Ln(K ∩H)

Ln(H) .

If it exists, ℓ(K ∣H) ∶= limn→∞ ℓn(K ∣H) is called the labeled

asymptotic probability of K with respect to H.

Notations such as ℓn(ϕ∣H) or ℓn(K ∣τ) should be self-explaining.

Example:

(a) We obviously have ℓn(K ∣τ) = ℓn(K).
(b) ℓn(CONN∣GRAPH) is the number of connected graphs on {1, . . . ,n}

divided by the total number of graphs on {1, . . . ,n}.
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Parametric Sentences and Parametric Classes

Let τ be relational.

A first-order sentence ϕ is called parametric if it is a conjunction of
sentences

∀ distinct x1 . . . xsψ,

where s ≥ 1 and ψ is a boolean combination of formulas of the form
Ry1 . . . yn with R ∈ τ and {y1, . . . , yn} = {x1, . . . , xs}.
Note that s cannot exceed the maximum of the arities of relation
symbols in τ .

A class K of structures is said to be parametric, if K =Mod(ϕ),
where ϕ is a parametric sentence.
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Examples

(a) The classes of graphs and digraphs are parametric classes.

They are axiomatized, respectively, by the parametric sentences

∀x¬Rxx ∧ ∀ distinct xy(Rxy → Ryx) and ∀x¬Rxx .
(b) The class of tournaments is axiomatized by the parametric sentence

∀x¬Rxx ∧ ∀ distinct xy(Rxy ↔ ¬Ryx).
(c) For relational τ the class K of all τ -structures is parametric.

K is the class of models of the empty conjunction.
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Examples (Cont’d)

(d) Note that
∀ distinct xyz((Rxy ∧ Ryz)→ Rxz)

is not a parametric sentence (since, e.g., {x , y} ≠ {x , y , z}).
From our analysis of parametric classes it will become clear that, for
example, the classes of transitive relations, equivalence relations,
partial orderings, and orderings are not parametric, transitivity being
the only obstacle.

(e) For R k-ary, consider the parametric sentence

∀ distinct x1 . . . xk(Rx1 . . . xk ∧ ¬Rx1 . . . xk).
It is true in all structures of cardinality < k , but has no model of
cardinality ≥ k .
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Nontrivial Parametric Sentences

Let k be the maximum of the arities of the relation symbols in τ .

A parametric sentence (and its model class) is called nontrivial, if it
has a model of cardinality ≥ k .

Claim: Nontrivial parametric sentences have arbitrarily large models.

Suppose that ϕ0 is a nontrivial parametric sentence.

Suppose B is any nonempty set.

We present a procedure that stepwise fixes the relations on B .

We show that it leads to a model of ϕ0 with universe B .
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Nontrivial Parametric Sentences (Cont’d)

For any s ≤ k and any distinct b1, . . . ,bs ∈ B :

Choose an arbitrary model A of ϕ0 of cardinality ≥ s;
Choose distinct a1, . . . , as ∈ A.

Define, for all R in τ , the “{b1, . . . ,bs}-part of RB” as a copy of the
“{a1, . . . ,as}-part of RA”.

More precisely, we define this part of RB , such that for
ϕ(v1, . . . , vs) = Ry1 . . . yn, with {y1, . . . , yn} = {v1, . . . , vs},

B ⊧ ϕ[b1, . . . ,bs] iff A ⊧ ϕ[a1, . . . ,as].
In B, every s-tuple of distinct elements behaves as some s-tuple in
some model of ϕ0.

As ϕ0 is parametric, B itself is a model of ϕ0.
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Extension Axioms Compatible with ϕ0

Consider an (r + 1)-extension axiom

∀ distinct v1 . . . vr∃vr+1 ⎛⎝ ⋀1≤i≤r ¬vi = vr+1 ∧ ⋀
ϕ∈Φ

ϕ ∧ ⋀
ϕ∈Φc

¬ϕ⎞⎠ .
It is called compatible with a sentence ϕ0 if

{ϕ0} ∪
⎧⎪⎪⎨⎪⎪⎩∃v1⋯∃vr∃vr+1

⎛
⎝ ⋀
1≤i<j≤r+1

¬vi = vj ∧ ⋀
ϕ∈Φ

ϕ ∧ ⋀
ϕ∈Φc

¬ϕ⎞⎠
⎫⎪⎪⎬⎪⎪⎭

is satisfiable.

Let Trand(ϕ0) be the set of sentences consisting of ϕ0 and of all
extension axioms compatible with ϕ0.
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Property of Extension Axioms Compatible with ϕ0

Claim: Any two models of Trand(ϕ0) are partially isomorphic and
hence, L∞ω-equivalent. Therefore,

Trand(ϕ0) ⊧ ψ or Trand(ϕ0) ⊧ ¬ψ
holds for any L∞ω-sentence ψ.

