Finite Model Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

Satisfiability in the Finite

- Finite Model Property of FO²
- Finite Model Property of $\forall^2 \exists^*$ -Sentences

Subsection 1

Finite Model Property of FO²

Finite Model Property

- A class Φ of sentences has the **finite model property** if every satisfiable sentence of Φ has a finite model.
- We may ask whether a given class Φ has the finite model property.
 Example: Let φ be a first-order sentence expressing that < is a partial ordering without maximal elements.
 - φ is satisfiable.
 - φ has no finite model.

As φ we can take either of the following:

- (1) $\forall x \neg x < x \land \forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z) \land \forall x \exists yx < y$ This sentence uses only three variables.
- (2) $\forall x \forall y \forall z \exists u (\neg x < x \land ((x < y \land y < z) \rightarrow x < z) \land x < u)$ This sentence is a $\forall^3 \exists$ -sentence.
- The sentences in the example are "best" possible:
 - Every satisfiable sentence with at most two variables has a finite model;
 - Every satisfiable $\forall^2 \exists^*$ -sentence without equality has a finite model.

Remark on Function Symbols

- We prove that every satisfiable sentence with at most two variables in a relational vocabulary has a finite model.
- We remark that:
 - One can remove the restriction on constants;
 - The result is not valid for "vocabularies" with function symbols.

Example: Consider the sentence

$$\forall x \forall y (f(x) = f(y) \rightarrow x = y) \land \exists y \forall x \neg f(x) = y$$

expressing that f is injective but not surjective.

This is a sentence with two variables.

It is satisfiable but does not have a finite model.

Normal First Order Formulas

- Fix a relational vocabulary τ .
- Let $x \coloneqq v_1$ and $y \coloneqq v_2$.
- A first-order formula (possibly containing second order variables) is **normal**, if it has the form

$$\forall x \forall y \psi \wedge \bigwedge_{i=1}^r \forall x \exists y \psi_i,$$

where $\psi, \psi_i \in FO^2$ are quantifier-free.

A Form Reduction Lemma

Lemma

Every sentence $\exists \overline{X}(\varphi \land \forall x \forall y \psi)$, where φ is normal and $\psi \in FO^2$, is equivalent to a sentence of the form $\exists \overline{Y}\chi$, where χ is normal.

We proceed by induction on the number of quantifiers in ψ.
 If ψ contains no quantifiers, the result is immediate.
 In the induction step we show how to eliminate a quantifier in ψ.
 So let, say, ∀xψ₀ be a subformula of ψ with quantifier-free ψ₀.
 Then, ψ is logically equivalent to

$$\exists X(\forall y(Xy \leftrightarrow \forall x\psi_0) \land \forall x \forall y\psi'),$$

where ψ' results from ψ by replacing $\forall x\psi_0$ by Xy.

A Form Reduction Lemma (Cont'd)

• Hence, it is logically equivalent to

$$\exists X (\forall x \forall y (Xy \to \psi_0) \land \forall y \exists x (\neg \psi_0 \lor Xy) \land \forall x \forall y \psi').$$

So it also equivalent to

$$\exists X (\forall x \forall y (Xy \to \psi_0) \land \forall x \exists y (\neg \psi_0 \begin{pmatrix} yx \\ xy \end{pmatrix} \lor Xx) \land \forall x \forall y \psi'),$$

where $\psi_0 \begin{pmatrix} yx \\ xy \end{pmatrix}$ is obtained from ψ_0 by simultaneously replacing all occurrences of x and y by y and x, respectively. Altogether, $\exists \overline{X}(\varphi \land \forall x \forall y \psi)$ is equivalent to

$$\exists \overline{X} \exists X (\varphi \land \forall x \forall y (Xy \to \psi_0) \land \forall x \exists y (\neg \psi_0 \begin{pmatrix} yx \\ xy \end{pmatrix} \lor Xx) \land \forall x \forall y \psi'),$$

where the first conjunct is normal and ψ' has less quantifiers than ψ . By the induction hypothesis, we obtain the claim.

