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Subsection 1

Some Extensions of First Order Logic
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Descriptive Complexity Theory Some Extensions of First Order Logic

Operators on Power Sets

Let M be a finite nonempty set.

Denote by Pow(M) the power set of M.

Let F ∶ Pow(M) → Pow(M) be a function.

F induces a sequence ∅,F (∅),F (F (∅)), . . . of subsets of M.

For its members we write F0,F1, . . ..

So we have
F0 = ∅ and Fn+1 = F (Fn), n ≥ 0.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Fixed-Points and Inflationarity

Let M be a finite nonempty set and F ∶ Pow(M) → Pow(M).

Suppose there is an n0 ≥ 0 such that Fn0+1 = Fn0 , i.e., F (Fn0) = Fn0 .

Then Fm = Fn0 , for all m ≥ n0.

We denote Fn0 by F∞.

Moreover, we say that the fixed-point F∞ of F exists.

In case the fixed-point F∞ does not exist, we agree to set F∞ ∶= ∅.

F is said to be inflationary if

X ⊆ F (X ), for all X ⊆M.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Periodicity and Fixed-Points

Lemma

(a) The sequence (Fn)n≥0 is periodic. More precisely, there are m < 2∥M∥

and ℓ ≥ 1 such that

Fk = Fk+ℓ, for all k ≥ m.

(b) If F∞ exists then F∞ = F2∥M∥−1.

(c) If F is inflationary then F∞ exists and F∞ = F∥M∥.

(a) Note that Pow(M) has 2∥M∥ elements.

So there are m < 2∥M∥ and ℓ ≥ 1 such that Fm = Fm+ℓ.

Therefore,

Fm+1 = F (Fm) = F (Fm+ℓ) = Fm+1+ℓ;
Fm+2 = Fm+2+ℓ;

⋮
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Descriptive Complexity Theory Some Extensions of First Order Logic

Periodicity and Fixed-Points (Cont’d)

(b) Choose m < 2∥M∥ and ℓ ≥ 1 according to Part (a).

If Fm = Fm+1, then Fm = F2∥M∥−1 = F∞.

If Fm ≠ Fm+1 then, by Part (a), for s ≥ m, we get

Fm+s ⋅ℓ = Fm ≠ Fm+1 = Fm+1+s ⋅ℓ.

Hence, F∞ does not exist.

(c) By assumption, F0 ⊆ F1 ⊆ ⋯ ⊆M.

But M has ∥M∥ elements.

So this sequence must get constant not later than with F∥M∥.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Power Set Operations Induced By Formulas

Let ϕ(x1, . . . , xk ,u,X ,Y ) be a formula in the vocabulary τ , where the
relation variable X has arity k .

Let A be a τ -structure, b an interpretation of u in A, and S an
interpretation of Y over A.

Then ϕ,A,b and S give rise to an operation

Fϕ ∶ Pow(Ak) → Pow(Ak)

defined by

Fϕ(R) ∶= {(a1, . . . ,ak) ∶ A ⊧ ϕ[a1, . . . ,ak ,b,R ,S]}.
Note that the notation Fϕ does not make explicit all relevant data.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Example

Let G = (G ,EG ) be a graph.

Let
ϕ0(x , y ,X ) ∶= (Exy ∨ ∃z(Xxz ∧ Ezy)),

with xy corresponding to x above.

Then, we have:

F
ϕ0

0 = ∅;

F
ϕ0

1 = Fϕ0(∅) = EG ;

F
ϕ0

2 = Fϕ0(EG )
= EG ∪ {(a,b) ∶ (EGac and EGcb) for some c ∈ G}.

By induction on n, one shows that

Fϕ0
n = {(a,b) ∶ there is a path of length ≤ n from a to b}.

Hence,
Fϕ0
∞ = {(a,b) ∶ there is a path from a to b}.
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Descriptive Complexity Theory Some Extensions of First Order Logic

A Remark on Power Set Operations Induced by Formulas

Let ϕ(x ,u,X ,Y ) be a τ -formula, where:

The relation variable X has arity k ;
x is of length k .

Let A be a τ -structure, b an interpretation of u in A and S an
interpretation of Y over A.

Define
ψ ∶= Xx ∨ ϕ.

Then the operation Fψ ∶ Pow(Ak)→ Pow(Ak) is inflationary.
We have, using the definition, that, for all a in A,

Fψ = {a ∶ A ⊧ (Xx ∨ ϕ)[a,b,R ,S]}
= {a ∶ A ⊧ Rx[a]} ∪ {a ∶ A ⊧ ϕ[a,b,RS]}
⊇ RA.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Inflationary Fixed-Point Logic

Inflationary Fixed-Point Logic FO(IFP) is obtained by closing
first-order logic FO under inflationary fixed-points of definable
operations.

For a vocabulary τ , the class FO(IFP)[τ] of formulas of FO(IFP) of
vocabulary τ is given by the following clauses:

ϕ, where ϕ is an atomic second-order formula over τ ;
If ϕ,ψ are formulas in FO(IFP)[τ], then

¬ϕ, (ϕ ∨ ψ), ∃xϕ

are formulas in FO(IFP)[τ];
If ϕ is a formula in FO(IFP)[τ], then

[IFPx,Xϕ]t,
where the lengths of x and t are the same and coincide with the arity
of X , is a formula in FO(IFP)[τ].
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Descriptive Complexity Theory Some Extensions of First Order Logic

Partial Fixed-Point Logic

Partial Fixed-Point Logic FO(PFP) is obtained by closing first-order
logic FO under arbitrary fixed-points of definable operations.

For a vocabulary τ , the class FO(PFP)[τ] of formulas of FO(PFP)
of vocabulary τ is given by the following clauses:

ϕ, where ϕ is an atomic second-order formula over τ ;
If ϕ,ψ are formulas in FO(PFP)[τ], then

¬ϕ, (ϕ ∨ ψ), ∃xϕ

are formulas in FO(PFP)[τ];
If ϕ is a formula in FO(PFP)[τ], then

[PFPx,Xϕ]t,
where the lengths of x and t are the same and coincide with the arity
of X , is a formula in FO(PFP)[τ].
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Descriptive Complexity Theory Some Extensions of First Order Logic

Sentences of Fixed-Point Logic

Sentences are formulas without free first-order and second-order
variables.

The free occurrence of variables is defined in the standard way.

For FO(IFP) one adds the clause

free([IFPx ,Xϕ]t) ∶= free(t) ∪ (free(ϕ)/{x ,X}).
Similarly, for FO(PFP) one adds the clause

free([PFPx ,Xϕ]t) ∶= free(t) ∪ (free(ϕ)/{x ,X}).
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Descriptive Complexity Theory Some Extensions of First Order Logic

Semantics of Fixed-Point Logic

The semantics is defined inductively on the structure of formulas.

The intended meanings of the fixed-point clauses are:

[IFPx,Xϕ]t means that t ∈ F (Xx∨ϕ)
∞ ;

[PFPx ,Xϕ] t means that t ∈ Fϕ∞.

More precisely, if X is k-ary and if the variables free in [IFPx ,Xϕ]t are
among u and Y , and b and S are interpretations in A of u and Y ,
respectively, then:

A ⊧ [IFPx ,Xϕ]t[b,S] iff (t1[b], . . . , tk[b]) ∈ F (Xx∨ϕ)
∞ ;

A ⊧ [PFPx ,Xϕ]t[b,S] iff (t1[b], . . . , tk[b]) ∈ Fϕ∞.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Example (Graphs)

We work over the language of graphs.

Consider the formula of FO(IFP)

ψ0(x , y) ∶= [IFPxy ,X(Exy ∨ ∃z(Xxz ∧ Ezy))]xy .
It expresses that x , y are connected by a path.

Hence, the class CONN of connected graphs is axiomatizable in
FO(IFP) by the set consisting of:

The graph axioms;
The sentence

∀x∀y(¬x = y → ψ0(x , y)).
This class is not axiomatizable in FO.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Example (Orderings)

We work over the vocabulary τ = {<,S ,min,max}.
Consider the sentence of FO(IFP)

¬[IFPx ,X(x = min∨∃y∃z(Xy ∧ Syz ∧ Szx))]max .

The class of orderings of even cardinality is axiomatizable in FO(PFP)
by the set consisting of:

The ordering axioms;
The sentence

¬[IFPx,X (x = min∨∃y∃z(Xy ∧ Syz ∧ Szx))]max .

The same holds for the class of orderings of odd cardinality if we add
instead the FO(PFP)-sentence

∃x[PFPx ,Xψ(x ,X )]x ,
where

ψ(x ,X ) = (∀y¬Xy ∧ x = min) ∨ (X max∧x = max)
∨ ∃y(Xy ∧ ∃u(Syu ∧ Sux)).
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Descriptive Complexity Theory Some Extensions of First Order Logic

Expressivity Relations

Definition

Let L1 and L2 be logics.

(a) L1 ≤ L2 (read: L1 is at most as expressive as L2) if, for every τ
and every sentence ϕ ∈ L1[τ], there is a sentence ψ ∈ L2[τ], such
that Mod(ϕ) =Mod(ψ).

(b) L1 ≡ L2 (read: L1 and L2 have the same expressive power) if
L1 ≤ L2 and L2 ≤ L1.

(c) L1 < L2 if L1 ≤ L2 and not L2 ≤ L1.

In most cases, a proof of L1 ≤ L2 even yields that every formula of L1

is equivalent to a formula of L2.

In particular, L1 ≤ L2 implies that L1 ≤ L2 holds for all formulas of
L1 containing only free individual variables (one replaces these
variables by new constants).
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Descriptive Complexity Theory Some Extensions of First Order Logic

First-Order and First-Order with Fixed-Points

Since L1 ≤ L2 implies that L1 ≤ L2 holds for all formulas of L1

containing only free individual variables, L1 ≤ L2 will imply that every
global relation definable in L1 is also definable in L2.

By the preceding example, we have FO < FO(IFP).
Proposition

FO(IFP) ≤ FO(PFP).
Note that [IFPx ,Xϕ]t is equivalent to [PFPx,X (Xx ∨ ϕ)]t.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Transitive Closure

Let R be a binary relation on a set M, R ⊆M2.

The transitive closure TC(R) of R is defined by

TC(R) ∶= {(a,b) ∈M2 ∶ there exist n > 0 and e0, . . . , en ∈M, such
that a = e0,b = en, and, for all i < n, (ei , ei+1) ∈ R}.

The deterministic transitive closure DTC(R) is defined by

DTC(R) ∶= {(a,b) ∈M2 ∶ there exist n > 0 and e0, . . . , en ∈M,
such that a = e0,b = en, and, for all i < n, ei+1 is the
unique e for which (ei , e) ∈ R}.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Transitive Closure Logic

Transitive Closure Logic FO(TC) is obtained by closing FO under
the transitive closure of definable relations.

For a vocabulary τ , the class FO(TC)[τ ] of formulas of FO(TC)[τ ]
of vocabulary τ is given by the following clauses:

ϕ, where ϕ is an atomic first-order formula over τ ;
If ϕ,ψ are in FO(TC)[τ ], then

¬ϕ, (ϕ ∨ ψ), ∃xϕ

are in FO(TC)[τ ];
If ϕ is in FO(TC)[τ ], then

[TCx,yϕ]st,
is a formula in FO(TC)[τ ], where:

the variables in x y are pairwise distinct;

the tuples x , y , s and t are all of the same length, s and t being tuples

of terms.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Deterministic Transitive Closure Logic

Deterministic Transitive Closure Logic FO(DTC) is obtained by
closing FO under the deterministic transitive closure of definable
relations.
For a vocabulary τ , the class FO(DTC)[τ ] of formulas of
FO(DTC)[τ ] of vocabulary τ is given by the following clauses:

ϕ, where ϕ is an atomic first-order formula over τ ;
If ϕ,ψ are in FO(DTC)[τ ], then

¬ϕ, (ϕ ∨ ψ), ∃xϕ

are in FO(DTC)[τ ];
If ϕ is in FO(DTC)[τ ], then

[DTCx,yϕ]st,
is a formula in FO(DTC)[τ ], where:

The variables in x y are pairwise distinct;

The tuples x , y , s and t are all of the same length, s and t being tuples

of terms.

George Voutsadakis (LSSU) Finite Model Theory January 2024 21 / 166



Descriptive Complexity Theory Some Extensions of First Order Logic

Sentences of (Deterministic) Transitive Closure Logic

Sentences are formulas without free variables.

The free occurrence of variables is defined in the standard way.

For FO(TC) one adds the clause

free([TCx ,yϕ]st) ∶= free(s) ∪ free(t) ∪ (free(ϕ)/{x , y}).
Similarly, for FO(DTC) one adds the clause

free([DTCx ,yϕ]st) ∶= free(s) ∪ free(t) ∪ (free(ϕ)/{x , y}).
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Descriptive Complexity Theory Some Extensions of First Order Logic

Semantics of Transitive Closure Logic

The semantics is defined inductively on the structure of formulas.

