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Finite Automata and Logic Languages Accepted by Automata

Languages

Let A be a finite alphabet.

Let A∗ be the set of strings (or words) over A.

Let A+ the set of nonempty strings (or words) over A.

We have
A
∗ = A

+ ∪ {λ},

where λ is the empty word.

A language over A is a subset of A+.

This is a slight deviation from standard terminology in automata

theory, where the term language signifies a subset of A∗.
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Finite Automata and Logic Languages Accepted by Automata

Nondeterministic Automata

A nondeterministic automaton M, in short, an NDA (over the
alphabet A) is given by a tuple

M = (S ,q0, δ,F ),

where:

S is a finite set, the set of states;
q0 ∈ S is the initial state;
F ⊆ S is the set of (accepting or) final states;
δ ⊆ S ×A × S is the transition relation.
Intuitively, (q, a,p) ∈ δ means if M is in state q and reads a, then M

can pass into state p.
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Finite Automata and Logic Languages Accepted by Automata

Extending the Transition to Strings

This relation induces a function δ̃ ∶ S ×A
∗ → Pow(S), where Pow(S)

denotes the power set of S .

δ̃ is given by

δ̃(q, λ) ∶= {q};

δ̃(q,wa) ∶= {p ∶ (r ,a,p) ∈ δ for some r ∈ δ̃(q,w)}.

In particular, δ̃(q,a) = {p ∶ (q,a,p) ∈ δ}, for a ∈ A.

If δ̃(q,a) is a singleton for every a ∈ A, then M is said to be a
deterministic automaton or an automaton.

In this case, δ̃(q,w) is a singleton, for any w ∈ A∗.

If δ̃(q,w) = {p}, we simply write δ̃(q,w) = p.

Similarly, δ(q,a) = p stands for δ̃(q,a) = {p}.
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Finite Automata and Logic Languages Accepted by Automata

Languages Recognized by NDAs

The language recognized (or accepted) by the NDA M is defined by

L(M) ∶= {w ∈ A+ ∶ δ̃(q0,w) ∩ F ≠ ∅}.

Hence, in case M is deterministic,

L(M) = {w ∈ A+ ∶ δ̃(q0,w) ∈ F}.

We aim to show that a language is recognized by an automaton if
and only if it is definable in monadic second order logic.

However, we will prove many equivalences which, apart from being
useful in the proof, are also interesting in their own.
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Finite Automata and Logic Languages Accepted by Automata

A Characterization Theorem

Some of the terms below have not yet been defined.

They will be in the course of the proof.

Characterization of Regular Languages

For a language L ⊆ A
+, the following are equivalent:

(i) L is the union of equivalence classes of an invariant equivalence relation on
A
+ of finite index.

(ii) L is recognized by an automaton.

(iii) L is recognized by an NDA.

(iv) L is regular.

(v) L is definable in monadic second-order logic by a Σ1
1-sentence.

(vi) L is definable in monadic second-order logic.

Note that (ii)⇒(iii) and (v)⇒(vi) are trivial.
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Finite Automata and Logic Languages Accepted by Automata

Invariance and Index

An equivalence relation ∼ on A
+ is called invariant if

u, v ,w ∈ A+ and u ∼ v imply uw ∼ vw .

Denote by [u] the equivalence class of u and by A
+/∼ the set of

equivalence classes.

The index of ∼ is the cardinality of A+/∼.
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Finite Automata and Logic Languages Accepted by Automata

Invariant Equivalence Relations of Finite Index

Proposition

Let ∼ be an invariant equivalence relation on A
+ of finite index. Suppose

that the language L ⊆ A+ is the union of equivalence classes,

L = [u1] ∪⋯∪ [ur ],
for some u1, . . . ,ur ∈ A

+. Then L is recognized by an automaton.

Add [λ], “the equivalence class of λ”, as a new object to A
+/∼.

Define the automaton
M = (S ,q0, δ,F )

as follows:
S ∶= (A+/∼) ∪ {[λ]};
q0 ∶= [λ];
δ([u], a) ∶= [ua];
F ∶= {[u1], . . . , [ur ]}.
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Finite Automata and Logic Languages Accepted by Automata

Invariant Equivalence Relations of Finite Index (Cont’d)

By invariance of ∼, the transition function δ is well-defined.