George Voutsadakis (LSSU)

A "Canonical Form"

Corollary

Every sentence of FO² is equivalent to a sentence of the form $\exists \overline{Y} \chi$, where χ is normal.

• Given an FO²-sentence ψ , apply the preceding lemma to

$$\exists \overline{X}(\varphi \wedge \forall x \forall y \psi),$$

where \overline{X} is the empty sequence and $\varphi := \forall x \forall yx = x$.

Theorem

Every satisfiable first-order sentence with at most two variables in a relational vocabulary has a finite model.

 Let φ be such a sentence. We apply the preceding corollary. Note that ∃Y χ and χ have models over the same universes. So we may assume that φ has the form

$$\varphi = \forall x \forall y \psi \wedge \bigwedge_{i=1}^r \forall x \exists y \psi_i,$$

where $\psi, \psi_i \in FO^2$ are quantifier-free.

Moreover, note that over structures with at least two elements $\forall x \exists y \psi_i(x, y)$ is equivalent to $\forall x \exists y (x \neq y \land (\psi_i(x, y) \lor \psi_i(x, x)))$. So we may also suppose that for $i = 1, ..., r, \ \psi_i \models x \neq y$.

• Let \mathcal{A} be a model of φ .

Call an element $a \in A$ a **king** (in \mathcal{A}) if there is no other element b of A with the same 0-isomorphism type, i.e., $\varphi_{\mathcal{A},a}^0 = \varphi_{\mathcal{A},b}^0$. If $\mathcal{A} \models \psi_i[a, b]$, we call b a **child** (or an *i*-**child**) of a (in \mathcal{A}). For $a \in A$, and $i \in \{1, ..., r\}$, we let a^i be a fixed *i*-child of a. Then, $a \neq a^i$. Set

$$C \coloneqq \bigcup_{a \in A, a \text{ king}} \{a, a^1, \dots, a^r\}.$$

Clearly, C is finite.

 \bullet We show that there is a ${\mathcal B}$ such that

(i)
$$B = C \cup (\{\varphi_{\mathcal{A},a}^0 : a \in A \text{ no king}\} \times \{1, \ldots, r\} \times \{0, 1, 2\});$$

- (ii) Each 0-isomorphism type of a pair of elements of B is realized in A;
- (iii) For i = 1, ..., r, all elements of B have an *i*-child in B.

Then \mathcal{B} is:

- A model of $\forall x \forall y \psi$, by Clause (ii);
- A model of $\bigwedge_{i=1}^{r} \forall x \exists y \psi_i$, by Clause (iii).

Thus by Clause (i), \mathcal{B} is a finite model of φ .

To define \mathcal{B} , we fix the 0-isomorphism type of all pairs of elements of \mathcal{B} in a suitable way to ensure that Clauses (ii) and (iii) hold.

In case τ contains relation symbols of arity \geq 3, the rest can be fixed in an arbitrary way.

Step 1: For
$$a, b \in C$$
, $a \neq b$, we set $\varphi_{\mathcal{B},a,b}^0 \coloneqq \varphi_{\mathcal{A},a,b}^0$.

Step 2: Let $b \in B$. We aim at providing children for b in \mathcal{B} . So let $i \in \{i, ..., r\}$.

- Suppose $b \in C$ and b is a king or b has an *i*-child in A that lies in C. Then b has an *i*-child in B because of Step 1.
- Suppose b = a^j for a king a, but b has no i-child in C. Let b' := (φ⁰_{A (a^j)i}, i, 0) be an i-child of b in B by setting

$$\varphi^0_{\mathcal{B},b,b'}\coloneqq\varphi^0_{\mathcal{A},\mathbf{a}^j,(\mathbf{a}^j)^i}.$$

(In case there are several possibilities for a and j, we fix one choice; and we also do so in similar situations.)

