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Rings and Fields Definitions and Basic Properties

Rings and Commutative Rings

A ring R = (R ,+, ·) is a non-empty set R furnished with two binary
operations + (called addition) and · (called multiplication) with the
following properties:
(R1) The associative law for addition: (a+b)+c = a+ (b+c), for all

a,b,c ∈R ;
(R2) The commutative law for addition: a+b = b+a, for all a,b ∈R ;
(R3) The existence of 0: there exists 0 in R , such that, for all a in R ,

a+0= a;
(R4) The existence of negatives: for all a in R , there exists −a in R , such

that a+ (−a)= 0;
(R5) The associative law for multiplication: (ab)c = a(bc), for all

a,b,c ∈R ;
(R6) The distributive laws: a(b+c)= ab+ac , (a+b)c = ac +bc , for all

a,b,c ∈R .

We shall be concerned only with commutative rings, which have the
following extra property:
(R7) The commutative law for multiplication: ab = ba, for all a,b ∈R .
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Rings and Fields Definitions and Basic Properties

Rings with 1, Integral Domains and Fields

A ring with unity R has the properties (R1)-(R6), together with the
following property:

(R8) The existence of 1: there exists 1 6= 0 in R , such that, for all a in R ,
a1= 1a= a.

The element 1 is called the unity element, or the (multiplicative)
identity of R .

A commutative ring R with unity is called an integral domain or, if
the context allows, just a domain, if it has the following property:

(R9) Cancellation: for all a,b,c in R , with c 6= 0, ca= cb implies a= b.

A commutative ring R with unity is called a field if it has the
following property:

(R10) The existence of inverses: for all a 6= 0 in R , there exists a−1 in R ,
such that aa−1 = 1.

We frequently denote a−1 by 1
a .
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Rings and Fields Definitions and Basic Properties

Cancelation versus Existence of Inverses

Recall the properties:

(R9) Cancellation: for all a,b,c in R , with c 6= 0, ca= cb implies a= b.
(R10) The existence of inverses: for all a 6= 0 in R , there exists a−1 in R ,

such that aa−1 = 1.

It is easy to see that (R10) implies (R9).

The converse implication, however, is not true.

The ring Z of integers is an obvious example.

It is worth noting also that (R9) is equivalent to:

(R9)′ No divisors of zero: for all a,b in R , ab= 0 implies a= 0 or b= 0.

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 6 / 61



Rings and Fields Definitions and Basic Properties

Groups and Abelian Groups

A group G = (G , ·) is a non-empty set furnished with a binary
operation · with the following properties:

(G1) The associative law: (ab)c = a(bc), for all a,b,c ∈G ;
(G2) The existence of an identity element: there exists e in G , such

that, for all a in G , ea= a;
(G3) The existence of inverses: for all a in G , there exists a−1 in G , such

that a−1a= e.

An abelian group has the following extra property:

(G4) The commutative law: ab= ba, for all a,b ∈G .

From the previous definitions, we get the following observations.

If (R ,+, ·) is a ring, then (R ,+) is an abelian group.
If (K ,+, ·) is a field and K∗ =K\{0}, then (K∗, ·) is an abelian group.
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Rings and Fields Definitions and Basic Properties

Group of Units and Associates

Let R be a commutative ring with unity, and let

U = {u ∈R : (∃v ∈R)(uv = 1)}.

It is easy to verify that U is an abelian group with respect to
multiplication in R .

We say that U is the group of units of the ring R .

If a,b in R are such that a= ub, for some u in U , we say that a and b

are associates, and write a∼ b.

Example: In the ring Z,

The group of units is {1,−1};
a∼−a, for all a in Z.
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Rings and Fields Definitions and Basic Properties

Example

Show that R = {a+b
p

2 : a,b ∈Z} forms a commutative ring with unity
with respect to the addition and multiplication in R.

First, we show closure under the operations

(a+b
p

2)+ (c +d
p

2)= (a+c)+ (b+d)
p

2 ∈R .

(a+b
p

2)(c +d
p

2)= (ac +2bd)+ (ad +bc)
p

2∈R .

Since R is a subset of R, the properties (R1), (R2), (R5), (R6) and
(R7) are automatically satisfied.

The ring also has the properties (R3), (R4) and (R8):

The zero element is 0+0
p

2;
The negative of a+b

p
2 is (−a)+ (−b)

p
2;

The unity element is 1+0
p

2.
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Rings and Fields Definitions and Basic Properties

Example (Cont’d)

Next, we show that the group of units of R is infinite.

Since (1+
p

2)(−1+
p

2)= 1, 1+
p

2 is in the group of units.

The powers of this element are all distinct, since 1+
p

2> 1.

So 1+
p

2< (1+
p

2)2 < (1+
p

2)3 < ·· · .

All these powers are in the group of units, which is therefore infinite.

