Fields and Galois Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 1 / 6

- Definitions and Basic Properties
- Subrings, Ideals and Homomorphisms
- The Field of Fractions of an Integral Domain
- The Characteristic of a Field
- Reminder of Some Group Theory

Subsection 1

Definitions and Basic Properties

Rings and Commutative Rings

- A ring $R = (R, +, \cdot)$ is a non-empty set R furnished with two binary operations + (called addition) and \cdot (called multiplication) with the following properties:
 - (R1) The associative law for addition: (a+b)+c = a+(b+c), for all $a, b, c \in R$;
 - R2) The commutative law for addition: a + b = b + a, for all $a, b \in R$;
 - (R3) **The existence of** 0: there exists 0 in R, such that, for all a in R, a+0=a;
 - (R4) The existence of negatives: for all *a* in *R*, there exists -a in *R*, such that a + (-a) = 0;
 - (R5) The associative law for multiplication: (ab)c = a(bc), for all $a, b, c \in R$;
 - (R6) The distributive laws: a(b+c) = ab + ac, (a+b)c = ac + bc, for all $a, b, c \in \mathbb{R}$.
- We shall be concerned only with **commutative rings**, which have the following extra property:
 - R7) The commutative law for multiplication: ab = ba, for all $a, b \in R$.

Rings with 1, Integral Domains and Fields

- A ring with unity *R* has the properties (R1)-(R6), together with the following property:
 - (R8) The existence of 1: there exists $1 \neq 0$ in R, such that, for all a in R, a1 = 1a = a.

The element 1 is called the **unity element**, or the (**multiplicative**) **identity** of R.

- A commutative ring R with unity is called an integral domain or, if the context allows, just a domain, if it has the following property:
 (R9) Cancellation: for all a, b, c in R, with c ≠ 0, ca = cb implies a = b.
- A commutative ring *R* with unity is called a **field** if it has the following property:
- (R10) The existence of inverses: for all $a \neq 0$ in R, there exists a^{-1} in R, such that $aa^{-1} = 1$.

We frequently denote a^{-1} by $\frac{1}{a}$.

Cancelation versus Existence of Inverses

- Recall the properties:
 - **Cancellation**: for all a, b, c in R, with $c \neq 0$, ca = cb implies a = b.
- (R10) The existence of inverses: for all $a \neq 0$ in R, there exists a^{-1} in R, such that $aa^{-1} = 1$.
- It is easy to see that (R10) implies (R9).
- The converse implication, however, is not true.

The ring \mathbb{Z} of integers is an obvious example.

- It is worth noting also that (R9) is equivalent to:
 - (9)' No divisors of zero: for all a, b in R, ab = 0 implies a = 0 or b = 0.

Groups and Abelian Groups

- A group $G = (G, \cdot)$ is a non-empty set furnished with a binary operation \cdot with the following properties:
 - **The associative law**: (ab)c = a(bc), for all $a, b, c \in G$;
 - G2) **The existence of an identity element**: there exists *e* in *G*, such that, for all *a* in *G*, *ea* = *a*;
 - (G3) The existence of inverses: for all *a* in *G*, there exists a^{-1} in *G*, such that $a^{-1}a = e$.
- An abelian group has the following extra property: (G4) The commutative law: ab = ba, for all $a, b \in G$.
- From the previous definitions, we get the following observations.
 - If $(R, +, \cdot)$ is a ring, then (R, +) is an abelian group.
 - If $(K, +, \cdot)$ is a field and $K^* = K \setminus \{0\}$, then (K^*, \cdot) is an abelian group.

Group of Units and Associates

• Let R be a commutative ring with unity, and let

$$U = \{u \in R : (\exists v \in R)(uv = 1)\}.$$

- It is easy to verify that U is an abelian group with respect to multiplication in R.
- We say that U is the group of units of the ring R.
- If a, b in R are such that a = ub, for some u in U, we say that a and b are associates, and write a ~ b.

Example: In the ring \mathbb{Z} ,

- The group of units is {1, -1};
- $a \sim -a$, for all a in \mathbb{Z} .

Example

• Show that $R = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ forms a commutative ring with unity with respect to the addition and multiplication in \mathbb{R} .

First, we show closure under the operations

$$(a+b\sqrt{2})+(c+d\sqrt{2}) = (a+c)+(b+d)\sqrt{2} \in R.$$

(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd)+(ad+bc)\sqrt{2} \in R.

Since R is a subset of \mathbb{R} , the properties (R1), (R2), (R5), (R6) and (R7) are automatically satisfied.

The ring also has the properties (R3), (R4) and (R8):

- The zero element is $0 + 0\sqrt{2}$;
- The negative of $a + b\sqrt{2}$ is $(-a) + (-b)\sqrt{2}$;
- The unity element is $1 + 0\sqrt{2}$.

Example (Cont'd)

• Next, we show that the group of units of *R* is infinite. Since $(1 + \sqrt{2})(-1 + \sqrt{2}) = 1$, $1 + \sqrt{2}$ is in the group of units. The powers of this element are all distinct, since $1 + \sqrt{2} > 1$. So $1 + \sqrt{2} < (1 + \sqrt{2})^2 < (1 + \sqrt{2})^3 < \cdots$.