We consider {(x , y) ∶ ϕ(x , y ,u)}) as a binary relation on the set of
length(x)-tuples of the universe.

The meaning of [TCx,yϕ(x , y ,u)]st is

(s , t) ∈ TC({(x , y) ∶ ϕ(x , y ,u)}).
The meaning of [DTCx ,yϕ(x , y ,u)]st is

(s, t) ∈ DTC({(x , y) ∶ ϕ(x , y ,u)}).
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Descriptive Complexity Theory Some Extensions of First Order Logic

Example (Graphs)

Let τ be the vocabulary of graphs.

Consider the sentence of FO(TC)[τ ]

∀x∀y(¬x = y → [TCx ,yExy]xy).
A graph is connected if it is a model of this sentence.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Relation Between Transitive Closures and Fixed Points

Proposition

(a) FO(DTC) ≤ FO(TC).
(b) FO(TC) ≤ FO(IFP).
(a) The statement follows from the equivalence

⊧fin [DTCx,yϕ(x , y ,u)]st
↔ [TCx ,y(ϕ(x , y ,u) ∧ ∀z(ϕ(x , z ,u)→ z = y))]st.

(b) The statement follows from the equivalence

⊧fin [TCx ,yϕ(x , y ,u)]st
↔ [IFPx ,y ,X (ϕ(x , y ,u) ∨ ∃v(Xxv ∧ ϕ(v , y ,u)))]st.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Axiomatizability and Restriction to Large Structures

Definition

Let K be a class of τ -structures and L a logic. K is axiomatizable in L,
if there is a sentence of L of vocabulary τ such that K =Mod(ϕ).

When relating logics and complexity classes it may be convenient to
restrict to sufficiently large structures.

We show that this restriction does not affect problems of
axiomatizability.
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Descriptive Complexity Theory Some Extensions of First Order Logic

Axiomatizability and Large Structures (Cont’d)

For a class K of structures and m ≥ 1, denote by Km the subclass of
K of structures of cardinality ≥ m,

Km ∶= {A ∶ A ∈ K , ∥A∥ ≥ m}.
For every finite structure A, there is a sentence ϕA of FO
characterizing A up to isomorphism, i.e., for all B,

B ⊧ ϕA iff B ≅ A.
Hence, for any logic L with FO ≤ L,

K is axiomatizable in L iff Km is axiomatizable in L.

In fact, set
ϕm ∶= ⋁{ϕA ∶ A ∈ K , ∥A∥ < m}.

Then we have:
K =Mod(ϕ) implies Km =Mod(ϕ ∧ ¬ϕm);
Km =Mod(ψ) implies K =Mod(ψ ∨ϕm).
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Subsection 2

Turing Machines and Complexity Classes
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Descriptive Complexity Theory Turing Machines and Complexity Classes

Turing Machines: Symbols and Tape

We fix a finite alphabet A.

A Turing machine M is a finite device that performs operations on a
tape which is bounded to the left and unbounded to the right and
divided into squares (or cells).

The machine operates stepwise, each step leading from one situation
to a new one.

In any situation every square of the tape either contains a single
symbol from A or is blank.

In the latter case we say that it contains the symbol “blank”.

There is one exception: the leftmost or “virtual” cell always contains
an endmark, the “virtual” letter α (not in A).
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Descriptive Complexity Theory Turing Machines and Complexity Classes

Turing Machines: Head and States

M has a read-and-write head which scans a single square of the
tape.

In any step of a computation:

It erases or replaces the scanned symbol by another one;
It moves one cell to the left or to the right or remains at its place.

In every situation, M is in one of the states of a finite set State(M),
the set of states of M.

State(M) contains:
A special state s0, the initial state;
A special states s+, the accepting state;
A special state s−, the rejecting state.

We assume that s0, s+ and s− are pairwise distinct.
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Descriptive Complexity Theory Turing Machines and Complexity Classes

Turing Machine: Program

The action or behavior of M in a situation depends on the current
state of M and on the symbol currently being scanned by the head.

It is given by Instr(M), the set of instructions of M.

Each instruction has the form sa → s ′bh, where:

s, s ′ ∈ State(M), s ≠ s+, s ≠ s−;
a,b ∈ A ∪ {α,blank} and (a = α iff b = α);
h ∈ {−1,0,1}, and if a = α then h ≠ −1.

The instruction above has the following meaning:

If you are in state s and your head scans a cell with symbol a:

Replace a by b;
Move the head one cell to the left (h = −1), or to the right (h = 1), or
stay put (h = 0);
Change to state s ′.
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Descriptive Complexity Theory Turing Machines and Complexity Classes

Determinism and Nondeterminism

A machine M is deterministic if for all s ∈ S and a ∈ A ∪ {α,blank}
there is at most one instruction of the form

sa → s ′bh

in Instr(M).
In order to emphasize that a machine is not required to be
deterministic we sometimes call it nondeterministic.
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Descriptive Complexity Theory Turing Machines and Complexity Classes

Acceptance and Rejection

Denote by A
∗ the set of words over A.

Denote by A
+ the set of nonempty words over A.

Let u ∈ A∗, u = a1 . . . ar with ai ∈ A.
M is started with u if M begins a
computation (or run) in state s0 in
the situation shown on the right.

The computation proceeds stepwise, each step corresponding to the
execution of one instruction of M.

The machine stops in a state s scanning a symbol a ∈ A ∪ {a,blank},
if there is no instruction of the form as → s ′bh in Instr(M).

If s = s+ we speak of an accepting run;
If s = s− we speak of a rejecting run.

M accepts u if there is at least one accepting run started with u.

M rejects u if all runs started with u are finite and rejecting.
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Descriptive Complexity Theory Turing Machines and Complexity Classes

Decidability and Acceptability

Subsets of A+ are called languages.

A language L ⊆ A
+ is accepted by M if, for all u ∈ A+,

M accepts u iff u ∈ L.

L is decided by M if, in addition,

M rejects u iff u ∉ L.

Clearly, if M decides L then M accepts L.

L is said to be decidable if it is decided by some deterministic Turing
machine.

L is said to be acceptable or enumerable if it is accepted by some
nondeterministic Turing machine.
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Time and Space Bounds

Consider a function f ∶N →N.

We say that M is f time-bounded, if for all u ∈ A+ accepted by M,
there is an accepting run of M started with u which has length at
most f (∣u∣) (recall that ∣u∣ denotes the length of the word u).

M is f space-bounded, if, for all w ∈ A+ accepted by M, there is an
accepting run which uses at most f (∣u∣) cells before stopping.
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Polynomial Time and Space Bounds

Denote by N[x] the set of polynomials with coefficients from N.

A language L ⊆ A
+ is in PTIME (“polynomial time”) if it is accepted

by a deterministic machine that is p time-bounded, for some
polynomial p ∈N[x].
A language L ⊆ A

+ is in PSPACE (“polynomial space”) if it is
accepted by a deterministic machine that is p space-bounded, for
some polynomial p ∈N[x].
The classes NPTIME (“nondeterministic polynomial time”) and
NPSPACE (“nondeterministic polynomial space”) are defined
similarly, now allowing nondeterministic machines.
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Relations Between Classes

Immediately from the definitions one gets

PTIME ⊆ NPTIME and PTIME ⊆ PSPACE ⊆ NPSPACE.

One can show that

NPTIME ⊆ PSPACE and PSPACE = NPSPACE.

Hence,
PTIME ⊆ NPTIME ⊆ PSPACE(= NPSPACE).
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Descriptive Complexity Theory Turing Machines and Complexity Classes

Example

Let A = {a,b} and
L ∶= {u ∈ A+ ∶ u contains an even number of a’s}.

We can easily design a machine accepting L and time-bounded by the
polynomial x + 2.

The head just runs over the string, the state being “even” or “odd”
depending on whether the number of a’s already scanned is even or
odd, respectively.

Essentially, this machine does not need any “working space” but only
the space for the input.
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Logarithmic Space

For some reasons, it is convenient to separate the input from the
working space and to introduce machines with:

An input tape;
A work tape.

This allows, e.g., to measure only the working space.

Measuring only the working space is critical in introducing complexity
classes like LOGSPACE and NLOGSPACE, where the working space
needed is smaller than the input space.
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Robustness of the Turing Machine Model

For other purposes it might be useful to introduce several input
tapes and several work tapes.

Also (if calculating a function, for example) we might use one or more
output tapes, with a head for each tape, where the heads can move
independently of each other.

It turns out that the definition of the usual complexity classes does
not depend on the number of tapes or on other peculiarities such as
the form of the tape, i.e., whether it is unbounded to both sides or
not.

We often use this robustness, choosing, for example, the number of
input and work tapes according to needs and to convenience.
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Subsection 3

Trahtenbrot’s Theorem
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Trahtenbrot’s Theorem

Fix an alphabet A.
Undecidability of the Halting Problem: It is not decidable whether a
deterministic Turing machine M accepts the empty word, i.e.,
whether M halts.
We use this result to construct a vocabulary σ(A) and show

Theorem (Trahtenbrot’s Theorem)

Finite Satisfiability is not decidable, that is, the set

Sat[σ(A)] ∶= {ϕ ∶ ϕ is a sentence of FO[σ(A)] satisfiable in the finite}
is not decidable.

We assign, in an effective way, to every deterministic machine M over
A a sentence ϕM of FO[σ(A)] such that

ϕM is satisfiable in the finite iff M halts.

Then use the undecidability of the Halting Problem.
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Descriptive Complexity Theory Trahtenbrot’s Theorem

Proof (Machine and Configurations)

Without loss of generality we restrict ourselves to deterministic Turing
machines M with the following features:

The set of states is an initial segment {0, . . . , sM} of the natural
numbers;
s0 ∶= 0 is the initial state;
1 is the accepting state;
The machine stops only in the accepting state.

We number the cells of the tape as indicated by

In particular, the number 0 is given to the virtual cell.
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Proof (Configurations)

Suppose the machine M makes at least n steps.

The n-th configuration Cn contains the following data:

The state;
The number of the cell scanned by the head;
The tape inscription after n steps.
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Proof (Vocabulary)

Let τ0 = {<,S ,min,max} be the vocabulary for orderings.

In the following we sometimes write 0 instead of min.

In addition to the symbols of τ0 the vocabulary σ(A) contains:
A binary relation symbol State;
A binary relation symbol Head;
For every a ∈ A ∪ {a,blank}, a binary relation symbol Lettera.
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Proof (Structure)

Recall that {0, . . . , sM} is the set of states of M.

For every n ≥ sM , we define a structure An, reflecting:

The initial segment C0, . . . ,Cn of the computation of M started with
the empty word;
Only C0, . . . ,Ck , with k < n, if M stops after k steps.

The structure An has:

Universe {0, . . . ,n}, reflecting C0, . . . ,Cn;
For s, t ≤ n,

StateAnst iff according to Ct the state is s;

HeadAn it iff according to Ct the head is in cell i ;

LetterAn

a it iff according to Ct the letter a is in cell i .
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Proof (The Sentence ϕM)

We construct next the sentence ϕM of FO[σ(A)] satisfying the
following Properties (a) and (b).

(a) If M , started with the empty word, stops after k steps (in the
accepting state) and n ≥ sM , k , then An ⊧ ϕM ;

(b) If A is a finite model of ϕM and M , started with the empty word, runs
at least k steps, then ∥A∥ ≥ k .

Properties (a) and (b) immediately give the equivalence

ϕM is satisfiable in the finite iff M halts.

As ϕM we take the conjunction of:

The {<,S ,min,max}-ordering axioms;
The conjunction of the sentences in the following Clauses (1)-(4)
(where we write 0 for min, 1 for the successor of min, etc.)
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Proof (Sentences (1)-(4))

(1) “The universe has at least sM + 1 elements.”

(2) State00 ∧Head00 ∧ Letterα00 ∧ ∀x(¬x = 0→ Letterblankx0)
(at time 0 the state is 0, the head scans the virtual cell, the virtual
cell contains α, and all other cells are empty).

(3) For each instruction sa → s ′bh a conjunct ϕsa→s′bh which describes
the changes due to this instruction.

For example, if h = 0, then ϕsa→s′bh is the sentence

∀y∀t((Statest ∧Headyt ∧ Letterαyt)
→ ∃t ′(Stt ′ ∧ States ′t ′ ∧Headyt ′ ∧ Letterbyt

′

∧∀v(¬v = y → ⋀a∈A∪{α,blank}(Letteravt → Letteravt
′)))).

Similarly for sentences ϕsa→s′bh, with h = −1 or h = 1.