We proved in a previous example that any two models of Trand are
partially isomorphic.

That proof also works for Trand(ϕ0).
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Countable Model of Trand

Claim: Trand(ϕ0) has an (up to isomorphism) unique countable
model R(ϕ0).
We gave a proof leading to a countable model of Trand.

The proof can be transferred to Trand(ϕ0), since by the construction
process described above the corresponding Ai ’s can be chosen as
models of ϕ0.
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Models of ϕs
0

For s ≥ 1, we denote by ϕs
0 the conjunction of ϕ0 with the finitely

many r -extension axioms with r ≤ s that are compatible with ϕ0.

Claim: Any two models of ϕs
0 are s-partially isomorphic and hence,

Ls∞ω-equivalent. Therefore, for any Ls∞ω-sentence ψ,

ϕs
0 ⊧ ψ or ϕs

0 ⊧ ¬ψ.

Similar argument as above.
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Asymptotic Probability of Compatible Extension Axioms

Claim: If ψ is an extension axiom compatible with ϕ0, then

ℓ(ψ∣ϕ0) = 1.

We showed that any extension axiom holds in almost all finite
structures.

We argue similarly, but restrict to models of ϕ0 and take as c the
number of subsets Φ of ∆r+1 that correspond to (r + 1)-extension
axioms compatible with ϕ0.

Given Φ, distinct a1, . . . ,ar , and a new a, we can satisfy Φ by
a1 . . . ara, applying the construction procedure described above to any
ai1 . . . aim , with 1 ≤ i1 < i2 < ⋯ < im ≤ r .
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0-1 Law for Nontrivial Parametric Classes

Let H be a class of structures and Ψ a class of sentences.

We say that H satisfies the labeled 0-1 law for Ψ if

ℓ(ψ∣H) = 1 or ℓ(ψ∣H) = 0

holds for any ψ ∈ Ψ.

From the preceding claims we obtain:

Theorem

Let H be a nontrivial parametric class. Then H satisfies the labeled 0-1
law for Lω∞ω and, hence, for FO.
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Subsection 3

Unlabeled 0-1 Laws
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Introduction

From a probabilistic point of view the definition of ℓn(K) is quite
natural.

But note that for τ ∶= {P}, with unary P , and i = 1, . . . ,n, the
structures Ai ∶= ({1, . . . ,n},PAi ) with PAi ∶= {i} are counted as n
different structures in the definition of ℓn(K) even though they are
isomorphic.

In this section we study the so-called unlabeled probability un(K),
which is the proportion of isomorphism types of structures of
cardinality n in K .

Similarly, we define unlabeled conditional probabilities.
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Unlabeled Asymptotic Probability

Fix a vocabulary τ .

For a class K let Un(K) be the number of isomorphism types of
structures of cardinality n in K .

Equivalently,

Un(K) ∶= number of isomorphism types of
structures in K with universe {1, . . . ,n}.

If K is the class of all τ -structures, we write Un(τ) ∶= Un(K).
If K is the class of models of ϕ, we write Un(ϕ) ∶= Un(K).
For arbitrary K we set

un(K) ∶= Un(K)
Un(τ) .

We denote (in case it exists) by u(K) ∶= lim
n→∞

un(K) the unlabeled

asymptotic probability.
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Unlabeled Asymptotic Conditional Probability

If K and H are classes of structures we call

un(K ∣H) ∶= Un(K ∩H)
Un(H)

the unlabeled probability of K with respect to H.

Moreover, we set
u(K ∣H) ∶= lim

n→∞
un(K ∣H)

the unlabeled asymptotic probability of K with respect to H.

Example: un(CONN∣GRAPH) is the number of isomorphism types of
connected n vertex graphs divided by the total number of
isomorphism types of n vertex graphs.
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The Class of Rigid Structures

A structure A is called rigid if the identity on A is the only
automorphism of A.

RIG = RIG[τ] denotes the class of rigid τ -structures.

Lemma

Let K be a class of τ -structures.

(a) Ln(K) ≤ Un(K) ⋅ n!;
(b) If K ⊆ RIG, then Ln(K) = Un(K) ⋅ n!;
(c) If K ⊆ RIGc , then Ln(K) ≤ Un(K) ⋅ n!2 .
(b) Let A be a structure with universe {1, . . . ,n}.

There are n! permutations of {1, . . . ,n}.
Every permutation π induces a structure Aπ on {1, . . . ,n} such that
π ∶ A ≅ Aπ.
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The Class of Rigid Structures

For permutations π and ρ of {1, . . . ,n} we have

Aπ = Aρ iff π−1 ○ ρ ∶ A ≅ A.
Hence, if A is rigid, we have Aπ = Aρ iff π = ρ.
Thus, each rigid structure leads to n! distinct structures on {1, . . . ,n}.
This shows (b).

(c) Suppose A is not rigid and ρ is a nontrivial automorphism of A.
Then A = Aπ○ρ, for any permutation π.