The group of units is in fact

{a+b
p

2 : a,b ∈Z, |a2−2b2| = 1}.

This can be seen by noticing that

(a+b
p

2)(c +d
p

2)= 1 implies a2−2b2 =±1.
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Rings and Fields Definitions and Basic Properties

Group of Units in a Field

The group of units of a field K is the group K∗ of all non-zero
elements of K .

Suppose, first, that u is a unit in K .

Then, there exists v in K , such that uv = 1.

Since 1 6= 0, u 6= 0.

Suppose, conversely, that u 6= 0 is an element of K .

Then, there exists u−1 in K , such that uu−1 = 1.

Therefore, u is a unit in K .
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Rings and Fields Definitions and Basic Properties

Divisibility and Proper Divisibility

Let D be an integral domain.

If a ∈D\{0} and b ∈D, we say that a divides b, or that a is a divisor

of b, or that a is a factor of b, if there exists z in D such that

az = b.

We write a | b, and occasionally write a ∤ b if a does not divide b.

We say that a is a proper divisor, or a proper factor, of b, or that a
properly divides b, if z is not a unit.

Equivalently, a is a proper divisor of b if and only if a | b and b ∤ a.
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Rings and Fields Subrings, Ideals and Homomorphisms

Subsection 2

Subrings, Ideals and Homomorphisms
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Rings and Fields Subrings, Ideals and Homomorphisms

Subrings

We assume that all our rings are commutative.

We use standard shorthands, e.g., a−b instead of a+ (−b).
A subring U of a ring R is a non-empty subset of R with the property
that, for all a,b in R ,

a,b ∈U implies a−b ∈U and ab ∈U .

Equivalently, U(6= ;) is a subring if, for all a,b in R ,

a,b ∈U implies a+b,ab ∈U;
a ∈U implies −a ∈U .

It is easy to see that 0 ∈U . Choose a from the non-empty set U .
Deduce by definition that 0= a−a ∈U .
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Rings and Fields Subrings, Ideals and Homomorphisms

Subfields

A subfield of a field K is a subring which is a field.

Equivalently, it is a subset E of K , containing at least two elements,
such that

a,b ∈E implies a−b ∈E ;
a ∈E ,b ∈ E\{0} implies ab−1 ∈E .

Again, we may replace the second implication of by the two
implications

a,b ∈E implies ab ∈E ;
a ∈E\{0} implies a−1 ∈E .

If E ⊂K , we say that E is a proper subfield of K .
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Rings and Fields Subrings, Ideals and Homomorphisms

Ideals

An ideal of R is a non-empty subset I of R with the properties

a,b ∈ I implies a−b ∈ I ;
a ∈ I and r ∈R implies ra ∈ I .

An ideal is certainly a subring, but not every subring is an ideal.

E.g., consider the field Q of rational numbers.

The subring Z of integers is not an ideal.

Among the ideals of R are {0} and R .

An ideal I such that {0} ⊂ I ⊂R is called proper.
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Rings and Fields Subrings, Ideals and Homomorphisms

Ideal Generated by A

Theorem

Let A= {a1,a2, . . . ,an} be a finite subset of a commutative ring R . Then

Ra1+Ra2+·· ·+Ran = {x1a1+x2a2+·· ·+xnan : x1,x2, . . . ,xn ∈R}

is the smallest ideal of R containing A.

The set Ra1+Ra2+·· ·+Ran is certainly an ideal.
For all x1,x2, . . . ,xn,y1,y2, . . . ,yn in R and for all r in R ,

(x1a1+·· ·+xnan)−(y1a1+·· ·+ynan)= (x1−y1)a1+·· · +(xn −yn)an,

r(x1a1+·· · +xnan)= (rx1)a1+·· · +(rxn)an ∈Ra1+·· · +Ran.

Every ideal I containing {a1, . . . ,an} contains the element
x1a1+·· ·+xnan, for any x1, . . . ,xn in R . So Ra1+·· ·+Ran ⊆ I .

We refer to Ra1+·· ·+Ran as the ideal generated by a1, . . . ,an.

We write it as 〈a1, . . . ,an〉.
An ideal Ra= 〈a〉 generated by a single element a in R is called a
principal ideal.
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Rings and Fields Subrings, Ideals and Homomorphisms

Ideals and Divisibility

Theorem

Let D be an integral domain with group of units U , and let a,b ∈D\{0}.
Then:

(i) 〈a〉 ⊆ 〈b〉 iff b | a;
(ii) 〈a〉 = 〈b〉 iff a∼ b;

(iii) 〈a〉 =D iff a ∈U .

(i) Suppose first that b | a. Then a= zb, for some z in D. So

〈a〉 =Da=Dzb⊆Db = 〈b〉.