(4) ∃tState1t (the accepting state is reached).
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Undecidability of FO in the Finite

Coding σ(A)-structures by graphs, one obtains from the
undecidability of Sat[σ(A)] that for a binary relation symbol E the set

Graph-Sat ∶= {ϕ ∶ ϕ is an FO[{E}]-sentence
satisfiable in a finite graph}

is not decidable.

It follows that, for any vocabulary τ containing an at least binary
relation symbol, the set

Sat[τ] ∶= {ϕ ∶ ϕ is an FO[τ ]-sentence satisfiable in the finite}
is not decidable.
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Enumerability of SAT

There is a decision procedure that, given:

A finite structure A whose universe is a set of natural numbers;
A first-order sentence ϕ,

checks whether A ⊧ ϕ.

This decision procedure can be used to enumerate Sat[τ].
This follows from the fact that ϕ is satisfiable in the finite iff there is
a model A of ϕ with A = {0, . . . ,n} for some n.
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Non-Enumerability of FO in the Finite

Theorem

If τ contains an at least binary relation symbol then the set

Val[τ] ∶= {ϕ ∈ FO[τ] ∶ ϕ is a sentence valid in all finite structures}
of sentences valid in all finite structures is not enumerable.

Suppose, to the contrary that Val[τ] is enumerable.

For any sentence ϕ we have

ϕ ∉ Sat[τ] iff ¬ϕ ∈ Val[τ].
By hypothesis and this equivalence, FO[τ]/Sat[τ] is enumerable.
Now consider the following procedure.

Given a sentence ϕ, start enumeration procedures for Sat[τ] and
FO[τ]/Sat[τ] until one of them yields ϕ.

This is a decision procedure for Sat[τ].
This contradicts Trahtenbrot’s Theorem.
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Non-Existence of Proof Calculus in the Finite

Corollary

There is no complete proof calculus for FO in the finite.

Suppose to the contrary.

Then we can effectively enumerate all possible formal proofs.

Hence, we can enumerate the sentences valid in the finite.

This contradicts the preceding theorem.
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Subsection 4

Structures as Inputs
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Ordered Structures

Definition

Let {<} ⊆ τ0 ⊆ {<,S ,min,max}.
Let τ0 ⊆ τ .
A τ -structure A is ordered if the reduct A∣τ0 is an ordering, i.e.:

<A is an ordering;

S , if present, is interpreted by the successor relation;

min and max, if present, are interpreted as the least and the last
element of the ordering, respectively.

O[τ] is the class of ordered τ -structures.
If ψ is a sentence in the vocabulary τ , ordMod(ψ) denotes the class of
ordered models of ψ. Equivalently, ordMod(ψ) =Mod(ψ ∧ψ0), where ψ0

is the conjunction of the ordering axioms for the vocabulary τ0.
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Ordered Structures: Conventions

Let A ∈ O[τ] be an ordered structure with ∥A∥ = n.

By passing to an isomorphic copy we will assume that:

A = {0, . . . ,n − 1};
<A is the natural ordering on this set.
I.e., we identify or “label” the least element of <A in A with 0, its
successor with 1, etc.

We assume that τ = τ0 ⊍ τ1, with, say,

τ1 = {R1, . . . ,Rk , c1, . . . , cℓ}.
τ0 as in the preceding definition;
When writing τ1 in this way, we tacitly assume that the symbols in τ1
are given in the order R1, . . . ,Rk , c1, . . . , cℓ.
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Turing Machine for Structures

A Turing machine for τ -structures will have 1 + k + ℓ input tapes
and m work tapes for some m ≥ 1.

All tapes are bounded to the left and unbounded to the right.

Their cells are numbered as indicated in

The “virtual” cell is numbered by −1 and always contains α.

All input tapes will contain an input word followed by the virtual
letter ω indicating the end of the input word.
Each tape has its own head.

The heads can move independently of each other.
Those on input tapes are read-only heads.
Those on the work tapes are read-and-write heads.

The alphabet only contains the symbol “1”.

We identify “0” with “blank”.
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Contents of the Input Tapes

With an ordered τ -structure A we associate the following input
inscriptions on the 1 + k + ℓ input tapes (numbered from 0 to k + ℓ).

The 0-th tape, the “universe tape”, contains a sequence of 1’s of
length n ∶= ∥A∥.

For 1 ≤ i ≤ k , the i -th input tape contains the information about
R ∶= Ri coded as follows:

If R is r -ary, then RA ⊆ {0, . . . ,n − 1}r .
Since ∥{0, . . . ,n − 1}r∥ = nr , for j < nr , the j-th cell will contain “1” in
case the j-th r -tuple in the lexicographic ordering of {0, . . . ,n − 1}r is
in R .
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Contents of the Input Tapes (Cont’d)

For j < nr , denote by ∣j ∣r be the j-th r -tuple in the lexicographic
ordering of {0, . . . ,n − 1}r .

Consider the unique n-adic representation of j ,

j = j1 ⋅ n
r−1

+ j2 ⋅ n
r−2

+⋯+ jr−1 ⋅ n + jr , 0 ≤ ji < n;

Set ∣j ∣r ∶= (j1, . . . , jr ).
To make n explicit, we sometimes write ∣j ∣nr instead of ∣j ∣r .
Then the i -th input tape has the inscription

where aj = 1 iff RA∣j ∣r (equivalently, aj = 0 iff not RA∣j ∣r ).
For 1 ≤ i ≤ ℓ, the (k + i)-th input tape contains the binary
representation of j ∶= cAi without leading zeros.
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Starting Configuration and States

We say that a Turing machine M is started with A, if:

The input tapes contain the information on A in the way just described;
The work tapes are empty;
Each head scans the cell numbered 0 of its tape.

As in the case of one-tape machines:

M has a finite set State(M) of states;
M has a finite set Instr(M) of instructions.

State(M) contains:
An initial (or starting) state s0;
An accepting state s+;
A rejecting state s−.
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Instructions

Instructions now have the form

sb0 . . . bk+ℓc1 . . . cm → s ′c ′1 . . . c
′
mh0 . . . hk+ℓ+m.

This instruction has the following meaning.

If:

You are in state s;
Your heads scan b0, . . . ,bk+ℓ on the input tapes;
Your heads scan c1, . . . , cm on the work tapes;

Then:

Replace c1, . . . , cm by c ′1, . . . , c
′
m;

Move the i-th head according to hi ;
Change to state s ′.
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Instructions (Cont’d)

In the instruction

sb0 . . . bk+ℓc1 . . . cm → s ′c ′1 . . . c
′
mh0 . . . hk+ℓ+m

we have:

s, s ′ ∈ State(M);
b0, . . . ,bk+ℓ ∈ {0,1, α,ω};
c1, . . . , cm, c

′
1, . . . , c

′
m ∈ {0,1, α};

h0, . . . ,hk+ℓ+m ∈ {−1,0,1}.
Moreover:

if bj = α then hj ≠ −1; (if the head scans the leftmost square it cannot
move left)
if bj = ω then hj ≠ 1;
if cj = α then hk+ℓ+j ≠ −1 and c ′j = α;
if cj ∈ {0,1} then c ′j ∈ {0,1};
s ≠ s+ and s ≠ s−.
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Instructions (Some Terminology)

The base of the instruction

sb0 . . . bk+ℓc1 . . . cm → s ′c ′1 . . . c
′
mh0 . . . hk+ℓ+m

is given by sb0 . . . bk+ℓc1 . . . cm.

M is said to be deterministic if no two distinct instructions in
Instr(M) have the same base.

Sometimes, to emphasize that we do not require a machine to be
deterministic, we speak of a nondeterministic machine.
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Acceptance and Rejection

The notions of accepting run, rejecting run, and of “M accepts A”
are adapted from the preceding section in the obvious way.

Let K he a class of ordered τ -structures.

We say that M accepts K if M accepts exactly those ordered
τ -structures that lie in K .
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Time and Space Bounds

Let f ∶ N→N be a function.

We say that M is f time-bounded if, for any A accepted by M, there
is an accepting run of M, started with A, of length at most f (∥A∥).
M is f space-bounded if, for all A accepted by M, there is an
accepting run which uses at most f (∥A∥) squares on each work tape
before stopping.
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Polynomial Time and Space

A class K of structures is in PTIME (“polynomial time”) iff, there is
a deterministic machine M and a polynomial p ∈N[x], such that M
accepts K and M is p time-bounded.

A class K of structures is in NPTIME (“nondeterministic polynomial
time”) iff, there is a nondeterministic machine M and a polynomial
p ∈N[x], such that M accepts K and M is p time-bounded.

A class K of structures is in PSPACE (“polynomial space”) iff, there
is a deterministic machine M and a polynomial p ∈N[x], such that M
accepts K and M is p space-bounded.

A class K of structures is in NPSPACE (“nondeterministic polynomial
space”) iff, there is a nondeterministic machine M and a polynomial
p ∈N[x], such that M accepts K and M is p space-bounded.
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Logarithmic Space

Denote by log n the least natural number ≥ log2 n.

A class K of structures is in LOGSPACE (“logarithmic space”) iff,
there is a deterministic machine M and d ≥ 1, such that M accepts K
and is d ⋅ log space-bounded.

A class K of structures is in NLOGSPACE, “nondeterministic
logarithmic space” iff there is a nondeterministic machine M and
d ≥ 1 such that M accepts K and is d ⋅ log space-bounded.
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Restriction to Monic Polynomials

We have observed that for a class K of ordered structures and m ≥ 1
the class Km ∶= {A ∈ K ∶ ∥A∥ ≥ m} is axiomatizable in a logic L iff K

is axiomatizable in L.

Analogously, for any of the complexity classes C introduced so far, we
have

K ∈ C iff Km ∈ C.

This is a consequence of the following fact.

We can change a machine, without essentially affecting its time and
space bounds, in such a way that it runs on a given finite set of inputs
in a prescribed form.
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Restriction to Monic Polynomials

We show that we can restrict ourselves to monic polynomials
p(x) = xd when considering PSPACE (or PTIME, NPTIME).

Suppose that K is in PSPACE.

Then K2 is in PSPACE, too.

Suppose K2 is accepted by a machine M that is q space-bounded,
where

q(x) = asx
s
+ as−1x

s−1
+⋯+ a1x + a0.

For suitable d ,
q(n) ≤ nd , for all n ≥ 2.

Thus, M is xd space-bounded.
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Subsection 5

Logical Descriptions of Computations
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Logic and Complexity Theory

Let K be a class of ordered τ -structures, K ⊆ O[τ].
We write K ∈ IFP if K is axiomatizable in FO(IFP).

We use similar notations for the other logics.

Our main goal is to show

K ∈ LOGSPACE iff K ∈ DTC
K ∈ NLOGSPACE iff K ∈ TC

K ∈ PTIME iff K ∈ IFP
K ∈ NPTIME iff K ∈ Σ1

1

K ∈ PSPACE iff K ∈ PFP.

(Σ1
1 denotes the fragment of second-order logic consisting of the

sentences of the form ∃X1⋯∃Xmψ, where ψ is first-order).

These results provide the bridge between logic and complexity theory.

In this section we prove the implications from left to right and in the
next the converse implications.

George Voutsadakis (LSSU) Finite Model Theory January 2024 70 / 166



Descriptive Complexity Theory Logical Descriptions of Computations

The Proof Strategy

Let C be one of the complexity classes listed above.

Let L be the logic associated to C by the corresponding equivalence.

Assume that K ∈ C.

Let M be a Turing machine witnessing that K ∈ C.

We are going to describe the behavior of M by a formula ϕM of L in
such a way that for any ordered structure A,

A ⊧ ϕM iff M accepts A.

This will yield K = ordMod(ϕM).

George Voutsadakis (LSSU) Finite Model Theory January 2024 71 / 166



Descriptive Complexity Theory Logical Descriptions of Computations

Vocabulary and Machines

We fix a vocabulary
τ = τ0 ⊍ τ1,

where, for simplicity, we assume that:

τ0 = {<,S ,min,max};
τ1 is relational,

τ1 = {R1, . . . ,Rk},
with ri -ary Ri .

For convenience we set r0 = 1.

A Turing machine M for τ -structures has:

1 + k input tapes;
A certain number m of work tapes.
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Configurations

A configuration of a Turing machine M started with a structure
contains the following data:

The current state;
The current inscriptions of the work tapes;
The current position of the heads on both the input and the work
tapes.

An accepting configuration is a configuration with state s+.

A configuration CONF′ is a successor of the configuration CONF, if
an instruction of M allows M to go from CONF to CONF′ in one step.

An accepting configuration is viewed as a successor of itself.

If M is deterministic, every configuration has at most one successor.
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Assumptions on the Size of A

Let M be a (nondeterministic) Turing machine for τ -structures which
is xd space bounded.

