Finite Model Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

Finite Automata and Logic

- Languages Accepted by Automata
- Word Models
- Examples and Applications
- First-Order Definability

Subsection 1

Languages Accepted by Automata

Languages

- Let A be a finite alphabet.
- Let A[∗] be the set of strings (or words) over A.
- Let A⁺ the set of nonempty strings (or words) over A.
- We have

$$\mathbb{A}^* = \mathbb{A}^+ \cup \{\lambda\},\$$

where λ is the empty word.

- A language over \mathbb{A} is a subset of \mathbb{A}^+ .
- This is a slight deviation from standard terminology in *automata* theory, where the term *language* signifies a subset of A*.

Nondeterministic Automata

• A nondeterministic automaton *M*, in short, an NDA (over the alphabet A) is given by a tuple

$$M=(S,q_0,\delta,F),$$

where:

- S is a finite set, the set of **states**;
- $q_0 \in S$ is the **initial state**;
- $F \subseteq S$ is the set of (accepting or) final states;
- δ ⊆ S × A × S is the transition relation. Intuitively, (q, a, p) ∈ δ means if M is in state q and reads a, then M can pass into state p.

Extending the Transition to Strings

- This relation induces a function $\widetilde{\delta}: S \times \mathbb{A}^* \to \text{Pow}(S)$, where Pow(S) denotes the power set of S.
- $\widetilde{\delta}$ is given by

$$\widetilde{\delta}(q,\lambda) := \{q\};\\ \widetilde{\delta}(q,wa) := \{p:(r,a,p) \in \delta \text{ for some } r \in \widetilde{\delta}(q,w)\}.$$

- In particular, $\widetilde{\delta}(q, a) = \{p : (q, a, p) \in \delta\}$, for $a \in \mathbb{A}$.
- If δ̃(q, a) is a singleton for every a ∈ A, then M is said to be a deterministic automaton or an automaton.

In this case, $\delta(q, w)$ is a singleton, for any $w \in \mathbb{A}^*$.

- If $\widetilde{\delta}(q, w) = \{p\}$, we simply write $\widetilde{\delta}(q, w) = p$.
- Similarly, $\delta(q, a) = p$ stands for $\widetilde{\delta}(q, a) = \{p\}$.

Languages Recognized by NDAs

• The language recognized (or accepted) by the NDA *M* is defined by

$$L(M) \coloneqq \{ w \in \mathbb{A}^+ : \widetilde{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

• Hence, in case *M* is deterministic,

$$L(M) = \{ w \in \mathbb{A}^+ : \widetilde{\delta}(q_0, w) \in F \}.$$

- We aim to show that a language is recognized by an automaton if and only if it is definable in monadic second order logic.
- However, we will prove many equivalences which, apart from being useful in the proof, are also interesting in their own.

A Characterization Theorem

- Some of the terms below have not yet been defined.
- They will be in the course of the proof.

Characterization of Regular Languages

For a language $L \subseteq \mathbb{A}^+$, the following are equivalent:

- (i) L is the union of equivalence classes of an invariant equivalence relation on \mathbb{A}^+ of finite index.
- (ii) L is recognized by an automaton.
- (iii) L is recognized by an NDA.
- (iv) L is regular.
- (v) L is definable in monadic second-order logic by a Σ_1^1 -sentence.
- (vi) L is definable in monadic second-order logic.
 - Note that (ii) \Rightarrow (iii) and (v) \Rightarrow (vi) are trivial.

Invariance and Index

• An equivalence relation \sim on \mathbb{A}^+ is called invariant if

$$u, v, w \in \mathbb{A}^+$$
 and $u \sim v$ imply $uw \sim vw$.

- Denote by [u] the equivalence class of u and by A⁺/~ the set of equivalence classes.
- The **index** of ~ is the cardinality of \mathbb{A}^+/\sim .

Invariant Equivalence Relations of Finite Index

Proposition

Let ~ be an invariant equivalence relation on \mathbb{A}^+ of finite index. Suppose that the language $L \subseteq \mathbb{A}^+$ is the union of equivalence classes,

$$L = [u_1] \cup \cdots \cup [u_r],$$

for some $u_1, \ldots, u_r \in \mathbb{A}^+$. Then L is recognized by an automaton.