Conversely, suppose that 〈a〉 ⊆ 〈b〉. Then there exists z in D, such that
a= zb. So b | a.
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Rings and Fields Subrings, Ideals and Homomorphisms

Ideals and Divisibility

(ii) Suppose first that a∼ b. Then there exists u in U , such that a= ub

and b = u−1a. Thus, b | a and a | b. So, by (i), 〈a〉 = 〈b〉.
Conversely, suppose that 〈a〉 = 〈b〉. Then there exist u,v in D, such
that a= ub,b = va. Hence

(uv)a= u(va)= ub = a= 1a.

So, by cancelation, uv = 1. Thus u and v are units. So a∼ b.

(iii) It is clear that 〈1〉 =D.

Hence, by (ii), 〈a〉 =D if and only if a∼ 1.

I.e., 〈a〉 =D if and only if a is a unit.
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Rings and Fields Subrings, Ideals and Homomorphisms

Ring Homomorphisms

A homomorphism from a ring R into a ring S is a mapping ϕ :R → S

with the properties:

ϕ(a+b)=ϕ(a)+ϕ(b), ϕ(ab)=ϕ(a)ϕ(b).

Among the homomorphisms from R into S is the zero mapping ζ

given by
ζ(a)= 0, for all a ∈R .

Homomorphism other than ζ are called non-zero.

Theorem

Let R ,S be rings, with zero elements 0R , 0S , respectively, and let
ϕ :R → S be a homomorphism. Then:

(i) ϕ(0R)= 0S ;

(ii) ϕ(−r)=−ϕ(r), for all r in R ;

(iii) ϕ(R) is a subring of S .
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Rings and Fields Subrings, Ideals and Homomorphisms

Properties of Ring Homomorphisms

(i) We have ϕ(a)+ϕ(0R )=ϕ(a+0R )=ϕ(a).

Therefore, ϕ(0R )= −ϕ(a)+ϕ(a)= 0S .

(ii) For all r in R , we have

ϕ(r)+ϕ(−r)=ϕ(r + (−r))=ϕ(0R)= 0S =ϕ(r)+ (−ϕ(r)).

Hence, ϕ(−r)=−ϕ(r).
(iii) Let ϕ(a),ϕ(b) be arbitrary elements of ϕ(R), with a,b ∈R . Then

ϕ(a)ϕ(b) = ϕ(ab) ∈ϕ(R);
ϕ(a)−ϕ(b) = ϕ(a)+ϕ(−b)=ϕ(a+ (−b)) ∈ϕ(R).

Thus ϕ(R) is a subring.

Corollary

If ϕ :R → S is a ring homomorphism, then ϕ(a−b)=ϕ(a)−ϕ(b), a,b ∈R .
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Rings and Fields Subrings, Ideals and Homomorphisms

Embeddings and Isomorphisms

Let ϕ :R → S be a homomorphism.

If ϕ is one-to-one, we call it a monomorphism, or an embedding.

If ϕ is also onto we call it an isomorphism.

If ϕ :R → S is an isomorphism, the rings R and S are isomorphic (to
each other) and we write R ∼= S .

An isomorphism from R onto itself is called an automorphism.
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Rings and Fields Subrings, Ideals and Homomorphisms

Example

Consider the rings:

R = {m+n
p

2 :m,n ∈Z}, with ordinary addition and multiplication;

S =
{(

m n

2n m

)

:m,n ∈Z
}

, with the operations of matrix addition and

multiplication.

The mapping ϕ :R → S , with ϕ(m+n
p

2)=
(
m n

2n m

)

is an

isomorphism.

We have

ϕ((m+n
p

2)+ (p+q
p

2))=ϕ(m+p+ (n+q)
p

2)

=
(

m+p n+q

2(n+q) m+p

)

=
(
m n

2n m

)

+
(

p q

2q p

)

=ϕ(m+n
p

2)+ϕ(p+q
p

2).
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Rings and Fields Subrings, Ideals and Homomorphisms

Example (Cont’d)

Similarly,

ϕ((m+n
p

2)(p+q
p

2))=ϕ((mp+2nq)+ (mq+np)
p

2)

=
(

mp+2nq mq+np

2(mq+np) mp+2nq

)

=
(
m n

2n m

)(
p q

2q p

)

=ϕ(m+n
p

2)ϕ(p+q
p

2).

Let

(
m n

2n m

)

∈ S be given. Then m+n
p

2 ∈R and

ϕ(m+n
p

2)=
(
m n

2n m

)

. Hence, ϕ is onto.

Suppose ϕ(m+n
p

2)=ϕ(p+q
p

2). Then

(
m n

2n m

)

=
(

p q

2q p

)

.

Therefore, m= p and n= q. This shows that m+n
p

2= p+q
p

2.

Thus, ϕ is also one-to-one.

We conclude that ϕ :R → S is an isomorphism.
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Rings and Fields Subrings, Ideals and Homomorphisms

Identification “Up To Isomorphism”

If ϕ :R → S is a monomorphism, then the subring ϕ(R) of S is
isomorphic to R .

