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Solvability of Galois Group and Solvability by Radicals

Theorem

Let K be a field of characteristic zero. Let f be a polynomial in K [X ]
whose Galois group Gal(f ) is solvable. Then f is solvable by radicals.

Let L be a splitting field of f over K . We are supposing that
Gal(L :K ) is solvable. Suppose also that |Gal(L :K )| =m.

If K does not contain an m-th root of unity,
we can adjoin one. Let E be the splitting field
over K of the polynomial Xm−1. Now let M
be a splitting field for f over E . By a previous
theorem, we may regard M as an extension of
L, and Gal(M :E )∼=Gal(L :E ∩L).

M

E L

E ∩L

K

Now Gal(L :E ∩L) is a subgroup of the soluble group Gal(L :K ).

So, by a previous theorem, G =Gal(M :E ) is soluble.
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Solubility of Galois and Solubility by Radicals (Cont’d)

G =Gal(M :E ) is soluble. Thus there exist subgroups

{1} =G0 ⊳G1 ⊳ · · ·⊳Gr =G ,

such that Gi+1/Gi is cyclic for 0≤ i ≤ r −1. By the Fundamental
Theorem, there is a corresponding sequence of subfields of M

E =Mr ⊆Mr−1 ⊆ ·· · ⊆M0 =M ,

such that Gal(M :Mi)=Gi , and Gal(Mi :Mi+1)∼=Gi+1/Gi .

Thus Mi is a cyclic extension of Mi+1.
Let [Mi :Mi+1]= di , i = 0,1, . . . ,r . Then di | [M :E ]= |Gal(M :E )|.
Also |Gal(M :E )| = |Gal(L :E ∩L)| | |Gal(L :K )| =m.
Since Mi+1 contains E , it contains every m-th root ω of unity.

So certainly contains all di -th roots of unity, these being powers of ω.
Hence, by a theorem, there exists βi in Mi , such that Mi =Mi+1(βi ),
where βi is a root of an irreducible X di −ci+1, with ci+1 in Mi+1.
So the polynomial f is solvable by radicals.
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Radical Extensions and Solvable Groups

Theorem

Let K be a field of characteristic zero, and let K ⊆ L⊆M, where M is a
radical extension. Then Gal(L :K ) is a solvable group.

Suppose there is a sequence K =M0,M1, . . . ,Mr =M, such that
Mi+1 =Mi(αi ), i = 0,1, . . . ,r −1, where αi is a root of a polynomial
X ni −ai , irreducible in Mi [X ].

The idea of the proof is simple.

At each stage, where the element αi is a root of X ni −bi , we use
preceding theorems to get useful information about the Galois groups.

However, we have to be careful that we have normal extensions at
each stage.
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Radical Extensions and Solvable Groups: The Start

First, note that L need not be a normal extension of K .

Instead of repairing L, we modify the base field K .

The fixed field K ′ =Φ(Γ(K )) of Gal(L :K ) will in general be larger
than K . On the other hand, we know that

Φ(Γ(K ′))= (ΦΓΦΓ)(K )= (ΦΓ)(K )=K ′
.

Hence, L is a normal extension of K ′.

Note that:

Any polynomial f in K [X ] may be regarded as a polynomial in K ′[X ];
Gal(L :K )=Gal(L :K ′).

So we may replace K by K ′.

To avoid complicating the notation, we suppose that L is a normal
extension of K .
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Radical Extensions and Solvable Groups (Cont’d)

If N is a normal closure of M, then N is a radical extension, by a
preceding theorem. So we may assume that M is both radical and
normal. Note also that:

Gal(M : L)⊳Gal(M :K );
Gal(L :K )∼=Gal(M :K )/Gal(M : L).

So, if we prove that Gal(M :K ) is solvable, it will follow, by preceding
theorems, that Gal(L :K ) is solvable.

So we set out to prove that Gal(M :K ) is solvable, our assumption
being that M is a normal (separable) radical extension of K .

