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Finite Automata and Logic Languages Accepted by Automata

Languages

o Let A be a finite alphabet.
o Let A* be the set of strings (or words) over A.
o Let A" the set of nonempty strings (or words) over A.
o We have
A" =ATu{)\},
where )\ is the empty word.
o A language over A is a subset of A".

@ This is a slight deviation from standard terminology in automata
theory, where the term language signifies a subset of A*.
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Finite Automata and Logic Languages Accepted by Automata

Nondeterministic Automata

e A nondeterministic automaton M, in short, an NDA (over the
alphabet A) is given by a tuple

M = (57q0767F)7

where:

S is a finite set, the set of states;

Go € S is the initial state;

F c S is the set of (accepting or) final states;

0 € S x A xS is the transition relation.

Intuitively, (g, a,p) € 6 means if M is in state g and reads a, then M
can pass into state p.

® o o
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Finite Automata and Logic Languages Accepted by Automata

Extending the Transition to Strings

o This relation induces a function 4 : S x A* - Pow(S), where Pow(S)
denotes the power set of S.

0 dis given by
(g, ) = gk _
d(q,wa) = {p:(r,a,p)ed for some red(qg,w)}.

o In particular, 5(g,a) = {p: (q,a,p) €6}, for ac A.

o If g(q,a) is a singleton for every a € A, then M is said to be a
deterministic automaton or an automaton.

In this case, 4(g, w) is a singleton, for any w € A*.
o If 5(q,w) = {p}, we simply write 5(g,w) = p.
o Similarly, §(g,a) = p stands for 6(q,a) = {p}.
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Finite Automata and Logic Languages Accepted by Automata

Languages Recognized by NDAs

@ The language recognized (or accepted) by the NDA M is defined by
L(M) := {w e A" :5(qo, w) N F 2},
@ Hence, in case M is deterministic,
L(M)={weA*:5(qo,w) € F}.

@ We aim to show that a language is recognized by an automaton if
and only if it is definable in monadic second order logic.

@ However, we will prove many equivalences which, apart from being
useful in the proof, are also interesting in their own.
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Finite Automata and Logic Languages Accepted by Automata

A Characterization Theorem

@ Some of the terms below have not yet been defined.

@ They will be in the course of the proof.

Characterization of Regular Languages

For a language L € A*, the following are equivalent:

(i) Lis the union of equivalence classes of an invariant equivalence relation on
A" of finite index.

(ii
(iii

) L is recognized by an automaton.

)
(iv) L is regular.

)

)

L is recognized by an NDA.

(v) Lis definable in monadic second-order logic by a ¥}-sentence.
(vi

o Note that (ii)=-(iii) and (v)=(vi) are trivial.

L is definable in monadic second-order logic.
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Finite Automata and Logic Languages Accepted by Automata

Invariance and Index

@ An equivalence relation ~ on A" is called invariant if
u,v,weA* and wu~v imply uw~vw.

o Denote by [u] the equivalence class of u and by A*/~ the set of
equivalence classes.

@ The index of ~ is the cardinality of A*/~.

George Voutsadakis (LSSU) Finite Model Theory January 2024 9/54



Finite Automata and Logic Languages Accepted by Automata

Invariant Equivalence Relations of Finite Index

Let ~ be an invariant equivalence relation on A* of finite index. Suppose
that the language L € A* is the union of equivalence classes,

L=[u]u-ulu],
for some wuy,...,u, € A*. Then L is recognized by an automaton.

o Add [A], “the equivalence class of A", as a new object to A*/~.

Define the automaton
M = (5,(]0,5, F)

as follows:
o 5= (A7)0 (A
o qo:=[Al;
o §([u],a) = [ua];
o F:={[w],---,[ur]}-
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Finite Automata and Logic Languages Accepted by Automata

Invariant Equivalence Relations of Finite Index (Cont'd)

@ By invariance of ~, the transition function ¢ is well-defined.

For u,v € A*, an induction on the length of v shows that

d([u],v) =[uv].
In particular, §([A],v) = [v].