- Suppose $b = (\varphi^0_{\mathcal{A},a}, j, k)$ $(a \in A \text{ not a king in } \mathcal{A})$ and a^i is a king in \mathcal{A} . Then we let a^i be an *i*-child of *b* in \mathcal{B} by setting $\varphi^0_{\mathcal{B},b,a^i} := \varphi^0_{\mathcal{A},a,a^i}$.
- Suppose $b = (\varphi^0_{\mathcal{A},a}, j, k)$ and a^i is not a king in \mathcal{A} . Let $b' \coloneqq (\varphi^0_{\mathcal{A},a^i}, i, (k+1) \pmod{3})$ be an *i*-child of *b* in \mathcal{B} by setting $\varphi^0_{\mathcal{B},b,b'} \coloneqq \varphi^0_{\mathcal{A},a,a^i}$.

In all cases, by fixing a type $\varphi^0_{\mathcal{B},a,b}$, we also fix $\varphi^0_{\mathcal{B},b,a}$.

Step 3: If, e.g., for $d \in C$, $b \coloneqq (\varphi^0_{\mathcal{A},a}, j, k)$ and $b' \coloneqq (\varphi^0_{\mathcal{A},a'}, j', k')$, the 0-isomorphism type of (d, b) or of (b, b') has not been fixed in the first two steps, we set

$$\varphi^0_{\mathcal{B},d,b} \coloneqq \varphi^0_{\mathcal{A},d,a} \quad \text{or} \quad \varphi^0_{\mathcal{B},b,b'} \coloneqq \varphi^0_{\mathcal{A},a,a'}$$

respectively.

The definitions we gave do not contradict each other, since:

- For $c \in C$, we have $\varphi_{\mathcal{B},c}^0 = \varphi_{\mathcal{A},c}^0$;
- For $b = (\varphi^0_{\mathcal{A},a}, j, k)$, we have $\varphi^0_{\mathcal{B},b} = \varphi^0_{\mathcal{A},a}$.

Moreover, by construction, Clauses (ii) and (iii) are satisfied.

Decidability

Corollary

For any relational vocabulary τ , the set Φ of logically valid first order sentences with at most two variables is decidable.

• By the Completeness Theorem for first order logic the set Φ is enumerable.

Consider its "complement"

$$\Phi^{\mathsf{nv}} \coloneqq \{\varphi \; \mathsf{FO}^2[\tau] \text{-sentence} : \varphi \text{ is not logically valid} \}.$$

By the preceding theorem,

 $\Phi^{nv} = \{\varphi FO^2[\tau] \text{-sentence} : \neg \varphi \text{ has a finite model} \}.$

Therefore, Φ^{nv} is enumerable too.

Hence, Φ is decidable.

George Voutsadakis (LSSU)

Subsection 2

Finite Model Property of $\forall^2 \exists^*$ -Sentences

FO²-Sentences Reviewed

- We fix a relational vocabulary τ .
- We proved that every FO²-sentence has models in the same cardinalities as a sentence of the form

$$\forall x \forall y \psi \wedge \bigwedge_{k=1}^r \forall x \exists y \psi_i,$$

with quantifier-free ψ, ψ_i .

• This sentence is equivalent to

$$\forall x \forall y \exists y_1 \cdots \exists y_r \left(\psi(x,y) \land \bigwedge_{i=1}^r \psi_i(x,y_i) \right).$$

• We then have proved the finite model property for these sentences.

$\forall^2 \exists^*$ -Sentences

• By a $\forall^2 \exists^*$ -sentence we mean a first-order sentence of the form

$$\forall x_1 \forall x_2 \exists y_1 \cdots \exists y_k \psi',$$

where $k \ge 0$ and ψ' is quantifier-free.

- We extend the result about the finite model property to sentences of this form, under the proviso that they have models without kings.
- Recall that an element a ∈ A is a king in the structure A if for no b ∈ A, b ≠ a, is it the case that

$$\varphi_a^0 = \varphi_b^0.$$

$\forall^2 \exists^*$ -Sentences with Models Without Kings

Theorem

Suppose that τ is a relational vocabulary. If ψ is a $\forall^2 \exists^*$ -sentence which has a model without kings, then it has a finite model.