All these powers are in the group of units, which is therefore infinite.The group of units is in fact

$$\{a + b\sqrt{2} : a, b \in \mathbb{Z}, |a^2 - 2b^2| = 1\}.$$

This can be seen by noticing that

$$(a+b\sqrt{2})(c+d\sqrt{2}) = 1$$
 implies $a^2 - 2b^2 = \pm 1$.

Group of Units in a Field

• The group of units of a field K is the group K* of all non-zero elements of K.

Suppose, first, that u is a unit in K.

Then, there exists v in K, such that uv = 1.

Since $1 \neq 0$, $u \neq 0$.

Suppose, conversely, that $u \neq 0$ is an element of K.

```
Then, there exists u^{-1} in K, such that uu^{-1} = 1.
```

Therefore, u is a unit in K.

Divisibility and Proper Divisibility

- Let D be an integral domain.
- If a ∈ D\{0} and b ∈ D, we say that a divides b, or that a is a divisor of b, or that a is a factor of b, if there exists z in D such that

$$az = b.$$

- We write $a \mid b$, and occasionally write $a \nmid b$ if a does not divide b.
- We say that *a* is a **proper divisor**, or a **proper factor**, of *b*, or that *a* **properly divides** *b*, if *z* is not a unit.
- Equivalently, a is a proper divisor of b if and only if $a \mid b$ and $b \nmid a$.

Subsection 2

Subrings, Ideals and Homomorphisms

Subrings

- We assume that all our rings are commutative.
- We use standard shorthands, e.g., a b instead of a + (-b).
- A subring *U* of a ring *R* is a non-empty subset of *R* with the property that, for all *a*, *b* in *R*,

 $a, b \in U$ implies $a - b \in U$ and $ab \in U$.

• Equivalently, $U(\neq \phi)$ is a subring if, for all a, b in R,

 $a, b \in U$ implies $a + b, ab \in U$; $a \in U$ implies $-a \in U$.

It is easy to see that 0 ∈ U. Choose a from the non-empty set U.
 Deduce by definition that 0 = a - a ∈ U.

Subfields

- A subfield of a field K is a subring which is a field.
- Equivalently, it is a subset *E* of *K*, containing at least two elements, such that

 $a, b \in E$ implies $a - b \in E$; $a \in E, b \in E \setminus \{0\}$ implies $ab^{-1} \in E$.

• Again, we may replace the second implication of by the two implications

 $a, b \in E$ implies $ab \in E$; $a \in E \setminus \{0\}$ implies $a^{-1} \in E$.

• If $E \subset K$, we say that E is a **proper subfield** of K.

Ideals

• An ideal of R is a non-empty subset I of R with the properties

```
a, b \in I implies a - b \in I;
a \in I and r \in R implies ra \in I.
```

- An ideal is certainly a subring, but not every subring is an ideal.
 E.g., consider the field Q of rational numbers.
 The subring Z of integers is not an ideal.
- Among the ideals of R are $\{0\}$ and R.
- An ideal I such that $\{0\} \subset I \subset R$ is called **proper**.

Ideal Generated by A

Theorem

Let $A = \{a_1, a_2, \dots, a_n\}$ be a finite subset of a commutative ring R. Then

 $Ra_1 + Ra_2 + \dots + Ra_n = \{x_1a_1 + x_2a_2 + \dots + x_na_n : x_1, x_2, \dots, x_n \in R\}$

is the smallest ideal of R containing A.

• The set
$$Ra_1 + Ra_2 + \dots + Ra_n$$
 is certainly an ideal.
For all $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n$ in R and for all r in R ,
 $(x_1a_1 + \dots + x_na_n) - (y_1a_1 + \dots + y_na_n) = (x_1 - y_1)a_1 + \dots + (x_n - y_n)a_n,$
 $r(x_1a_1 + \dots + x_na_n) = (rx_1)a_1 + \dots + (rx_n)a_n \in Ra_1 + \dots + Ra_n.$

Every ideal *I* containing $\{a_1, ..., a_n\}$ contains the element $x_1a_1 + \cdots + x_na_n$, for any $x_1, ..., x_n$ in *R*. So $Ra_1 + \cdots + Ra_n \subseteq I$.

- We refer to $Ra_1 + \cdots + Ra_n$ as the **ideal generated by** a_1, \ldots, a_n .
- We write it as $\langle a_1, \ldots, a_n \rangle$.
- An ideal Ra = (a) generated by a single element a in R is called a principal ideal.

Ideals and Divisibility

Theorem

Let *D* be an integral domain with group of units *U*, and let $a, b \in D \setminus \{0\}$. Then:

- (i) $\langle a \rangle \subseteq \langle b \rangle$ iff $b \mid a$;
- (ii) $\langle a \rangle = \langle b \rangle$ iff $a \sim b$;
- iii) $\langle a \rangle = D$ iff $a \in U$.
- (i) Suppose first that $b \mid a$. Then a = zb, for some z in D. So

$$\langle a \rangle = Da = Dzb \subseteq Db = \langle b \rangle.$$

Conversely, suppose that $\langle a \rangle \subseteq \langle b \rangle$. Then there exists z in D, such that a = zb. So $b \mid a$.

Ideals and Divisibility

(ii) Suppose first that a ~ b. Then there exists u in U, such that a = ub and b = u⁻¹a. Thus, b | a and a | b. So, by (i), ⟨a⟩ = ⟨b⟩.
Conversely, suppose that ⟨a⟩ = ⟨b⟩. Then there exist u, v in D, such that a = ub, b = va. Hence

$$(uv)a = u(va) = ub = a = 1a.$$

So, by cancelation, uv = 1. Thus u and v are units. So $a \sim b$. (iii) It is clear that $\langle 1 \rangle = D$. Hence, by (ii), $\langle a \rangle = D$ if and only if $a \sim 1$. I.e., $\langle a \rangle = D$ if and only if a is a unit.