Therefore,

L(M) {veA*:5(qo,v) e F}
{veA*:[v]eF}
[Lul] U---U[ur]
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Finite Automata and Logic Languages Accepted by Automata

The Pumping Lemma

Lemma (Pumping Lemma)

Let ~ be an invariant equivalence relation on A" of finite index. Then
there is an n > 0 such that, for any word u € A", with |u| > n, there exist
v,weA" and x € A* with

u=vwx, |ww| < n, and vw* ~ vw for all k > 0.
Hence, by invariance, viwXy ~ vwy, for all k>0 and y € A*.

o Let / be the index of ~ and set n:=/+ 1.
Consider ue A*, u=a;...as, where a1,...,as € A and s > n.
Then, for some i and j with 1<i<j<n, we have a;...aj~a;y...a;.
Let v=aj...ajand w=aj,1...a;. Thus, v ~vw.

By invariance of ~, vw ~ vw? ~ v ~ -,
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Finite Automata and Logic Languages Accepted by Automata

Concatenation and Positive Closure

@ The concatenation of languages L; and Ly, denoted by LiL, is the
set
Lily:={uv:uisin Ly and visin Lp}.
o Define:
Lt o= L
L" = [, n>1.

@ The plus (or positive) closure L* of L is the set

LY== JL".

n>1
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Finite Automata and Logic Languages Accepted by Automata

Regular Expressions and Regular Languages

o Regular expressions (over A) are strings over the alphabet

{@}u{a:acA}u{u,",),(}.
o Regular expressions, together with the languages they denote, are
defined recursively as follows:

(a) @ is a regular expression and denotes the empty set;
(b) ais a regular expression and denotes the set {a};

(c) If r and s are regular expressions denoting the languages R and S,
respectively, then

(rus), (rs), r*

are regular expressions that denote, respectively, the sets
RuS, RS, R".
@ A language is regular if it is denoted by some regular expression.
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Finite Automata and Logic Languages Accepted by Automata

Some Conventions

@ For convenience, when writing regular expressions, we adopt some
conventions.

o We omit parentheses when they have no influence on the language
they denote.
Eg,nu--ur.

@ We assume the following order of operations (in decreasing strength):

plus closure, concatenation, union.
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Finite Automata and Logic Languages Accepted by Automata

Languages Recognized by NDA are Regular

Proposition

If L is recognized by an NDA then L is regular.

@ Suppose L is recognized by the NDA M = (S, qo, 9, F), with
S= {qu"'vqn}'

Let LZ be the set of all nonempty strings that M can read starting in
gi and ending in g; without going through any state numbered > k,

L = {b1 bs:s>1,b,...,bs € A, there are iy, ..., Is, such that
fy.eoyis—1 < kyig =1,is=j and (qi,, bm+1, q,mﬂ)eéfor m<s}.

Since L(M) = Uger L% it suffices to show that all LZ are regular.

We proceed by induction on k.

n+1’
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Finite Automata and Logic Languages Accepted by Automata

Languages Recognized by NDA are Regular (Cont'd)

o Note that Lg ={acA:(qi,a,qj)€d} is a subset of A.
Suppose Lg ={a1,...,a,}.
Then Lg is denoted by (a; U---Ua,) or by @ in case r = 0.
For the induction step, note that a nonempty string is in LZ+1 if it can
be read without visiting any state numbered > k + 1.
Such a string starts in g;, ends in g;, and passes through g, zero
times or one or more than one time.
Hence, we get the expression

Ll =Lhu L o LisyrLy.

By the |nduct|on hypothe5|s for all /', ', there is a regular expression
. denoting L}, "J' Therefore, L” .1 is denoted by the regular
expressmn

ik kj

rk urgr u rk (rkk)Jr o

George Voutsadakis (LSSU) Finite Model Theory January 2024 17 /54



Finite Automata and Logic =~ Word Models

Subsection 2

Word Models
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Finite Automata and Logic =~ Word Models

Word Models

o We fix an alphabet A.
o Let 7(A) be the vocabulary {<} u{P,:ae A}, where:
e < is binary;
o The P, are unary.
o For a given ue A*, say u=a;...a,, we consider structures of the

form
(B, < (Pa)aeA)7

where:
o The cardinality of B equals the length of u;
e < is an ordering of B;
o P, corresponds to the positions in u carrying an a,

P,:={be B:for some j, b is the j-th element of < and a; = a}.