Add [λ], "the equivalence class of λ", as a new object to A⁺/~.
 Define the automaton

$$M = (S, q_0, \delta, F)$$

as follows:

•
$$S := (\mathbb{A}^+/\sim) \cup \{[\lambda]\};$$

• $q_0 := [\lambda];$

•
$$\delta([u], a) := [ua];$$

• $F := \{[u_1], \dots, [u_r]\}.$

Invariant Equivalence Relations of Finite Index (Cont'd)

By invariance of ~, the transition function δ is well-defined.
 For u, v ∈ A*, an induction on the length of v shows that

$$\widetilde{\delta}([u],v) = [uv].$$

In particular, $\tilde{\delta}([\lambda], v) = [v]$. Therefore,

$$L(M) = \{ v \in \mathbb{A}^+ : \widetilde{\delta}(q_0, v) \in F \}$$

= $\{ v \in \mathbb{A}^+ : [v] \in F \}$
= $[u_1] \cup \cdots \cup [u_r]$
= $L.$

The Pumping Lemma

Lemma (Pumping Lemma)

Let ~ be an invariant equivalence relation on \mathbb{A}^+ of finite index. Then there is an $n \ge 0$ such that, for any word $u \in \mathbb{A}^+$, with $|u| \ge n$, there exist $v, w \in \mathbb{A}^+$ and $x \in \mathbb{A}^*$ with

$$u = vwx$$
, $|vw| \le n$, and $vw^k \sim vw$ for all $k \ge 0$.

Hence, by invariance, $vw^k y \sim vwy$, for all $k \ge 0$ and $y \in \mathbb{A}^*$.

• Let ℓ be the index of ~ and set $n := \ell + 1$. Consider $u \in \mathbb{A}^+$, $u = a_1 \dots a_s$, where $a_1, \dots, a_s \in \mathbb{A}$ and $s \ge n$. Then, for some i and j with $1 \le i < j \le n$, we have $a_1 \dots a_i \sim a_1 \dots a_j$. Let $v = a_1 \dots a_i$ and $w = a_{i+1} \dots a_j$. Thus, $v \sim vw$. By invariance of ~, $vw \sim vw^2 \sim vw^3 \sim \cdots$.

Concatenation and Positive Closure

• The **concatenation** of languages L_1 and L_2 , denoted by L_1L_2 , is the set

$$L_1L_2 \coloneqq \{uv : u \text{ is in } L_1 \text{ and } v \text{ is in } L_2\}.$$

• Define:

• The **plus** (or **positive**) **closure** L^+ of L is the set

$$L^+ := \bigcup_{n \ge 1} L^n.$$

Regular Expressions and Regular Languages

• Regular expressions (over \mathbb{A}) are strings over the alphabet

 $\{\emptyset\} \cup \{\boldsymbol{a} : \boldsymbol{a} \in \mathbb{A}\} \cup \{\cup,^+,), (\}.$

- **Regular expressions**, together with the languages they denote, are defined recursively as follows:
 - (a) \emptyset is a regular expression and denotes the empty set;
 - (b) **a** is a regular expression and denotes the set $\{a\}$;
 - (c) If r and s are regular expressions denoting the languages R and S, respectively, then

 $(r \cup s), (rs), r^+$

are regular expressions that denote, respectively, the sets

$$R \cup S$$
, RS , R^+ .

• A language is **regular** if it is denoted by some regular expression.

Some Conventions

- For convenience, when writing *regular expressions*, we adopt some conventions.
- We omit parentheses when they have no influence on the language they denote.

E.g., $r_1 \cup \cdots \cup r_k$.

• We assume the following order of operations (in decreasing strength):

plus closure, concatenation, union.

Languages Recognized by NDA are Regular

Proposition

If L is recognized by an NDA then L is regular.

Suppose L is recognized by the NDA M = (S, q₀, δ, F), with S = {q₀,...,q_n}.
 Let L^{ij}_k be the set of all nonempty strings that M can read starting in q_i and ending in q_j without going through any state numbered ≥ k,

$$\begin{array}{ll} L_k^{ij} & \coloneqq & \{b_1 \dots b_s : s \ge 1, b_1, \dots, b_s \in \mathbb{A}, \text{ there are } i_0, \dots, i_s, \text{ such that} \\ & i_1, \dots, i_{s-1} < k, i_0 = i, i_s = j \text{ and } (q_{i_m}, b_{m+1}, q_{i_{m+1}}) \in \delta \text{ for } m < s \}. \end{array}$$

Since $L(M) = \bigcup_{q_j \in F} L_{n+1}^{0j}$, it suffices to show that all L_k^{ij} are regular. We proceed by induction on k.

Languages Recognized by NDA are Regular (Cont'd)

Note that L^{ij}₀ = {a ∈ A : (q_i, a, q_j) ∈ δ} is a subset of A. Suppose L^{ij}₀ = {a₁,..., a_r}. Then L^{ij}₀ is denoted by (a₁ ∪ ··· ∪ a_r) or by Ø in case r = 0. For the induction step, note that a nonempty string is in L^{ij}_{k+1} if it can be read without visiting any state numbered ≥ k + 1. Such a string starts in q_i, ends in q_j, and passes through q_k zero times or one or more than one time.