Since the rings R and ϕ(R) are abstractly identical, we often wish to
identify ϕ(R) with R and regard R itself as a subring of S .

Example: If S is the ring defined previously, there is a monomorphism
θ :Z→ S given by

θ(m)=
(
m 0
0 m

)

, for all m ∈Z.

The identification of the integer m with the 2×2 scalar matrix θ(m)
allows us to consider Z as effectively a subring of S .

We say that S contains Z up to isomorphism.
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Rings and Fields Subrings, Ideals and Homomorphisms

The Kernel of a Homomorphism

Let ϕ :R → S be a homomorphism, where R and S are rings, with
zero elements 0R ,0S , respectively.

The set
K =ϕ−1(0S )= {a ∈R :ϕ(a)= 0S }

is the kernel of the homomorphism ϕ, written kerϕ.

The kernel of a homomorphism ϕ :R → S is an ideal of R .

If a,b ∈K , then ϕ(a)=ϕ(b)= 0S .

So certainly
ϕ(a−b)=ϕ(a)−ϕ(b)= 0S −0S = 0S .

Hence a−b ∈K .
If r ∈R and a ∈K , then

ϕ(ra)=ϕ(r)ϕ(a)=ϕ(r)0S = 0S .

Hence ra ∈K .
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Rings and Fields Subrings, Ideals and Homomorphisms

Residue Classes Modulo an Ideal

Let I be an ideal of a ring R , and let a ∈R . The set

a+ I = {a+x : x ∈ I }

is called the residue class of a modulo I .

We have that, for all a,b in R ,

a+ I = b+ I ⇐⇒ a−b ∈ I .

Suppose that a+ I = b+ I . Then, in particular, a= a+0 ∈ a+ I = b+ I .
So, there exists x in I , such that a= b+x . Thus, a−b = x ∈ I .
Conversely, suppose that a−b ∈ I . Then, for all x in I , we have that
a+x = b+y , where y = (a−b)+x ∈ I . Thus, a+ I ⊆ b+ I . The reverse
inclusion is proved in the same way.
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Rings and Fields Subrings, Ideals and Homomorphisms

Operations on Residue Classes

We show that, for all a,b in R ,

(a+ I )+ (b+ I )= (a+b)+ I , (a+ I )(b+ I )⊆ ab+ I .

Let x ,y ∈ I and let u = (a+x)+ (b+y) ∈ (a+ I )+ (b+ I ). Then
u = (a+b)+ (x +y) ∈ (a+b)+ I .

Conversely, suppose z ∈ I and v = (a+b)+z ∈ (a+b)+ I . Then
v = (a+z)+ (b+0) ∈ (a+ I )+ (b+ I ).

Next, let x ,y ∈ I and let u = (a+x)(b+y) ∈ (a+ I )(b+ I ). Then
u = ab+ (ay +xb+xy) ∈ ab+ I .
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Rings and Fields Subrings, Ideals and Homomorphisms

The Residue Class Ring

The set R/I of all residue classes modulo I forms a ring with respect
to the operations

(a+ I )+ (b+ I )= (a+b)+ I , (a+ I )(b+ I )= ab+ I ,

called the residue class ring modulo I .

The zero element is 0+ I = I .

The negative of a+ I is −a+ I .

The mapping θI :R →R/I , given by

θI (a)= a+ I , a ∈R ,

is a homomorphism onto R/I , with kernel I .

It is called the natural homomorphism from R onto R/I .
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Rings and Fields Subrings, Ideals and Homomorphisms

The Ring Zn of Integers mod n

The motivating example of a residue class ring is the ring Zn of
integers mod n.

The ideal is 〈n〉 = nZ, the set of integers divisible by n.

The elements of Zn are the classes a+〈n〉, with a ∈Z.

There are exactly n classes

〈n〉, 1+〈n〉, 2+〈n〉, . . . , (n−1)+〈n〉.
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Rings and Fields Subrings, Ideals and Homomorphisms

The Field Zn

Theorem

Let n be a positive integer. The residue class ring Zn =Z/〈n〉 is a field if
and only if n is prime.

Suppose first that n is not prime. Then n= rs, where 1< r < n and
1< s < n. Then r +〈n〉 6= 0+〈n〉 and s +〈n〉 6= 0+〈n〉. On the other
hand, (r +〈n〉)(s+〈n〉)= n+〈n〉 = 0+〈n〉. Thus, Zn contains divisors of
0. So it is certainly not a field.