For u, v ∈ A∗, an induction on the length of v shows that

δ̃([u], v) = [uv].
In particular, δ̃([λ], v) = [v].
Therefore,

L(M) = {v ∈ A+ ∶ δ̃(q0, v) ∈ F}
= {v ∈ A+ ∶ [v] ∈ F}
= [u1] ∪⋯ ∪ [ur ]
= L.
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Finite Automata and Logic Languages Accepted by Automata

The Pumping Lemma

Lemma (Pumping Lemma)

Let ∼ be an invariant equivalence relation on A
+ of finite index. Then

there is an n ≥ 0 such that, for any word u ∈ A+, with ∣u∣ ≥ n, there exist
v ,w ∈ A+ and x ∈ A∗ with

u = vwx , ∣vw ∣ ≤ n, and vwk ∼ vw for all k ≥ 0.
Hence, by invariance, vwky ∼ vwy , for all k ≥ 0 and y ∈ A∗.

Let ℓ be the index of ∼ and set n ∶= ℓ + 1.

Consider u ∈ A+, u = a1 . . . as , where a1, . . . ,as ∈ A and s ≥ n.

Then, for some i and j with 1 ≤ i < j ≤ n, we have a1 . . . ai ∼ a1 . . . aj .
Let v = a1 . . . ai and w = ai+1 . . . aj . Thus, v ∼ vw .

By invariance of ∼, vw ∼ vw2 ∼ vw3 ∼ ⋯.
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Finite Automata and Logic Languages Accepted by Automata

Concatenation and Positive Closure

The concatenation of languages L1 and L2, denoted by L1L2, is the
set

L1L2 ∶= {uv ∶ u is in L1 and v is in L2}.
Define:

L1 ∶= L;
Ln ∶= Ln−1L, n > 1.

The plus (or positive) closure L+ of L is the set

L+ ∶= ⋃
n≥1

Ln.
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Finite Automata and Logic Languages Accepted by Automata

Regular Expressions and Regular Languages

Regular expressions (over A) are strings over the alphabet

{∅} ∪ {a ∶ a ∈ A} ∪ {∪,+ , ), (}.
Regular expressions, together with the languages they denote, are
defined recursively as follows:

(a) ∅ is a regular expression and denotes the empty set;
(b) a is a regular expression and denotes the set {a};
(c) If r and s are regular expressions denoting the languages R and S ,

respectively, then (r ∪ s), (rs), r+

are regular expressions that denote, respectively, the sets

R ∪ S , RS , R+.

A language is regular if it is denoted by some regular expression.
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Finite Automata and Logic Languages Accepted by Automata

Some Conventions

For convenience, when writing regular expressions, we adopt some
conventions.

We omit parentheses when they have no influence on the language
they denote.

E.g., r1 ∪⋯∪ rk .

We assume the following order of operations (in decreasing strength):

plus closure, concatenation, union.
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Finite Automata and Logic Languages Accepted by Automata

Languages Recognized by NDA are Regular

Proposition

If L is recognized by an NDA then L is regular.

Suppose L is recognized by the NDA M = (S ,q0, δ,F ), with
S = {q0, . . . ,qn}.
Let Lij

k
be the set of all nonempty strings that M can read starting in

qi and ending in qj without going through any state numbered ≥ k ,

L
ij

k
∶= {b1 . . . bs ∶ s ≥ 1,b1, . . . ,bs ∈ A, there are i0, . . . , is , such that

i1, . . . , is−1 < k , i0 = i , is = j and (qim ,bm+1,qim+1) ∈ δ for m < s}.
Since L(M) = ⋃qj∈F L

0j
n+1, it suffices to show that all Lij

k
are regular.

We proceed by induction on k .
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Finite Automata and Logic Languages Accepted by Automata

Languages Recognized by NDA are Regular (Cont’d)

Note that Lij0 = {a ∈ A ∶ (qi ,a,qj) ∈ δ} is a subset of A.