Let M =K (α1,α2, . . . ,αn), with α
pi
i
∈K (α1,α2, . . . ,αi−1), i = 1,2, . . . ,n.

We may assume that pi is prime for all i , at a cost of increasing n.

If, e.g., we have α
pq

i
∈K (α1,α2, . . . ,αi−1), we can define β as α

p

i
, and

say

βq ∈K (α1,α2, . . . ,αi−1) and α
p

i
∈K (β,α1,α2, . . . ,αi−1).
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Radical Extensions and Solvable Groups (Cont’d)

We prove the result by induction on n. We have that α
p1

1
= b1 ∈K .

To have enough roots of unity, we let P =M(ω) be a splitting field for
X p1 −1 over M, where ω is a primitive p1-th root of unity.

Certainly, P , being a splitting field, is a normal extension of M .
By the Fundamental Theorem, Gal(P :M)⊳Gal(P :K );
By the Fundamental Theorem, Gal(M :K )∼=Gal(P :K )/Gal(P :M).

By a previous theorem, if Gal(P :K ) is solvable, so will be Gal(M :K ).

Let M1 be the subfield K (ω) of P . M1 is a splitting field over K of
X p1 −1. So it is a normal extension. By a previous corollary,
Gal(M1 :K ) is cyclic (and hence solvable). Thus:

Gal(P :M1)⊳Gal(P :K );
Gal(M1 :K )∼=Gal(P :K )/Gal(P :M1).

Hence, if Gal(P :M1) is solvable, so will be Gal(P :K ).
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Radical Extensions and Solvable Groups (Cont’d)

So, having begun with Gal(L :K ), we have now reduced the problem
to showing that Gal(P :M1) is solvable.

We may write P =M1(α1,α2, . . . ,αn). Denote Gal(P :M1) by G . Let
H =Gal(P :M(α1)), a subgroup of G . Use induction on n.

In M1[X ], X p1 − 1 = (X − 1)(X −ω)(X −ω2) · · ·(X −
ωp1−1). In (M(α1))[X ], X p1 −b1 =X p1 −α

p1

1
= (X −

α1)(X −ωα1)(X −ω2α1) · · ·(X −ωp1−1α1).
Thus, M(α1) is a splitting field for X p1 −b1 over M1.
Therefore, Γ(M(α1))=Gal(M1(α1) :M1) is cyclic.

P

M1(α1)
M

M1

K

M1(α) is a normal extension (being a splitting field) of M1.

So H ⊳G and G/H ∼= Γ(M(α1)) is cyclic.

H =Gal(P :M(α1))=Gal(M1(α1)(α2, . . . ,αn) :M1(α1)).

P is a normal extension of M1(α1).

By the induction hypothesis, H is solvable.

Since G/H is certainly solvable, we deduce that G is solvable.
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Solvability of Polynomial Equations by Radicals

The Theorem makes no reference to polynomials or equations, but this
omission is easily repaired.

Let f be a polynomial in K [X ], and suppose that it is solvable by
radicals.

Then its splitting field L is contained in a radical extension M of K .

The theorem tells us that Gal(f )=Gal(L :K ) is solvable.

Theorem

A polynomial f with coefficients in a field K of characteristic zero is
solvable by radicals if and only if its Galois group is solvable.

Immediate by the preceding two theorems.
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Subsection 2

Insolvable Quintics
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Galois Group of Irreducible Polynomials of Prime Degree

Theorem

Let p be a prime, and let f be a monic irreducible polynomial of degree p,
with coefficients in Q. Suppose that f has precisely two zeros in C\R.
Then the Galois group of f is the symmetric group Sp.

The polynomial f has a splitting field L contained in C. The roots of
f in L are all distinct. The Galois group G =Gal(L :Q) is a group of
permutations on the p roots of f in L. Thus G is a subgroup of Sp.

In constructing the splitting field of f , the first step is to form Q(α),
where α has minimum polynomial f . Then [Q(α) :Q]= p.