Now let p be a prime, and suppose that (r +〈p〉)(s+〈p〉)= 0+〈p〉.
Then p | rs. So (since p is prime) either p | r or p | s. That is, either
r +〈p〉 = 0 or s +〈p〉 = 0. Thus, Zp has no divisors of zero. So it is an
integral domain. But every finite integral domain is a field. Hence, Zp

is a field.
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Rings and Fields Subrings, Ideals and Homomorphisms

First Homomorphism Theorem

Theorem

Let R be a commutative ring, and let ϕ be a homomor-
phism from R onto a commutative ring S , with kernel
K . Then, there is an isomorphism α : R/K → S , such
that the diagram on the right commutes:

R
ϕ

> S

R/K

θK∨ α

>

Define α by the rule that α(a+K )=ϕ(a), for all a+K ∈R/K .

This mapping is both well-defined and injective:

a+K = b+K iff a−b ∈K iff ϕ(a−b)= 0 iff ϕ(a)=ϕ(b).
It maps onto S , since ϕ is onto. It is a homomorphism, since

α((a+K )+ (b+K )) = α((a+b)+K )=ϕ(a+b)
= ϕ(a)+ϕ(b)=α(a+K )+α(b+K );

α((a+K )(b+K )) = α(ab+K )=ϕ(ab)=ϕ(a)ϕ(b)=α(a+K )α(b+K ).

Hence α is an isomorphism. The commuting of the diagram is clear,
since, for all a in R , α(θK (a))=α(a+K )=ϕ(a). So α◦θK =ϕ.
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Rings and Fields The Field of Fractions of an Integral Domain

Subsection 3

The Field of Fractions of an Integral Domain
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Rings and Fields The Field of Fractions of an Integral Domain

The Equivalence Relation ≡

Let D be an integral domain. Let

P =D × (D\{0})= {(a,b) : a,b ∈D ,b 6= 0}.

Define a relation ≡ on the set P by the rule that

(a,b)≡ (a′,b′) if and only if ab′ = a′b.

Lemma

The relation ≡ is an equivalence.

We must prove that, for all (a,b),(a′,b′),(a′′,b′′) in P ,

(i) (a,b)≡ (a,b) (the reflexive law);
(ii) (a,b)≡ (a′,b′) implies (a′,b′)≡ (a,b) (the symmetric law);
(iii) (a,b)≡ (a′,b′) and (a′,b′)≡ (a′′,b′′) imply (a,b)≡ (a′′,b′′) (the

transitive law).
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Rings and Fields The Field of Fractions of an Integral Domain

The Equivalence Relation ≡ (Cont’d)

(i) Since ab = ab, we get (a,b)≡ (a,b).

(ii)
(a,b)≡ (a′,b′) iff ab′ = a′b

iff a′b = ab′

iff (a′,b′)≡ (a,b).

(iii) From (a,b)≡ (a′,b′) and (a′,b′)≡ (a′′,b′′), we have that ab′ = a′b and
a′b′′ = a′′b′. Hence,

b′(ab′′)= (ab′)b′′ = a′bb′′ = b(a′b′′)= ba′′b′ = b′(a′′b).

Since b′ 6= 0, we can use cancelation to obtain ab′′ = a′′b.

Therefore, (a,b)≡ (a′′,b′′).
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Rings and Fields The Field of Fractions of an Integral Domain

Operations on the Set of Equivalence Classes mod ≡

The quotient set P/≡ is denoted by Q(D).

Its elements are equivalence classes

[a,b]= {(x ,y) ∈P : (x ,y)≡ (a,b)}.

For reasons that will become obvious, we choose to denote the classes
by fraction symbols a/b or a

b
.

Two classes are equal if their (arbitrarily chosen) representative pairs
in the set P are equivalent:

a

b
=
c

d
if and only if ad = bc .

In particular, note that a
b
= ka

kb
, for all k 6= 0 in D.

We define addition and multiplication in Q(D) by the rules

a

b
+
c

d
=
ad +bc

bd
,

a

b
·
c

d
=

ac

bd
.
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Addition and Multiplication are Well-Defined

Lemma

Addition and multiplication in Q(D) are well-defined.

Suppose that a
b
= a′

b′ and c
d
= c ′

d ′ . Then ab′ = a′b and cd ′ = c ′d . So

(ad +bc)b′d ′ = ab′dd ′+bb′cd ′ = a′bdd ′+bb′c ′d = (a′d ′+b′c ′)bd .

Hence,
a

b
+
c

d
=
ad +bc

bd
=
a′d ′+b′c ′

b′d ′ =
a′

b′
+
c ′

d ′ .

Similarly,

(ac)(b′d ′)= (ab′)(cd ′)= (a′b)(c ′d)= (a′c ′)(bd).

So
a

b
·
c

d
=

ac

bd
=

a′c ′

b′d ′ =
a′

b′
·
c ′

d ′ .
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The Field of Fractions Q(D) of D

These operations turn Q(D) into a commutative ring with unity.

The verifications are tedious but not difficult.

E.g., for distributivity,

a
b

(
c
d + e

f

)

= a
b · cf +dedf = acf +ade

bdf ,
a
b
· c
d
+ a

b
· e
f

= ac
bd

+ ae
bf

= acbf +aebd
b2df

= acf +ade
bdf

.