Hence, for any nonrigid structure, there are at most n!
2 distinct

structures on {1, . . . ,n}. This proves (c).
(a) We have

Ln(K) = Ln(K ∩RIG) + Ln(K ∩ RIGc)
≤ Un(K ∩RIG) ⋅ n! +Un(K ∩ RIGc) ⋅ n!2≤ (Un(K ∩ RIG) +Un(K ∩RIGc))n!
= Un(K) ⋅ n!.
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Asymptotic Probability of Rigid Structures

Lemma

For any class H, un(RlG∣H) ≤ ℓn(RIG∣H). In particular,

u(RlG∣H) = 1 implies ℓ(RIG∣H) = 1.

We have

un(RlG∣H) = Un(RlG ∩H) ⋅ n!
Un(RlG ∩H) ⋅ n! +Un(RlGc

∩H) ⋅ n!
≤ Ln(RIG ∩H)

Ln(RlG ∩H) + Ln(RlGc
∩H)

= ℓn(RlG∣H).
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Characterization of Almost Certain Rigidity

We show that almost all structures in a class H are rigid iff
Ln(H) ≈ Un(H) ⋅ n!.

Proposition

Let H he a class of structures. Then

u(RlG∣H) = 1 iff lim
n→∞

Ln(H)
Un(H) ⋅ n! = 1.

We have

Ln(H)
Un(H) ⋅ n! = Ln(RIG ∩H)

Un(H) ⋅ n! +
Ln(RIGc

∩H)
Un(H) ⋅ n!

= un(RIG∣H) + Ln(RIGc
∩H)

Un(H) ⋅ n! .
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Characterization of Almost Certain Rigidity (Cont’d)

We obtained

Ln(H)
Un(H) ⋅ n! = un(RIG∣H) + Ln(RIGc

∩H)
Un(H) ⋅ n! .

Using the preceding lemma, we get

un(RIG∣H) ≤ Ln(H)
Un(H) ⋅ n!

≤ un(RIG∣H) + 1

2
un(RIGc ∣H)

= 1 −
1

2
un(RIGc ∣H).

Now we infer the following:

u(RIG∣H) = 1 implies lim
n→∞

Ln(H)
Un(H)⋅n!

= 1.

lim
n→∞

Ln(H)
Un(H)⋅n!

= 1 implies u(RIGc ∣H) = 0 implies u(RIG∣H) = 1.
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Rigidity, Labeled and Unlabeled Asymptotic Probabilities

Theorem

Let H be a class of structures. If almost all structures in H are rigid, i.e., if
u(RlG∣H) = 1, then, for any class K , the labeled and the unlabeled
asymptotic probabilities with respect to H coincide, that is

ℓ(K ∣H) = u(K ∣H) (= u(K ∣RlG ∩H)).
By assumption, u(RIG∣H) = 1. By the preceding lemma,
ℓ(RIG∣H) = 1. By the definitions, ℓ(K ∣H) = ℓ(K ∣RIG ∩H) and
u(K ∣H) = u(K ∣RIG ∩H). Hence,

ℓn(K ∣RIG ∩H) = Ln(K ∩RIG ∩H)
Ln(RIG ∩H)

= Un(K ∩ RIG ∩H) ⋅ n!
Un(RIG ∩H) ⋅ n! = un(K ∣RIG ∩H).
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Free Parametric Classes and Rigidity

Let H0 be the parametric class consisting of all τ -structures A such
that RA = ∅ for all R ∈ τ .
Note that:

Ln(H0) = 1;
Un(H0) = 1;
un(RlG∣H0) = 0 (for n ≥ 2).

A parametric class H is free if, roughly speaking, for some r ≥ 2, there
is a real choice when fixing the parts of the relations corresponding to
r -tuples of distinct elements.

Note that, in contrast to H0, almost all structures in a “free”
parametric class are rigid.
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Free Parametric Classes

Suppose H =Mod(ϕ0) with a parametric ϕ0.

Then H is free, if for some m ≥ 2, there is a relation symbol R , say of
arity r , and a surjection i ∶ {1, . . . , r} → {1, . . . ,m}, such that

ϕ0 ∧ ∃x1⋯∃xm(Rxi(1) . . . xi(r) ∧⋀1≤k<ℓ≤m ¬xk = xℓ),
ϕ0 ∧ ∃x1⋯∃xm(¬Rxi(1) . . . xi(r) ∧⋀1≤k<ℓ≤m ¬xk = xℓ)

are satisfiable.

Example:

The class H0 introduced in the preceding slide is not free.
The class of graphs is free.
For any relational τ containing at least one relation symbol of arity ≥ 2,
the class of all τ -structures is a free parametric class.
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Rigid Structures in a Free Parametric Class

Proposition

Let H be a nontrivial free parametric class. Then almost all structures in
H are rigid, that is, u(RlG∣H) = 1.