Ring Homomorphisms

A homomorphism from a ring R into a ring S is a mapping φ: R→S with the properties:

$$\varphi(a+b) = \varphi(a) + \varphi(b), \qquad \varphi(ab) = \varphi(a)\varphi(b).$$

• Among the homomorphisms from R into S is the zero mapping ζ given by $\zeta(z) = 0$ for all $z \in R$

$$\zeta(a) = 0$$
, for all $a \in R$.

• Homomorphism other than ζ are called **non-zero**.

Theorem

Let R, S be rings, with zero elements $0_R, 0_S$, respectively, and let $\varphi: R \to S$ be a homomorphism. Then:

- (i) $\varphi(0_R) = 0_S;$
- (ii) $\varphi(-r) = -\varphi(r)$, for all r in R;
- iii) $\varphi(R)$ is a subring of S.

Properties of Ring Homomorphisms

(i) We have
$$\varphi(a) + \varphi(0_R) = \varphi(a + 0_R) = \varphi(a)$$
.
Therefore, $\varphi(0_R) = -\varphi(a) + \varphi(a) = 0_S$.

(ii) For all r in R, we have

$$\varphi(r)+\varphi(-r)=\varphi(r+(-r))=\varphi(0_R)=0_S=\varphi(r)+(-\varphi(r)).$$

Hence, $\varphi(-r) = -\varphi(r)$. (iii) Let $\varphi(a), \varphi(b)$ be arbitrary elements of $\varphi(R)$, with $a, b \in R$. Then

$$\varphi(a)\varphi(b) = \varphi(ab) \in \varphi(R);$$

$$\varphi(a) - \varphi(b) = \varphi(a) + \varphi(-b) = \varphi(a + (-b)) \in \varphi(R).$$

Thus $\varphi(R)$ is a subring.

Corollary

If $\varphi : R \to S$ is a ring homomorphism, then $\varphi(a-b) = \varphi(a) - \varphi(b)$, $a, b \in R$.

Embeddings and Isomorphisms

- Let $\varphi: R \to S$ be a homomorphism.
- If φ is one-to-one, we call it a monomorphism, or an embedding.
- If φ is also onto we call it an **isomorphism**.
- If $\varphi : R \to S$ is an isomorphism, the rings R and S are **isomorphic** (to each other) and we write $R \cong S$.
- An isomorphism from R onto itself is called an **automorphism**.

Example

- Consider the rings:
 - R = {m + n√2: m, n ∈ Z}, with ordinary addition and multiplication;
 S = { (m n) / (2n m): m, n ∈ Z}, with the operations of matrix addition and multiplication.
- The mapping $\varphi: R \to S$, with $\varphi(m + n\sqrt{2}) = \begin{pmatrix} m & n \\ 2n & m \end{pmatrix}$ is an isomorphism.

We have

$$\varphi((m+n\sqrt{2})+(p+q\sqrt{2})) = \varphi(m+p+(n+q)\sqrt{2})$$
$$= \begin{pmatrix} m+p & n+q \\ 2(n+q) & m+p \end{pmatrix} = \begin{pmatrix} m & n \\ 2n & m \end{pmatrix} + \begin{pmatrix} p & q \\ 2q & p \end{pmatrix}$$
$$= \varphi(m+n\sqrt{2}) + \varphi(p+q\sqrt{2}).$$

Example (Cont'd)

Similarly,

$$\varphi((m+n\sqrt{2})(p+q\sqrt{2})) = \varphi((mp+2nq)+(mq+np)\sqrt{2})$$
$$= \begin{pmatrix} mp+2nq & mq+np \\ 2(mq+np) & mp+2nq \end{pmatrix} = \begin{pmatrix} m & n \\ 2n & m \end{pmatrix} \begin{pmatrix} p & q \\ 2q & p \end{pmatrix}$$
$$= \varphi(m+n\sqrt{2})\varphi(p+q\sqrt{2}).$$

Let
$$\begin{pmatrix} m & n \\ 2n & m \end{pmatrix} \in S$$
 be given. Then $m + n\sqrt{2} \in R$ and
 $\varphi(m + n\sqrt{2}) = \begin{pmatrix} m & n \\ 2n & m \end{pmatrix}$. Hence, φ is onto.

Suppose $\varphi(m + n\sqrt{2}) = \varphi(p + q\sqrt{2})$. Then $\binom{m}{2n} = \binom{p}{2q} \binom{q}{2q}$. Therefore, m = p and n = q. This shows that $m + n\sqrt{2} = p + q\sqrt{2}$. Thus, φ is also one-to-one. We conclude that $\varphi: R \to S$ is an isomorphism.

George Voutsadakis (LSSU)

Fields and Galois Theory

Identification "Up To Isomorphism"

- If $\varphi: R \to S$ is a monomorphism, then the subring $\varphi(R)$ of S is isomorphic to R.
- Since the rings R and φ(R) are abstractly identical, we often wish to identify φ(R) with R and regard R itself as a subring of S.
 Example: If S is the ring defined previously, there is a monomorphism θ: Z → S given by

$$\theta(m) = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix}, \text{ for all } m \in \mathbb{Z}.$$

The identification of the integer m with the 2×2 scalar matrix $\theta(m)$ allows us to consider \mathbb{Z} as effectively a subring of S.