So, if M accepts an ordered structure A, then there is an accepting
run that scans at most nd squares on each work tape, where n ∶= ∥A∥.
We may assume that ri < d for i = 1, . . . ,k (ri being the arity of Ri).

Fix a structure A.

When proving that a class of structures is axiomatizable in a logic or
acceptable by a Turing machine of a certain complexity bound, we
can restrict ourselves to sufficiently large finite structures.

Here we look at structures A such that, for n ∶= ∥A∥:
n > k +m;
n > ∥State(M)∥.

We assume that State(M), the set of states of M, is an initial
segment of the natural numbers and that s0 = 0 is the starting state.
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Dependence of Configuration on Size of Structure

Let CONF be a configuration, where at most the nd first cells of each
work tape are not empty and where the heads scan one of these cells.

A first attempt to code the contents of these cells could consist in

dividing the relevant part of each work tape into nd

log n =∶ r blocks of
length log n and reading each block as a natural number < n in binary
representation.

This would require variables x1, . . . , xr for each tape.

Then a formula bearing the information on successive configurations
would contain at least the variables x1, . . . , xr .

So it would depend on the cardinality n of the universe.

We overcome this difficulty for PTIME, NPTIME and PSPACE by
using relation variables instead of individual variables.
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Encoding the Data of a Configuration

The “state relation” STCONF is defined by

STCONF
∶= {s},

where s is the state of CONF;

The “end-of-tape relations” ECONF
j are defined, for 0 ≤ j ≤ k +m, by

ECONF
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0}, if the j-th head faces α{n − 1}, if the j-th head faces ω
∅, otherwise

;

The “head relation” HCONF
j is defined, for 0 ≤ j ≤ k , as the rj -ary

relation

HCONF
j ∶ = {∣e∣rj ∶ 0 ≤ e, the j-th head scans the e-th square

and this does not contain ω};
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Encoding the Data of a Configuration (Cont’d)

The “head relation” HCONF
j is defined , for k + 1 ≤ j ≤ k +m, as the

d -ary relations

HCONF
j ∶= {∣e∣d ∶ 0 ≤ e, the j-th head scans the e-th square};

The “inscription relations” ICONF
j are defined, for k + 1 ≤ j ≤ k +m, as

the d -ary relations

ICONF
j ∶ = {∣e∣d ∶ 0 ≤ e < nd and the e-th square of

the j-th work tape contains the symbol 1}.
Note that the latter are only introduced for the work tapes, since the
inscriptions of input tapes are given by the input structure and kept
fixed during the whole computation.

Obviously, CONF is uniquely determined by the preceding relations.

George Voutsadakis (LSSU) Finite Model Theory January 2024 77 / 166



Descriptive Complexity Theory Logical Descriptions of Computations

Example

The starting configuration CONF0 is given by

STCONF0 = {0},
ECONF0 = ∅,

HCONF0 = {(0, . . . ,0)},
ICONF0
j

= ∅.
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The Relation CCONF

For technical convenience we encode CONF in a single (d + 2)-ary
relation CCONF ⊆ {0, . . . ,n − 1}d+2 by joining the preceding relations.

We add two first coordinates to distinguish these relations and fill up
with zeroes in the middle to get arity (d + 2).
We denote by 0̃ the constant sequences 0 . . . 0 of appropriate length.

CCONF ∶= {(0,0)} × {0̃} × STCONF

∪⋃0≤j≤k+m{(1, j)} × {0̃} × ECONF
j

∪⋃0≤j≤k+m{(2, j)} × {0̃} ×HCONF
j

∪⋃k+1≤j≤k+m{(3, j)} × ICONF
J .

Clearly, given C ⊆ {0, . . . ,n − 1}d+2, we can easily decide whether
there is a configuration CONF of M, where only the first nd cells of
each work tape are relevant, such that C = CCONF.

We call such a configuration C an nd -bounded configuration.

George Voutsadakis (LSSU) Finite Model Theory January 2024 79 / 166



Descriptive Complexity Theory Logical Descriptions of Computations

Formulas for Starting and Successor Configurations

Lemma

Let M be a Turing machine which is xd space-hounded. There is a first-order
formula ϕstart(x) and there are first-order formulas ϕsucc(x ,X) and ψsucc(X ,Y )
(more precisely, second-order formulas without second-order quantifiers) such that
for all sufficiently large A ∈ O[τ] and a ∈ Ad+2 we have:

(a) “ϕstart(x) describes the starting configuration”: If C0 denotes the starting
configuration of M started with A then A ⊧ ϕstart[a] iff a ∈ C0.

(b) “ϕsucc(x ,X) describes the successor of X”: If M is deterministic and C is
an nd -bounded configuration of M (where n ∶= ∥A∥) then A ⊧ ϕsucc[a,C ] iff
C has an nd -bounded successor C ′ and a ∈ C ′.

(c) “ψsucc(X ,Y ) expresses that Y is a successor of X”: If C1 is an nd -bounded
configuration of M and C2 a further (d + 2)-ary relation on A then
A ⊧ ψsucc[C1,C2] iff C2 is an nd -hounded configuration of M which is a
successor of C1.

George Voutsadakis (LSSU) Finite Model Theory January 2024 80 / 166



Descriptive Complexity Theory Logical Descriptions of Computations

Proof of the Lemma Introduction

Let M be an xd space-bounded machine for τ -structures.

Recall the encoding of an nd -bounded configuration CONF in a single
relation CCONF comprising relations:

STCONF, containing the information on the state;
ECONF
j , containing the information on the endmarks;

HCONF
j , containing the information on the head positions;

ICONF
j , containing the information on the inscription of the work tapes.

Let x be the sequence of variables xyx1 . . . xd .
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Proof of the Lemma Part (a)

(a) We can set

ϕstart(x) ∶= x = 0̃ ∨ (x = 2 ∧ 0 ≤ y ≤ k +m ∧ x1 . . . xd = 0̃).
This formula asserts that

“the state is s0” or “the heads scan the 0-th cell”.

Note that, in writing this formula, we used:

0 ≤ y ≤ k +m to mean that y is equal to or less than the (k +m)-th
element in the ordering <;
0 to stand for min.

In the following we shall use similar self-explanatory abbreviations.
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Proof of the Lemma Parts (b) and (c)

For parts (b) and (c) we consider instructions instr ∈ Instr(M) of the
form

instr = sb0 . . . bk+1c1 . . . cm → s ′c ′1 . . . c
′
mh0 . . . hk+ℓ+m.

For every such instruction, we first introduce:

A formula ϕinstr(x ,X) which for nd -bounded configurations X expresses

“X has base sbc , and:

If the successor configuration according to instr is not nd -bounded,

then {x ∶ ϕinstr(x ,X)} = ∅;
Otherwise, {x ∶ ϕinstr(x ,X)} is this successor configuration”.

A formula ϕacc(X) which for nd -bounded configurations X expresses
“X is an accepting configuration”.
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Proof of the Lemma Parts (b) and (c) (Cont’d)

Now, recall that we agreed to set Cm+1 = Cm for accepting
configurations Cm.

Using ϕinstr(x ,X ) and ϕacc(X ), we get the desired formulas ϕsucc

and ψsucc of Parts (b) and (c).

ϕsucc(x ,X ) ∶= (ϕacc(X ) ∧ Xx) ∨ ⋁
insrt∈Instr(M)

ϕinstr(x ,X );
ψsucc(X ,Y ) ∶= (ϕacc(X ) ∧ ∀x(Y x ↔ Xx)) ∨

⋁
instr∈Instr(M)

(∃xϕinstr(x ,X ) ∧ ∀x(Y x ↔ ϕinstr(x ,X ))).
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Proof of the Lemma (ϕinstr(x ,X) and ϕacc(X))

It remains to give ϕinstr(x ,X ) and ϕacc(X ).
We set

ϕacc(X ) ∶= X000̃s+.

The formula ϕinstr(x ,X ) has the form

ϕinstr(x ,X ) ∶= ϕa,b,c
(X ) ∧ϕ

s′,c′,h
(x ,X ),

where, for an nd -bounded configuration X :
The formula

ϕ
s,b,c
(X)

expresses “X has base s,b, c”;
The formula

ϕ
s′,c′,h

(x ,X)
expresses

“if the successor Y of X according to s ′, c ′,h is not nd -bounded then

{x ∶ ϕ
s′,c′,h

(x ,X)} = ∅, else {x ∶ ϕ
s′,c′,h

(x ,X)} = Y ”.
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Proof of the Lemma (Notation)

For easier reading of the formulas below we introduce the following
abbreviations:

The formula
ENDMARKyz ∶= X1y 0̃z ,

expressing that “the y -th head faces the endmark z”;
The formula

HEADyz ∶= X2y 0̃z ,

expressing that “the y -th head is on position ∣z ∣”;
The formula

ONEyz ∶= X3yz ,

expressing that “the y -th work tape contains 1 on position ∣z ∣”.
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Proof of the Lemma (ϕs,b,c(X))

We take as ϕ
s,b,c
(X ) the conjunction of the following formulas:

X000̃s,
“s is the state”;

⋀bj=α ENDMARKj min∧⋀cj=α ENDMARK(k + j)min,
“heads at the left end of a tape”;

⋀bj=ω ENDMARKj max,
“heads at the right end on input tapes”;

⋀bj=1 ∃x1⋯∃xrj (HEADj 0̃x1 . . . xrj ∧Rjx1 . . . xrj ),
“heads of input tapes facing a 1”;

⋀bj=0 ∃x1⋯∃xrj (HEADj 0̃x1 . . . xrj ∧ ¬Rjx1 . . . xrj ),
“heads of input tapes facing a 0”;

⋀cj=1 ∃x1⋯∃xd(HEAD(k + j)x1 . . . xd ∧ONE(k + j)x1 . . . xd),
“heads of work tapes facing a 1”;

⋀cj=0 ∃x1⋯∃xd(HEAD(k + j)x1⋯xd ∧ ¬ONE(k + j)x1 . . . xd),
“heads of work tapes facing a 0”.
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Proof of the Lemma (ϕs ′,c ′,h(x ,X))

Finally, we take as ϕ
s′,c′,h

(x ,X ) the conjunction (ϕ1 ∧ ϕ2):
ϕ1 is ⋀ hj=1

k+1≤j≤k+m

¬HEADjm̃ax,

“heads of work tapes moving to the right do not face the (nd − 1)-th
square”.

ϕ2 is the disjunction of the following formulas:

(x = y = 0 ∧ x1 . . . xd−1 = 0̃ ∧ xd = s ′),
“s ′ is the new state”;

⋁k+1≤j≤k+m(¬HEADjx1 . . . xd ∧ONEjx1 . . . xd ∧ x = 3 ∧ y = j),
“work tape content unchanged on squares not scanned”;

⋁c′
j
=1(HEADjx1 . . . xd ∧ x = 3 ∧ y = k + j),

“new content 1 on scanned squares of a work tape”;

⋁hj=1(ENDMARKj0 ∧ x = 2 ∧ y = j ∧ x1 . . . xd = 0̃),
“heads scanning α and moving to the right come to position 0”;

⋁hj=0(ENDMARKj0 ∧ x = 1 ∧ y = j ∧ x1 . . . xd = 0̃),
“unchanged position of heads facing α”;
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Proof of the Lemma (ϕs ′,c ′,h(x ,X) Cont’d)

List of ϕ2 disjuncts continued:

⋁hj=−1(ENDMARKj max∧x = 2 ∧ y = j

∧ x1 . . . xd−rj = 0̃ ∧ xd−rj+1 . . . xd = m̃ax),
“heads scanning ω and moving to the left come to position nrj − 1”;

⋁hj=0(ENDMARKj max∧x = 1 ∧ y = j ∧ x1 . . . xd−1 = 0̃ ∧ xd = max),
“unchanged position of heads facing ω”;

⋁hj=−1(HEADj 0̃ ∧ x = 1 ∧ y = j ∧ x1 . . . xd = 0̃),
“heads scanning α from their new position”;

⋁ j≤k
hj=1

(HEADj 0̃max . . .max´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rj -times

∧x = 1 ∧ y = j ∧ x1 . . .Xd−1 = 0̃ ∧ xd = max),
“heads of input tapes scanning ω from their new position”;

⋁j≤k+m ∃u1⋯∃ud(“x1 . . . xd = u1 . . . ud + h′′j
∧HEADju1 . . . ud ∧ x = 2 ∧ y = j),

“new head position of heads on “interior” squares”.
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PSPACE and FO(PFP)

Theorem

Let K ⊆ O[τ] be a class of ordered structures. If K is in PSPACE then K

is axiomatizable in FO(PFP).

Let M be a deterministic machine witnessing K ∈ PSPACE.
By previous remarks, assume M is xd space bounded for some d .