Hence, we get the expression

$$L_{k+1}^{ij} = L_k^{ij} \cup L_k^{ik} L_k^{kj} \cup L_k^{ik} (L_k^{kk})^+ L_k^{kj}.$$

By the induction hypothesis, for all i', j', there is a regular expression $r_k^{i'j'}$ denoting $L_k^{i'j'}$. Therefore, L_{k+1}^{ij} is denoted by the regular expression

$$r_k^{ij} \cup r_k^{ik} r_k^{kj} \cup r_k^{ik} (r_k^{kk})^+ r_k^{kj}.$$

Subsection 2

Word Models

Word Models

- We fix an alphabet \mathbb{A} .
- Let $\tau(\mathbb{A})$ be the vocabulary $\{<\} \cup \{P_a : a \in \mathbb{A}\}$, where:
 - < is binary;</pre>
 - The *P_a* are unary.
- For a given u ∈ A*, say u = a₁... a_n, we consider structures of the form

$$(B,<,(P_a)_{a\in\mathbb{A}}),$$

where:

- The cardinality of *B* equals the length of *u*;
- < is an ordering of B;
- P_a corresponds to the positions in u carrying an a,

 $P_a := \{b \in B : \text{for some } j, b \text{ is the } j\text{-th element of } < \text{and } a_j = a\}.$

- We call these **word models** for *u*.
- The class of word models for u is denoted by K_u .

Example

Suppose A = {a, b}.
 Let u = abbab.
 Consider the structure

$$(\{1,\ldots,5\},<,P_a,P_b),$$

where:

- < is the natural ordering on $\{1, \ldots, 5\}$;
- $P_a = \{1, 4\};$
- $P_b = \{2, 3, 5\}.$

This structure is a word model for u.

Definability in Monadic Second Order Logic

- Any two word models for *u* are isomorphic.
- Therefore, we often speak of *the* word model for u, written \mathcal{B}_u .
- Note that for u, v ∈ A⁺, a word model for uv is obtained by forming the ordered sum B_u ⊲ B_v.
- A language L ⊆ A⁺ is definable in monadic second-order logic, if there is a sentence φ in MSO[τ(A)], such that Mod(φ) = ∪_{u∈L} K_u, or, more succinctly (but not fully correct), Mod(φ) = {B_u : u ∈ L}.
- A language L ⊆ A⁺ is definable in first-order logic, if there is a sentence φ in FO[τ(A)], such that Mod(φ) = ∪_{u∈L} K_u, or, more succinctly (but not fully correct), Mod(φ) = {B_u : u ∈ L}.

Definability of the Class of All Word Models

• Let φ_W be the first-order sentence

$$\varphi_W := \text{``< is a total ordering'' } \land \\ \forall x \bigvee_{a \in \mathbb{A}} P_a x \land \bigwedge_{\substack{a, b \in \mathbb{A} \\ a \neq b}} \forall x \neg (P_a x \land P_b x).$$

• Then, $Mod(\varphi_W)$ is the class of all word models,

$$\mathsf{Mod}(\varphi_W) = \{\mathcal{B}_u : u \in \mathbb{A}^+\}.$$

• So the language \mathbb{A}^+ is definable in first-order logic.

Some Notation

 Let ψ_{min}(x) and ψ_{max}(x) be first-order formulas defining the first and the last element of the ordering, respectively:

 $\psi_{\min}(x) \coloneqq \forall y \neg y < x, \qquad \psi_{\max}(x) \coloneqq \forall y \neg x < y.$

- For any formula φ of MSO and variables x and y, let φ^[x,y] be a formula expressing that the closed interval [x, y] satisfies φ.
- Similarly, φ^{]x,y} is a formula expressing that the half-open interval]x, y] satisfies φ.
- Such formulas can be obtained from φ by relativizing the first-order quantifiers to the interval.
- The main clause of an inductive definition is (for a variable z ≠ x, z ≠ y)

$$\begin{array}{lll} (\exists z\varphi)^{[x,y]} &\coloneqq & \exists z(x \leq z \wedge z \leq y \wedge \varphi^{[x,y]}); \\ (\exists z\varphi)^{]x,y]} &\coloneqq & \exists z(x < z \wedge z \leq y \wedge \varphi^{]x,y]}. \end{array}$$

Regular Languages and Monadic Second Order Logic

Proposition

Any regular language is definable in monadic second order logic by a $\Sigma^1_1\text{-sentence}.$

- We split the proof in two stages.
- In the first stage, we prove by induction on the length of the regular expression r that there is a sentence φ_r of MSO defining the language denoted by r.
- In the second tage, we show that we can replace φ_r by a Σ_1^1 -sentence.