But p = |Gal(Q(α) :Q)| = |Gal(L:Q)|
|Gal(L:Q(α))| . So p divides |G |.

Thus, G contains an element of order p.

But the only elements of order p in Sp are cycles of length p.

So G contains a cycle of length p.
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Galois Group of Irreducible Polynomials of Prime Degree

The two non-real roots of f are complex conjugates of each other.

So the splitting field contains a transposition, interchanging the two
non-real roots and leaving the rest unchanged.

There is no loss of generality in denoting the transposition by (1 2).

We may also suppose that the p-cycle σ= (a1 a2 · · · ap) has a1 = 1,
for the choice of first element is arbitrary.

If ak = 2, then σk−1 = (1 2 · · ·).
We may as well write it as (1 2 · · · p).
By a previous theorem, (1 2) and (1 2 · · · p) generate Sp.

Since G contains (1 2) and (1 2 · · · p), G =Sp.

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 14 / 31



Groups and Equations Insolvable Quintics

Example

We show that f (X )=X 5−8X +2 is not soluble by radicals.

f is irreducible over Q, by Eisenstein’s Criterion.

A table of values,

X −2 −1 0 1 2

f (X ) −14 9 2 −5 18

implies that there are roots in the intervals (−2,−1), (0,1) and (1,2).

So f has at least three real roots.

The derivative f ′(X )= 5X 4−8 has two real roots.

By Rolle’s theorem, there is at least one real zero of f ′(X ) between
zeros of f (X ).

So f has at most 3 real roots.

Thus, f has precisely three real roots.

By preceding theorems, f (X ) is not solvable by radicals.
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Subsection 3

General Polynomials
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Algebraic Independence

Let K be a field of characteristic zero.

Let L be an extension of K .

A subset {α1,α2, . . . ,αn} of L is said to be algebraically independent

over K if, for all polynomials f = f (X1,X2, . . . ,Xn), with coefficients in
K ,

f (α1,α2, . . . ,αn)= 0 implies f = 0.

This is a much stronger condition than linear independence.

Example: Consider the set {1,
p

2,
p

3,
p

6}.

It is linearly independent over Q.
It is not algebraically independent.
Let f (X1,X2,X3,X4)=X2X3−X4.
Then f (1,

p
2,
p

3,
p

6)=
p

2
p

3−
p

6= 0.
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Algebraic Independence (Alternative Formulations)

Algebraic independence of {α1,α2, . . . ,αn} over K is equivalent to the
property that:

α1 is transcendental over K ;
αr is transcendental over K (α1,α2, . . . ,αr−1), for each r in {2,3, . . . ,n}.

{α1,α2, . . . ,αn} is algebraically independent over K if and only if
K (α1,α2, . . . ,αn) is isomorphic to K (X1,X2, . . . ,Xn), the field of all
rational forms with n indeterminates and coefficients in K .
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Finitely Generated Extensions

An extension L of a field K is said to be finitely generated if, for
some natural number m, there exist elements α1,α2, . . . ,αm, such that
L=K (α1,α2, . . . ,αm).

Every finite extension is certainly finitely generated, but the converse
statement is false.

Theorem

Let L=K (α1,α2, . . . ,αn) be a finitely generated extension of K . Then there
exists a field E , such that K ⊆E ⊆ L, such that, for some m such that
0≤m≤ n:

(i) E =K (α1,α2, . . . ,αm), where {α1,α2, . . . ,αm} is algebraically independent
over K ;

(ii) [L :E ] is finite.
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Proof of the Theorem

Suppose, first, that all elements α1,α2, . . . ,αn are algebraic over K .
Then [L :K ] is finite. We may take E =K and m= 0.

Suppose not all of α1,α2, . . . ,αn are algebraic over K .

There exists an αi which is transcendental over K . Call it β1.
If [L :K (β1)] is not finite, there is an αj which is transcendental over
K (α1). Call it β2.
The process continues, and must terminate in at most n steps.