We set

ϕ(x ,X ) ∶= (¬∃yXy ∧ϕstart(x)) ∨ (∃yXy ∧ ϕsucc(x ,X )),
where ϕstart and ϕsucc are the formulas in the preceding lemma.

Let A be an ordered structure and n ∶= ∥A∥.
By the lemma, Fϕ0 , F

ϕ
1 , F

ϕ
2 , . . . is the sequence ∅,C0,C1, . . . where:

C0 is the starting configuration;
If Ci is an nd -bounded configuration of M with an nd -bounded
successor configuration C then Ci+1 = C .
In particular, if Ci is accepting then Ci = Ci+1 = Ci+2 = ⋯.
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PSPACE and FO(PFP) (Cont’d)

If Ci is an nd -bounded configuration without a successor configuration
or with a successor configuration which is not nd -bounded, then
Ci+1 = 0, Ci+2 = C0, Ci+3 = C1, . . ..
So the sequence has no fixed-point.

Summarizing, we have

M accepts A iff F
ϕ
∞ is an accepting configuration

iff F
ϕ
∞ is a configuration with state s+.

“Fϕ∞ is a configuration with state s+” is expressed by the formula

∃y(“y is the s+-th element of <” ∧ [PFPx ,Xϕ]minmin m̃iny).
We abbreviate it by [PFPxXϕ]minmin m̃ins+.

Then, A ∈ K iff M accepts A iff A ⊧ [PFPxXϕ]minmin m̃ins+.

I.e., K = ordMod([PFPx ,Xϕ]minmin m̃ins+).
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PSPACE and Single Occurrence of PFP

Corollary

Let K ⊆ O[τ] be in PSPACE. Then K is axiomatizable by a sentence of
FO(PFP) with only one occurrence of PFP.

Immediate from the proof of the preceding theorem.
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PSPACE to PTIME: PFP to IFP

For PTIME on the logical side we therefore can replace PFP by IFP.

Consider a (finite or infinite) run C0,C1, . . . of an xd time-bounded
(and hence, xd space-bounded) deterministic machine started with a
structure of cardinality n.

If the run accepts the structure, Cnd−1 must be an accepting
configuration.

The inflationary process indicated above is given by a formula
ϕ(v , x ,Z) with:

F
(Zvx∨ϕ)
i = ⋃ m<i

Cm defined
{∣m∣d} × Cm;

F
(Zvx∨ϕ)
∞ = ⋃ m<nd

Cm defined

{∣m∣d} × Cm.

That is, we use the first d coordinates as time stamps when coding
the run in one relation (as above, ∣m∣d denotes the m-th d -tuple in{0, . . . ,n − 1}d in the lexicographic ordering).
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PTIME and FO(IFP)

Theorem

Let K ⊆ O[τ] be a class of ordered structures. If K is in PTIME then K is
axiomatizable in FO(IFP).

Let M be a deterministic machine witnessing K ∈ PTIME.

We can assume that, for suitable d , M is xd time-bounded.

For v = v0 . . . vd−1 we set

ϕ(v , x ,Z) ∶= (v = m̃in ∧ϕstart(x)) ∨ ∃u(Sduv ∧ϕsucc(x ,Zu )),
where:

v = m̃in abbreviates v0 = min∧⋯∧ vd−1 =min;
Sduv stands for “v is the successor of u in the lexicographic ordering”;
ϕsucc(x ,Zu ) is obtained from ϕsucc(x ,X) by replacing subformulas Xt

by Zut.

George Voutsadakis (LSSU) Finite Model Theory January 2024 94 / 166



Descriptive Complexity Theory Logical Descriptions of Computations

PTIME and FO(IFP) (Cont’d)

Then we have, for A ∈ O[τ], with n ∶= ∥A∥,
A ∈ K iff M accepts A

iff the (nd − 1)-th configuration of M, started
with A, is defined and has state s+

iff A ⊧ [IFPvx ,Zϕ]m̃axminmin m̃ins+.

That is, K is the class of ordered models of a sentence of FO(IFP).

Corollary

Let K ⊆ O[τ] be in PTIME. Then K is axiomatizable in FO(IFP) by a
sentence with only one occurrence of IFP.
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NPTIME and Second Order Logic

Theorem

Let K ⊆ O[τ] be a class of ordered structures. If K is in NPTIME then K

is axiomatizable in SO by a Σ1
1-sentence.

Choose M witnessing K ∈ NPTIME.

Assume that M is xd time bounded.

Then, for A ∈O[τ] with n ∶= ∥A∥,
A ∈ K iff there is a run of M, started with A, of length ≤ nd

that accepts A

iff there is a sequence C0, . . . ,Cnd−1 of nd -bounded
configurations of M, started with A, such that C0

is the starting configuration, Ci+1 is a successor
configuration of Ci and s+ is the state of Cnd−1.
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NPTIME and Second Order Logic (Cont’d)

Equivalently,
A ⊧ ϕ,

where

ϕ ∶= ∃Z(∀x(Z m̃inx ↔ ϕstart(x))
∧ ∀u∀v(Sduv → ψsucc(Zu ,Zv ))
∧ Z m̃axminmin m̃ins+).

Here, the intended meaning of Z is ⋃m<nd{∣m∣d} × Cm.
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LOGSPACE and NLOGSPACE: Configuration Description

K ∈ NLOGSPACE means that there is a (nondeterministic) machine
M and some d ≥ 1 such that:

M accepts K ;
M is d ⋅ log space bounded.

Every natural number i < n codes a word over {0,1} of length log n,
namely, its binary representation ∣i ∣2log n of length log n.

Thus, using d variables, we can represent the relevant contents of a
work tape.

Moreover, by restricting ourselves to sufficiently large structures A,
we can assume that d ⋅ log n < n (where n ∶= ∥A∥).
Hence, each head position can be represented by a single number < n.

Altogether, we can describe the data of a configuration by a sequence
of natural numbers < n of length independent of n, where we agree to
use the first number to represent the state.
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Existence of Formulas for Start and Successor

Lemma

Let M be d ⋅ log space bounded. Then there are formulas χstart(x) of FO
and χsucc(x , x ′) of FO(DTC), such that, for all sufficiently large A ∈O[τ]
and a in A,

(a) A ⊧ χstart[a] iff a is the (description of the) starting configuration;

(b) For any (d ⋅ log ∥A∥)-bounded configuration a and any b,

A ⊧ χsucc[a,b] iff b is a (d ⋅ log ∥A∥)-bounded successor
configuration of a.

Before we give a proof we derive some consequences.
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LOGSPACE and FO(DTC)

Theorem

Let K ⊆ O[τ] be a class of ordered structures. If K ∈ LOGSPACE then K

is axiomatizable in FO(DTC).

Let M be a deterministic machine witnessing K ∈ LOGSPACE.
Suppose M is d ⋅ log space bounded.

Let χstart and χsucc be the formulas of the lemma.

By Parts (a) and (b) of the lemma, we have for A ∈ O[τ],
M accepts A

iff there is a sequence a0, . . . ,ak of (d ⋅ log ∥A∥)-bounded configs
such that a0 is the starting configuration, ai+1 is the successor
configuration of ai , and ak is an accepting configuration

iff A ⊧ ∃x(χstart(x) ∧ ∃x ′([DTCx ,x ′χsucc(x , x ′)]x , x ′ ∧ x ′1 = s+)).
Hence, K is the class of ordered models of a sentence of FO(DTC).
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NLOGSPACE and FO(TC)

Theorem

Let K ⊆ O[τ] be a class of ordered structures. If K ∈ NLOGSPACE then K

is axiomatizable in FO(TC).

Let M be a machine witnessing K ∈ NLOGSPACE.

Here, M is nondeterministic.

So, we just have to replace DTC by TC in the last proof.

In fact, we have for A ∈ O[τ],
M accepts A

iff A ⊧ ∃x(χstart(x) ∧ ∃x ′([TCx,x ′χsucc(x , x ′)]xx ′ ∧ x ′1 = s+)).
Recall that, by the lemma, χstart(x) and χsucc(x , x ′) are in FO(DTC).

Since FO(DTC) ≤ FO(TC), we have obtained a sentence of FO(TC)
axiomatizing K .

George Voutsadakis (LSSU) Finite Model Theory January 2024 101 / 166



Descriptive Complexity Theory Logical Descriptions of Computations

NLOGSPACE and FO(posTC)

Denote by FO(posTC) the class of formulas of FO(TC) which only
contain positive occurrences of TC.

That is, in formulas of FO(posTC), each occurrence of TC is in the
scope of an even number of negation symbols.

It can be shown that FO(DTC) ≤ FO(posTC).

Thus the preceding proof yields

Corollary

If a class of ordered structures is in NLOGSPACE then it is axiomatizable
by a sentence of FO(posTC).
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Formulas for Arithmetical Functions

Lemma

There are FO(DTC) formulas ϕ+(x , y , z), ϕ⋅(x , y , z), ϕ2(x , y) and
ϕlog(universe)(x), such that, for any ordered structure A, with
A = {0, . . . , ∥A∥ − 1}, and any a,b, c ∈ A:

A ⊧ ϕ+[a,b, c] iff a + b = c ;
A ⊧ ϕ⋅[a,b, c] iff a ⋅ b = c ;
A ⊧ ϕ2[a,b] iff 2a = b;
A ⊧ ϕlog(universe)[a] iff a = log ∥A∥.

For better readability, instead of describing the natural numbers in
terms of the ordering, we use constants

1,2, . . . .
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Formulas for Arithmetical Functions (Cont’d)

Given numbers x and y , consider the path

(0, x) → (1, x + 1)→ (2, x + 2)→ ⋯→ (y , x + y)
from (0, x) to (y , x + y).
This path shows that as ϕ+(x , y , z) we can take the formula

(y = min∧z = x) ∨ [DTCuv ,u′v ′(Suu′ ∧ Svv ′)]min xyz .

Consider, next, the path

(0,0) → (1, x) → (2,2 ⋅ x)→ (3,3 ⋅ x) → ⋯→ (y , y ⋅ x).
This path shows that we can set

ϕ⋅(x , y , z) ∶= (y = min∧z = min)
∨[DTCuv ,u′v ′(Suu′ ∧ ϕ+(v , x , v ′))]minmin yz .
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Formulas for Arithmetical Functions (Cont’d)

As before, consider the path

(0,1) → (1,2) → (2,4) → ⋯→ (x ,2x ).
It shows that we can set

ϕ2(x , y) ∶= (x = min∧y = 1)
∨[DTCuv ,u′v ′(Suu′ ∧ϕ⋅(v ,2, v ′))]min 1xy .

Finally, for ϕlog(universe)(x), we define

ϕlog(universe)(x) ∶= ¬∃yϕ2(x , y) ∧ ∀z(z < x → ∃yϕ2(z , y)).
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Notation

Let ℓ ∶= log n − 1. Then 2ℓ < n.

Recall that for:

m, with m < 2ℓ;
m0, . . . ,mℓ−1 ∈ {0,1},

we have

∣m∣2ℓ = m0 . . .mℓ−1

iff m = m0 ⋅ 2
ℓ−1 +m1 ⋅ 2

ℓ−2 +⋯+mℓ−2 ⋅ 2 +mℓ−1.

We then say that mk is the k-th digit of ∣m∣2ℓ .
If n, and hence ℓ, is clear from the context, we denote ∣m∣2ℓ by [m].
We write:

u for u0 . . . ud ;
u < 2ℓ for u0 < 2ℓ ∧⋯∧ ud < 2ℓ.

Similar conventions are used for u′, x and x ′.
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Some Definable Relations

Lemma

There are formulas of FO(DTC) which, in ordered structures A, define the
following relations (where n = ∥A∥, ℓ = log n − 1):

Onemk iff m < 2ℓ,k < ℓ, and the k-th digit of [m] is 1;
Zeromk iff m < 2ℓ,k < ℓ,and the k-th digit of [m] is 0;
Oneduk iff u < 2ℓ,k < (d + 1) ⋅ ℓ,and the k-th digit of the

concatenation [u0] . . . [ud ] is 1;
Zeroduk iff u < 2ℓ,k < (d + 1) ⋅ ℓ,and the k-th digit of the

concatenation [u0] . . . [ud ] is 0;
Equalduku

′ iff u,u′ < 2ℓ,k < (d + 1) ⋅ ℓ,and the words [u0] . . . [ud]
and [u′0] . . . [u′d] differ at most at the k-th position.