Regular Languages and MSO (Stage 1)

• For the base case, we have:

 $\begin{array}{lll} \varphi_{\varnothing} &\coloneqq \exists x \neg x = x; \\ \varphi_{\boldsymbol{a}} &\coloneqq \varphi_{W} \land \exists x \forall y (y = x \land P_{a} x). \end{array}$

For the inductive step, we have:

$$\varphi_{(r\cup s)} := \varphi_W \wedge (\varphi_r \vee \varphi_s);$$

 $\varphi_{(rs)} := \varphi_W \wedge$ "the universe is partitioned into two intervals satisfying φ_r and φ_s , respectively"

 $= \varphi_{W} \wedge \exists x \exists y \exists z (\psi_{\min}(x) \wedge y < z \wedge \psi_{\max}(z) \wedge \varphi_{r}^{[x,y]} \wedge \varphi_{s}^{]y,z]});$

 $\varphi_{r^+} := \varphi_W \wedge$ "there is a set of right endpoints of intervals, which partition the universe, all parts satisfying φ_r "

$$= \varphi_{W} \wedge \exists X (\exists y (Xy \land \psi_{\max}(y)) \land \\ \exists x \exists y (\psi_{\min}(x) \land Xy \land \forall z (z < y \rightarrow \neg Xz) \land \varphi_{r}^{[x,y]}) \land \\ \forall x \forall y ((x < y \land Xx \land Xy \land \forall z (x < z < y \rightarrow \neg Xz)) \rightarrow \varphi_{r}^{]x,y]})).$$

Regular Languages and MSO (Stage 2)

 We obtain a Σ₁¹-sentence by inductively bringing all existential second order quantifiers to the front.

In general, a monadic second-order formula $\forall \overline{x} \exists Y \chi$, with first-order χ , is not equivalent to a monadic Σ_1^1 -formula.

However, in the case of the formula in the last two lines of φ_{r^+} we can argue as follows:

Suppose that φ_r is equivalent to $\exists Y_1 \cdots \exists Y_m \chi$.

In models of φ_W (the only ones of interest), the formula

$$\forall x \forall y ((x < y \land Xx \land Xy \land \forall z (x < z < y \rightarrow \neg Xz)) \rightarrow \varphi_r^{]x,y]})$$

is equivalent to

$$\exists Y_1 \cdots \exists Y_m \forall x \forall y ((x < y \land Xx \land Xy) \land \forall z (x < z < y \rightarrow \neg Xz)) \rightarrow \chi^{]x,y]}).$$

For the nontrivial implication, piece Y_1, \ldots, Y_m together from corresponding subsets chosen in the (disjoint) intervals.

George Voutsadakis (LSSU)

Finite Model Theory

MSO and Invariant Equivalences of Finite Index

Proposition

Let $L \subseteq \mathbb{A}^+$ be definable in monadic second-order logic. Then, there is an invariant equivalence relation on \mathbb{A}^+ of finite index, such that L is a union of equivalence classes.

• Assume that there exists a sentence φ of MSO, such that

$$\mathsf{Mod}(\varphi) = \{\mathcal{B}_u : u \in L\}.$$

Let *m* be the quantifier rank of φ . Recall that $\mathcal{A} \equiv_m^{\text{MSO}} \mathcal{B}$ means that \mathcal{A} and \mathcal{B} satisfy the same sentences of MSO of quantifier rank $\leq m$. Define \sim on \mathbb{A}^+ by

$$u \sim v$$
 iff $\mathcal{B}_u \equiv_m^{\mathsf{MSO}} \mathcal{B}_v$.

Clearly, ~ is an equivalence relation.

MSO and Invariant Equivalences (Cont'd)

 Now, up to logical equivalence, there are only finitely many sentences of quantifier rank ≤ m. So the relation ~ is of finite index.
 By definition of m,

$$\mathcal{B}_u \vDash \varphi$$
 and $u \sim v$ imply $\mathcal{B}_v \vDash \varphi$.

Thus,

$$L = \bigcup \{ [u] : u \in \mathbb{A}^+, \mathcal{B}_u \vDash \varphi \}.$$

Finally, we show that \sim is invariant.

Assume $u \sim v$ and $w \in \mathbb{A}^+$. Then $\mathcal{B}_u \equiv_m^{\text{MSO}} \mathcal{B}_v$. Since \equiv_m^{MSO} is preserved by ordered sums, we get

$$\mathcal{B}_{uw} \cong \mathcal{B}_u \triangleleft \mathcal{B}_w \equiv_m^{\mathsf{MSO}} \mathcal{B}_v \triangleleft \mathcal{B}_w \cong \mathcal{B}_{vw}.$$

This shows that $uw \sim vw$.