Thus:

E =K (β1,β2, . . . ,βm), where m≤ n and {β1,β2, . . . ,βm} is algebraically
independent over K ;
[L :E ] is finite.
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Transcendence Degree

Theorem

Keeping the notation of the preceding theorem, suppose that there is
another field F , such that K ⊆F ⊆ L, and:

(i) F =K (γ1,γ2, . . . ,γp), where {γ1,γ2, . . . ,γp} is algebraically independent
over K ;

(ii) [L : F ] is finite.

Then p =m.

Suppose that p >m.

Since [L :E ] is finite, the element γ1 is algebraic over E . Thus, γ1 is a
root of a polynomial with coefficients in E =K (β1,β2, . . . ,βm).

Equivalently, there is a non-zero polynomial f , such that
f (β1,β2, . . . ,βm,γ1)= 0. But γ1 is transcendental over K . So at least
one of the βi ’s, say β1, must actually occur in the coefficients of f .
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Transcendence Degree (Cont’d)

Thus, β1 is algebraic over K (β2, . . . ,βm,γ1).

Moreover, [L :K (β2, . . . ,βm,γ1)] is finite.

We continue the argument, replacing each successive βi by γi .

So [L :K (γ1,γ2, . . . ,γm)] is finite.

We are assuming that p >m.

But γm+1 is transcendental over K (γ1,γ2, . . . ,γm).

This gives a contradiction.

Similarly, we obtain a contradiction if we assume that m> p.

The number m is called the transcendence degree of L over K .

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 22 / 31



Groups and Equations General Polynomials

Automorphisms Induced by Permutations

Let K be a field.

Let L be an extension of K with transcendence degree n.

Suppose that L=K (t1,t2, . . . ,tn), where t1,t2, . . . ,tn are algebraically
independent over K .

For all σ in the symmetric group Sn we can define a K -automorphism
ϕσ of L, given by

ϕσ(ti )= tσ(i),

and extending in the usual way to L.

Example: Say n = 3 and L=K (t1,t2,t3).

Let σ= (1 2 3) and q = t1+3t2−t3
t31 t2

∈ L. Then σ(q)= t2+3t3−t1
t32 t3

.

Let us denote by Autn the group {ϕσ :σ∈ Sn}.

The map Sn →Autn; σ 7→ϕσ is an isomorphism.
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Elementary Symmetric Polynomials

Consider again L=K (t1,t2, . . . ,tn), where t1,t2, . . . ,tn are algebraically
independent over K .
The fixed field F of Autn includes:

All the elementary symmetric polynomials

s1 = t1+ t2+·· ·+ tn,

s2 = t1t2+ t1t3+·· ·+ tn−1tn,

...
sn = t1t2 · · ·tn;

All rational combinations of these polynomials.

Example:
t2
1
+ t2

2
+·· ·+ t2n is clearly in F .

Note that we have

t21 +·· ·+ t2n = (t1+·· ·+ tn)
2−2(t1t2+·· ·+ tn−1tn)= s21 −2s2.
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Characterization of the Fixed Field

Theorem

The fixed field F of Autn is F =K (s1,s2, . . . ,sn).

We show, by induction on n, that

[K (t1,t2, . . . ,tn) :K (s1,s2, . . . ,sn)]≤ n!.

This is obvious for n= 1.

Certainly K (s1,s2, . . . ,sn)⊆K (s1,s2, . . . ,sn,tn)⊆K (t1,t2, . . . ,tn).

The polynomial f (X )=X n− s1X
n−1+·· ·+ (−1)nsn factorizes into

(X − t1)(X − t2) · · ·(X − tn) over K (t1,t2, . . . ,tn).

Hence, the minimum polynomial of tn over K (s1,s2, . . . ,sn) divides f .

Consequently [K (s1,s2, . . . ,sn,tn) :K (s1,s2, . . . ,sn)]≤ n.
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Characterization of the Fixed Field (Cont’d)

Let s ′1,s ′2, . . . ,s ′n−1 be the elementary symmetric polynomials in
t1,t2, . . . ,tn−1.