We say that S contains \mathbb{Z} up to isomorphism.

The Kernel of a Homomorphism

• Let $\varphi: R \to S$ be a homomorphism, where R and S are rings, with zero elements $0_R, 0_S$, respectively.

The set

$$K = \varphi^{-1}(0_S) = \{a \in R : \varphi(a) = 0_S\}$$

is the **kernel** of the homomorphism φ , written ker φ .

• The kernel of a homomorphism $\varphi : R \to S$ is an ideal of R. If $a, b \in K$, then $\varphi(a) = \varphi(b) = 0_S$.

So certainly

$$\varphi(a-b)=\varphi(a)-\varphi(b)=0_S-0_S=0_S.$$

Hence $a - b \in K$. • If $r \in R$ and $a \in K$, then

$$\varphi(ra) = \varphi(r)\varphi(a) = \varphi(r)\mathsf{O}_S = \mathsf{O}_S.$$

Hence $ra \in K$.

Residue Classes Modulo an Ideal

• Let I be an ideal of a ring R, and let $a \in R$. The set

```
a + I = \{a + x : x \in I\}
```

is called the residue class of a modulo I.

• We have that, for all a, b in R,

$$a+l=b+l \iff a-b\in l.$$

Suppose that a+I = b+I. Then, in particular, $a = a+0 \in a+I = b+I$. So, there exists x in I, such that a = b+x. Thus, $a-b = x \in I$. Conversely, suppose that $a-b \in I$. Then, for all x in I, we have that a+x = b+y, where $y = (a-b)+x \in I$. Thus, $a+I \subseteq b+I$. The reverse inclusion is proved in the same way.

Operations on Residue Classes

We show that, for all a, b in R,

$$(a+I) + (b+I) = (a+b) + I,$$
 $(a+I)(b+I) \subseteq ab+I.$

Let $x, y \in I$ and let $u = (a+x) + (b+y) \in (a+I) + (b+I)$. Then $u = (a+b) + (x+y) \in (a+b) + I$.

Conversely, suppose $z \in I$ and $v = (a+b) + z \in (a+b) + I$. Then $v = (a+z) + (b+0) \in (a+I) + (b+I)$.

Next, let $x, y \in I$ and let $u = (a+x)(b+y) \in (a+I)(b+I)$. Then $u = ab + (ay + xb + xy) \in ab + I$.

The Residue Class Ring

• The set R/I of all residue classes modulo I forms a ring with respect to the operations

$$(a+I)+(b+I)=(a+b)+I, (a+I)(b+I)=ab+I,$$

called the residue class ring modulo 1.

The zero element is 0 + I = I.

The negative of a + I is -a + I.

• The mapping $\theta_I : R \to R/I$, given by

$$\theta_I(a) = a + I, \quad a \in R,$$

is a homomorphism onto R/I, with kernel I.

It is called the **natural homomorphism** from R onto R/I.

The Ring \mathbb{Z}_n of Integers mod n

- The motivating example of a residue class ring is the ring \mathbb{Z}_n of integers mod n.
- The ideal is $\langle n \rangle = n\mathbb{Z}$, the set of integers divisible by *n*.
- The elements of \mathbb{Z}_n are the classes $a + \langle n \rangle$, with $a \in \mathbb{Z}$.
- There are exactly *n* classes

$$\langle n \rangle$$
, $1 + \langle n \rangle$, $2 + \langle n \rangle$, ..., $(n-1) + \langle n \rangle$.

The Field \mathbb{Z}_n

Theorem

Let *n* be a positive integer. The residue class ring $\mathbb{Z}_n = \mathbb{Z}/\langle n \rangle$ is a field if and only if *n* is prime.

• Suppose first that *n* is not prime. Then n = rs, where 1 < r < n and 1 < s < n. Then $r + \langle n \rangle \neq 0 + \langle n \rangle$ and $s + \langle n \rangle \neq 0 + \langle n \rangle$. On the other hand, $(r + \langle n \rangle)(s + \langle n \rangle) = n + \langle n \rangle = 0 + \langle n \rangle$. Thus, \mathbb{Z}_n contains divisors of 0. So it is certainly not a field.

Now let p be a prime, and suppose that $(r + \langle p \rangle)(s + \langle p \rangle) = 0 + \langle p \rangle$. Then $p \mid rs$. So (since p is prime) either $p \mid r$ or $p \mid s$. That is, either $r + \langle p \rangle = 0$ or $s + \langle p \rangle = 0$. Thus, \mathbb{Z}_p has no divisors of zero. So it is an integral domain. But every finite integral domain is a field. Hence, \mathbb{Z}_p is a field.