In models with at least two elements a ∀²∃*-sentence
 ∀v₁∀v₂∃v₃…∃v_kψ'(v₁,...,v_k) is equivalent to the sentence

$$\forall v_1 \forall v_2 \exists x_3 \cdots \exists x_k \exists z_3 \cdots \exists z_k (\neg v_1 = v_2 \rightarrow (\psi'(v_1, v_1, x_3, \dots, x_k)) \land \psi'(v_1, v_2, z_3, \dots, z_k))).$$

Moreover, a sentence $\forall v_1 \forall v_2 \exists x \exists y \psi'(v_1, v_2, x, y)$, with ψ' is quantifier-free, is equivalent to

$$\forall v_1 \forall v_2 \exists x \exists y ((\psi'(v_1, v_2, x, x) \lor \psi'(v_1, v_2, x, y)) \land \neg x = y).$$

$\forall^2 \exists^*$ -Sentences with Models Without Kings (Types)

• The preceding equivalences allow us to assume that our $\forall^2 \exists^*\text{-sentence } \psi$ is of the form

$$\forall v_1 \forall v_2 \exists v_3 \cdots \exists v_k \left(\neg v_1 = v_2 \rightarrow \left(\psi'(v_1, \ldots, v_k) \land \bigwedge_{3 \le i < j \le k} \neg v_i = v_j \right) \right),$$

with ψ' quantifier-free. Choose a model \mathcal{A} of ψ without kings. Let:

S := {φ⁰_a : a ∈ A} be the 0-isomorphism types of elements of A;

• $T := \{\varphi_{ab}^0 : a, b \in A, a \neq b\}$ be the 0-isomorphism types of pairs in \mathcal{A} . Let $\rho(v_1, \dots, v_\ell)$ be a 0-isomorphism type of any ℓ -tuple. For $1 \le m, n \le \ell$, with $m \ne n$, let:

• $\rho_m(v_1)$ be the induced 0-isomorphism type of v_m ;

• $\rho_{m,n}(v_1, v_2)$ be the induced 0-isomorphism type of v_m, v_n . In particular, for any \mathcal{B} and $b_1, \ldots, b_\ell \in B$,

$$\mathcal{B} \models \rho[b_1, \dots, b_\ell]$$
 implies $(\varphi_{b_m}^0 = \rho_m \text{ and } \varphi_{b_m b_n}^0 = \rho_{m,n}).$

$\forall^2 \exists^*$ -Sentences with Models Without Kings (Conditions)

• As \mathcal{A} has no kings, we get:

(1) For all $\varphi, \varphi' \in S$ there is a $\chi \in T$ such that $\varphi = \chi_1$ and $\varphi' = \chi_2$.

Moreover, since \mathcal{A} is a model of ψ , we have:

(2) For every $\chi \in T$, there is a 0-isomorphism type $\rho(v_1, \ldots, v_k)$ with

(a)
$$\rho_i \in S$$
, for $i = 1, ..., k$;

(b)
$$ho_{m,n} \in T$$
, for $1 \le m < n \le k$ and $ho_{1,2} = \chi$;

c)
$$\vDash \psi'(v_1,\ldots,v_k).$$

To get the statement of the theorem it suffices to show:

Suppose that S and T are nonempty sets of 0-isomorphism types of elements and of pairs of elements, respectively, satisfying (1) and (2). Then ψ has a finite model.

$\forall^2 \exists^*$ -Sentences with Models Without Kings (Outline)

• Let s := ||S||, t := ||T|| and fix an ordering on S.

We give a method to construct, for every $n \ge k$, structures \mathcal{B} with universe $\{1, 2, \ldots, n \cdot s\}$.

Subsequently, we will show that with nonvanishing probability these structures are models of $\psi.$

- The 0-isomorphism types of elements are fixed by a deterministic algorithm;
- The 0-isomorphism types of tuples of more than one element are chosen randomly.