@ We call these word models for u.

@ The class of word models for u is denoted by K.
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Finite Automata and Logic =~ Word Models

Example

@ Suppose A = {a, b}.
Let u = abbab.
Consider the structure

({1,...,5},<,Pa, Pp),

where:
o < is the natural ordering on {1,...,5};
o P,={1,4};
o Pp={2,3,5}.

This structure is a word model for u.
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Finite Automata and Logic =~ Word Models

Definability in Monadic Second Order Logic

@ Any two word models for u are isomorphic.
o Therefore, we often speak of the word model for u, written B,,.

@ Note that for u,v € A*, a word model for uv is obtained by forming
the ordered sum B, < B, .

@ A language L ¢ A" is definable in monadic second-order logic, if
there is a sentence ¢ in MSO[7(A)], such that Mod(p) = Uyer Ku,
or, more succinctly (but not fully correct), Mod(y) = {B,: ueL}.

o A language L ¢ A™ is definable in first-order logic, if there is a
sentence ¢ in FO[7(A)], such that Mod(y) = Uye; Ky, or, more
succinctly (but not fully correct), Mod(y) = {B, : u e L}.
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Finite Automata and Logic =~ Word Models

Definability of the Class of All Word Models

@ Let ¢y be the first-order sentence

ew = “<is a total ordering” A

Vx\/ Pax A\ Yx=(Pax A Ppx).
achA a,beA
a+b

@ Then, Mod(pw ) is the class of all word models,
Mod(ow) = {B, :ueA™}.

@ So the language A" is definable in first-order logic.
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Finite Automata and Logic =~ Word Models

Some Notation

@ Let ¥min(x) and ¥max(x) be first-order formulas defining the first and
the last element of the ordering, respectively:

wmin(x) =Vy-y <X, wmax(x) =Vy-x<y.

o For any formula ¢ of MSO and variables x and y, let oY) be a
formula expressing that the closed interval [x, y] satisfies .

o Similarly, ©¥] is a formula expressing that the half-open interval
]x, y] satisfies .

@ Such formulas can be obtained from ¢ by relativizing the first-order
quantifiers to the interval.

@ The main clause of an inductive definition is (for a variable
ZEX,z2%Y)

(3290)[)(,}/] = HZ(X <ZAZ<YA SD[X,y]);
(EIZQD)]ny] = E|Z(X<z/\z§y/\gp]xy}’])‘
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Finite Automata and Logic =~ Word Models

Regular Languages and Monadic Second Order Logic

Proposition
Any regular language is definable in monadic second order logic by a
¥ L-sentence.

o We split the proof in two stages.

@ In the first stage, we prove by induction on the length of the regular
expression r that there is a sentence ¢, of MSO defining the language
denoted by r.

@ In the second tage, we show that we can replace ¢, by a Z%—sentence.

George Voutsadakis (LSSU) Finite Model Theory January 2024 24 /54



Finite Automata and Logic =~ Word Models

Regular Languages and MSO (Stage 1)

@ For the base case, we have:

Yy = Ax=x=X;
Ya ew A IxVy(y = x A Pyx).

For the inductive step, we have:

Plrus) = PwWA (‘Pr v (Ps);
P(rs) = Pw A "the universe is partitioned into two
intervals satisfying ¢, and s, respectively”

= ow A IXTyIZ(Pmin(X) Ay < Z A Ymax(2) A (pgx,y] e ¢1y,z]);

Qe = oW A “there is a set of right endpoints of intervals,
which partition the universe, all parts satisfying ¢,”

= ow A Xy (Xy A vmax(y)) A
Ix3y (Yumin (X) A Xy AVZ(z2 <y > =Xz) A @PY) A
VxVy((x <y AXx AXy AVz(x<z<y —-Xz)) - (P]rxvy]))‘
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Finite Automata and Logic =~ Word Models

Regular Languages and MSO (Stage 2)

o We obtain a Z%—sentence by inductively bringing all existential second
order quantifiers to the front.