First Homomorphism Theorem

Theorem

Let *R* be a commutative ring, and let φ be a homomorphism from *R* onto a commutative ring *S*, with kernel *K*. Then, there is an isomorphism $\alpha : R/K \to S$, such that the diagram on the right commutes:

 Define α by the rule that α(a+K) = φ(a), for all a+K ∈ R/K. This mapping is both well-defined and injective: a+K = b+K iff a-b∈K iff φ(a-b) = 0 iff φ(a) = φ(b). It maps onto S, since φ is onto. It is a homomorphism, since

$$\begin{aligned} \alpha((a+K)+(b+K)) &= \alpha((a+b)+K) = \varphi(a+b) \\ &= \varphi(a)+\varphi(b) = \alpha(a+K)+\alpha(b+K); \\ \alpha((a+K)(b+K)) &= \alpha(ab+K) = \varphi(ab) = \varphi(a)\varphi(b) = \alpha(a+K)\alpha(b+K). \end{aligned}$$

Hence α is an isomorphism. The commuting of the diagram is clear,

since, for all *a* in *R*, $\alpha(\theta_K(a)) = \alpha(a+K) = \varphi(a)$. So $\alpha \circ \theta_K = \varphi$.

Subsection 3

The Field of Fractions of an Integral Domain

The Equivalence Relation ≡

• Let D be an integral domain. Let

$$P = D \times (D \setminus \{0\}) = \{(a, b) : a, b \in D, b \neq 0\}.$$

• Define a relation \equiv on the set *P* by the rule that

$$(a, b) \equiv (a', b')$$
 if and only if $ab' = a'b$.

Lemma

The relation \equiv is an equivalence.

• We must prove that, for all (a, b), (a', b'), (a'', b'') in P,

(i) (a,b) ≡ (a,b) (the reflexive law);
 (ii) (a,b) ≡ (a',b') implies (a',b') ≡ (a,b) (the symmetric law);
 (iii) (a,b) ≡ (a',b') and (a',b') ≡ (a'',b'') imply (a,b) ≡ (a'',b'') (the transitive law).

The Equivalence Relation \equiv (Cont'd)

(iii) From $(a, b) \equiv (a', b')$ and $(a', b') \equiv (a'', b'')$, we have that ab' = a'b and a'b'' = a''b'. Hence,

$$b'(ab'') = (ab')b'' = a'bb'' = b(a'b'') = ba''b' = b'(a''b).$$

Since $b' \neq 0$, we can use cancelation to obtain ab'' = a''b. Therefore, $(a, b) \equiv (a'', b'')$.

Operations on the Set of Equivalence Classes mod \equiv

- The quotient set P/\equiv is denoted by Q(D).
- Its elements are equivalence classes

$$[a,b] = \{(x,y) \in P : (x,y) \equiv (a,b)\}.$$

- For reasons that will become obvious, we choose to denote the classes by fraction symbols a/b or $\frac{a}{b}$.
- Two classes are equal if their (arbitrarily chosen) representative pairs in the set *P* are equivalent:

$$\frac{a}{b} = \frac{c}{d}$$
 if and only if $ad = bc$.

- In particular, note that $\frac{a}{b} = \frac{ka}{kb}$, for all $k \neq 0$ in D.
- We define addition and multiplication in Q(D) by the rules

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

Addition and Multiplication are Well-Defined

Lemma

Addition and multiplication in Q(D) are well-defined.

• Suppose that
$$\frac{a}{b} = \frac{a'}{b'}$$
 and $\frac{c}{d} = \frac{c'}{d'}$. Then $ab' = a'b$ and $cd' = c'd$. So $(ad + bc)b'd' = ab'dd' + bb'cd' = a'bdd' + bb'c'd = (a'd' + b'c')bd$.

Hence,

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} = \frac{a'd'+b'c'}{b'd'} = \frac{a'}{b'} + \frac{c'}{d'}.$$

Similarly,

$$(ac)(b'd') = (ab')(cd') = (a'b)(c'd) = (a'c')(bd).$$

So

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} = \frac{a'c'}{b'd'} = \frac{a'}{b'} \cdot \frac{c'}{d'}.$$

The Field of Fractions Q(D) of D

- These operations turn Q(D) into a commutative ring with unity. The verifications are tedious but not difficult.
 - E.g., for distributivity,

$$\frac{a}{b}\left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b} \cdot \frac{cf + de}{df} = \frac{acf + ade}{bdf},$$
$$\frac{a}{b} \cdot \frac{c}{d} + \frac{a}{b} \cdot \frac{e}{f} = \frac{acf}{bd} + \frac{ae}{bf} = \frac{acf + aeb}{b^2df} = \frac{acf + ade}{bdf}$$

The zero element is $\frac{0}{1} \left(= \frac{0}{b} \text{ for all } b \neq 0 \text{ in } D\right)$. The unity element is $\frac{1}{1} \left(= \frac{b}{b} \text{ for all } b \neq 0 \text{ in } D\right)$. The negative of $\frac{a}{b}$ is $\frac{-a}{b}$. The ring Q(D) is in fact a field, since for all $\frac{a}{b}$ with $a \neq 0$, we have that $\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ab} = \frac{1}{1}$.

• The field Q(D) is called the **field of fractions** of the domain D.

Embedding of D into Q(D)

Lemma

The mapping $\varphi: D \to Q(D)$ given by

$$\varphi(a)=\frac{a}{1}, \quad a\in D,$$

is a monomorphism.

• From the definition of the operations on Q(D),

$$\begin{aligned} \varphi(a) + \varphi(b) &= \frac{a}{1} + \frac{b}{1} = \frac{a+b}{1} = \varphi(a+b); \\ \varphi(a)\varphi(b) &= \frac{a}{1} \cdot \frac{b}{1} = \frac{ab}{1} = \varphi(ab). \end{aligned}$$

Also,

$$\varphi(a) = \varphi(b) \Rightarrow \frac{a}{1} = \frac{b}{1} \Rightarrow a = b.$$

Identifying $\frac{a}{1}$ with *a*, we can regard *D* as a subring of Q(D).