Suppose L
ij
0 = {a1, . . . ,ar}.

Then L
ij
0 is denoted by (a1 ∪⋯∪ ar) or by ∅ in case r = 0.

For the induction step, note that a nonempty string is in L
ij

k+1 if it can
be read without visiting any state numbered ≥ k + 1.

Such a string starts in qi , ends in qj , and passes through qk zero
times or one or more than one time.

Hence, we get the expression

L
ij

k+1 = L
ij

k
∪ Likk L

kj

k
∪ Likk (Lkkk )+Lkjk .

By the induction hypothesis, for all i ′, j ′, there is a regular expression
r
i ′j ′

k
denoting L

i ′j ′

k
. Therefore, Lij

k+1 is denoted by the regular
expression

r
ij
k
∪ r ikk r

kj
k
∪ r ikk (rkkk )+rkjk .
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Finite Automata and Logic Word Models

Subsection 2

Word Models
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Finite Automata and Logic Word Models

Word Models

We fix an alphabet A.

Let τ(A) be the vocabulary {<} ∪ {Pa ∶ a ∈ A}, where:
< is binary;
The Pa are unary.

For a given u ∈ A∗, say u = a1 . . . an, we consider structures of the
form (B ,<, (Pa)a∈A),
where:

The cardinality of B equals the length of u;
< is an ordering of B;
Pa corresponds to the positions in u carrying an a,

Pa ∶= {b ∈ B ∶ for some j , b is the j-th element of < and aj = a}.
We call these word models for u.

The class of word models for u is denoted by Ku.
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Finite Automata and Logic Word Models

Example

Suppose A = {a,b}.
Let u = abbab.

Consider the structure

({1, . . . ,5},<,Pa,Pb),
where:

< is the natural ordering on {1, . . . ,5};
Pa = {1,4};
Pb = {2,3,5}.

This structure is a word model for u.
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Finite Automata and Logic Word Models

Definability in Monadic Second Order Logic

Any two word models for u are isomorphic.

Therefore, we often speak of the word model for u, written Bu.
Note that for u, v ∈ A+, a word model for uv is obtained by forming
the ordered sum Bu ⊲ Bv .
A language L ⊆ A

+ is definable in monadic second-order logic, if
there is a sentence ϕ in MSO[τ(A)], such that Mod(ϕ) = ⋃u∈LKu,
or, more succinctly (but not fully correct), Mod(ϕ) = {Bu ∶ u ∈ L}.
A language L ⊆ A

+ is definable in first-order logic, if there is a
sentence ϕ in FO[τ(A)], such that Mod(ϕ) = ⋃u∈LKu , or, more
succinctly (but not fully correct), Mod(ϕ) = {Bu ∶ u ∈ L}.
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Finite Automata and Logic Word Models

Definability of the Class of All Word Models

Let ϕW be the first-order sentence

ϕW ∶= “< is a total ordering”∧

∀x⋁
a∈A

Pax ∧ ⋀
a,b∈A
a≠b

∀x¬(Pax ∧Pbx).

Then, Mod(ϕW ) is the class of all word models,

Mod(ϕW ) = {Bu ∶ u ∈ A+}.
So the language A

+ is definable in first-order logic.
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Finite Automata and Logic Word Models

Some Notation

Let ψmin(x) and ψmax(x) be first-order formulas defining the first and
the last element of the ordering, respectively:

ψmin(x) ∶= ∀y¬y < x , ψmax(x) ∶= ∀y¬x < y .

For any formula ϕ of MSO and variables x and y , let ϕ[x ,y] be a
formula expressing that the closed interval [x , y] satisfies ϕ.
Similarly, ϕ]x ,y] is a formula expressing that the half-open interval]x , y] satisfies ϕ.
Such formulas can be obtained from ϕ by relativizing the first-order
quantifiers to the interval.