Then s1 = s ′1+ tn, sn = s ′n−1tn, and sj = s ′
j−1

tn+ s ′
j
, j = 2,3, . . . ,n−1.

Hence, K (s1,s2, . . . ,sn)=K (s ′1,s ′2, . . . ,s ′n−1,tn).

So, by the induction hypothesis,

[K (t1,t2, . . . ,tn) :K (s1,s2, . . . ,sn,tn)]
= [K (tn)(t1,t2, . . . ,tn−1) :K (tn)(s

′
1,s ′2, . . . ,s ′n−1)]

≤ (n−1)!.

This concludes the induction.

Note that K (s1,s2, . . . ,sn) is contained in the fixed field F of Autn.

By a preceding theorem, [K (t1,t2, . . . ,tn) : F ]= |Autn| = n!.

So, by what was just proven, F =K (s1,s2, . . . ,sn).
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Algebraic Independence of the Symmetric Polynomials

Theorem

The symmetric polynomials s1,s2, . . . ,sn are algebraically independent.

t1,t2, . . . ,tn are the roots of Xn− s1X
n−1+ s2X

n−2−·· ·+ (−1)nsn.

So the field F (t1,t2, . . . ,tn) is a finite extension of F (s1,s2, . . . ,sn).

Thus, F (t1,t2, . . . ,tn) and F (s1,s2, . . . ,sn) have the same transcendence
degree. So s1,s2, . . . ,sn are algebraically independent.
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The General Polynomial

Let K be a field of characteristic 0.

Consider a set of n algebraically independent elements over K .

We name these elements as s1,s2, . . . ,sn.

The general polynomial of degree n “over K” (its coefficients are
actually in K (s1,s2, . . . ,sn)) is

X n− s1X
n−1+ s2X

n−2−·· ·+ (−1)nsn.

We can call it a general (or generic) polynomial, because there is no
algebraic connection among the coefficients.
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The Splitting Field of the General Polynomial

Theorem

Let K be a field of characteristic zero and

g(X )=X n− s1X
n−1+ s2X

n−2−·· ·+ (−1)nsn.

Let M be a splitting field for g over K (s1,s2, . . . ,sn).

The zeros t1,t2, . . . ,tn of g in M are algebraically independent over K .

The Galois group of M over K (s1,s2, . . . ,sn) is the symmetric group Sn.

The degree [M :K (s1,s2, . . . ,sn)] is finite.

So, over K , the transcendence degree of M =K (t1,t2, . . . ,tn) is the
same as that of K (s1,s2, . . . ,sn), namely, n.

So the elements t1,t2, . . . ,tn must be algebraically independent.
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The Splitting Field of the General Polynomial (Cont’d)

We have

X n− s1X
n−1+ s2X

n−2 = ·· ·+ (−1)nsn = (X − t1)(X − t2) · · ·(X − tn).

So s1,s2, . . . ,sn are the elementary symmetric polynomials in
t1,t2, . . . ,tn.

We have seen that:

Autn is a group of automorphisms of M ;
Its fixed field is K (s1,s2, . . . ,sn).

Thus, by a previous theorem,

[M :K (s1,s2, . . . ,sn)]= [M :Φ(Autn)]= |Autn| = |Sn| = n!.

Hence Gal(M :K (s1,s2, . . . ,sn))∼= Sn.
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Insolvability of the General Polynomial by Radicals

Theorem

Let K is a field with characteristic zero and n≥ 5. The general polynomial

X n− s1X
n−1+ s2X

n−2−·· ·+ (−1)nsn.

is not solvable by radicals.

By a previous theorem, a polynomial f is solvable by radicals if and
only if its Galois group is solvable.

By the preceding theorem the Galois group of the general polynomial
of degree n is Sn.

By a preceding corollary, Sn is not solvable for n≥ 5.
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