We later give a proof for the special case in which H is the class of all
structures.

Corollary

Let H be a nontrivial free parametric class. Then the labeled and the
unlabeled asymptotic probabilities with respect to H coincide.

This follows from the proposition and the preceding theorem.

George Voutsadakis (LSSU) Finite Model Theory January 2024 41 / 72



0-1 Laws Unlabeled 0-1 Laws

A Few Prerequisites

Suppose that τ = {R1, . . . ,Rk}, with unary relation symbols Ri .

For α ∶ {1, . . . ,k} → {0,1} and a τ -structure A, denote by Aα the
subset X1 ∩⋯ ∩Xk , where:

Xi ∶= RA
i , if α(i) = 1;

Xi ∶= A/RA
i , if α(i) = 0.

For any τ -structures A and B and m ≥ 1,

A ≡m B iff min{∥Aα∥,m} = min{∥Bα∥,m} holds for all α.
Thus, every sentence ϕ from FO[τ ] is equivalent to a boolean
combination of sentences of the form ∃

=ℓxRαx , where

Rαx ∶= ϕ1 ∧⋯∧ ϕk ,

with ϕi = Rix , if α(i) = 1, and ϕi = ¬Rix , if α(i) = 0.
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A Few Prerequisites (Cont’d)

For all s ≥ 1 and all τ -structures A and B,

W s
s (A,B) =W s

∞(A,B).
It follows that the class K of all finite τ -structures is bounded.

So FO and Lω∞ω have the same expressive power on K .
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Labeled and Unlabeled Probabilities in Parametric Classes

Proposition

Let H be any nontrivial parametric class. Then the labeled and the
unlabeled asymptotic probabilities with respect to H coincide.

By the preceding corollary, we only have to consider the nonfree case.

First we consider vocabularies with only unary relation symbols.

Suppose τ = {R1, . . . ,Rm}, with unary R1, . . . ,Rm.

Let ϕ0 be a nontrivial parametric sentence.

For α ∶ {1, . . . ,m} → {0,1}, set
Rαx ∶= ϕ1 ∧⋯∧ ϕm,

where:
ϕi = Rix , if α(i) = 1;
ϕi = ¬Rix , if α(i) = 0.

Recall that any boolean combination of formulas Rix can be written
as a disjunction of formulas Rαx .
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Labeled and Unlabeled Probabilities (Cont’d)

It follows that there are distinct α1, . . . , αt such that ϕ0 and
∀x(Rα1x ∨⋯∨ Rαtx) are logically equivalent.

The case t = 1 is trivial. So we assume t ≥ 2.

For i = 1, . . . , t and k ≥ 0, the sentence ∃>kxRαix is a consequence of
the set Trand(ϕ0) of extension axioms compatible with ϕ0. Hence,

ℓ(∃=kxRαi x ∣ϕ0) = 0.

The isomorphism type of a model A of ϕ0 is determined by(n1, . . . ,nt), where ni ∶= ∥{a ∈ A ∶ A ⊧ Rαix[a]}∥.
Using induction on n and (nested) on i , we may show:

The number of i-tuples (n1, . . . ,nt), such that n1 +⋯ + nt = n, equals
the binomial coefficient (n+t−1

t−1
), a polynomial in n of degree t − 1.

Hence, Un(ϕ0) = (n+t−1t−1
).
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Labeled and Unlabeled Probabilities (Cont’d)

By the prerequisites, any sentence of Lω∞ω[τ] is equivalent to a finite
boolean combination of sentences of the form ∃

=kxRαx , where k ≥ 0
and α ∶ {1, . . . ,m}→ {0,1}. Thus, it suffices to show that

u(∃=kxRαx ∣ϕ0) = ℓ(∃=kxRαx ∣ϕ0) ∈ {0,1}.
Suppose, first, that α ≠ α1, . . . , α ≠ αt .

Then:

If k > 0, u(∃=kxRαx ∣ϕ0) = ℓ(∃=kxRαx ∣ϕ0) = 0;
If k = 0, u(∃=kxRαx ∣ϕ0) = ℓ(∃=kxRαx ∣ϕ0) = 1.

Let α = αi . Then, by what was just shown above:

Un(∃=kxRαx ∧ ϕ0) = (n−k+t−2t−2
) is a polynomial in n of degree t − 2;

Un(ϕ0) = (n+t−1t−1
) is a polynomial in n of degree t − 1.
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Labeled and Unlabeled Probabilities (Conclusion)

Hence,

u(∃=kxRαx ∣ϕ0) = lim
n→∞

Un(∃=kxRαx ∧ ϕ0)
Un(ϕ0) = 0.

Thus, by our first assertion,

u(∃=kxRαx ∣ϕ0) = ℓ(∃=kxRαx ∣ϕ0) = 0.

Finally, we turn to arbitrary vocabularies.