The Main Theorem Restated

Theorem

For a language $L \subseteq \mathbb{A}^+$ the following are equivalent:

- L is the union of equivalence classes of an invariant equivalence relation on A⁺ of finite index.
- (ii) L is recognized by an automaton.
- (iii) *L* is recognized by an NDA.
- (iv) L is regular.
- (v) L is definable in monadic second-order logic by a Σ_1^1 -sentence.
- (vi) L is definable in monadic second-order logic.
 - Thus, a language is accepted by an automaton:
 - Exactly in case it is definable in monadic second-order logic;
 - Exactly in case it is specified by means of a regular expression.
 - Do both characterizations count as logical descriptions?

Subsection 3

Examples and Applications

Closure Under Boolean Operations and Pumping Lemma

Proposition

- (a) The class of languages over A accepted by automata is closed under the boolean operations (complementation and union).
- (b) (Pumping Lemma) Let *L* be accepted by an automaton. Then there is $n \ge 0$, such that for any $u \in \mathbb{A}^+$ with $|u| \ge n$, there exist $v, w \in \mathbb{A}^+$ and $x \in \mathbb{A}^*$ with:
 - *u* = *vwx*;
 - $|vw| \leq n;$
 - For $k \ge 0$ and $y \in \mathbb{A}^*$,

$$vw^k y \in L$$
 iff $vwy \in L$.

 Part (a) holds, since monadic second-order logic is closed under the boolean connectives ¬ and ∨.

Part (b) is a reformulation of the Pumping Lemma.

Example: Ultimately Periodic Subsets of \mathbb{N}_+

- Let $\mathbb{A} = \{a\}$.
 - Identify $a \dots a$ (of length n) with the natural number n.
 - Thus, \mathbb{A}^{+} is identified with the set \mathbb{N}_{+} of positive natural numbers.

A subset *L* of \mathbb{N}_+ is called **ultimately periodic** if there are $p, r \in \mathbb{N}_+$, such that for all $m \ge p$, $m + r \in L$ iff $m \in L$.

Claim: A subset L of \mathbb{N}_+ is accepted by an automaton iff L is ultimately periodic.

Assume first that L is accepted by an automaton.

By the Pumping Lemma, there are $n, j, r \in \mathbb{N}_+$ and $\ell \ge 0$, with $n = j + r + \ell$, such that, for all $k \ge 0$ and $s \in \mathbb{N}$,

$$j + kr + s \in L$$
 if $j + r + s \in L$.

In particular, if $m \ge p := j + r$, say m = j + r + s, then (take k = 2)

$$m + r \in L$$
 iff $m \in L$.

Example (Cont'd)

Now let L be ultimately periodic.
 Choose corresponding p, r ∈ N₊, such that, for all m ≥ p,

```
m + r \in L iff m \in L.
```

Set

L₁ := {m ∈ L : m < p};
L₂ := {m ∈ L : p ≤ m

Then, by periodicity,

$$L = L_1 \cup L_2 \cup \{m + kr : m \in L_2, k \ge 1\}.$$

So *L* is the union of the finite (and hence regular) sets L_1 and L_2 and of the languages denoted by the regular expressions $\mathbf{a}^m(\mathbf{a}^r)^+$, $m \in L_2$. Thus, *L* is regular.

So the classes of finite ordered structures of vocabulary $\{<\}$ axiomatizable in MSO coincide with the ultimately periodic ones.

George Voutsadakis (LSSU)

Example

• For $\mathbb{A} = \{a, b\}$ the set

 $L := \{u \in \mathbb{A}^+ : \text{the number of } a \text{'s in } u \text{ equals the number of } b \text{'s in } u\}$

is not accepted by an automaton.

Choose *n* according to the Pumping Lemma.

Consider *aⁿbⁿ*.

Let its representation, according to the Pumping Lemma, be vwx.

Since $|vw| \le n$, we have $w \in \{a\}^+$.

Hence, the string vw^2x contains more *a*'s than *b*'s.

Therefore, $vw^2x \notin L$ (while $vwx = a^n b^n \in L$).

This contradicts the Pumping Lemma.

Bipartite and Balanced (Bipartite) Graphs

• A graph (G, E^G) is **bipartite**, if there is an $X \subseteq G$ such that

$$E^{G} \subseteq (X \times (G \setminus X)) \cup ((G \setminus X) \times X).$$

• A bipartite graph (G, E^G) is **balanced**, if the set X can be chosen such that, in addition,

$$||X|| = ||G \setminus X||.$$

- Denote by BAL the class of finite balanced graphs.
- Denote by BAL< the class of finite balanced graphs carrying an arbitrary ordering on their universe,

 $BAL_{<} := \{(\mathcal{G}, <) : \mathcal{G} \in BAL, < \text{an ordering of } G\}.$

Non-Axiomatizability of $BAL_{<}$ in MSO

Proposition

The class $\mathsf{BAL}_{<}$, and hence the class $\mathsf{BAL}_{,}$ is not axiomatizable in monadic second-order logic.