The main clause of an inductive definition is (for a variable
z ≠ x , z ≠ y)

(∃zϕ)[x ,y] ∶= ∃z(x ≤ z ∧ z ≤ y ∧ ϕ[x ,y]);
(∃zϕ)]x ,y] ∶= ∃z(x < z ∧ z ≤ y ∧ ϕ]x ,y]).
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Finite Automata and Logic Word Models

Regular Languages and Monadic Second Order Logic

Proposition

Any regular language is definable in monadic second order logic by a
Σ1
1-sentence.

We split the proof in two stages.

In the first stage, we prove by induction on the length of the regular
expression r that there is a sentence ϕr of MSO defining the language
denoted by r .

In the second tage, we show that we can replace ϕr by a Σ1
1-sentence.
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Finite Automata and Logic Word Models

Regular Languages and MSO (Stage 1)

For the base case, we have:

ϕ∅ ∶= ∃x¬x = x ;
ϕa ∶= ϕW ∧ ∃x∀y(y = x ∧ Pax).

For the inductive step, we have:

ϕ(r∪s) ∶= ϕW ∧ (ϕr ∨ ϕs);
ϕ(rs) ∶= ϕW ∧ “the universe is partitioned into two

intervals satisfying ϕr and ϕs , respectively”

= ϕW ∧ ∃x∃y∃z(ψmin(x) ∧ y < z ∧ ψmax(z) ∧ϕ[x ,y]r ∧ϕ
]y ,z]
s );

ϕr+ ∶= ϕW ∧ “there is a set of right endpoints of intervals,
which partition the universe, all parts satisfying ϕr”

= ϕW ∧ ∃X (∃y(Xy ∧ ψmax(y)) ∧
∃x∃y(ψmin(x) ∧ Xy ∧ ∀z(z < y → ¬Xz) ∧ ϕ[x ,y]r ) ∧
∀x∀y((x < y ∧ Xx ∧ Xy ∧ ∀z(x < z < y → ¬Xz))→ ϕ

]x ,y]
r )).
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Finite Automata and Logic Word Models

Regular Languages and MSO (Stage 2)

We obtain a Σ1
1-sentence by inductively bringing all existential second

order quantifiers to the front.

In general, a monadic second-order formula ∀x∃Yχ, with first-order
χ, is not equivalent to a monadic Σ1

1-formula.

However, in the case of the formula in the last two lines of ϕr+ we
can argue as follows:

Suppose that ϕr is equivalent to ∃Y1⋯∃Ymχ.
In models of ϕW (the only ones of interest), the formula

∀x∀y((x < y ∧Xx ∧ Xy ∧ ∀z(x < z < y → ¬Xz))→ ϕ]x,y]r )
is equivalent to

∃Y1⋯∃Ym∀x∀y((x < y ∧Xx ∧Xy

∧ ∀z(x < z < y → ¬Xz)) → χ]x,y]).
For the nontrivial implication, piece Y1, . . . ,Ym together from
corresponding subsets chosen in the (disjoint) intervals.
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Finite Automata and Logic Word Models

MSO and Invariant Equivalences of Finite Index

Proposition

Let L ⊆ A
+ be definable in monadic second-order logic. Then, there is an

invariant equivalence relation on A
+ of finite index, such that L is a union

of equivalence classes.

Assume that there exists a sentence ϕ of MSO, such that

Mod(ϕ) = {Bu ∶ u ∈ L}.
Let m be the quantifier rank of ϕ.

Recall that A ≡MSO
m B means that A and B satisfy the same sentences

of MSO of quantifier rank ≤ m.

Define ∼ on A
+ by

u ∼ v iff Bu ≡MSO
m Bv .

Clearly, ∼ is an equivalence relation.
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Finite Automata and Logic Word Models

MSO and Invariant Equivalences (Cont’d)

Now, up to logical equivalence, there are only finitely many sentences
of quantifier rank ≤ m. So the relation ∼ is of finite index.

By definition of m,

Bu ⊧ ϕ and u ∼ v imply Bv ⊧ ϕ.
Thus,

L =⋃{[u] ∶ u ∈ A+,Bu ⊧ ϕ}.
Finally, we show that ∼ is invariant.

Assume u ∼ v and w ∈ A+. Then Bu ≡MSO
m Bv .