Let H be a nontrivial parametric class which is not free.

By the definition of freeness, if A ∈ H, then any bijection of the
universe that preserves the induced unary relations {a ∶ RAa . . . a}, for
R ∈ τ , is an automorphism of A.

Hence, the counting arguments of the special case remain valid.
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Unlabeled 0-1 Law in Parametric Classes

The class H satisfies the unlabeled 0-1 law for the set Φ of
sentences if, for all ϕ ∈ Φ,

u(ϕ∣H) = 1 or u(ϕ∣H) = 0.

Theorem

Let H be a nontrivial parametric class. Then H satisfies the unlabeled 0-1
law for Lω∞ω and hence, for FO.

By a previous theorem combined with the proposition.
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Almost all Structures are Rigid

Proposition

Let H be the class of all τ -structures. Then almost all structures in H are
rigid, that is, u(RlG∣H) = 1.

Fix a vocabulary τ and n ≥ 1.

Let A,B, . . . range over τ -structures with universe {1, . . . ,n}.
Let π,ρ, . . . range over permutations of {1, . . . ,n}.
We set:

Aut(A) ∶= {π ∶ π ∶ A ≅ A};
Str(π) ∶= {A ∶ π ∶ A ≅ A}.
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Almost all Structures are Rigid (Cont’d)

Lemma

Un(τ) ⋅ n! = ∑π ∥Str(π)∥.
Un(τ) is the number of equivalence classes of the relation ∼, where

A ∼ B iff A ≅ B.

Clearly, A ≅ B implies ∥Aut(A)∥ = ∥Aut(B)∥.
Given A and π, let Aπ be the structure A with π ∶ A ≅Aπ.

We have already remarked that Aπ = Aρ iff π−1 ○ ρ ∈ Aut(A).
This implies that ∥{B ∶ A ≅ B}∥ is the index of the subgroup Aut(A)
in the group of all permutations of {1, . . . ,n}.
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Almost all Structures are Rigid (Cont’d)

Hence,

∥Aut(A)∥ = n!

∥{B ∶ A ≅ B}∥ .
Therefore, for fixed A, ∑B,B≅A ∥Aut(B)∥ = ∑B,B≅A ∥Aut(A)∥ = n!.

But there are Un(τ) many equivalence classes with respect to ≅.
Therefore,

∑
B

∥Aut(B)∥ = Un(τ) ⋅ n!.
On the other hand,

∑
B

∥Aut(B)∥ = ∥{(π,B) ∶ π ∈ Aut(B)}∥ = ∑
π

∥Str(π)∥.
The last two equations yield the lemma.
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Support of a Bijection

Let M be finite and f ∶M →M be a bijection.

Denote by c(f ) the number of f -cycles.

Denote by spt(f ) the support of f ,

spt(f ) ∶= {a ∈M ∶ f (a) ≠ a}.
Set s(f ) ∶= ∥spt(f )∥.
Note that:

a ∈M/spt(f ) gives rise to the f -cycle {a};
The f -cycle of any a ∈ spt(f ) has at least two elements.

Therefore, we have

c(f ) ≤ ∥M∥ − s(f ) + s(f )
2

= ∥M∥ − s(f )
2
.
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Asymptotics for Rigid Structures

Proposition

Let τ be a relational vocabulary that contains at least one relation symbol
of arity ≥ 2. Then u(RIG) = 1.

Obviously, we can assume ∥τ∥ = 1.

For simplicity, we restrict ourselves to τ = {E} with binary E .

By a previous result, it suffices to show that limn→∞
Ln(τ)

Un(τ)⋅n!
= 1.

Equivalently, we show that limn→∞
Un(τ)⋅n!
Ln(τ)

= 1.

Clearly, Ln(τ) = 2n
2
.

Fix n and recall our conventions:
π, ρ, . . . denote permutations of {1, . . . ,n};
A,B, . . . denote τ -structures with universe {1, . . . ,n}.

Each π induces a permutation π̃ of {1, . . . ,n} × {1, . . . ,n},
π̃((i , j)) ∶= (π(i), π(j)).
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Asymptotics for Rigid Structures (Cont’d)

If π is an automorphism of A and {a, π̃(a), π̃(π̃(a)), . . .} a π̃-cycle,
then EAa iff EAπ̃(a) iff EAπ̃(π̃(a)) iff . . ..
I.e., we have EAb for all elements b of the π̃-cycle of a, or for none.

Therefore, π is an automorphism for exactly 2c(π̃) many τ -structures,

∥Str(π)∥ = 2c(π̃).

By the preceding lemma, we obtain

Un(τ) ⋅ n!
Ln(τ) = ∑π ∥Str(π)∥

2n2
= ∑

π

2c(π̃)−n
2

.

We must show that ∑π 2
c(π̃)−n2 → 1.

For π the identity on {1, . . . ,n}, we have c(π̃) = n2.