$\forall^2 \exists^*$ -Sentences with Models Without Kings (Details)

• The exact construction of ${\mathcal B}$ reads as follows:

- (i) If $a \in \{1, 2, ..., n \cdot s\}$ and $a = i \cdot s + j$, for some i, j such that $0 \le i < n$ and $i \le j < s$, ensure that φ_a^0 is equal to the *j*-th element in *S*.
- (ii) If $a, b \in \{1, 2, ..., n \cdot s\}$, $1 \le a < b \le n \cdot s$, choose at random a χ in $\{\chi \in T : \chi_1 = \varphi_a^0, \chi_2 = \varphi_b^0\}$ (this set is nonempty by (1)) and ensure that $\varphi_{ab}^0 = \chi$.
- (iii) If R is an m-ary relation symbol in τ, define the truth value of Ra₁...a_m at random for any a₁,..., a_m ∈ {1,2,...,n⋅s} containing at least three and at most k distinct members.
- (iv) If R is an m-ary relation symbol in τ , define the truth value of $Ra_1 \dots a_m$ to be "false" if $a_1 \dots a_m$ contains more than k distinct members.

$\forall^2 \exists^*$ -Sentences with Models Without Kings (Notation)

Let Str(n) be the collection of possible values of B with {1,2,...,n·s} as universe.
 Equip Str(n) with the uniform probability distribution μ.
 Let ā = a₁... a_k denote pairwise distinct elements of {1,2,...,n·s}.
 Let d be the number of formulas

$$Rv_{i_1}\ldots v_{i_m},$$

where:

- $R \in \tau$;
- $\{v_{i_1}, \ldots, v_{i_m}\}$ contains at least three and at most k distinct variables.

$\forall^2 \exists^*$ -Sentences with Models Without Kings (Claim 1)

Claim 1: Suppose that $\chi \in T$ and that the 0-isomorphism type $\rho(v_1, \ldots, v_k)$ satisfies (2) with respect to χ . Then the conditional probability

$$\mu(\varphi_{\overline{a}}^{0} = \rho \mid \varphi_{a_{1}a_{2}}^{0} = \chi, \varphi_{a_{i}}^{0} = \rho_{i} \text{ for } i = 3, \dots, k) \ge \delta,$$

where $\delta = (\frac{1}{t})^{\binom{k}{2}-1} \cdot (\frac{1}{2})^d$. That is,

 $\mu(\{\mathcal{B}: \mathcal{B} \vDash \rho[\overline{a}]\} \mid \{\mathcal{B}: \mathcal{B} \vDash \chi[a_1, a_2], \mathcal{B} \vDash \rho_i[a_i], \text{ for } i = 3, \dots, k\}) \ge \delta.$

For the proof note that, once $\varphi_{a_i}^0$, for i = 1, ..., k, and $\varphi_{a_1a_2}^0$ are fixed:

- We must choose randomly one of the *t* types in *T*, for each of the $\binom{k}{2} 1$ pairs of elements other than a_1, a_2 ;
- We must choose randomly among the two options, for each of the *d* formulas *Rv_{i1}...v_{im}*, with at least three and at most *k* distinct variables.

$\forall^2 \exists^*$ -Sentences with Models Without Kings (Claim 2)

Claim 2: Fix a_1, a_2 . Then $\mu\left(\left\{\mathcal{B}: \mathcal{B} \notin \exists v_3 \cdots \exists v_k \left(\psi'(a_1, a_2, v_3, \ldots, v_k) \land \bigwedge_{1 \le i < j \le k} v_i \ne v_j\right)\right\}\right) \le (1 - \delta)^f,$

where f is the integer part of $\frac{n-2}{k-2}$. Let $\chi \in T$ and choose a corresponding $\rho(v_1, \ldots, v_k)$ according to (2). It suffices to prove that the conditional probability

 $\mu(\{\mathcal{B}: \mathcal{B} \notin \exists v_3 \cdots \exists v_k \rho(a_1, a_2, v_3, \dots, v_k)\} | \varphi^0_{a_1, a_2} = \chi) \le (1 - \delta)^f.$

By Condition (i), in any \mathcal{B} , every 0-isomorphism type in S is realized by $n (\geq 2 + f \cdot (k-2))$ distinct elements.