We denote the corresponding formulas by ϕone(x , z), ϕzero(x , z),
ϕd-one(x , z), ϕd-zero(x , z), and ϕd-equal(x , z , x ′), respectively.
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Some Definable Relations (Proof)

Note that, for m < 2ℓ and k < ℓ, the k-th digit of [m] is 1 iff

∃y ∈N∃z ∈N(m = y ⋅ 2ℓ−k + z ∧ 2ℓ−k−1 ≤ z < 2ℓ−k).
Using this one shows, e.g., the following equivalences:

Onemk iff m < 2ℓ ∧ k < ℓ ∧
∃y∃z(m = y ⋅ 2ℓ−k + z ∧ 2ℓ−k−1 ≤ z < 2ℓ−k);

One1u0u1k iff (u0 < 2ℓ ∧ u1 < 2ℓ ∧ k < ℓ ∧Oneu0k) ∨(ℓ ≤ k < 2 ⋅ ℓ ∧Oneu1(k − ℓ));
Equalduku

′ iff u < 2ℓ ∧ u′ < 2ℓ ∧ k < (d + 1) ⋅ ℓ ∧
∀i((i < (d + 1) ⋅ ℓ ∧ i ≠ k)→ (Onedui ↔ Onedu

′i)).
These can be formalized using the formulas of the preceding lemma.
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Proof: Formulas for Start and Successor (Setup)

Let M be a log space bounded machine for τ -structures.

Suppose M is d ⋅ log space bounded.

For simplicity we assume that:

τ = {R}, with binary R ;
M only has one work tape.

Recall that:

ℓ ∶= logn − 1;{0, . . . , sM} is the set of states of M .

We restrict ourselves to structures of cardinality n, with:

n > d ⋅ logn;(d + 1) ⋅ ℓ ≥ d ⋅ logn;
n > sM + 1.
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Proof: Formulas for Start and Successor (Configuration)

When M is started with a structure A, where A = {0, . . . ,n − 1}, we
can code the data of a resulting configuration by a tuple

(z ,uα,uω,u, vα, vω, v0, v1,wα,w , y0, . . . , yd)
where:

z is the state;
uα,uω,u code the position of the head on the 0-th input tape (the
“universe tape”) as follows:

uα = { 0, if the head does not face α
n − 1, if the head faces α

;

uω = { 0, if the head does not face ω
n − 1, if the head faces ω

;

u is the number of the cell faced by the head, if it is an interior one;
otherwise, u = 0.
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Proof: Formulas for Start and Successor (Cont’d)

Similarly, vα, vω, v0, v1 code the position of the head on the first input
tape, i.e., the tape for the binary relation R .
Here, the variables v0, v1 represent the head position v0 ⋅ n + v1.
wα,w code the position of the head on the work tape (d ⋅ logn < n).
The concatenation [y0] . . . [yd ] is the inscription of the first (d + 1) ⋅ ℓ
cells of the work tape.

Sometimes, for notational simplicity, we write

x ∶= zuαuω . . . yd .
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Proof: Formulas for Start and Successor (Instructions)

For Part (a) of the lemma, we can set

χstart(x) ∶= x = 0̃.

For Part (b), we define

χsucc(x , x ′) ∶= χacc(x , x ′) ∨ ⋁
instr∈Instr(M)

χinstr(x , x ′),
where:

χacc(x , x ′) ∶= (x1 = s+ ∧ x ′ = x),
expressing, in case x is a configuration, that x is accepting and x ′ = x ;
χinstr(x , x ′), for an instruction

instr = sb0b1c1 → s ′c ′1h0h1h2,

is a formula which, in case x is a (d ⋅ log)-bounded configuration,
expresses that:

x has base sb0b1c1;

The successor configuration of x according to instr is (d ⋅ log)-bounded
and is x ′.
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Proof: Instructions (Example)

We explicitly give χinstr(x , x ′) for
instr = s1α1 → s ′0(−1)11.

This is the conjunction of the following:

z = s,
“s is the state”;
uα = min∧uω = min,
“the head of the 0-th input tape faces an interior cell”;
vα =max∧vω =min∧v0 = min∧v1 = min,
“the head of the first input tape faces α”;
wα = min∧Onedy0 . . . ydw ,
“the head of the work tape faces a 1”;
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Proof: Instructions (Example Cont’d)

We continue the list of conjuncts of χinstr(x , x ′) for
instr = s1α1 → s ′0(−1)11:

z ′ = s ′,
“s ′ is the new state”;
u′ω = min∧((u > 0 ∧ Su′u ∧ u′α = min) ∨ (u = 0 ∧ u′ = 0 ∧ u′α = max)),
“new head position of the 0-th input tape”;
v ′α =min∧v ′0 = min∧v ′1 = min∧v ′ω = min,
“new head position of the first input tape is cell 0”;
w ′α = min∧Sww ′ ∧w ′ < d ⋅ log n, i.e.,
w ′α = min∧Sww ′ ∧ ∃x(ϕlog(universe)(x) ∧w ′ < d ⋅ x),
“new head position of the work tape is within the bounds”;
Zerody

′
0 . . . y

′
dw ,

“new content of cell scanned on the work tape”;
Equaldy0 . . . ydwy

′
0 . . . y

′
d ,

“work tape content unchanged on cells not scanned”.
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Subsection 6

The Complexity of the Satisfaction Relation
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Introduction

Suppose, e.g., that the class K of ordered structures is axiomatizable
by the FO(IFP)-sentence ϕ,

K = {A ∈ O[τ] ∶ A ⊧ ϕ}.
We aim at showing that K ∈ PTIME.

I.e., for fixed ϕ, we want to prove that the satisfaction relation A ⊧ ϕ
can be decided in time polynomially bounded in ∥A∥.
One also says that ϕ has a polynomial time model-checker.
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Algorithmic Manipulations

The following manipulations in algorithms do not destroy polynomial
time and logarithmic space bounds.

(1) Using an additional work tape W ′, it is possible at any time of a
computation to move the head of a given work tape W to the
rightmost square which the head of the tape has scanned so far.
(We change the given program so that the head on W ′ moves in the
same way as the head on W , but always prints the symbol 1.)

(2) By (1) it is possible at any time of a computation to erase the content
of a work tape (note that the additional work tape used in (1) can be
cleared in a trivial way).
In particular, one can change a program - without changing the
accepted class - such that all work tapes are empty whenever the
program stops.
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Algorithmic Manipulations (Cont’d)

(3) The content of a worktape W can be copied to an empty tape W1.
(Using (1), bring the corresponding heads H and H1 to the rightmost
cell scanned by H and copy the content cell by cell).

(4) In our applications the 0-th input tape has the inscription 1 . . . 1´¹¹¹¸¹¹¹¶
n digits

, where

n is the cardinality of the structure we consider.
One can write the binary representation of n (of length ≤ log n) on a
work tape. We say “a counter is set to n”.
Similarly, a counter can be set to nd for any fixed d ≥ 1.
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The Goal

Let L be one of the logics FO(DTC), FO(TC), FO(IFP), Σ1
1,

FO(PFP), considered in the preceding section.

Let C the corresponding complexity class, i.e., one of LOGSPACE,
NLOGSPACE, PTIME, NPTIME, PSPACE, respectively.

We want to show that for any sentence of L the class K of its
ordered models is in C.

We even show that there is a machine M strongly witnessing K ∈ C,
that is:

M accepts K ;
For any A ∈ O[τ], every run of M , started with A, stops at s+ or s−;
In particular, if M is deterministic then M decides K ;
For any A ∈ O[τ] every run of M satisfies the time or space bounds
characteristic for C.
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Method of Proof

The proof that the class of ordered models of a sentence ϕ of L is in
C proceeds by induction on ϕ.

In dealing with formulas, we introduce the following notation.

For a formula ϕ(x1, . . . , xℓ,Y1, . . . ,Yr) we let

ordMod(ϕ) ∶= {(A,a1, . . . ,aℓ,P1, . . . ,Pr) ∶ A ∈O[τ],A ⊧ ϕ[a,P]}.
That is, we consider the ordered models of the sentence

ϕ(c1, . . . , cℓ,P1, . . . ,Pr )
in an enlarged vocabulary.
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DTC, posTC, LOGSPACE and NLOGSPACE

Theorem

Let K ⊆ O[τ] be a class of ordered structures.

(a) If K ∈ DTC then K ∈ LOGSPACE.

(b) If K ∈ posTC then K ∈ NLOGSPACE.

By induction on the corresponding formulas, we show that:

The class of ordered models of ϕ is in LOGSPACE and NLOGSPACE,
respectively;
There exists a machine strongly witnessing this fact.

We handle both cases simultaneously.

By passing to an equivalent formula, we can assume that, in formulas
of FO(posTC), the TC operation does not occur in the scope of any
negation symbol (the new formula may also contain ∧,∀).

George Voutsadakis (LSSU) Finite Model Theory January 2024 121 / 166



Descriptive Complexity Theory The Complexity of the Satisfaction Relation

Proof for Atomic Formulas

Suppose that ϕ is atomic, say for simplicity, ϕ = Rxy .

We show that there is a machine M strongly witnessing that

{(A, i , j) ∶ A ∈ O[τ],RAij} ∈ LOGSPACE.
Let (A, i , j) ∈ O[τ ∪ {c ,d}], with A = {0,1, . . . ,n − 1} be given.

Note that the information whether RAij holds is to be found in the(i ⋅ n + j)-th square of the input tape corresponding to R .

The binary representations of i and j are available on the input tapes
corresponding to c and d .

Now it should be clear how a machine strongly witnessing that
OrdMod(Rxy) ∈ LOGSPACE can be designed.
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Proof for Boolean Connectives

ϕ = ¬ψ: By the remarks above, ψ does not contain TC. Hence, ψ is
in FO(DTC). By the induction hypothesis, there is a machine M

strongly witnessing that ordMod(ψ) ∈ LOGSPACE.
For ϕ just interchange the roles of s+ and s− in M.

ϕ(x1, . . . , xℓ) = (ψ ∨ χ): By the induction hypothesis, there are
machines Mψ for ψ(x1, . . . , xℓ) and Mχ for χ(x1, . . . , xℓ).
Let M be a machine that:

Carries out the computation of Mψ;
Erases the work tapes;
Carries out the computation of Mχ;
Accepts in case at least one, Mψ or Mχ, accepts, and rejects otherwise.

ϕ = (ψ ∧ χ): Similarly.
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Proof for Quantifiers

ϕ(x1, . . . , xℓ) = ∃xψ: By the induction hypothesis, there is a
corresponding machine M0 for ψ(x1, . . . , xℓ, x).
A machine M for ϕ operates as follows: Suppose M is started with an
ordered structure (A,a1, . . . ,aℓ), where A = {0, . . . ,n − 1}.
Then, for i = 0, . . . ,n − 1,

M writes the binary representation of i on a work tape;
M checks, using M0, whether A ⊧ ψ[a1, . . . , aℓ, i].

If the answer is positive at least once, M stops in s+, otherwise in s−.

Here, the binary representation of i on the work tape does not carry
an endmark ω as required on the corresponding input tape of M0.

To detect the end of the representation of i , we use Technique (1).

ϕ = ∀xψ: Similarly.
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Proof for DTC

ϕ = [DTCx,yψ]st, where ψ is a formula of FO(DTC):

For simplicity, we assume that the free variables of ψ are among x , y

and that x = x , y = y , s = s and t = t.

Let M0 be a machine strongly witnessing ordMod(ψ) ∈ LOGSPACE.
Given A, with A = {0, . . . ,n − 1}, if there is a ψ-path from s to t,
there is one of length ≤ n.

So the machine M, we aim at, can be organized as follows.

It writes i ∶= s on a work tape and sets a counter to n;
M rejects in case the counter becomes negative;
Using M0, the subroutine checks for j = 0, . . . ,n − 1 whether A ⊧ ψ[i , j]
holds for exactly one j ;

If not, M rejects;

Otherwise, M checks whether j equals t.

In the affirmative case M accepts;

In the negative case, M sets i ∶= j and reduces the counter by one.
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Proof for TC

ϕ = [TCx ,yψ]st: Once more, for simplicity, we assume that the free
variables of ψ are among x , y and that x = x , y = y , s = s and t = t.

Choose a machine M0 strongly witnessing ordMod(ψ) ∈ NLOGSPACE.
We give the basic idea underlying the construction of M for ϕ.

Suppose given A, with A = {0,1, . . . ,n − 1}.
A counter is set to n and is used to carry out a subroutine at most n
times. M will stop in s− in case the counter becomes negative.

M writes i ∶= s on a work tape.

The subroutine chooses j ∈ {0, . . . ,n − 1} nondeterministically (it uses
a counter to randomly write a {0,1} word of length log n on a tape).

It checks, using M0, whether ψ(i , j) holds.
If not, M stops in state s−.
Otherwise, if j = t, M stops in s+, and if j ≠ t, it sets i ∶= j .
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IFP,PFP, PTIME and PSPACE

Theorem

Let K ⊆ O[τ] be a class of ordered structures.

(a) If K ∈ IFP then K ∈ PTlME.

(b) If K ∈ PFP, then K ∈ PSPACE.

The proof is by induction on the formula ϕ axiomatizing the class K .