Since ≡MSO
m is preserved by ordered sums, we get

Buw ≅ Bu ⊲ Bw ≡MSO
m Bv ⊲ Bw ≅ Bvw .

This shows that uw ∼ vw .
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Finite Automata and Logic Word Models

The Main Theorem Restated

Theorem

For a language L ⊆ A+ the following are equivalent:

(i) L is the union of equivalence classes of an invariant equivalence
relation on A

+ of finite index.

(ii) L is recognized by an automaton.

(iii) L is recognized by an NDA.

(iv) L is regular.

(v) L is definable in monadic second-order logic by a Σ1
1-sentence.

(vi) L is definable in monadic second-order logic.

Thus, a language is accepted by an automaton:

Exactly in case it is definable in monadic second-order logic;
Exactly in case it is specified by means of a regular expression.

Do both characterizations count as logical descriptions?
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Subsection 3

Examples and Applications
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Finite Automata and Logic Examples and Applications

Closure Under Boolean Operations and Pumping Lemma

Proposition

(a) The class of languages over A accepted by automata is closed under
the boolean operations (complementation and union).

(b) (Pumping Lemma) Let L be accepted by an automaton. Then there
is n ≥ 0, such that for any u ∈ A+ with ∣u∣ ≥ n, there exist v ,w ∈ A+
and x ∈ A∗ with:

u = vwx ;∣vw ∣ ≤ n;
For k ≥ 0 and y ∈ A∗,

vw ky ∈ L iff vwy ∈ L.

Part (a) holds, since monadic second-order logic is closed under the
boolean connectives ¬ and ∨.

Part (b) is a reformulation of the Pumping Lemma.
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Finite Automata and Logic Examples and Applications

Example: Ultimately Periodic Subsets of N+

Let A = {a}.
Identify a . . . a (of length n) with the natural number n.

Thus, A+ is identified with the set N+ of positive natural numbers.

A subset L of N+ is called ultimately periodic if there are p, r ∈N+,
such that for all m ≥ p, m + r ∈ L iff m ∈ L.

Claim: A subset L of N+ is accepted by an automaton iff L is
ultimately periodic.

Assume first that L is accepted by an automaton.

By the Pumping Lemma, there are n, j , r ∈N+ and ℓ ≥ 0, with
n = j + r + ℓ, such that, for all k ≥ 0 and s ∈N,

j + kr + s ∈ L if j + r + s ∈ L.

In particular, if m ≥ p ∶= j + r , say m = j + r + s, then (take k = 2)

m + r ∈ L iff m ∈ L.
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Finite Automata and Logic Examples and Applications

Example (Cont’d)

Now let L be ultimately periodic.

Choose corresponding p, r ∈N+, such that, for all m ≥ p,

m + r ∈ L iff m ∈ L.

Set
L1 ∶= {m ∈ L ∶ m < p};
L2 ∶= {m ∈ L ∶ p ≤m < p + r}.

Then, by periodicity,

L = L1 ∪ L2 ∪ {m + kr ∶ m ∈ L2,k ≥ 1}.
So L is the union of the finite (and hence regular) sets L1 and L2 and
of the languages denoted by the regular expressions a

m(ar)+, m ∈ L2.

Thus, L is regular.

So the classes of finite ordered structures of vocabulary {<}
axiomatizable in MSO coincide with the ultimately periodic ones.
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Finite Automata and Logic Examples and Applications

Example

For A = {a,b} the set

L ∶= {u ∈ A+ ∶ the number of a’s in u equals the number of b’s in u}
is not accepted by an automaton.

Choose n according to the Pumping Lemma.

Consider anbn.

Let its representation, according to the Pumping Lemma, be vwx .

Since ∣vw ∣ ≤ n, we have w ∈ {a}+.
Hence, the string vw2x contains more a’s than b’s.

Therefore, vw2x ∉ L (while vwx = anbn ∈ L).