In general, a monadic second-order formula Vx3Y'y, with first-order
X, is not equivalent to a monadic Z%—formula.

However, in the case of the formula in the last two lines of @+ we
can argue as follows:

Suppose that ¢, is equivalent to 3Y;---3Y,x.
In models of ¢ (the only ones of interest), the formula

VxVy((x <y AXx AXy AVz(x < z<y — ~Xz)) - o]
is equivalent to

Y13 VxVy ((x <y A Xx A Xy
AVz(x<z<y—>-Xz)) —> X]X,y]).

For the nontrivial implication, piece Yi,..., Y, together from
corresponding subsets chosen in the (disjoint) intervals.
George Voutsadakis (LSSU) Finite Model Theory
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Finite Automata and Logic =~ Word Models

MSO and Invariant Equivalences of Finite Index

Proposition

Let L € A* be definable in monadic second-order logic. Then, there is an

invariant equivalence relation on A* of finite index, such that L is a union
of equivalence classes.

@ Assume that there exists a sentence ¢ of MSO, such that

Mod(y) ={B,:uel}.
Let m be the quantifier rank of ¢.

Recall that A =MSO B means that A and B satisfy the same sentences
of MSO of quantifier rank < m.

Define ~ on A™ by

u~v iff B, =MOB,.

Clearly, ~ is an equivalence relation.
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Finite Automata and Logic =~ Word Models

MSO and Invariant Equivalences (Cont'd)

o Now, up to logical equivalence, there are only finitely many sentences
of quantifier rank < m. So the relation ~ is of finite index.

By definition of m,
By and wu~v imply B, Eo.

Thus,

L={J{[u]:ueA" B, E ¢}
Finally, we show that ~ is invariant.
Assume u~v and w € A". Then B, EMSO B,.

Since EMSO is preserved by ordered sums, we get
~ _MSO ~
[y B 18y € I55, B2 18y @By 2 S

This shows that uw ~ vw.
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Finite Automata and Logic =~ Word Models

The Main Theorem Restated

Theorem

For a language L € A* the following are equivalent:

(i) L is the union of equivalence classes of an invariant equivalence
relation on A of finite index.
(i) L is recognized by an automaton.
(i) L is recognized by an NDA.
(iv) L is regular.
)
)

(v) L is definable in monadic second-order logic by a ):%—sentence.
(vi
@ Thus, a language is accepted by an automaton:

o Exactly in case it is definable in monadic second-order logic;
o Exactly in case it is specified by means of a regular expression.

L is definable in monadic second-order logic.

@ Do both characterizations count as logical descriptions?
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Finite Automata and Logic Examples and Applications

Subsection 3

Examples and Applications
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Finite Automata and Logic Examples and Applications

Closure Under Boolean Operations and Pumping Lemma

(a) The class of languages over A accepted by automata is closed under

the boolean operations (complementation and union).

(b) (Pumping Lemma) Let L be accepted by an automaton. Then there
is n >0, such that for any u € A* with |u| > n, there exist v, w € A*
and x € A" with:

o U= vwx;
o |vw| < n;
o For k>0 and y e A*,

wky el iff vwyel.

@ Part (a) holds, since monadic second-order logic is closed under the
boolean connectives — and V.

Part (b) is a reformulation of the Pumping Lemma.
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Finite Automata and Logic Examples and Applications

Example: Ultimately Periodic Subsets of IN,

o Let A={a}.
Identify a...a (of length n) with the natural number n.
Thus, A" is identified with the set IN, of positive natural numbers.
A subset L of IN, is called ultimately periodic if there are p,r € IN,,
such that for all m>p, m+re L iff me L.
Claim: A subset L of IN, is accepted by an automaton iff L is
ultimately periodic.
Assume first that L is accepted by an automaton.
By the Pumping Lemma, there are n,j,r € N, and ¢ > 0, with
n=j+r+/, such that, for all k>0 and se N,

j+kr+sel if j+r+sel.
In particular, if m>p:=j+r, say m=j+r+s, then (take k = 2)

m+rel iff mel.
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Finite Automata and Logic Examples and Applications

Example (Cont'd)

@ Now let L be ultimately periodic.
Choose corresponding p, r € IN,, such that, for all m > p,

m+rel iff mel.