- Suppose that BAL_< = Mod(φ) for a sentence φ of MSO.
 Let A = {a, b} and let L be as in the preceding example.
 For u ∈ A⁺, let B_u = (B_u, <, P_a, P_b) be a word model associated with u, say, with:
 - $B_u = \{1, \ldots, |u|\};$
 - < the natural ordering.

Let $\mathcal{G}_u = (B_u, R_u)$ be the bipartite graph given by

$$R_u \coloneqq \{(i,j) \in B_u \times B_u : P_a i \text{ iff } P_b j\}.$$

Then, $(\mathcal{G}_u, <) \in BAL_{<}$ iff $u \in L$.

Non-Axiomatizability of BAL_< in MSO (Cont'd)

Denote by

$$\varphi \frac{(P_a \dots \leftrightarrow P_b _)}{E \dots _}$$

the formula obtained from φ by replacing any subformula of the form *Exy* by $(P_a x \leftrightarrow P_b y)$.

Then

$$(\mathcal{G}_u, <) \vDash \varphi \quad \text{iff} \quad \mathcal{B}_u \vDash \varphi \frac{(P_a \dots \leftrightarrow P_b)}{E \dots E_{a}}.$$

Therefore,

$$\mathsf{Mod}\left(\varphi \frac{(P_a \ldots \leftrightarrow P_b _)}{E \ldots _}\right) = \{\mathcal{B}_u : u \in L\}.$$

A previous theorem now implies that L is accepted by an automaton. This contradicts the preceding example.

Finite Graphs with a Hamiltonian Circuit

• Let HAM be the class of finite graphs with a Hamiltonian circuit.

Corollary

HAM and $HAM_{<}$ are not axiomatizable in MSO.

• Consider a graph of the form $(X \cup Y, E)$ with

$$E = \{(a,b) : (a \in X, b \in Y) \text{ or } (a \in Y, b \in X)\}.$$

Such a graph has a Hamiltonian circuit iff it is balanced. Asume $HAM_{\leq} = Mod(\varphi)$ for an MSO-sentence φ .

Then the sentence

$$\exists X \left(\forall x \forall y (Exy \to (Xx \leftrightarrow \neg Xy)) \land \varphi \frac{(X \ldots \leftrightarrow \neg X_{--})}{E \ldots -} \right)$$

would axiomatize the class BAL_<.

Finite Graphs with a Clique of At Least Half Their Size

• Let CHS be the set of finite graphs which contain a clique of at least half their size.

Corollary

CHS and $CHS_{<}$ are not axiomatizable in MSO.

• Suppose that $CHS_{<} = Mod(\varphi)$ for some φ of MSO.

Then an axiomatization of $BAL_{<}$ in MSO would be given by

$$\exists X (\forall x \forall y (Exy \to (Xx \leftrightarrow \neg Xy))) \land \varphi \frac{X \dots \land X_{--} \land \neg \dots = _}{E \dots _} \land \varphi \frac{\neg X \dots \land \neg X_{--} \land \neg \dots = _}{E \dots _})$$

Note that the conjunction in the last line implies that both X and its complement have size at least half of the universe.

Subsection 4

First-Order Definability

Plus-Free Regular Languages

- We turn to the problem of characterizing the languages that are accepted by automata and are first-order definable.
- The passage from a regular expression to an MSO formula shows that second-order quantifiers are only needed for the positive closure, i.e., in the transition from a regular expression r to r⁺.
- Therefore, if *r* does not contain the symbol ⁺, the language *L* denoted by *r* is first-order definable.
- By induction on the length of such an r, L must then be finite.

41 / 54

Plus-Free Regular Languages and Complementation

Example: Let \mathbb{A} be an alphabet.

For $a \in \mathbb{A}$, the language $\mathbb{A}^+ \setminus \{a\}$ is infinite.

Therefore, it is not definable by a regular expressions without ⁺. However, it is first-order definable by

$$\varphi_W \wedge (\exists x \neg \psi_{\min}(x) \lor \exists x(\psi_{\min}(x) \land \neg P_a x)).$$

- It follows from the example that the class of languages denoted by regular expressions without ⁺ is not closed under complementation.
- On the other hand, the class of first-order definable languages is certainly closed under complementation.

Plus-Free Regular Languages

- We add closure under complementation in the definition of **plus free** regular expressions:
 - \emptyset , **a** (for $a \in \mathbb{A}$) are plus free regular expressions;
 - If r and s are plus free regular expressions, then so are

$$\sim r, (r \cup s), (rs).$$

- If r denotes the language L, then ~ r denotes $\mathbb{A}^+ \setminus L$.
- A language is said to be **plus free regular** if it is denoted by a plus free regular expression.