Minimality of Q(D)

• The field Q(D) is the smallest field containing D.

Theorem

Let *D* be an integral domain, let φ be the monomorphism from *D* into Q(D) and let *K* be a field with the property that there is a monomorphism θ from *D* into *K*. Then, there exists a monomorphism $\psi: Q(D) \to K$ such that the diagram commutes:

Define a mapping ψ : Q(D) → K by the rule that ψ(^a/_b) = ^{θ(a)}/_{θ(b)}. Here θ(b) ≠ 0, since θ is a monomorphism. This is well-defined and one-to-one, since

$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc \Leftrightarrow \theta(a)\theta(d) = \theta(b)\theta(c) \Leftrightarrow \frac{\theta(a)}{\theta(b)} = \frac{\theta(c)}{\theta(d)}.$$

Minimality of Q(D) (Cont'd)

• It is a homomorphism, since

$$\begin{split} \psi\left(\frac{a}{b} + \frac{c}{d}\right) &= \psi\left(\frac{ad + bc}{bd}\right) = \frac{\theta(ad + bc)}{\theta(bd)} = \frac{\theta(a)\theta(d) + \theta(b)\theta(c)}{\theta(b)\theta(d)} \\ &= \frac{\theta(a)}{\theta(b)} + \frac{\theta(c)}{\theta(d)} = \psi\left(\frac{a}{b}\right) + \psi\left(\frac{c}{d}\right); \\ \psi\left(\frac{a}{b} \cdot \frac{c}{d}\right) &= \psi\left(\frac{ac}{bd}\right) = \frac{\theta(ac)}{\theta(bd)} = \frac{\theta(a)\theta(c)}{\theta(b)\theta(d)} \\ &= \frac{\theta(a)}{\theta(b)} \cdot \frac{\theta(c)}{\theta(d)} = \psi\left(\frac{a}{b}\right) \cdot \psi\left(\frac{c}{d}\right). \end{split}$$

The commuting of the diagram is clear, since, for all a in D,

$$\psi(\varphi(a)) = \psi\left(\frac{a}{1}\right) = \frac{\theta(a)}{\theta(1)} = \theta(a).$$

• When $D = \mathbb{Z}$, it is clear that $Q(D) = \mathbb{Q}$.

Subsection 4

The Characteristic of a Field

Multiples of Ring Elements

- In a ring R containing an element a, we denote a + a by 2a.
- More generally, if *n* is a natural number, we write *na* for the sum

$$a + a + \dots + a$$
.

- If we define 0a = 0_R and (−n)a to be n(−a), we can give a meaning to na for every integer n.
- For $m, n \in \mathbb{Z}$ and $a, b \in R$, we have

•
$$(m+n)a = ma + na;$$

•
$$m(a+b) = ma+mb;$$

•
$$(mn)a = m(na);$$

• (ma)(nb) = (mn)(ab).

The Characteristic of a Ring

- Let *R* be a commutative ring with unity element 1_{*R*}. Then there are two possibilities:
 - i) The elements $m1_R$ (m = 1, 2, ...) are all distinct;
 - ii) There exist m, n in \mathbb{N} , such that $m1_R = (m+n)1_R$.
- In the former case we say that *R* has **characteristic** zero, and write char*R* = 0.
- In the latter case, m1_R = (m+n)1_R = m1_R + n1_R. So n1_R = 0_R.
 The least positive n for which this holds is called the characteristic of the ring R and we write charR = n.
- Note that, if R is a ring of characteristic n, then, for all a in R,

$$na = (n1_R)a = 0_Ra = 0_R.$$

The Case of a Field

Theorem

The characteristic of a field is either 0 or a prime number p.

The former possibility can certainly occur.
 Q, ℝ and ℂ are all fields of characteristic 0.
 Let K be a field and suppose that charK = n ≠ 0, where n is not prime.
 Then n = rs, where 1 < r < n and 1 < s < n.

The minimal property of *n* implies $r1_K \neq 0_K$ and $s1_K \neq 0_K$. On the other hand,

$$(r1_{\mathcal{K}})(s1_{\mathcal{K}}) = (rs)1_{\mathcal{K}} = n1_{\mathcal{K}} = 0_{\mathcal{K}}.$$

But this is impossible, since K, being a field, has no zero divisors.

The Prime Subfield

- Let *K* be a field with characteristic 0.
- The elements n1_K, n ∈ Z, are all distinct, and form a subring of K isomorphic to Z.
- The set

$$P(K) = \left\{ \frac{m \mathbf{1}_K}{n \mathbf{1}_f} : m, n \in \mathbb{Z}, n \neq 0 \right\}$$

is a subfield of K isomorphic to \mathbb{Q} .

- Any subfield of K must contain 1 and 0 and so must contain P(K).
- P(K) is called the **prime subfield** of K.
- If K has prime characteristic p, the prime subfield is

$$P(K) = \{1_K, 2(1_K), \dots, (p-1)(1_K)\}.$$

• In this case P(K) is isomorphic to \mathbb{Z}_p .

Characterizing the Prime Subfield

Theorem

Let K be a field. Then K contains a prime subfield P(K) contained in every subfield.