The zero element is 0
1
(= 0

b
for all b 6= 0 in D).

The unity element is 1
1
(= b

b for all b 6= 0 in D).

The negative of a
b

is −a
b

.

The ring Q(D) is in fact a field, since for all a
b

with a 6= 0, we have

that a
b · ba = ab

ab = 1
1
.

The field Q(D) is called the field of fractions of the domain D.
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Embedding of D into Q(D)

Lemma

The mapping ϕ :D →Q(D) given by

ϕ(a)=
a

1
, a ∈D ,

is a monomorphism.

From the definition of the operations on Q(D),

ϕ(a)+ϕ(b) = a
1
+ b

1
= a+b

1
=ϕ(a+b);

ϕ(a)ϕ(b) = a
1
· b
1
= ab

1
=ϕ(ab).

Also,

ϕ(a)=ϕ(b) ⇒
a

1
=
b

1
⇒ a= b.

Identifying a
1

with a, we can regard D as a subring of Q(D).
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Minimality of Q(D)

The field Q(D) is the smallest field containing D.

Theorem

Let D be an integral domain, let ϕ be the monomor-
phism from D into Q(D) and let K be a field with the
property that there is a monomorphism θ from D into
K . Then, there exists a monomorphism ψ :Q(D)→K

such that the diagram commutes:

D
θ

> K

Q(D)

ϕ∨ ψ

>

Define a mapping ψ :Q(D)→K by the rule that ψ( a
b
)= θ(a)

θ(b)
. Here

θ(b) 6= 0, since θ is a monomorphism. This is well-defined and
one-to-one, since

a

b
=
c

d
⇔ ad = bc ⇔ θ(a)θ(d)= θ(b)θ(c) ⇔

θ(a)

θ(b)
=

θ(c)

θ(d)
.
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Minimality of Q(D) (Cont’d)

It is a homomorphism, since

ψ( ab + c
d ) = ψ(ad+bcbd )= θ(ad+bc)

θ(bd) = θ(a)θ(d)+θ(b)θ(c)
θ(b)θ(d)

= θ(a)
θ(b)

+ θ(c)
θ(d)

=ψ( a
b
)+ψ( c

d
);

ψ( a
b
· c
d
) = ψ( ac

bd
)= θ(ac)

θ(bd)
= θ(a)θ(c)

θ(b)θ(d)

= θ(a)
θ(b) ·

θ(c)
θ(d) =ψ( ab ) ·ψ(

c
d ).

The commuting of the diagram is clear, since, for all a in D,

ψ(ϕ(a))=ψ
(a

1

)

=
θ(a)

θ(1)
= θ(a).

When D =Z, it is clear that Q(D)=Q.
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Subsection 4

The Characteristic of a Field
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Multiples of Ring Elements

In a ring R containing an element a, we denote a+a by 2a.

More generally, if n is a natural number, we write na for the sum

a+a+·· ·+a
︸ ︷︷ ︸

n summands

.

If we define 0a= 0R and (−n)a to be n(−a), we can give a meaning to
na for every integer n.

For m,n ∈Z and a,b ∈R , we have

(m+n)a=ma+na;
m(a+b)=ma+mb;
(mn)a=m(na);
m(ab)= (ma)b = a(mb);
(ma)(nb)= (mn)(ab).

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 43 / 61



Rings and Fields The Characteristic of a Field

The Characteristic of a Ring

Let R be a commutative ring with unity element 1R .

Then there are two possibilities:

(i) The elements m1R (m= 1,2, . . .) are all distinct;
(ii) There exist m,n in N, such that m1R = (m+n)1R .

In the former case we say that R has characteristic zero, and write
charR = 0.

In the latter case, m1R = (m+n)1R =m1R +n1R . So n1R = 0R .

The least positive n for which this holds is called the characteristic of
the ring R and we write charR = n.

Note that, if R is a ring of characteristic n, then, for all a in R ,

na= (n1R)a= 0Ra= 0R .
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The Case of a Field

Theorem

The characteristic of a field is either 0 or a prime number p.

The former possibility can certainly occur.

Q,R and C are all fields of characteristic 0.

Let K be a field and suppose that charK = n 6= 0, where n is not prime.

Then n = rs, where 1< r < n and 1< s < n.

The minimal property of n implies r1K 6= 0K and s1K 6= 0K .

On the other hand,

(r1K )(s1K )= (rs)1K = n1K = 0K .

But this is impossible, since K , being a field, has no zero divisors.
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The Prime Subfield

Let K be a field with characteristic 0.

The elements n1K , n ∈Z, are all distinct, and form a subring of K
isomorphic to Z.

The set

P(K )=
{
m1K
n1f

:m,n ∈Z,n 6= 0

}

is a subfield of K isomorphic to Q.

Any subfield of K must contain 1 and 0 and so must contain P(K ).