Characterization of Plus-Free Regularity

Theorem

A language is plus free regular iff it is definable in first order logic.

• Suppose a language is plus free regular.

Then it is defined by a plus free regular expression r.

Using induction on the structure of r, we construct a first-order sentence defining the same language.

For the base case:

•
$$\varphi_{\emptyset} \coloneqq \exists x \neg x = x$$

• $\varphi_{\boldsymbol{a}} \coloneqq \varphi_{W} \land \exists x \forall y (y = x \land P_{\boldsymbol{a}}(x)).$

For the induction step:

•
$$\varphi_{\sim r} := \varphi_W \wedge \neg \varphi_r;$$

- $\varphi_{(r\cup s)} \coloneqq \varphi_W \land (\varphi_r \lor \varphi_s);$
- $\varphi_{(rs)} \coloneqq \varphi_W \wedge \exists x \exists y \exists z (\psi_{\min}(x) \wedge y < z \wedge \psi_{\max}(z) \wedge \varphi_r^{[x,y]} \wedge \varphi_s^{]y,z]}).$

• Recall that $\tau(\mathbb{A}) = \{<\} \cup \{P_a : a \in A\}.$

For convenience, we add a constant min to this vocabulary, which henceforth will always denote the first element.

More precisely, we only look at models of $\varphi_W \wedge \psi_{\min}(\min)$. We show for a language *L* that if

$$\mathsf{Mod}(\varphi_W \wedge \psi_{\mathsf{min}}(\mathsf{min}) \wedge \varphi) = \{(\mathcal{B}_u, \mathsf{min}^{\mathcal{B}_u}) : u \in L\},\$$

then *L* is plus free regular. We use induction on the quantifier rank of the $FO[\tau(\mathbb{A}) \cup {\min}]$ -sentence φ .

- First assume that φ is atomic.
 - Then φ is min = min or P_a min for some $a \in \mathbb{A}$.
 - In the first case, L is A⁺. Thus, L is denoted by ~ Ø.
 - Let φ be P_a min. Then L = {a} ∪ {a}A⁺. Therefore, L is denoted by a ∪ a(~ Ø).

Suppose the languages defined by the sentences φ and ψ are denoted by the plus free expressions *r* and *s*, respectively. Then:

- ~ *r* corresponds to the sentence $\neg \varphi$;
- $r \cup s$ corresponds to the sentence $(\varphi \lor \psi)$.

• Let $\varphi = \exists x \psi(x)$. Then

By the induction hypothesis, the first class of structures on the right corresponds to a plus free regular language.

We turn to the second class.

Let c be a new constant.

Then the finite models of $\varphi_W \wedge \psi_{\min}(\min) \wedge \exists x(\neg x = \min \wedge \psi(x))$ are the $[\tau(\mathbb{A}) \cup \{\min\}]$ -reducts of the finite structures $(\mathcal{A}, \min^A, c^A)$ such that

$$(\mathcal{A},\min,c^{\mathcal{A}})\vDash\varphi_{W}\wedge\psi_{\min}(\min)\wedge\neg c=\min\wedge\psi(c).$$

• Any structure $(\mathcal{A}, \min^A, c^A)$ satisfying

$$\varphi_W \wedge \psi_{\min}(\min) \wedge \neg c = \min \wedge \psi(c)$$

can be written in the form

$$(\mathcal{A}, \min^{\mathcal{A}}, c^{\mathcal{A}}) = (\mathcal{A}_1 \triangleleft \mathcal{A}_2, \min^{\mathcal{A}}, c^{\mathcal{A}}),$$

where:

- ⊲ denotes the ordered sum;
- $(\mathcal{A}_1, \min^A) \vDash (\varphi_W \land \psi_{\min}(\min));$
- $(\mathcal{A}_2, c^{\mathcal{A}}) \vDash (\varphi_W \land \psi_{\min}(c)).$

Let *m* be the quantifier rank of ψ .

• Choose the - up to logical equivalence - finite set $\{(\psi_i(\min), \chi_i(c)) : i \in I\}$ of pairs of FO-sentences of quantifier rank $\leq m$, such that

$$\begin{aligned} (\mathcal{A}_1, \min^{\mathcal{A}_1}) &\models (\varphi_W \land \psi_{\min}(\min) \land \psi_i(\min)) \\ & \text{and} \quad (\mathcal{A}_2, c^{\mathcal{A}_2}) &\models (\varphi_W \land \psi_{\min}(c) \land \chi_i(c)) \\ & \text{imply} \quad (\mathcal{A}_1, \min^{\mathcal{A}_1}) \triangleleft (\mathcal{A}_2, C^{\mathcal{A}_2}) \vDash \psi(c). \end{aligned}$$

By the induction hypothesis there are plus free regular expressions:

- r_i denoting the language defined by $\varphi_W \wedge \psi_{\min}(\min) \wedge \psi_i(\min)$;
- s_i denoting the language defined by $\varphi_W \wedge \psi_{\min}(\min) \wedge \chi_i(\min)$.