- If char K = 0, then P(K) is isomorphic to \mathbb{Q} .
- If char K = p, a prime number, then P(K) is isomorphic to \mathbb{Z}_p .
- The fields \mathbb{Q} and \mathbb{Z}_p play a central role in the theory of fields.
- They have no proper subfields, and every field contains as a subfield an isomorphic copy of one or other of them.
- We express this by saying:
 - Every field of characteristic 0 is an extension of \mathbb{Q} ;
 - Every field of prime characteristic p is an **extension** of \mathbb{Z}_p .

The Expression *a/n*

- Given an element *a* of a field *K*, we sometimes like to denote $\frac{a}{n1}$ simply by $\frac{a}{n}$.
 - If char K = 0, this is no problem;
 - If charK = p, then we cannot assign a meaning to $\frac{a}{n}$, if *n* is a multiple of *p*.

Example: The formula

$$xy = \frac{1}{4} \left((x+y)^2 - (x-y)^2 \right)$$

is not valid in a field of characteristic 2, since the quantity on the right reduces to $\frac{0}{0}$ and so is undefined.

Power of Sum in Characteristic p

Theorem

Let K be a field of characteristic p. Then, for all x, y in K,

$$(x+y)^p = x^p + y^p.$$

• By the binomial theorem, valid in any commutative ring with unity, we have that

$$(x+y)^p = \sum_{r=0}^p \binom{p}{r} x^{n-r} y^r.$$

For r = 1,..., p-1, the coefficient $\binom{p}{r} = \frac{p(p-1)\cdots(p-r+1)}{r!}$ is an integer. So r! divides $p(p-1)\cdots(p-r+1)$. Since p is prime and r < p, no factor of r! can divide p. Hence, r! divides $(p-1)\cdots(p-r+1)$. So $\binom{p}{r}$ is an integer divisible by p. Thus, for r = 1,..., p-1, $\binom{p}{r}x^{n-r}y^r = 0$. So, in $(x+y)^p = \sum_{r=0}^p \binom{p}{r}x^{n-r}y^r$, only the first and last terms survive.

Representation of Elements in $\mathbb{Z}_{ ho}$

- The fields $\mathbb{Z}_p = \mathbb{Z}/\langle p \rangle$ are important building blocks in field theory.
- We usually find it convenient to write $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$, with addition and multiplication carried out modulo p.
- For example, the multiplication table for \mathbb{Z}_5 is

	0	1	2	3	4		0	1	2	-2	-1
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	1	0	1	2	-2	-1
2	0	2	4	1	3	2	0	2	-1	1	-2
3	0	3	1	4	2	-2	0	-2	1	-1	2
4	0	4	3	2	1	-1	0	-1	-2	2	1

- Occasionally, it is more convenient to write $\mathbb{Z}_3 = \{0, 1, -1\}$.
- Similarly, we may write $\mathbb{Z}_5 = \{0, \pm 1, \pm 2\}$, obtaining the table on the right.

Subsection 5

Reminder of Some Group Theory

Groups, Abelian Groups and Finite Groups

- A group $G = (G, \cdot)$ is a non-empty set furnished with a binary operation \cdot with the following properties:
 - G1) The associative law: (ab)c = a(bc), for all $a, b, c \in G$;
 - (G2) The existence of an identity element: there exists e in G, such that, for all a in G, ea = a;
 - (G3) The existence of inverses: for all *a* in *G*, there exists a^{-1} in *G*, such that $a^{-1}a = e$.
- An abelian group has an additional property:

The commutative law: ab = ba, for all $a, b \in G$.

• The element e and the element a^{-1} are both unique, and

$$ae = ea = a$$
, $aa^{-1} = a^{-1}a = e$.

• For all $a, b \in G$,

$$(ab)^{-1} = b^{-1}a^{-1}$$

The group (G,.) is called a finite group if the set G is finite.
The cardinality |G| of G is called the order of the group.

Fields and Galois Theory

Cyclic Groups

- We write a^2, a^3, \ldots , where $a \in G$, for the products aa, aaa, \ldots
- We write a^{-n} to mean $(a^{-1})^n = (a^n)^{-1}$.
- By a^0 we mean the identity element *e*.
- A group G is called **cyclic** if there exists an element a in G such that

$$G = \{a^n : n \in \mathbb{Z}\}.$$

- If the powers a^n are all distinct, G is the **infinite cyclic group**.
- Otherwise, there is a least m > 0, such that a^m = e. Given n ∈ Z, the division algorithm gives integers q and r, such that n = qm + r and 0 ≤ r ≤ m - 1. Therefore, aⁿ = a^{qm+r} = (a^m)^qa^r = a^r. Thus, G = {e, a, a²,..., a^{m-1}}, the cyclic group of order m.
- Both the infinite cyclic group and the cyclic group of order *m* are abelian.

Subgroups and Orders of Elements

A non-empty subset U of G is called a subgroup of G if, for all a, b ∈ G,

 $a, b \in U$ implies $ab \in U$; $a \in U$ implies $a^{-1} \in U$;

or, equivalently,

 $a, b \in U$ implies $ab^{-1} \in U$.

- Every subgroup contains the identity element *e*.
- For each element a in the group G, the set {aⁿ : n ∈ Z} is a subgroup, called the cyclic subgroup generated by a, and denoted by ⟨a⟩.
- If G is finite, $\langle a \rangle$ cannot be the infinite cyclic group.
- The order of $\langle a \rangle$ is called the **order of the element** *a*.
- The order of a is the smallest positive integer n, such that aⁿ = e, and is denoted by o(a).