P(K ) is called the prime subfield of K .

If K has prime characteristic p, the prime subfield is

P(K )= {1K ,2(1K ), . . . ,(p−1)(1K )}.

In this case P(K ) is isomorphic to Zp.
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Characterizing the Prime Subfield

Theorem

Let K be a field. Then K contains a prime subfield P(K ) contained in
every subfield.

If charK = 0, then P(K ) is isomorphic to Q.

If charK = p, a prime number, then P(K ) is isomorphic to Zp.

The fields Q and Zp play a central role in the theory of fields.

They have no proper subfields, and every field contains as a subfield
an isomorphic copy of one or other of them.

We express this by saying:

Every field of characteristic 0 is an extension of Q;
Every field of prime characteristic p is an extension of Zp .
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The Expression a/n

Given an element a of a field K , we sometimes like to denote a
n1

simply by a
n .

If charK = 0, this is no problem;
If charK = p, then we cannot assign a meaning to a

n , if n is a multiple
of p.

Example: The formula

xy =
1

4

(

(x +y)2− (x −y)2
)

is not valid in a field of characteristic 2, since the quantity on the right
reduces to 0

0
and so is undefined.
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Power of Sum in Characteristic p

Theorem

Let K be a field of characteristic p. Then, for all x ,y in K ,

(x +y)p = xp +yp .

By the binomial theorem, valid in any commutative ring with unity, we
have that

(x +y)p =
p∑

r=0

(

p

r

)

xn−ry r .

For r = 1, . . . ,p−1, the coefficient
(p
r

)

= p(p−1)···(p−r+1)
r ! is an integer.

So r ! divides p(p−1) · · ·(p− r +1). Since p is prime and r < p, no
factor of r ! can divide p. Hence, r ! divides (p−1) · · ·(p− r +1). So

(p
r

)

is an integer divisible by p. Thus„ for r = 1, . . . ,p−1,
(p
r

)

xn−ry r = 0.
So, in (x +y)p =

∑p
r=0

(p
r

)

xn−ry r , only the first and last terms survive.
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Representation of Elements in Zp

The fields Zp =Z/〈p〉 are important building blocks in field theory.

We usually find it convenient to write Zp = {0,1, . . . ,p−1}, with
addition and multiplication carried out modulo p.

For example, the multiplication table for Z5 is

0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

0 1 2 −2 −1

0 0 0 0 0 0
1 0 1 2 −2 −1
2 0 2 −1 1 −2
−2 0 −2 1 −1 2
−1 0 −1 −2 2 1

Occasionally, it is more convenient to write Z3 = {0,1,−1}.

Similarly, we may write Z5 = {0,±1,±2}, obtaining the table on the
right.
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Subsection 5

Reminder of Some Group Theory
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Groups, Abelian Groups and Finite Groups

A group G = (G , ·) is a non-empty set furnished with a binary
operation · with the following properties:
(G1) The associative law: (ab)c = a(bc), for all a,b,c ∈G ;
(G2) The existence of an identity element: there exists e in G , such

that, for all a in G , ea= a;
(G3) The existence of inverses: for all a in G , there exists a−1 in G , such

that a−1a= e.

An abelian group has an additional property:
(G4) The commutative law: ab= ba, for all a,b ∈G .

The element e and the element a−1 are both unique, and

ae = ea= a, aa−1 = a−1a= e.

For all a,b ∈G ,
(ab)−1 = b−1a−1

.

The group (G , ·) is called a finite group if the set G is finite.

The cardinality |G | of G is called the order of the group.
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Cyclic Groups

We write a2,a3, . . ., where a ∈G , for the products aa,aaa, . . ..

We write a−n to mean (a−1)n = (an)−1.

By a0 we mean the identity element e.

A group G is called cyclic if there exists an element a in G such that

G = {an : n ∈Z}.

If the powers an are all distinct, G is the infinite cyclic group.
Otherwise, there is a least m> 0, such that am = e.
Given n ∈Z, the division algorithm gives integers q and r , such that
n= qm+ r and 0≤ r ≤m−1.
Therefore, an = aqm+r = (am)qar = ar .

Thus, G = {e ,a,a2, . . . ,am−1}, the cyclic group of order m.

Both the infinite cyclic group and the cyclic group of order m are
abelian.
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Subgroups and Orders of Elements

A non-empty subset U of G is called a subgroup of G if, for all
a,b ∈G ,

a,b ∈U implies ab ∈U;
a ∈U implies a−1 ∈U;

or, equivalently,
a,b ∈U implies ab−1 ∈U .

Every subgroup contains the identity element e.

For each element a in the group G , the set {an : n ∈Z} is a subgroup,
called the cyclic subgroup generated by a, and denoted by 〈a〉.
If G is finite, 〈a〉 cannot be the infinite cyclic group.

The order of 〈a〉 is called the order of the element a.