This contradicts the Pumping Lemma.
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Finite Automata and Logic Examples and Applications

Bipartite and Balanced (Bipartite) Graphs

A graph (G ,EG ) is bipartite, if there is an X ⊆ G such that

EG ⊆ (X × (G/X )) ∪ ((G/X ) × X ).
A bipartite graph (G ,EG ) is balanced, if the set X can be chosen
such that, in addition, ∥X ∥ = ∥G/X ∥.
Denote by BAL the class of finite balanced graphs.

Denote by BAL< the class of finite balanced graphs carrying an
arbitrary ordering on their universe,

BAL< ∶= {(G,<) ∶ G ∈ BAL,< an ordering of G}.
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Finite Automata and Logic Examples and Applications

Non-Axiomatizability of BAL< in MSO

Proposition

The class BAL<, and hence the class BAL, is not axiomatizable in monadic
second-order logic.

Suppose that BAL< =Mod(ϕ) for a sentence ϕ of MSO.

Let A = {a,b} and let L be as in the preceding example.

For u ∈ A+, let Bu = (Bu ,<,Pa,Pb) be a word model associated with
u, say, with:

Bu = {1, . . . , ∣u∣};
< the natural ordering.

Let Gu = (Bu ,Ru) be the bipartite graph given by

Ru ∶= {(i , j) ∈ Bu × Bu ∶ Pai iff Pbj}.
Then, (Gu ,<) ∈ BAL< iff u ∈ L.
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Finite Automata and Logic Examples and Applications

Non-Axiomatizability of BAL< in MSO (Cont’d)

Denote by

ϕ
(Pa . . .↔ Pb )

E . . .

the formula obtained from ϕ by replacing any subformula of the form
Exy by (Pax ↔ Pby).
Then

(Gu,<) ⊧ ϕ iff Bu ⊧ ϕ(Pa . . .↔ Pb )
E . . . ,

.

Therefore,

Mod(ϕ(Pa . . .↔ Pb )
E . . .

) = {Bu ∶ u ∈ L}.
A previous theorem now implies that L is accepted by an automaton.

This contradicts the preceding example.
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Finite Automata and Logic Examples and Applications

Finite Graphs with a Hamiltonian Circuit

Let HAM be the class of finite graphs with a Hamiltonian circuit.

Corollary

HAM and HAM< are not axiomatizable in MSO.

Consider a graph of the form (X ⊍ Y ,E) with
E = {(a,b) ∶ (a ∈ X ,b ∈ Y ) or (a ∈ Y ,b ∈ X )}.

Such a graph has a Hamiltonian circuit iff it is balanced.

Asume HAM< =Mod(ϕ) for an MSO-sentence ϕ.

Then the sentence

∃X (∀x∀y(Exy → (Xx ↔ ¬Xy)) ∧ϕ(X . . .↔ ¬X )
E . . .

)
would axiomatize the class BAL<.
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Finite Automata and Logic Examples and Applications

Finite Graphs with a Clique of At Least Half Their Size

Let CHS be the set of finite graphs which contain a clique of at least
half their size.

Corollary

CHS and CHS< are not axiomatizable in MSO.

Suppose that CHS< =Mod(ϕ) for some ϕ of MSO.

Then an axiomatization of BAL< in MSO would be given by

∃X (∀x∀y(Exy → (Xx ↔ ¬Xy))
∧ϕ

X . . . ∧X ∧ ¬ . . . =

E . . .
∧ϕ

¬X . . . ∧ ¬X ∧ ¬ . . . =

E . . .
)

Note that the conjunction in the last line implies that both X and its
complement have size at least half of the universe.
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Subsection 4

First-Order Definability
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Finite Automata and Logic First-Order Definability

Plus-Free Regular Languages

We turn to the problem of characterizing the languages that are
accepted by automata and are first-order definable.

The passage from a regular expression to an MSO formula shows that
second-order quantifiers are only needed for the positive closure, i.e.,
in the transition from a regular expression r to r+.

Therefore, if r does not contain the symbol +, the language L denoted
by r is first-order definable.

By induction on the length of such an r , L must then be finite.
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Plus-Free Regular Languages and Complementation

Example: Let A be an alphabet.

For a ∈ A, the language A
+/{a} is infinite.

Therefore, it is not definable by a regular expressions without +.