Set

o Li={mel:m<p};

o Ly:={mel:p<m<p+r}.
Then, by periodicity,

L:L1UL2U{m+kr:m€L2,k21}.

So L is the union of the finite (and hence regular) sets L; and L, and
of the languages denoted by the regular expressions a™(a")", me L.
Thus, L is regular.

So the classes of finite ordered structures of vocabulary {<}
axiomatizable in MSO coincide with the ultimately periodic ones.
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Finite Automata and Logic Examples and Applications

Example

o For A ={a, b} the set
L:={ue A" : the number of a's in u equals the number of b's in u}

is not accepted by an automaton.

Choose n according to the Pumping Lemma.

Consider a"b".

Let its representation, according to the Pumping Lemma, be vwx.
Since |vw| < n, we have w € {a}".

2x contains more a's than b’s.

Hence, the string vw
Therefore, vw?x ¢ L (while vwx = a"b" € L).

This contradicts the Pumping Lemma.

George Voutsadakis (LSSU) Finite Model Theory January 2024 34 /54



Finite Automata and Logic Examples and Applications

Bipartite and Balanced (Bipartite) Graphs

o A graph (G, E®) is bipartite, if there is an X € G such that
EC c (X x (G\X))u ((G\X) x X).

o A bipartite graph (G, E®) is balanced, if the set X can be chosen
such that, in addition,
X1 =[G\X].

@ Denote by BAL the class of finite balanced graphs.

@ Denote by BAL. the class of finite balanced graphs carrying an
arbitrary ordering on their universe,

BAL. := {(G,<) : G € BAL, < an ordering of G}.
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Finite Automata and Logic Examples and Applications

Non-Axiomatizability of BAL. in MSO

Proposition

The class BAL., and hence the class BAL, is not axiomatizable in monadic
second-order logic.

@ Suppose that BAL. = Mod(y) for a sentence ¢ of MSO.
Let A = {a,b} and let L be as in the preceding example.

For ue A", let B, = (By,<, Pa, Pp) be a word model associated with
u, say, with:

o B,={1,...,|ul};
e < the natural ordering.

Let G, = (By, R,) be the bipartite graph given by
Ry = {(i,j) € By x By : Pai iff Pyj}.

Then, (G,,<) e BAL. iff ue L.
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Finite Automata and Logic Examples and Applications

Non-Axiomatizability of BAL. in MSO (Cont'd)

@ Denote by
(Py... <> Pyp__)

E... __
the formula obtained from ¢ by replacing any subformula of the form
Exy by (P.x <> Ppy).
Then

Py...o Pp__)

(Gu,<)E @ iff Bur:go( £

Therefore,

Mod (go(Pa E had Pb___)) ={B,:uel}.

A previous theorem now implies that L is accepted by an automaton.

This contradicts the preceding example.
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Finite Automata and Logic Examples and Applications

Finite Graphs with a Hamiltonian Circuit

o Let HAM be the class of finite graphs with a Hamiltonian circuit.

Corollary
HAM and HAM. are not axiomatizable in MSO.

o Consider a graph of the form (X v Y, E) with
E={(a,b):(aeX,beY)or(acVY,beX)}.

Such a graph has a Hamiltonian circuit iff it is balanced.
Asume HAM. = Mod(p) for an MSO-sentence ¢.
Then the sentence

Ix (‘V’XVy(Exy > (Xx < =Xy)) A SO(XEH :)_<___))

would axiomatize the class BAL..
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Finite Automata and Logic Examples and Applications

Finite Graphs with a Clique of At Least Half Their Size

o Let CHS be the set of finite graphs which contain a clique of at least
half their size.

Corollary
CHS and CHS. are not axiomatizable in MSO.