So we must show that

∑
π≠id

2c(π̃)−n
2

→ 0.
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Asymptotics for Rigid Structures (Cont’d)

For any π, spt(π) × {1, . . . ,n} ⊆ spt(π̃). Hence, c(π̃) < n2 −
s(π)⋅n

2 .

So we get

∑
π≠id

2c(π̃)−n
2 ≤ ∑

π≠id

2
−s(π)⋅n

2 .

For k = 2, . . . ,n, the number of π, with s(π) = k , is ≤ (n
k
)k! ≤ nk .

Therefore, for n > 2 ⋅ log n, we have

∑π≠id 2
−s(π)⋅n

2 ≤ ∑n
k=2 n

k
⋅ 2−

k ⋅n
2

= ∑n
k=2 2

−
1
2
k(n−2 log n)

≤ (n − 1) ⋅ 2−(n−2 log n).
For the last inequality, note that k = 2 gives the largest summand of
the third sum.

Since (n − 1) ⋅ 2−(n−2 log n) → 0, we obtain the result.
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Subsection 4

Examples and Consequences
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0-1 Laws Examples and Consequences

Summary of Previous Results

Fix a nontrivial parametric sentence ϕ0.

Then Trand(ϕ0) has a uniquely determined countable model R(ϕ0),
the random model of ϕ0.

Some results of the preceding sections are summarized in:

Proposition

For an Lω∞ω-sentence ϕ, the following are equivalent:

(i) Trand(ϕ0) ⊧ ϕ;
(ii) R(ϕ0) ⊧ ϕ;
(iii) ℓ(ϕ∣ϕ0) = 1;

(iv) u(ϕ∣ϕ0) = 1.
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Properties of Nontrivial Parametric Sentences

Proposition

(a) Let B be a finite model of ϕ0. Then almost all finite models of ϕ0

contain a substructure isomorphic to B.

(b) Let B be a finite model of ϕ0 and π0 an isomorphism of a
substructure A of B into R(ϕ0). Then π0 can he extended to an
isomorphism of B into R(ϕ0).

(a) Let B consist of s elements and let ϕs
0 be the conjunction of ϕ0 and

the finitely many r -extension axioms of Trand(ϕ0), with r ≤ s.

Clearly, any model of ϕs
0 contains a substructure isomorphic to B.

As ℓ(ϕs
0∣ϕ0) = 1, the claim follows.
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Properties of Nontrivial Parametric Sentences (Cont’d)

(b) Let A = {a} and B = {a,b}.
Note that ϕ0

A,a = ϕ0
B,a.

The sentence
∀v(ϕ0

A,a(v)→ ∃wϕ0
B,ab
(v ,w))

is a consequence of the extension axioms in Trand(ϕ0).
Hence, R(ϕ0) is a model of it.

Now A ⊧ ϕ0
A,a[a] and ϕ0

A,a is quantifier-free.

Hence, R(ϕ0) ⊧ ϕ0
A,a[π0(a)].

So there are d in R(ϕ0) such that R(ϕ0) ⊧ ϕ0
B,ab
[π0(a),d].

Thus, ab ↦ π0(a)d is the required isomorphism.
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Isomorphic Substructures of R(ϕ0)

Proposition

If B and C are isomorphic finite substructures of R(ϕ0), then there is an
automorphism of R(ϕ0) mapping B onto C.

Assume that R(ϕ0) has universe {a0,a1,a2, . . .} and that π ∶ B ≅ C.
Take the finite substructure B′0 of R(ϕ0) with B ′0 = B ∪ {a0}.
By part (b) of the preceding proposition, there is an isomorphism
π′0 ∶ B

′
0 ≅ C′0 for a suitable C′0 ⊆R(ϕ0) that extends π.

Similarly, we get π0 ∶ B0 ≅ C0 with π′0 ⊆ π0, B0 ⊆R(ϕ0), C0 ⊆R(ϕ0)
and C0 = C ′0 ∪ {a0}.
Continuing this way we obtain a sequence π0 ⊆ π1 ⊆ π2 ⊆ ⋯ with
ai ∈ dom(πi) ∩ ran(πi).
Thus, π ∶= ⋃i≥0 πi is the desired automorphism of R(ϕ0).
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Graphs

Let ϕG be a parametric sentence axiomatizing the class of graphs.

Trand(ϕG ) is equivalent to
Trand,G ∶= {ϕG , ϕ≥2} ∪ {∀ distinct x1 . . . xny1 . . . yn

∃z (⋀n
i=1 Exiz ∧⋀

ℓ
i=1(¬Eyiz ∧ ¬yi = z)) ∶ n + ℓ ≥ 1} .

In fact:

The sentences in Trand,G are implied by the extension axioms in
Trand(ϕG). Hence, any model of Trand(ϕG) is a model of Trand,G .
On the other hand, a back and forth argument using the axioms in
Trand,G shows that any two of its models and hence, any model of
Trand,G and any model of Trand(ϕG) are partially isomorphic.