The cases where ϕ is atomic, ¬ψ, (ψ ∨ χ) or ∃xψ are handled as in
the preceding proof.

The corresponding machines are polynomially time-bounded or
space-bounded if the machines used in the induction hypotheses are.
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Proof for IFP

Suppose that ϕ = [IFPx,Xψ(x ,X )]t , where X is r -ary.

For simplicity, assume that the free variables of ψ are among x ,X .

Let M0 be a machine strongly witnessing that

{(A,a,R) ∶ A ∈ O[τ],A ⊧ ψ[a,R]} ∈ PTIME.

The machine M has a subroutine that uses work tapes W and W ′.

Suppose the subroutine is started with a word of length nr on W ,
viewed as the code of an r -ary relation R , and an empty W ′.
It writes, using M0, the code of R ′ ∶= {a ∶ A ⊧ (Xx ∨ψ)[a,R]} on the
tape W ′ without changing the content of W .

The machine M for ϕ operates as follows:

It sets R ∶= ∅ and uses the subroutine to calculate R ′.
If R = R ′ it checks whether Rt or not Rt and accepts or rejects.
Otherwise, it sets R ∶= R ′, erases W ′, and starts the subroutine.

Note that R = R ′ after at most nd calls to the subroutine.
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Proof for PFP

Assume that ϕ = [PFPx,Xψ(x ,X )]t , with r -ary X .

Let M0 be a machine strongly witnessing

{(A,a,R) ∶ A ∈ O[τ],A ⊧ ψ[a,R]} ∈ PSPACE.
Given a structure A, the operation Fψ satisfies one of:

F
ψ

2nr −1
= F

ψ

2nr
(and this set is the fixed-point Fψ∞);

Fψ∞ = ∅.
The machine M for ϕ, on input A, works as follows:

It sets a counter to 2r − 1 (writes 1 . . . 1 of length nr on a work tape).
Then it proceeds as in the IFP case, but now using the counter to
ensure that the subroutine which here evaluates

R ′ ∶= {a ∶ A ⊧ ψ[a,R]},
is invoked at most 2n

r

times.
When the counter gets negative, it checks whether R = R ′ and Rt.
If both hold it accepts, otherwise it rejects.
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Σ1
1, SO, NPTIME and PSPACE

Theorem

Let K ⊆ O[τ] be a class of ordered structures.

(a) If K ∈ Σ1
1 then K ∈ NPTIME.

(b) If K ∈ SO then K ∈ PSPACE.

(a) Let K =Mod(ϕ) where ϕ = ∃X1⋯∃Xℓψ, ψ is first-order, and the arity
of Xi is ri . By a previous theorem, there is a machine M0 strongly
witnessing that Mod(ψ(X1, . . . ,Xℓ)) is in (LOGSPACE ⊆) PTIME.

The machine M for ϕ, on input A ∈O[τ], works as follows:
It nondeterministically writes words over {0,1} of length nr1 , . . . ,nrℓ on
different work tapes, which are intended as codes of interpretations
P1, . . . ,Pℓ of X1, . . . ,Xℓ.
Using M0, it checks whether A ⊧ ψ[P1, . . . ,Pℓ] or not.
It stops in an accepting or rejecting state, respectively.
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Σ1
1, SO, NPTIME and PSPACE (Part (b))

(b) Let K =Mod(ϕ) for a formula ϕ of SO.

To gain a machine M witnessing K ∈ PSPACE we proceed by
induction on ϕ.

For ϕ atomic or of the form ¬ψ, (ψ ∨ χ) or ∃xψ we argue as in the
proof of the theorem for DTC.

For ϕ = ∃Xψ with r -ary X the machine M:

Writes the word 1 . . . 1 of length nr on a work tape W .
It systematically decreases this word, checking in each case with a
polynomially space-bounded machine for ψ, whether ψ holds, if the
interpretation of X is given by the tape W .
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Subsection 7

The Main Theorem and Some Consequences
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Logics and Complexity Classes

Definition

A logic L captures a complexity class C if, for all τ , with < ∈ τ , and
K ⊆ O[τ], we have

K ∈ C iff K is axiomatizable in L.
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Summary of Results

Theorem (Main Theorem)

(a) FO(DTC) captures LOGSPACE.

(b) FO(TC) captures NLOGSPACE.

(c) FO(IFP) captures PTIME.

(d) Σ1
1 captures NPTIME.

(e) FO(PFP) captures PSPACE.

Note that we have proved the theorem except for Part (b).

We only have shown that FO(posTC) captures NLOGSPACE.

At the end of the section we show that FO(posTC) = FO(TC) on
ordered structures.

This will complete the proof.
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Types of Complexity

The study of the complexity of evaluating a formula ϕ of a logic L in
a structure A arises in various contexts.

A may be a database instance and ϕ a corresponding query;
A may represent the state space of a program and ϕ a desired property.

When considering such evaluations the following kinds of complexities
have been treated (the first one being the subject of this chapter):

Data complexity of C: For a fixed sentence, we measure the
complexity as a function of the size of the structure;
Expression complexity of L: For a fixed structure, we measure the
complexity as a function of the length of the formula;
Combined complexity of L: It is measured as a function of both the
size of the structure and the length of the formula.
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Importance of the Main Theorem

The descriptive characterizations of complexity classes given by the
main theorem are of importance in various respects:

They may help to recognize that a concrete problem is in a given
complexity class (by expressing it in the corresponding logic).
They allow to view the logics involved as higher programming
languages for problems of the corresponding complexity class.
(Note that the proofs of the preceding section show how to convert a
sentence ϕ into an algorithm accepting the class of models of ϕ and
satisfying the required resource restrictions.)
Characteristic features of the logic may be seen as characteristic
features of the complexity class described by it and may add to a
better understanding.
(For instance, the result about FO(IFP) and PTIME shows us that
inflationary inductions are an essential ingredient of PTIME
algorithms.)
The descriptive characterizations allow to convert problems, methods,
and results of complexity theory into logic and vice versa.
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IFP and PFP May Be Used Only Once

Sentences ϕ and ψ in a vocabulary τ with < ∈ τ are said to be
equivalent on ordered structures if, for all ordered τ -structures A,

A ⊧ ϕ iff A ⊧ ψ.

Corollary

On ordered structures, every FO(IFP)-sentence is equivalent to an
FO(IFP)-sentence in which IFP occurs at most once.
The same applies to FO(PFP) and PFP.

Suppose ϕ ∈ FO(IFP)[τ] with < ∈ τ .
Then ordMod(ϕ) ∈ PTIME.

Now the claim follows from a previous theorem.

For FO(PFP) a previous theorem also applies.
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The Main Theorem for Ordered Structures

Corollary

Let C he one of the complexity classes mentioned in the Main Theorem.
If K is a class of ordered structures in C, then there is a Turing machine M

strongly witnessing K ∈ C, that is:

M accepts K ;

Every run stops in the accepting or in the rejecting state;

Every run fulfills the time or space hounds characteristic for C.

Let L be the logic capturing C.

Then there is a sentence of L axiomatizing K .

By the results of the preceding section we know that, for every class
K axiomatizable in C, there is a machine strongly witnessing K ∈ C.
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PTIME and PSPACE

An immediate consequence of the Main Theorem is the equivalence of
the following Clauses (i) and (ii):

(i) PTIME = PSPACE;
(ii) FO(IFP) ≡ FO(PFP) on ordered structures.

Note, however, that here PTIME and PSPACE are understood as
classes of ordered structures and not as languages over alphabets.

Does (i) mean the same as PTIME = PSPACE in complexity theory?

We want to show this by making clear that here and in complexity
theory we deal only with different presentations of a complexity class.
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Classes of Languages vs Classes of Structures

If C is a complexity class of complexity theory, we denote by C′ the
corresponding complexity class of structures.

Example: For PTIME we have:

C consists of all languages L, L ⊆ A
+ for some alphabet A, such that

there exists a deterministic Turing machine accepting L in polynomial
time;
C′ consists of all classes K , K ⊆O[τ], for some τ with < ∈ τ , such that
there is a deterministic Turing machine M accepting K in polynomial
time.

In the following let C,C1,C2 range over the complexity classes
LOGSPACE, NLOGSPACE, PTIME, NPTIME and PSPACE of
complexity theory.
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C ⊆ C′

Fix an alphabet A.

Let τ(A) be the vocabulary {<} ∪ {Pa ∶ a ∈ A}, with unary Pa.

If u ∈ A+, denote by Ku the class of structures of the form

(B ,<, (Pa)a∈A),
where:

The cardinality of B equals the length of w ;
< is an ordering of B;
Pa corresponds to the positions in u carrying an a.

For L ⊆ A
+, set

K(L) ∶= ⋃
u∈L

Ku.

Clearly, K(L) ⊆ O[τ(A)].
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C ⊆ C′ (Cont’d)

We have

K(A+) = ordMod

⎛⎜⎜⎝
∀x

⎛⎜⎜⎝⋁a∈A
⎛⎜⎜⎝
Pax ∧ ⋀

b∈A
b≠a

¬Pbx

⎞⎟⎟⎠
⎞⎟⎟⎠
⎞⎟⎟⎠
.

It follows that
K(A+) ∈ LOGSPACE.

One can easily show that for L ⊆ A
+,

L ∈ C iff K(L) ∈ C′.
Thus, we obtain “C ⊆ C′ up to transitions” (from words to ordered
structures).
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C′ ⊆ C

We show C′ ⊆ C up to transitions from ordered structures to words.

Let τ , with < ∈ τ , be given.

Set A0 ∶= {0,1, α,ω}.
For A ∈ O[τ], let

uA

be the word in A
+
0 obtained by concatenating the inscriptions on all

input tapes of a Turing machine started with input A, including the
“virtual letters” α and ω.

For a class K ⊆ O[τ], set
L(K) ∶= {uA ∶ A ∈ K}.
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C′ ⊆ C (Cont’d)

Clearly, given τ , there is a polynomial p ∈N[x], such that, for all
A ∈O[τ], we have ∥A∥ ≤ ∣uA∣ ≤ p(∥A∥).
In particular, for p(x) ∶= xd we have that

log ∥A∥ ≤ log ∣uA∣ ≤ d ⋅ log ∥A∥.
Invoking these relations one shows that:

L(O[τ]) ∈ LOGSPACE;
For K ⊆ O[τ],

K ∈ C′ iff L(K) ∈ C.
Thus, “C′ ⊆ C up to transitions”.
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Ordered Structures and Complexity Theory

Proposition

C1 ⊆ C2 iff C′1 ⊆ C
′
2.

First, suppose C1 ⊆ C2. Let K ∈ C′1, where K ⊆ O[τ]. Then, by the
preceding equivalence, L(K) ∈ C1. By hypothesis, L(K) ∈ C2.
Therefore, using once more the same equivalence, K ∈ C′2.

Now assume C′1 ⊆ C
′
2 and let L ∈ C1. Then, K(L) ∈ C′1 by a previous

equivalence. Hence, K(L) ∈ C′2. Therefore, L ∈ C2.
Corollary

(a) FO(IFP) ≡ FO(PFP) on ordered structures iff PTIME = PSPACE (in
complexity theory).

(b) FO(IFP) ≡ Σ1
1 on ordered structures iff PTIME = NPTIME (in complexity

theory).
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PTIME, NPTIME, FO(IFP) and SO

Corollary

The following are equivalent:

(i) PTIME = NPTIME;

(ii) FO(IFP) ≡ SO on ordered structures.

If (ii) holds then Σ1
1 ≤ FO(IFP) on ordered structures.

Thus NPTIME ≤ PTIME.

Conversely, suppose NPTIME = PTIME.

Then, on ordered structures, Σ1
1 ≡ FO(IFP).

Now note that:

Σ1
1 is closed under existential quantifications;

FO(IFP) is closed under boolean operations.

Using induction, we get SO ≡ FO(IFP).
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Results from Complexity to Logic

In complexity theory one shows

LOGSPACE ⊆ NLOGSPACE ⊆ PTIME ⊆ NPTIME ⊆ PSPACE

and
LOGSPACE ≠ PSPACE.

Hence, by the Main Theorem, we get:

Corollary

On ordered structures,

(a) FO(DTC) ≤ FO(TC) ≤ FO(IFP) ≤ Σ1
1 ≤ FO(PFP).

(b) FO(DTC) /≡ FO(PFP).

Note that most of the ≤-relations in (a) are immediate.

We omit the purely model-theoretic proofs of the remaining ones.
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Classes of Complements

For any of the complexity classes C introduced so far, in complexity
theory one defines the class co-C to be the class of complements of
languages in C, that is, for any alphabet A and L ⊆ A

+,

L ∈ co-C iff (A+/L) ∈ C.
Clearly, any deterministic class C is closed under complements, that
is, C = co-C.

