Fields and Galois Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 1 / 31

Groups and Equations

- Solvability of Galois Group and Solvability by Radicals
- Insolvable Quintics
- General Polynomials

Subsection 1

Solvability of Galois Group and Solvability by Radicals

Solvability of Galois Group and Solvability by Radicals

Theorem

Let K be a field of characteristic zero. Let f be a polynomial in K[X] whose Galois group Gal(f) is solvable. Then f is solvable by radicals.

 Let L be a splitting field of f over K. We are supposing that Gal(L:K) is solvable. Suppose also that |Gal(L:K)| = m.

If K does not contain an m-th root of unity, we can adjoin one. Let E be the splitting field over K of the polynomial $X^m - 1$. Now let M be a splitting field for f over E. By a previous theorem, we may regard M as an extension of L, and $Gal(M:E) \cong Gal(L:E \cap L)$.

Now $Gal(L: E \cap L)$ is a subgroup of the soluble group Gal(L: K). So, by a previous theorem, G = Gal(M: E) is soluble.

Solubility of Galois and Solubility by Radicals (Cont'd)

• G = Gal(M: E) is soluble. Thus there exist subgroups

$$\{1\} = G_0 \lhd G_1 \lhd \cdots \lhd G_r = G,$$

such that G_{i+1}/G_i is cyclic for $0 \le i \le r-1$. By the Fundamental Theorem, there is a corresponding sequence of subfields of M

$$E = M_r \subseteq M_{r-1} \subseteq \cdots \subseteq M_0 = M,$$

such that $\operatorname{Gal}(M:M_i) = G_i$, and $\operatorname{Gal}(M_i:M_{i+1}) \cong G_{i+1}/G_i$. Thus M_i is a cyclic extension of M_{i+1} . Let $[M_i:M_{i+1}] = d_i, i = 0, 1, \dots, r$. Then $d_i | [M:E] = |\operatorname{Gal}(M:E)|$. Also $|\operatorname{Gal}(M:E)| = |\operatorname{Gal}(L:E \cap L)| | |\operatorname{Gal}(L:K)| = m$. Since M_{i+1} contains E, it contains every m-th root ω of unity. So certainly contains all d_i -th roots of unity, these being powers of ω . Hence, by a theorem, there exists β_i in M_i , such that $M_i = M_{i+1}(\beta_i)$, where β_i is a root of an irreducible $X^{d_i} - c_{i+1}$, with c_{i+1} in M_{i+1} . So the polynomial f is solvable by radicals.

George Voutsadakis (LSSU)

Radical Extensions and Solvable Groups

Theorem

Let K be a field of characteristic zero, and let $K \subseteq L \subseteq M$, where M is a radical extension. Then Gal(L:K) is a solvable group.

- Suppose there is a sequence $K = M_0, M_1, \dots, M_r = M$, such that $M_{i+1} = M_i(\alpha_i), i = 0, 1, \dots, r-1$, where α_i is a root of a polynomial $X^{n_i} a_i$, irreducible in $M_i[X]$.
- The idea of the proof is simple.

At each stage, where the element α_i is a root of $X^{n_i} - b_i$, we use preceding theorems to get useful information about the Galois groups.

• However, we have to be careful that we have normal extensions at each stage.

Radical Extensions and Solvable Groups: The Start

First, note that L need not be a normal extension of K.
 Instead of repairing L, we modify the base field K.
 The fixed field K' = Φ(Γ(K)) of Gal(L:K) will in general be larger than K. On the other hand, we know that

 $\Phi(\Gamma(K')) = (\Phi\Gamma\Phi\Gamma)(K) = (\Phi\Gamma)(K) = K'.$

Hence, L is a normal extension of K'. Note that:

- Any polynomial f in K[X] may be regarded as a polynomial in K'[X];
- Gal(L:K) = Gal(L:K').

So we may replace K by K'.

To avoid complicating the notation, we suppose that L is a normal extension of K.