Therefore, any model of Trand,G is a model of Trand(ϕG ).
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Planarity and Connectedness

It is well known that a graph cannot be planar if it contains the
subgraph K5, a clique with 5 elements.

Thus, using Part (a) of a preceding proposition, we get:

Proposition

Almost all finite graphs are not planar.

Proposition

R(ϕG ), the random graph, and almost all finite graphs G are connected,
the diameter D(G) ∶= max {d(a,b) ∶ a,b ∈ G} being 2.

Note that, by the extension axioms, R(ϕG ) and almost all finite
graphs are models of ∃x∃y¬Exy ∧ ∀x∀y∃z(Exz ∧ Eyz).
Any graph G satisfying this sentence is connected with D(G) = 2.
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Rigidity

Even though “connectedness” is not expressible in first-order logic,
the first-order sentence ∃x∃y¬Exy ∧ ∀x∀y∃z(Exz ∧ Eyz) is a
property of almost all graphs that implies “connectedness”.

The situation for “rigidity” is different:

Proposition

(a) Almost all finite graphs are rigid.

(b) R(ϕG) is not rigid.
(c) No Lω

∞ω
-definable property of almost all graphs implies rigidity.

For part (a) see previous results.

Part (b) is an immediate consequence of a preceding proposition.

There, we take B and C to be two substructures of cardinality one.

Part (c) follows from (b) because any Lω∞ω-definable property of
almost all graphs holds in R(ϕG ).
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Using Fragments of Second Order Logic

Connectedness of graphs can be expressed by a Π1
1-sentence, for

example by

ϕCONN ∶= ∀X (∀xXx ∨ ∀x¬Xx ∨ ∃x∃y(Xx ∧ ¬Xy ∧ Exy)).
Nonrigidity is expressible by

∃X∀x∀y∀u∀v∃z1∃z2∃w(Xz1x ∧Xxz2 ∧ ¬Xww∧((Xxy ∧Xuv)→ ((x = u↔ y = v) ∧ (Exu ↔ Eyv)))).
This is called a Σ1

1(∀∗∃∗)-sentence, that is, a sentence of the form
∃X1⋯∃Xs∀y1⋯∀ym∃z1⋯∃zℓχ, with s,m, ℓ ∈N and χ quantifier-free.

A Σ1
1(∃∗∀∗)-sentence has the form ∃X1⋯∃Xs∃y1⋯∃ym∀z1⋯∀zℓχ,

where χ is quantifier-free.
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Parametric Sentences and Second Order Fragments

Part (a) of the following proposition generalizes the fact that
connectedness is implied by a first-order property of almost all graphs.

Part (b) shows that nonrigidity cannot be expressed by a
Σ1
1(∃∗∀∗)-sentence (otherwise almost all finite graphs would be

nonrigid).

Proposition

Suppose that ϕ0 is nontrivial parametric.

(a) Let ϕ be a Π1
1-sentence. If R(ϕ0) ⊧ ϕ, then there is a first-order sentence ψ

such that u(ψ∣ϕ0) = 1 and ⊧ ψ → ϕ.

(b) Let ϕ be a Σ1
1(∃∗∀∗)-sentence. If R(ϕ0) ⊧ ϕ, then there is a first-order

sentence ψ such that u(ψ∣ϕ0) = 1 and ⊧fin ψ → ϕ.
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Parametric Sentences and Second Order (Part (a))

(a) Assume that R(ϕ0) ⊧ ϕ holds for the Π1
1-sentence ϕ = ∀X1⋯∀Xsχ,

where χ contains no second-order quantifiers.

Claim: The set Trand(ϕ0) ∪ {¬χ} of τ ∪ {X1, . . . ,Xs}-sentences has
no model.

Suppose, to the contrary, that Trand(ϕ0) ∪ {¬χ} has a model.

By the Löwenheim-Skolem Theorem, it has a countable model.

Its τ -reduct is (isomorphic to) the unique countable model R(ϕ0) of
Trand(ϕ0). Thus, R(ϕ0) ⊧ ∃X1⋯∃Xs¬χ.

This contradicts R(ϕ0) ⊧ ∀X1⋯∀Xsχ.

By compactness, there is a finite subset T0 of Trand(ϕ0), such that
T0 ∪ {¬χ} is not satisfiable.
Let ψ be the conjunction of the sentences in T0.

Then u(ψ∣ϕ0) = 1 and ⊧ ψ → χ. Hence, ⊧ ψ → ∀X1⋯∀Xsχ.
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Parametric Sentences and Second Order (Part (b))

(b) Suppose that for the Σ1
1(∃∗∀∗)-sentence ϕ = ∃X1⋯∃Xs∃x∀yχ, with

quantifier-free χ, we have R(ϕ0) ⊧ ϕ, say,
(R(ϕ0),X1, . . . ,Xs) ⊧ ∃x∀yχ.