However, it is first-order definable by

ϕW ∧ (∃x¬ψmin(x) ∨ ∃x(ψmin(x) ∧ ¬Pax)).
It follows from the example that the class of languages denoted by
regular expressions without + is not closed under complementation.

On the other hand, the class of first-order definable languages is
certainly closed under complementation.
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Plus-Free Regular Languages

We add closure under complementation in the definition of plus free
regular expressions:

∅,a (for a ∈ A) are plus free regular expressions;
If r and s are plus free regular expressions, then so are

∼ r , (r ∪ s), (rs).
If r denotes the language L, then ∼ r denotes A+/L.
A language is said to be plus free regular if it is denoted by a plus
free regular expression.
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Characterization of Plus-Free Regularity

Theorem

A language is plus free regular iff it is definable in first order logic.

Suppose a language is plus free regular.

Then it is defined by a plus free regular expression r .

Using induction on the structure of r , we construct a first-order
sentence defining the same language.

For the base case:

ϕ∅ ∶= ∃x¬x = x ;
ϕa ∶= ϕW ∧ ∃x∀y(y = x ∧ Pa(x)).

For the induction step:

ϕ∼r ∶= ϕW ∧ ¬ϕr ;
ϕ(r∪s) ∶= ϕW ∧ (ϕr ∨ ϕs);
ϕ(rs) ∶= ϕW ∧ ∃x∃y∃z(ψmin(x) ∧ y < z ∧ψmax(z) ∧ ϕ[x,y]r ∧ϕ

]y,z]
s ).
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Characterization of Plus-Free Regularity (Converse)

Recall that τ(A) = {<} ∪ {Pa ∶ a ∈ A}.
For convenience, we add a constant min to this vocabulary, which
henceforth will always denote the first element.

More precisely, we only look at models of ϕW ∧ ψmin(min).
We show for a language L that if

Mod(ϕW ∧ψmin(min) ∧ϕ) = {(Bu ,minBu) ∶ u ∈ L},
then L is plus free regular. We use induction on the quantifier rank of
the FO[τ(A) ∪ {min}]-sentence ϕ.
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Characterization of Plus-Free Regularity (Cont’d)

First assume that ϕ is atomic.

Then ϕ is min = min or Pamin for some a ∈ A.

In the first case, L is A+.
Thus, L is denoted by ∼ ∅.
Let ϕ be Pamin. Then L = {a} ∪ {a}A+.
Therefore, L is denoted by a ∪ a(∼ ∅).

Suppose the languages defined by the sentences ϕ and ψ are denoted
by the plus free expressions r and s, respectively. Then:

∼ r corresponds to the sentence ¬ϕ;
r ∪ s corresponds to the sentence (ϕ ∨ψ).
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Characterization of Plus-Free Regularity (Cont’d)

Let ϕ = ∃xψ(x). Then
Mod(ϕW ∧ ψmin(min) ∧ ∃xψ(x)) =

Mod(ϕW ∧ ψmin(min) ∧ ψ(min))
∪Mod(ϕW ∧ψmin(min) ∧ ∃x(¬x = min∧ψ(x))).

By the induction hypothesis, the first class of structures on the right
corresponds to a plus free regular language.

We turn to the second class.

Let c be a new constant.

Then the finite models of ϕW ∧ψmin(min) ∧ ∃x(¬x = min∧ψ(x)) are
the [τ(A) ∪ {min}]-reducts of the finite structures (A,minA, cA) such
that

(A, A

min, cA) ⊧ ϕW ∧ψmin(min) ∧ ¬c = min∧ψ(c).
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Characterization of Plus-Free Regularity (Cont’d)

Any structure (A,minA, cA) satisfying
ϕW ∧ψmin(min) ∧ ¬c = min∧ψ(c)

can be written in the form

(A,minA, cA) = (A1 ⊲ A2,minA, cA),
where:

⊲ denotes the ordered sum;(A1,minA) ⊧ (ϕW ∧ψmin(min));(A2, c
A) ⊧ (ϕW ∧ ψmin(c)).