George Voutsadakis (LSSU)

Radical Extensions and Solvable Groups (Cont'd)

- If N is a normal closure of M, then N is a radical extension, by a preceding theorem. So we may assume that M is both radical and normal. Note also that:
 - $Gal(M:L) \lhd Gal(M:K);$
 - $Gal(L:K) \cong Gal(M:K)/Gal(M:L).$

So, if we prove that Gal(M:K) is solvable, it will follow, by preceding theorems, that Gal(L:K) is solvable.

So we set out to prove that Gal(M:K) is solvable, our assumption being that M is a normal (separable) radical extension of K. Let $M = K(\alpha_1, \alpha_2, ..., \alpha_n)$, with $\alpha_i^{p_i} \in K(\alpha_1, \alpha_2, ..., \alpha_{i-1}), i = 1, 2, ..., n$. We may assume that p_i is prime for all i, at a cost of increasing n. If, e.g., we have $\alpha_i^{pq} \in K(\alpha_1, \alpha_2, ..., \alpha_{i-1})$, we can define β as α_i^p , and say

$$\beta^q \in K(\alpha_1, \alpha_2, \dots, \alpha_{i-1})$$
 and $\alpha_i^p \in K(\beta, \alpha_1, \alpha_2, \dots, \alpha_{i-1}).$

Radical Extensions and Solvable Groups (Cont'd)

- We prove the result by induction on n. We have that α₁^{p₁} = b₁ ∈ K. To have enough roots of unity, we let P = M(ω) be a splitting field for X^{p₁} - 1 over M, where ω is a primitive p₁-th root of unity.
 - Certainly, P, being a splitting field, is a normal extension of M.
 - By the Fundamental Theorem, $Gal(P: M) \lhd Gal(P: K);$
 - By the Fundamental Theorem, $Gal(M:K) \cong Gal(P:K)/Gal(P:M)$.

By a previous theorem, if Gal(P:K) is solvable, so will be Gal(M:K). Let M_1 be the subfield $K(\omega)$ of P. M_1 is a splitting field over K of $X^{p_1} - 1$. So it is a normal extension. By a previous corollary, $Gal(M_1:K)$ is cyclic (and hence solvable). Thus:

- $Gal(P: M_1) \lhd Gal(P: K);$
- $\operatorname{Gal}(M_1:K) \cong \operatorname{Gal}(P:K)/\operatorname{Gal}(P:M_1).$

Hence, if $Gal(P: M_1)$ is solvable, so will be Gal(P: K).

Radical Extensions and Solvable Groups (Cont'd)

• So, having begun with Gal(L:K), we have now reduced the problem to showing that $Gal(P: M_1)$ is solvable. We may write $P = M_1(\alpha_1, \alpha_2, ..., \alpha_n)$. Denote Gal $(P: M_1)$ by G. Let $H = \text{Gal}(P : M(\alpha_1))$, a subgroup of G. Use induction on n. In $M_1[X]$, $X^{p_1} - 1 = (X - 1)(X - \omega)(X - \omega^2) \cdots (X - \omega^2)$ ω^{p_1-1}). In $(M(\alpha_1))[X]$, $X^{p_1} - b_1 = X^{p_1} - \alpha_1^{p_1} = (X - C_1)^{p_1}$ М $(\alpha_1)(X-\omega\alpha_1)(X-\omega^2\alpha_1)\cdots(X-\omega^{p_1-1}\alpha_1).$ Thus, $M(\alpha_1)$ is a splitting field for $X^{p_1} - b_1$ over M_1 . Therefore, $\Gamma(M(\alpha_1)) = \text{Gal}(M_1(\alpha_1): M_1)$ is cyclic. $M_1(\alpha)$ is a normal extension (being a splitting field) of M_1 . So $H \triangleleft G$ and $G/H \cong \Gamma(M(\alpha_1))$ is cyclic. $H = \operatorname{Gal}(P : M(\alpha_1)) = \operatorname{Gal}(M_1(\alpha_1)(\alpha_2, \dots, \alpha_n) : M_1(\alpha_1)).$ *P* is a normal extension of $M_1(\alpha_1)$. By the induction hypothesis, H is solvable. Since G/H is certainly solvable, we deduce that G is solvable.