Similarly, we define the class co-C′ as the class of complements of
classes of structures in C′.

More precisely, for τ , with < ∈ τ , and K ⊆ O[τ], we set

K ∈ co-C′ iff (O[τ]/K) ∈ C′.

George Voutsadakis (LSSU) Finite Model Theory January 2024 148 / 166



Descriptive Complexity Theory The Main Theorem and Some Consequences

Questions Independent of Orderings

We discuss the role of order and get information as to whether and to
what extent orderings can be avoided.

Let A be a not necessarily ordered structure.

We saw that in order to consider A as an input for a Turing machine,
we have to represent it as a string (or a sequence of strings).

This may be done by labeling the elements of A in some way.

Taking, say, the lexicographic ordering of the labels, we get an
ordering on A and, hence, an ordered structure.

If A is a graph, we can state questions such as

“Is there a path from the 5-th to the 28-th element?”

The answer depends on the ordering and is senseless for A itself.

We develop a framework that enables us to concentrate on questions
intrinsic to A.

George Voutsadakis (LSSU) Finite Model Theory January 2024 149 / 166



Descriptive Complexity Theory The Main Theorem and Some Consequences

Ordered Presentations

Definition

Let K be a class of (unordered) τ -structures. Set τ< ∶= τ ⊍ {<}. The class
K< of ordered representations of structures in K is given by

K< ∶= {(A,<) ∶ A ∈ K ,< an ordering of A}.

If L is a logic capturing the complexity class C, we have

K< ∈ C iff there is ϕ ∈ L[τ<], such that K< =Mod(ϕ).
The sentence ϕ on the right side is order-invariant in the finite.

In fact, for every A and any orderings <1 and <2 of A, we have

(A,<1) ∈ K< iff (A,<2) ∈ K<.
Therefore, (A,<1) ⊧ ϕ iff (A,<2) ⊧ ϕ.
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Failure of Ordered Invariance

If L would be closed under order-invariant sentences in the finite (by
a previous result, FO does not have this property), we would have

K< ∈ C iff there is ψ ∈ L[τ] such that K =Modτ(ψ).
In general, this does not hold.

We give a counterexample for FO(DTC).

Let K = EVEN[τ] with τ = ∅ be the class of sets of even cardinality.

We know that K< ∈ LOGSPACE.

So there is a sentence ϕ of FO(DTC)[τ<] such that K< =Mod(ϕ).
For example, as ϕ we can take the sentence

¬[DTCx ,yy = x + 2]minmax,

where we use self-explanatory abbreviations.
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Failure of Ordered Invariance (Cont’d)

To axiomatize K< in FO(DTC)[τ<], we may use the sentence

¬[DTCx ,yy = x + 2]minmax .

This sentence is order-invariant in the finite.

The evaluation of ϕ in a structure (A,<A) makes use of the ordering
<A, but the outcome of this evaluation does not depend on the
specific ordering <A chosen.

In general, for no sentence ψ of FO(DTC)[τ ], even of FO(PFP)[τ ], is
it the case that

K =Mod(ψ).
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Logic Strongly Capturing a Class

Definition

Let L be a logic and C a complexity class. L strongly captures C if, for
all vocabularies τ and all classes K of τ -structures,

K< ∈ C iff K is axiomatizable in L.

The following proposition holds for all complexity classes C considered
so far; essentially one needs that C contains LOGSPACE.

Proposition

If L strongly captures C then L captures C.

George Voutsadakis (LSSU) Finite Model Theory January 2024 153 / 166



Descriptive Complexity Theory The Main Theorem and Some Consequences

Strongly Capturing is Stronger than Capturing

The converse is false.

The counterexample given before the definition shows that FO(PFP)
does not capture PSPACE strongly.

For the class EVEN[τ] we used as a counterexample, we have:

EVEN[τ]< ∈ LOGSPACE;
EVEN[τ] is not axiomatizable in FO(PFP).

Now, we have, for arbitrary structures,

FO(DTC) ≤ FO(TC) ≤ FO(IFP) ≤ FO(PFP).

So none of these logics strongly captures the complexity class
corresponding to it by the Main Theorem.

However, we know Σ1
1 ≤ FO(PFP) only on ordered structures.

So the result cannot be extended to Σ1
1 and NPTIME.
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Σ1
1 and NPTIME

Theorem

Σ1
1 strongly captures NPTIME.

Let τ be arbitrary and K be a class of τ -structures.

Assume K =Modτ(ϕ), for some Σ1
1[τ]-sentence ϕ.

Let ϕ = ∃X1⋯∃Xmψ, with first order ψ.

Set
χ ∶= ∃X1⋯∃Xm(ψ ∧ “ < is an ordering”).

Then, χ ∈ Σ1
1[τ<] and Mod(χ) = K<.

Hence, K< ∈ NPTIME, by the Main Theorem.
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Σ1
1 and NPTIME (Cont’d)

Conversely, suppose K< ∈ NPTIME.

By the Main Theorem, there is a sentence ϕ ∈ Σ1
1[τ<], such that

K< =Modτ<(ϕ).
Set ψ ∶= ∃<ϕ. Then ψ ∈ Σ1

1[τ].
Moreover, for any τ -structure A, we have

A ⊧ ψ iff there is <A with (A,<A) ⊧ ϕ
iff there is <A with (A,<A) ∈ K<
iff A ∈ K .

So K =Modτ(ψ).
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Π1
1 and co-NPTIME

Theorem

Π1
1 strongly captures co-NPTIME.

Let τ be arbitrary and K be a class of τ -structures. If Str[τ] denotes
the class of all τ -structures, then (Str[τ]/K)< = O[τ<]/K<.
Therefore, we have

K ∈ Π1
1 iff there is ψ(X1, . . . ,Xm) ∈ FO[τ], such that

K =Mod(∀X1⋯∀Xmψ)
iff there is χ(X1, . . . ,Xm) ∈ FO[τ], such that

Str[τ]/K =Mod(∃X1⋯∃Xmχ)
iff (Str[τ]/K)< ∈ NPTIME
iff (O[τ<]/K<) ∈ NPTIME
iff K< ∈ co-NPTIME.
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NPTIME and co-NPTIME

Corollary

NPTIME = co-NPTIME iff Σ1
1 ≡ Π1

1.

As an example we show the implication from left to right.

Let K be a class of structures.

Then

K ∈ Σ1
1 iff K< ∈ NPTIME

iff K< ∈ co-NPTIME (by hypothesis)
iff K ∈ Π1

1.
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NPTIME and co-NPTIME (Cont’d)

Corollary

NPTIME = co-NPTIME iff SO ≡ Σ1
1.

By the preceding corollary it suffices to prove

Π1
1 ≡ Σ1

1 iff SO ≡ Σ1
1.

For a logic L we write ϕ ∈
̃
L to express that the sentence ϕ is

equivalent to an L-sentence. Clearly, we have:

ϕ ∈ Σ1
1 implies ¬ϕ ∈

̃
Π1
1;

ϕ ∈ Π1
1 implies ¬ϕ ∈

̃
Σ1
1.
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NPTIME and co-NPTIME (Cont’d)

Now suppose that SO ≡ Σ1
1. Then Π1

1 ≤ Σ1
1.

Let ϕ ∈ Σ1
1. Then, ¬ϕ ∈

̃
Π1
1.

Hence, ¬ϕ ∈
̃
Σ1
1. Therefore, ϕ ∈

̃
Π1
1.

Conversely, assume that Π1
1 ≡ Σ1

1.

One easily shows that the class Σ1
1 is closed - up to equivalence -

under ∨ and existential first-order and second-order quantifications.

For closure under ¬ argue as follows:

Suppose ϕ = ¬ψ and ψ ∈ Σ1
1.

Then ¬ψ ∈
̃
Π1
1 ≡ Σ1

1.

George Voutsadakis (LSSU) Finite Model Theory January 2024 160 / 166



Descriptive Complexity Theory The Main Theorem and Some Consequences

FO(posTC) and FO(TC)

Theorem

On ordered structures, FO(posTC) ≡ FO(TC).

We make use of the fact that, on ordered structures, every formula of
FO(posTC) is equivalent to a formula of the form [TCx ,yψ]m̃inm̃ax
with first-order ψ.

The proof of the theorem proceeds by induction on FO(TC)-formulas,
the only nontrivial case being the negation step.

By the induction hypothesis and the fact just mentioned, we may
assume that ϕ = ¬[TCx ,yψ]st, with first-order ψ.

For simplicity, we assume that ψ = ψ(x , y).
By the Main Theorem, there is a Turing machine M0 strongly
witnessing that ordMod(ψ) ∈ LOGSPACE.
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FO(posTC) and FO(TC) (Cont’d)

Suppose x = x1 . . . xr . Given a structure A and a,b ∈ Ar , let dψ(a,b)
be the length of the shortest ψ-path connecting a and b,

dψ(a,b) ∶= min{k > 0 ∶ there exist a0 = a,a1, . . . ,ak = b

such that A ⊧ ψ[ai ,ai+1] for i < k},
where dψ(a,b) ∶=∞ in case the set on the right side is empty.

Note that:

If dψ(a,b) <∞, then 0 < dψ(a,b) ≤ ∥A∥r ;
dψ(a, c) ≤ dψ(a,b) + dψ(b, c).

Moreover, ¬[TCx ,y]st is equivalent to

“∥{v ∶ dψ(s, v) <∞}∥ = ∥{v ∶ d(ψ(x ,y)∧¬y=t)(s, v) <∞}∥”.
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FO(posTC) and FO(TC) (The Machine M)

We first show that there is a nondeterministic log space bounded
machine M, such that, for any ordered structure (A,a, ℓ,w ,w ′),

if ∥{e ∶ dψ(a, e) ≤ ell}∥ = w , then

M accepts (A,a, ℓ,w ,w ′) iff ∥{e ∶ dψ(a, e) ≤ ℓ + 1}∥ = w ′,

where the corresponding natural numbers ≤ ∥A∥r are given by their∥A∥-adic representations ℓ = ℓ0 . . . ℓr , w = w0 . . .wr , w
′ = w ′

0 . . .w
′
r .

We present the machine M.

When during its computation M checks whether A ⊧ ψ[c ,d] holds or
not, this is done by invoking machine M0.
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FO(posTC) and FO(TC) (The Machine M Cont’d)

Suppose M is Started with (A,a, ℓ,w ,w ′).
M first sets a counter to w ′.

Then, for every b ∈ Ar , it carries out either (1) or (2), the choice
being done nondeterministically.

(1) M nondeterministically guesses a path witnessing dψ(a,b) ≤ ℓ + 1 and
decreases the counter by one.
In case the counter is zero it rejects.

(2) Using an additional counter, initialized at w , M nondeterministically
guesses w many distinct tuples c ∈ Ar together with a proof that
dψ(a, c) ≤ ℓ.
For each such c , it shows that c ≠ b and ¬ψ[c ,b] (thus, in case∥{e ∶ dψ(a, e) ≤ ℓ}∥ = w , proving that dψ(a,b) > ℓ + 1).

In case ℓ = 0, it shows ¬ψ[a,b].
Finally, if all b ∈ Ar have been dealt with and the counter is 0, M
accepts.
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FO(posTC) and FO(TC) (The Bound)

Machine M is log space-bounded.

So, by the Main Theorem, there exists a formula

χψ(u, y ,w ,w ′) ∈ FO(posTC)
axiomatizing the class accepted by M.

Note that 10 . . . 0´¹¹¸¹¹¹¶
r times

is (the representation of) ∥A∥r .
Now, we get a formula ρψ(u,w) ∈ FO(posTC) by setting

ρψ ∶= [TCyw ,y ′w ′(χψ(u, y ,w ,w ′) ∧ y ′ = y + 1)]m̃inm̃in10 . . . 0´¹¹¸¹¹¹¶
r times

w .

ρψ(u,w) has the meaning “∥{v ∶ dψ(u, v) <∞}∥ = w”.

Equivalently, ρψ(u,w)’s meaning is “∥{v ∶ dψ(u, v) ≤ ∥A∥r}∥ = w”.
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FO(posTC) and FO(TC) (The Bound Cont’d)

We saw above that the FO(TC)- formula ϕ = ¬[TCx ,yψ(x , y)]st is
equivalent to

“∥{v ∶ dψ(s, v) <∞}∥ = ∥{v ∶ d(ψ(x ,y)∧¬y=t)(s, v) <∞}∥”.
So we obtain that ϕ is equivalent to the FO(posTC)-formula

∃z(ρψ(s , z) ∧ ρ(ψ∧¬y=t)(s, z)).
As a consequence of Part (b) of the Main Theorem, whose proof we
have just completed, we get, since FO(TC) is closed under negation:

Corollary

NLOGSPACE = co-NLOGSPACE.
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