Let m be the quantifier rank of ψ.
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Characterization of Plus-Free Regularity (Cont’d)

Choose the - up to logical equivalence - finite set{(ψi(min), χi(c)) ∶ i ∈ I} of pairs of FO-sentences of quantifier rank
≤ m, such that

(A1,minA1) ⊧ (ϕW ∧ψmin(min) ∧ψi(min))
and (A2, c

A2) ⊧ (ϕW ∧ψmin(c) ∧ χi(c))
imply (A1,minA1) ⊲ (A2,C

A2) ⊧ ψ(c).
By the induction hypothesis there are plus free regular expressions:

ri denoting the language defined by ϕW ∧ψmin(min) ∧ψi(min);
si denoting the language defined by ϕW ∧ψmin(min) ∧ χi(min).

Then the plus free regular expression ⋃i∈I (ri si) denotes the language
defined by (ϕW ∧ψmin(min) ∧ ∃x(¬x =min∧ψ(x))).
Note that, if (A1 ⊲ A2,minA1 , cA2) ⊧ ψ(c) then, by a previous result,
the pair (ϕm

(A1,minA1)
, ϕm
(A2,c

A2 )
) of m-isomorphism types belongs (up

to logical equivalence) to {(ψi(min), χi (c)) ∶ i ∈ I}.
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Automata, First Order Logic and Counting Ability

Let A = {a}.
Identify A

+ with the set N+ of positive natural numbers.

Automata do not have the ability to count.

For instance, they cannot recognize if a given string has prime length.
I.e., the set {p ∶ p a prime} is not accepted by an automaton.

On the other hand, automata are capable to count modulo a natural
number.

E.g., the set {5n ∶ n ≥ 1} is accepted by an automaton.

But first-order logic even lacks this restricted counting ability.

It is an immediate consequence of a previous result that a subset L of
N+ is first-order definable iff for some n ≥ 1, {m ∶ m ≥ n} ∩ L = ∅ or{m ∶ m ≥ n} ⊆ L.
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First Order Logic Definability

Theorem

For a language L ⊆ A
+ accepted by an automaton the following are

equivalent:

(i) L is definable in first-order logic.

(ii) L is noncounting in the sense that there is an integer k ≥ 1, such that
for every y ∈ A+ and x , z ∈ A∗,

xykz ∈ L iff xyk+1z ∈ L.

We only prove the implication (i)⇒(ii).

Suppose {Bu ∶ u ∈ L} =Mod(ϕ) for ϕ ∈ FO[τ(A)].
Let k ∶= 2m + 1, where m is the quantifier rank of ϕ.
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First Order Logic Definability (Cont’d)

Then, by a previous result, for any y ∈ A+, we have

Byk ≅ ⊲k By ≡m ⊲k+1 By ≅ Byk+1 .

Using a previous theorem, we obtain

Bxykz ≅ Bx ⊲ Byk ⊲ Bz ≡m Bx ⊲ Byk+1 ⊲ Bz ≅ Bxyk+1z .

In particular, Bxykz ⊧ ϕ iff Bxyk+1z ⊧ ϕ.

So, xykz ∈ L iff xyk+1z ∈ L.
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Least Fixed Points: An Appetizer

The results of this section show that the plus operation cannot be
captured in first-order logic.

An instance of this operation can be viewed as the fixed point of a
monotone operation.

Let L ⊆ A
+ be a language.

Define CL ∶ Pow(A∗)→ Pow(A∗) by
CL(M) ∶= L ∪ML.

Then:
(a) CL is monotone, i.e.,

M1 ⊆M2 implies CL(M1) ⊆ CL(M2).
(b) For n ≥ 1,

CL(⋯(CL´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

(∅)) . . .) = L ∪ L2 ∪⋯∪ Ln.
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Least Fixed Points: An Appetizer (Cont’d)

M is a fixed-point of CL if

CL(M) =M.

It can easily be proved that the least - with respect to set-theoretical
inclusion - fixed point of CL is given by

CL(∅) ∪ CL(CL(∅)) ∪ CL(CL(CL(∅))) ∪⋯.
Hence by Property (b), the least fixed-point of CL is L+.
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