Then the plus free regular expression $\bigcup_{i \in I} (r_i s_i)$ denotes the language defined by $(\varphi_W \wedge \psi_{\min}(\min) \wedge \exists x (\neg x = \min \wedge \psi(x)))$.

Note that, if $(\mathcal{A}_1 \triangleleft \mathcal{A}_2, \min^{\mathcal{A}_1}, c^{\mathcal{A}_2}) \vDash \psi(c)$ then, by a previous result, the pair $(\varphi^m_{(\mathcal{A}_1,\min^{\mathcal{A}_1})}, \varphi^m_{(\mathcal{A}_2,c^{\mathcal{A}_2})})$ of *m*-isomorphism types belongs (up to logical equivalence) to $\{(\psi_i(\min), \chi_i(c)) : i \in I\}$.

Automata, First Order Logic and Counting Ability

• Let
$$\mathbb{A} = \{a\}$$
.

- Identify \mathbb{A}^+ with the set \mathbb{N}_+ of positive natural numbers.
- Automata do not have the ability to count.

For instance, they cannot recognize if a given string has prime length. I.e., the set $\{p : p \text{ a prime}\}$ is not accepted by an automaton.

• On the other hand, automata are capable to count modulo a natural number.

E.g., the set $\{5n : n \ge 1\}$ is accepted by an automaton.

• But first-order logic even lacks this restricted counting ability.

It is an immediate consequence of a previous result that a subset L of \mathbb{N}_+ is first-order definable iff for some $n \ge 1$, $\{m : m \ge n\} \cap L = \emptyset$ or $\{m : m \ge n\} \subseteq L$.

First Order Logic Definability

Theorem

For a language $L \subseteq \mathbb{A}^+$ accepted by an automaton the following are equivalent:

- (i) *L* is definable in first-order logic.
- (ii) L is noncounting in the sense that there is an integer k ≥ 1, such that for every y ∈ A⁺ and x, z ∈ A^{*},

$$xy^k z \in L$$
 iff $xy^{k+1} z \in L$.

We only prove the implication (i)⇒(ii).
 Suppose {B_u : u ∈ L} = Mod(φ) for φ ∈ FO[τ(A)].
 Let k := 2^m + 1, where m is the quantifier rank of φ.

First Order Logic Definability (Cont'd)

• Then, by a previous result, for any $y \in \mathbb{A}^+$, we have

$$\mathcal{B}_{y^k} \cong \triangleleft^k \mathcal{B}_y \equiv_m \triangleleft^{k+1} \mathcal{B}_y \cong \mathcal{B}_{y^{k+1}}.$$

Using a previous theorem, we obtain

$$\mathcal{B}_{xy^{k_{Z}}} \cong \mathcal{B}_{x} \triangleleft \mathcal{B}_{y^{k}} \triangleleft \mathcal{B}_{z} \equiv_{m} \mathcal{B}_{x} \triangleleft \mathcal{B}_{y^{k+1}} \triangleleft \mathcal{B}_{z} \cong \mathcal{B}_{xy^{k+1}z}.$$

In particular,

$$\mathcal{B}_{xy^kz} \vDash \varphi \quad \text{iff} \quad \mathcal{B}_{xy^{k+1}z} \vDash \varphi.$$

So, $xy^kz \in L$ iff $xy^{k+1}z \in L$.

Least Fixed Points: An Appetizer

- The results of this section show that the plus operation cannot be captured in first-order logic.
- An instance of this operation can be viewed as the fixed point of a monotone operation.
- Let $L \subseteq \mathbb{A}^+$ be a language.
- Define $C_L : \operatorname{Pow}(\mathbb{A}^*) \to \operatorname{Pow}(\mathbb{A}^*)$ by

 $C_L(M) \coloneqq L \cup ML.$

Then:

(a) C_L is monotone, i.e.,

 $M_1 \subseteq M_2$ implies $C_L(M_1) \subseteq C_L(M_2)$.

(b) For $n \ge 1$,

$$C_L(\cdots(C_L(\emptyset))\ldots) = L \cup L^2 \cup \cdots \cup L^n.$$

n times

Least Fixed Points: An Appetizer (Cont'd)

• *M* is a **fixed-point** of *C*_L if

 $C_L(M)=M.$

 It can easily be proved that the least - with respect to set-theoretical inclusion - fixed point of C_L is given by

 $C_L(\emptyset) \cup C_L(C_L(\emptyset)) \cup C_L(C_L(C_L(\emptyset))) \cup \cdots$.

• Hence by Property (b), the least fixed-point of C_L is L^+ .