Choose a in R(ϕ0), such that

(R(ϕ0),X1, . . . ,Xs) ⊧ ∀yχ[a].
Denote by A0 the submodel of R(ϕ0) with universe {a}.
Now ∃xϕ0

a(x) holds in R(ϕ0).
Thus, there is a ψ, that is the conjunction of ϕ0 and of finitely many
extension axioms compatible with ϕ0, such that

⊧ ψ → ∃xϕ0
a(x).

Obviously, u(ψ∣ϕ0) = 1.
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Parametric Sentences and Second Order (Part (b) Cont’d)

Claim: ⊧fin ψ → ϕ.

Let B be a finite model of ψ.

Choose d in B such that B ⊧ ϕ0
a[d]. Then d ↦ a is an isomorphism

from the substructure of B with universe {d} into R(ϕ0).
By a previous proposition, there is an extension π of d ↦ a that is an
isomorphism of B onto a substructure B′ of R(ϕ0).
It suffices to show that B′ is a model of ϕ.

We have (R(ϕ0),X1, . . . ,Xs) ⊧ ∀yχ[a] and ∀yχ is universal.

It follows that (B′,X1 ∩B ′, . . . ,Xs ∩B ′) ⊧ ∀yχ[a].
Hence, (B′,X1 ∩ B ′, . . . ,Xs ∩ B ′) ⊧ ∃x∀yχ.
Thus, B′ ⊧ ∃X1⋯∃Xs∃x∀yχ.
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A Consequence

Theorem

Let ϕ0 be nontrivial parametric and let ϕ be a Σ1
1(∃∗∀∗)-sentence.

(a) If R(ϕ0) ⊧ ϕ, then u(ϕ∣ϕ0) = 1.

(b) If R(ϕ0) /⊧ ϕ, then u(ϕ∣ϕ0) = 0.

(a) If R(ϕ0) ⊧ ϕ, then, by Part (b) of the proposition, there is a
first-order sentence ψ, such that u(ψ∣ϕ0) = 1 and ⊧fin ψ → ϕ.

In particular, u(ϕ∣ϕ0) = 1.

(b) Assume that R(ϕ0) ⊧ ¬ϕ.
But ¬ϕ is (logically equivalent to) a Π1

1-sentence.

By Part (a) of the proposition, there exists a first-order sentence ψ,
such that u(ψ∣ϕ0) = 1 and ⊧ ψ → ¬ϕ.

Therefore, u(¬ϕ∣ϕ0) = 1. Hence, u(ϕ∣ϕ0) = 0.

George Voutsadakis (LSSU) Finite Model Theory January 2024 69 / 72



0-1 Laws Examples and Consequences

Labeled Probabilities

Corollary

Σ1
1(∃∗∀∗) satisfies the labeled and the unlabeled 0-1 law with respect to

nontrivial parametric classes.

By a previous proposition, the preceding results remain valid for the
labeled probability as well.

The satisfiability problem for ∃∗∀∗-sentences is decidable.

We have just seen that Σ1
1(∃∗∀∗) has the 0-1 law.

This is a special case of a general phenomenon.

The satisfiability problem for a prefix class Φ of first-order logic is
decidable just in case the 0-1 law holds for Σ1

1Φ ∶= {∃Rϕ ∶ ϕ ∈ Φ}.
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Example: A Class of Ordered Structures

Let τ = {<,P}, with P unary.

Let O = O[τ] be the class of τ -structures ordered by <.
Denote by ϕ a first-order sentence expressing that the first element of
the ordering is in P , say,

ϕ = ∃x(Px ∧ ∀y¬y < x).
Then

u(ϕ∣O) = ℓ(ϕ∣O) = 1

2
.

By a previous result, O is not parametric.
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Example: Orderings and 0-1 Laws

Let τ = {<}.
Consider the class ORD of orderings.

ORD satisfies the labeled and the unlabeled 0-1 law for FO.
By a previous result, for any first order sentence ϕ we have

u(ϕ∣ORD) = ℓ(ϕ∣ORD) = 1 iff ({0, . . . ,2k},<) ⊧ ϕ,
where k is the quantifier rank of ϕ.
ORD does not satisfy the (labeled or unlabeled) 0-1 law for L2

∞ω
.

The probabilities ℓ(ϕ∣ORD) and u(ϕ∣ORD) do not exist for any
L2
∞ω

-sentence ϕ expressing that the ordering has an even number of
elements. As ϕ one can take

⋁
n≥1

χ2n,

where χ2n are the FO2-formulas introduced in a previous example.

George Voutsadakis (LSSU) Finite Model Theory January 2024 72 / 72


	Outline
	0-1 Laws
	0-1 Laws for FO and L
	Parametric Classes
	Unlabeled 0-1 Laws
	Examples and Consequences