The order of a is the smallest positive integer n, such that an = e, and
is denoted by o(a).
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Left Cosets and Lagrange’s Theorem

Let U be a subgroup of a group G and let a ∈G .

The subset
Ua= {ua : u ∈U}

is called a left coset of U .

We have Ua=Ub if and only if ab−1 ∈U .
Suppose Ua=Ub. Then, there exist u1,u2 ∈U , such that u1a= u2b.
So ab−1 = u−1

1 u2 ∈U . Conversely, suppose ab−1 ∈U . If u ∈U , then:

ua= ua(b−1b)= u(ab−1)b ∈Ub. So Ua⊆Ub.
ub= ub(a−1a)= u(ab−1)−1a ∈Ua. So Ub ⊆Ua.

Among the left cosets is U itself.

This is clear, since Ue =U .

The distinct left cosets form a partition of G , i.e., every element of G
belongs to exactly one left coset of U .

Indeed, suppose c ∈Ua∩Ub. Then, there exist u1,u2 ∈U , such that
c = u1a= u2b. Thus, ab−1 = u−1

1 u2 ∈U . Therefore, Ua=Ub.
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Left Cosets and Lagrange’s Theorem

Theorem (Lagrange’s Theorem)

If U is a subgroup of a finite group G , then |U | divides |G |.

The mapping U into Ua; u 7→ ua, is one-one and onto.

So, in a finite group, every left coset has |U | elements.

Thus, |G | = |U |× (the number of left cosets).

It follows that, for all a in G , the order of a divides the order of G .
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Index and Normal Subgroups

Exactly the same thing can be done with right cosets aU .

The right coset aU and the left coset Ua may not be identical, but the
number of right cosets is the same as the number of left cosets.

This number is called the index of the subgroup.

U is a normal subgroup of G , writtten UEG , if Ua= aU for all a.

U is normal if and only if, for all a in G , a−1Ua=U .
Suppose, first, that Ua= aU , for all a. Let u ∈U .

There exists u′ ∈U , such that au = u′a. So u = a−1u′a ∈ a−1Ua. So
U ⊆ a−1Ua.
There exists u′ ∈U , such that ua= au′. So a−1ua= a−1au′ = u′ ∈U . So
a−1Ua⊆U .

Assume, conversely, a−1Ua=U , for all a. Let u ∈U .
There exists u′ ∈U , such that a−1ua= u′. So ua= aa−1ua= au′ ∈ aU .

So Ua⊆ aU .
There exists u′ ∈U , such that u = a−1u′a. So au = aa−1u′a= u′a ∈Ua.

So aU ⊆Ua.
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Quotient Groups

Given a group G , if UEG , we can define a group operation on the set
of cosets of U :

(Ua)(Ub)=U(ab).

This is well-defined.

For all u,v in U ,

(ua)(vb) = u(av)b
= u(v ′a)b (for some v ′ in U , since U is normal)
= (uv ′)(ab) ∈U(ab).

Associativity is clear.

The identity of the group is the coset U =Ue.

The inverse of Ua is Ua−1.

The group is denoted by G/U , and is called the quotient group, or
the factor group, of G by U .
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Homomorphisms and Natural Homomorphisms

Let G ,H be groups, with identity elements eG ,eH , respectively.

A mapping ϕ :G →H is called a homomorphism if, for all a,b ∈G ,

ϕ(ab)=ϕ(a)ϕ(b).

If ϕ :G →H is a homomorphism:

ϕ(eG )= eH ;
ϕ(a−1)= (ϕ(a))−1, for all a in G .

If N is a normal subgroup of G , the mapping νN :G →G/N, given by

νN(a)=Na, a ∈G ,

is a homomorphism.

It is called the natural homomorphism, onto G/N.
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Isomorphisms and Homomorphic Images

If a homomorphism ϕ :G →H is one-one and onto, we say that it is
an isomorphism.

In such a case ϕ−1 :H →G is also an isomorphism, and we say that H
is isomorphic to G , writing H ∼=G .

If ϕ maps onto H, but is not necessarily one-one, we say that H is a
homomorphic image of G .
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Kernels and First Homomorphism Theorem

Let ϕ :G →H be a homomorphism.

The kernel kerϕ of ϕ is defined by

kerϕ=ϕ−1(eH)= {a ∈G :ϕ(a)= eH }.

kerϕ is a normal subgroup of G .

Every homomorphic image of G is isomorphic to a quotient group of
G by a suitable normal subgroup.

Theorem

Let G ,H be groups, and let ϕ be a homomorphism from
G onto H, with kernel N. Then there exists a unique
isomorphism α :G/N →H, such that the diagram comutes:

G
ϕ

> H

G/N

νN∨ α

>

The mapping α :Na 7→ϕ(a) is well-defined, one-one, onto, and a
homomorphism. Moreover, α◦νN =ϕ.
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