Therefore, for i = 3, ..., k and j = 1, ..., f, there are pairwise distinct elements $a_i^j \in \{1, 2, ..., n \cdot s\} \setminus \{a_1, a_2\}$ with $\varphi_{a_i^j}^0 = \rho_i$.

Under the given conditions, the events $\mathcal{B} \models \rho(a_1, a_2, a_3^j, \dots, a_k^j)$, for $1 \le j \le f$ are independent (compare the construction procedure).

$\forall^2 \exists^*$ -Sentences with Models Without Kings (Conclusion)

Now,

$$\{ \mathcal{B} : \mathcal{B} \notin \exists v_3 \cdots \exists v_k \rho(a_1, a_2, v_3, \dots, v_k) \}$$

$$\subseteq \{ \mathcal{B} : \text{ for } j = 1, \dots, f, \mathcal{B} \notin \rho(a_1, a_2, a_3^j, \dots, a_k^j) \}.$$

Therefore, by Claim 1, we obtain

$$\mu(\{\mathcal{B}: \mathcal{B} \notin \exists v_3 \cdots \exists v_k \rho(a_1, a_2, v_3, \dots, v_k)\} | \varphi^0_{a_1, a_2} = \chi) \leq (1 - \delta)^f.$$

Now note that $\{\mathcal{B}:\mathcal{B}\not\models\psi\}$ =

$$\bigcup_{\substack{a_1,a_2\\a_1\neq a_2}} \left\{ \mathcal{B} : \mathcal{B} \notin \exists v_3 \cdots \exists v_k \left(\psi'(a_1, a_2, v_3, \dots, v_k) \land \bigwedge_{1 \leq i < j \leq k} v_i \neq v_j \right) \right\}.$$

Hence, by Claim 2, $\mu(\{\mathcal{B}: \mathcal{B} \neq \psi\}) \leq n \cdot s \cdot (n \cdot s - 1) \cdot (1 - \delta)^f$. As $f = \lfloor \frac{n-2}{k-2} \rfloor$, $n \cdot s \cdot (n \cdot s - 1) \cdot (1 - \delta)^f < 1$ for big enough n. Then the probability that \mathcal{B} satisfies ψ is positive. Therefore, some member of Str(n) satisfies ψ .

George Voutsadakis (LSSU)

The Structure $\mathcal{A} \times \ell$

- Let τ be a relational vocabulary.
- For a *τ*-structure A and *l* ≥ 2, denote by A × *l* the structure which, for every element of A, contains *l* duplicates.
- More precisely, $\mathcal{A} \times \ell$ is the $\tau\text{-structure}$ with universe

$$A\times\{0,\ldots,\ell-1\},$$

such that, for any n-ary R in τ ,

$$\mathcal{R}^{\mathcal{A}\times\ell} \coloneqq \{((a_1,i_1),\ldots,(a_n,i_n)): \mathcal{R}^{\mathcal{A}}a_1\ldots a_n, 0\leq i_1,\ldots,i_n\leq \ell-1\}.$$

• Observe that:

- $\mathcal{A} \times \ell$ is a structure without kings;
- $\mathcal{A} \vDash \psi$ iff $\mathcal{A} \times \ell \vDash \psi$ holds for all sentences ψ without equality. This proof uses structural induction.

Finite Model Property for Equality Free $\forall^2 \exists^*$ -Sentences

• As a corollary of the above theorem we obtain

Corollary

Suppose that τ is a relational vocabulary and ψ is a $\forall^2 \exists^*$ -sentence without equality. If ψ is satisfiable then it has a finite model.

• As in a previous corollary, applying to FO^2 , we now get:

Corollary

The set of logically valid $\forall^2 \exists^*$ -sentences without equality in a relational vocabulary is decidable.