Left Cosets and Lagrange's Theorem

• Let U be a subgroup of a group G and let $a \in G$.

The subset

$$Ua = \{ua : u \in U\}$$

is called a **left coset** of U.

- We have Ua = Ub if and only if ab⁻¹ ∈ U. Suppose Ua = Ub. Then, there exist u₁, u₂ ∈ U, such that u₁a = u₂b. So ab⁻¹ = u₁⁻¹u₂ ∈ U. Conversely, suppose ab⁻¹ ∈ U. If u ∈ U, then:
 ua = ua(b⁻¹b) = u(ab⁻¹)b ∈ Ub. So Ua ⊆ Ub.
 ub = ub(a⁻¹a) = u(ab⁻¹)⁻¹a ∈ Ua. So Ub ⊆ Ua.
- Among the left cosets is U itself.
 This is clear, since Ue = U.
- The distinct left cosets form a partition of G, i.e., every element of G belongs to exactly one left coset of U.
 Indeed, suppose c ∈ Ua ∩ Ub. Then, there exist u₁, u₂ ∈ U, such that c = u₁a = u₂b. Thus, ab⁻¹ = u₁⁻¹u₂ ∈ U. Therefore, Ua = Ub.

Left Cosets and Lagrange's Theorem

Theorem (Lagrange's Theorem)

If U is a subgroup of a finite group G, then |U| divides |G|.

- The mapping U into Ua; u → ua, is one-one and onto.
 So, in a finite group, every left coset has |U| elements.
 Thus, |G| = |U| × (the number of left cosets).
- It follows that, for all a in G, the order of a divides the order of G.

Index and Normal Subgroups

- Exactly the same thing can be done with **right cosets** *aU*.
- The right coset *aU* and the left coset *Ua* may not be identical, but the number of right cosets is the same as the number of left cosets.
- This number is called the index of the subgroup.
- U is a normal subgroup of G, written $U \leq G$, if Ua = aU for all a.
- U is normal if and only if, for all a in G, $a^{-1}Ua = U$.

Suppose, first, that Ua = aU, for all a. Let $u \in U$.

- There exists u' ∈ U, such that au = u'a. So u = a⁻¹u'a ∈ a⁻¹Ua. So U ⊆ a⁻¹Ua.
- There exists $u' \in U$, such that ua = au'. So $a^{-1}ua = a^{-1}au' = u' \in U$. So $a^{-1}Ua \subseteq U$.

Assume, conversely, $a^{-1}Ua = U$, for all a. Let $u \in U$.

- There exists u' ∈ U, such that a⁻¹ua = u'. So ua = aa⁻¹ua = au' ∈ aU.
 So Ua ⊆ aU.
- There exists u' ∈ U, such that u = a⁻¹u'a. So au = aa⁻¹u'a = u'a ∈ Ua.
 So aU ⊆ Ua.

Quotient Groups

• Given a group G, if $U \leq G$, we can define a group operation on the set of cosets of U:

(Ua)(Ub) = U(ab).

This is well-defined.

For all u, v in U,

(ua)(vb) = u(av)b= u(v'a)b (for some v' in U, since U is normal) = $(uv')(ab) \in U(ab)$.

Associativity is clear.

The identity of the group is the coset U = Ue.

The inverse of Ua is Ua^{-1} .

• The group is denoted by G/U, and is called the **quotient group**, or the **factor group**, of G by U.

Homomorphisms and Natural Homomorphisms

• Let G, H be groups, with identity elements e_G, e_H , respectively. A mapping $\varphi : G \to H$ is called a **homomorphism** if, for all $a, b \in G$,

$$\varphi(ab) = \varphi(a)\varphi(b).$$

• If $\varphi: G \to H$ is a homomorphism:

•
$$\varphi(e_G) = e_H;$$

• $\varphi(a^{-1}) = (\varphi(a))^{-1}$, for all *a* in *G*.

• If N is a normal subgroup of G, the mapping $v_N: G \to G/N$, given by

$$v_N(a) = Na, a \in G,$$

is a homomorphism.

It is called the natural homomorphism, onto G/N.

Fields and Galois Theory

Isomorphisms and Homomorphic Images

- If a homomorphism $\varphi: G \to H$ is one-one and onto, we say that it is an **isomorphism**.
- In such a case φ⁻¹: H→ G is also an isomorphism, and we say that H is isomorphic to G, writing H ≅ G.
- If φ maps onto H, but is not necessarily one-one, we say that H is a **homomorphic image** of G.

Kernels and First Homomorphism Theorem

- Let $\varphi: G \to H$ be a homomorphism.
- The kernel ker φ of φ is defined by

$$\ker \varphi = \varphi^{-1}(e_H) = \{a \in G : \varphi(a) = e_H\}.$$

- ker φ is a normal subgroup of G.
- Every homomorphic image of *G* is isomorphic to a quotient group of *G* by a suitable normal subgroup.

Theorem

Let G, H be groups, and let φ be a homomorphism from G onto H, with kernel N. Then there exists a unique isomorphism $\alpha : G/N \to H$, such that the diagram comutes:

The mapping α : Na → φ(a) is well-defined, one-one, onto, and a homomorphism. Moreover, α ∘ ν_N = φ.

George Voutsadakis (LSSU)

Fields and Galois Theory