@ Suppose that CHS. = Mod(¢p) for some ¢ of MSO.
Then an axiomatization of BAL. in MSO would be given by

IX (VxVy(Exy — (Xx < =Xy))

X .. AX___A=...=___ —|X.../\—|X___/\—|...=___)

E. ne E.. __

NP

Note that the conjunction in the last line implies that both X and its
complement have size at least half of the universe.
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Subsection 4

First-Order Definability
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Finite Automata and Logic First-Order Definability

Plus-Free Regular Languages

@ We turn to the problem of characterizing the languages that are
accepted by automata and are first-order definable.

@ The passage from a regular expression to an MSO formula shows that
second-order quantifiers are only needed for the positive closure, i.e.,
in the transition from a regular expression r to r*.

@ Therefore, if r does not contain the symbol *, the language L denoted
by r is first-order definable.

o By induction on the length of such an r, L must then be finite.
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Finite Automata and Logic First-Order Definability

Plus-Free Regular Languages and Complementation

Example: Let A be an alphabet.
For a € A, the language A*"\{a} is infinite.
Therefore, it is not definable by a regular expressions without *.

However, it is first-order definable by

Pw A (IX=Pmin(x) V IX(Ymin (x) A =Pax)).

@ It follows from the example that the class of languages denoted by
regular expressions without * is not closed under complementation.

@ On the other hand, the class of first-order definable languages is
certainly closed under complementation.
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Finite Automata and Logic First-Order Definability

Plus-Free Regular Languages

@ We add closure under complementation in the definition of plus free
regular expressions:

o &,a (for a€ A) are plus free regular expressions;
o If r and s are plus free regular expressions, then so are

~r, (rus), (rs).

o If r denotes the language L, then ~ r denotes A™\L.

o A language is said to be plus free regular if it is denoted by a plus
free regular expression.
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Finite Automata and Logic First-Order Definability

Characterization of Plus-Free Regularity

A language is plus free regular iff it is definable in first order logic.

@ Suppose a language is plus free regular.
Then it is defined by a plus free regular expression r.
Using induction on the structure of r, we construct a first-order
sentence defining the same language.
For the base case:
0 g = Ix-x = X;
o pa:=ewAIxVy(y =x A Py(x)).
For the induction step:
O Pur = PW A Py,
@ P(rus) = PWA (or v s);
® D(rs) == Pw A Ix3y3z(Ymin(X) Ay < Z A Pmax(2) A QOEXJ] A 301%2])-
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Finite Automata and Logic First-Order Definability

Characterization of Plus-Free Regularity (Converse)

o Recall that 7(A) = {<} u{P,:a€c A}
For convenience, we add a constant min to this vocabulary, which
henceforth will always denote the first element.

More precisely, we only look at models of @y A Pmin(min).

We show for a language L that if
Mod(ow A Pmin(min) A ) = {(By, minB“) tuell},

then L is plus free regular. We use induction on the quantifier rank of
the FO[7(A) U {min}]-sentence (.
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Characterization of Plus-Free Regularity (Cont'd)

o First assume that ¢ is atomic.
Then ¢ is min = min or P, min for some a € A.
o In the first case, L is A*.
Thus, L is denoted by ~ @.
o Let ¢ be P,min. Then L={a}u{a}A".
Therefore, L is denoted by au a(~ @).
Suppose the languages defined by the sentences ¢ and 1) are denoted
by the plus free expressions r and s, respectively. Then:

e ~ r corresponds to the sentence —;
e ruUs corresponds to the sentence (¢ Vv 1).
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Characterization of Plus-Free Regularity (Cont'd)

o Let ¢ =3Ixty(x). Then

Mod(ow A ¥min(min) A Ixty(x)) =
Mod(ow A Ymin(min) A )(min))
U Mod(iow A Pmin(min) A Ix(=x = min AY(x))).

By the induction hypothesis, the first class of structures on the right
corresponds to a plus free regular language.

We turn to the second class.

Let ¢ be a new constant.

Then the finite models of Yy A Ymin(min) A Ix(—=x = min AY(x)) are
the [7(A) U {min}]-reducts of the finite structures (A, min?, ¢*) such

that p
(A, min, ) E @ A hmin(min) A ~c = min Ag(c).
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Characterization of Plus-Free Regularity (Cont'd)

o Any structure (A, min?, c?) satisfying
OW A Ymin(min) A =c = min AY(c)
can be written in the form
(A, min?, c?) = (A1 < Ay, min?, c?),

where:

o < denotes the ordered sum;
° (.Al,minA) E (ew A Ymin(min));
o (A, c®) E (ow A Ymin(€)).

Let m be the quantifier rank of .
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Characterization of Plus-Free Regularity (Cont'd)

@ Choose the - up to logical equivalence - finite set
{(¥i(min), xi(c)) : i € I} of pairs of FO-sentences of quantifier rank
<'m, such that

(A1, min™) & (W A Ymin(min) Ag;(min))
and (A2, c™) E (oW A Ymin(c) A xi(c))
imply  (Ag, min) < (Az, C*2) = 4(c).

By the induction hypothesis there are plus free regular expressions:

o r; denoting the language defined by @y A Pmin(min) A 1;(min);

o s; denoting the language defined by @ A ¥min(min) A x;(min).
Then the plus free regular expression Uj¢/(ris;) denotes the language
defined by (0w A ¥min(min) A Ix(=x = min A(x))).
Note that, if (A; < Az, mint, ) = 4)(c) then, by a previous result,
the pair (‘P&I,min*‘l)’wTAz,c*‘Z)) of m-isomorphism types belongs (up
to logical equivalence) to {(¢;(min),xi(c)) :iel}.
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Automata, First Order Logic and Counting Ability

o Let A={a}.
o Identify A* with the set IN, of positive natural numbers.
@ Automata do not have the ability to count.

For instance, they cannot recognize if a given string has prime length.
l.e., the set {p: p a prime} is not accepted by an automaton.

@ On the other hand, automata are capable to count modulo a natural
number.

E.g., the set {5n:n>1} is accepted by an automaton.
o But first-order logic even lacks this restricted counting ability.

It is an immediate consequence of a previous result that a subset L of
IN, is first-order definable iff for some n>1, {m:m>n}nlL =g or
{m:m>n}cL.
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First Order Logic Definability

Theorem

For a language L € A" accepted by an automaton the following are
equivalent:

(i) L is definable in first-order logic.
(i) L is noncounting in the sense that there is an integer k > 1, such that

for every y € A* and x,z € A¥,

xykzel iff xy lzel.

o We only prove the implication (i)=(ii).
Suppose {B,: ue L} =Mod(yp) for p € FO[T(A)].
Let k:=2" +1, where m is the quantifier rank of ¢.
George Voutsadakis (LSSU)
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First Order Logic Definability (Cont'd)

@ Then, by a previous result, for any y € A*, we have

~ Kk _ k+1 ~
Byk =z By =m < By = Byk+1.
Using a previous theorem, we obtain

Bkaz = BX < Byk B =m BX < Byk+1 < Bz = Bxyk+lz‘

In particular,
By, B iff B, Eo.

So, xy¥z e L iff xy**1z e L.
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Least Fixed Points: An Appetizer

@ The results of this section show that the plus operation cannot be
captured in first-order logic.

@ An instance of this operation can be viewed as the fixed point of a
monotone operation.

o Let L c A* be a language.
o Define C : Pow(A*) - Pow(A*) by

C[_(M) =LuML.
@ Then:
(a) Cpis monotone, i.e.,
My, c M, implies CL(M]_) c CL(Mz)

(b) Forn>1,
C(-(Cu(@))...)=Lul?u--ulL".

—_—

n times
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Least Fixed Points: An Appetizer (Cont'd)

e M is a fixed-point of C; if
CL(M) =M.

@ It can easily be proved that the least - with respect to set-theoretical
inclusion - fixed point of C; is given by

CL(@)u CL(CL(2)) v CL(CL(CL(@))) u -

@ Hence by Property (b), the least fixed-point of C is L*.
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