Solvability of Polynomial Equations by Radicals

- The Theorem makes no reference to polynomials or equations, but this omission is easily repaired.
- Let f be a polynomial in K[X], and suppose that it is solvable by radicals.
- Then its splitting field L is contained in a radical extension M of K.
- The theorem tells us that Gal(f) = Gal(L:K) is solvable.

Theorem

A polynomial f with coefficients in a field K of characteristic zero is solvable by radicals if and only if its Galois group is solvable.

• Immediate by the preceding two theorems.

Subsection 2

Insolvable Quintics

Galois Group of Irreducible Polynomials of Prime Degree

Theorem

Let p be a prime, and let f be a monic irreducible polynomial of degree p, with coefficients in \mathbb{Q} . Suppose that f has precisely two zeros in $\mathbb{C}\setminus\mathbb{R}$. Then the Galois group of f is the symmetric group S_p .

The polynomial f has a splitting field L contained in C. The roots of f in L are all distinct. The Galois group G = Gal(L:Q) is a group of permutations on the p roots of f in L. Thus G is a subgroup of S_p. In constructing the splitting field of f, the first step is to form Q(α), where α has minimum polynomial f. Then [Q(α):Q] = p. But p = |Gal(Q(α):Q)| = \frac{|Gal(L:Q)|}{|Gal(L:Q(α))|}. So p divides |G|. Thus, G contains an element of order p. But the only elements of order p in S_p are cycles of length p. So G contains a cycle of length p.

George Voutsadakis (LSSU)

Fields and Galois Theory

Galois Group of Irreducible Polynomials of Prime Degree

• The two non-real roots of *f* are complex conjugates of each other. So the splitting field contains a transposition, interchanging the two non-real roots and leaving the rest unchanged.

There is no loss of generality in denoting the transposition by (1 2). We may also suppose that the *p*-cycle $\sigma = (a_1 \ a_2 \ \cdots \ a_p)$ has $a_1 = 1$, for the choice of first element is arbitrary.

If
$$a_k = 2$$
, then $\sigma^{k-1} = (1 \ 2 \ \cdots)$

We may as well write it as $(1 \ 2 \ \cdots \ p)$.

By a previous theorem, (1 2) and (1 2 \cdots *p*) generate S_p . Since *G* contains (1 2) and (1 2 \cdots *p*), $G = S_p$.

Example

We show that f(X) = X⁵-8X+2 is not soluble by radicals.
 f is irreducible over Q, by Eisenstein's Criterion.
 A table of values,

implies that there are roots in the intervals (-2, -1), (0, 1) and (1, 2). So *f* has at least three real roots.

The derivative $f'(X) = 5X^4 - 8$ has two real roots.

By Rolle's theorem, there is at least one real zero of f'(X) between zeros of f(X).

So f has at most 3 real roots.

Thus, f has precisely three real roots.

By preceding theorems, f(X) is not solvable by radicals.

Subsection 3

General Polynomials

Algebraic Independence

- Let K be a field of characteristic zero.
- Let *L* be an extension of *K*.
- A subset $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ of *L* is said to be **algebraically independent** over *K* if, for all polynomials $f = f(X_1, X_2, ..., X_n)$, with coefficients in *K*,

$$f(\alpha_1, \alpha_2, \dots, \alpha_n) = 0$$
 implies $f = 0$.

- This is a much stronger condition than linear independence. Example: Consider the set $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$.
 - ${\ensuremath{\,\circ\,}}$ It is linearly independent over ${\mathbb Q}.$
 - It is not algebraically independent. Let $f(X_1, X_2, X_3, X_4) = X_2 X_3 - X_4$. Then $f(1, \sqrt{2}, \sqrt{3}, \sqrt{6}) = \sqrt{2}\sqrt{3} - \sqrt{6} = 0$.

Algebraic Independence (Alternative Formulations)

- Algebraic independence of {α₁, α₂,..., α_n} over K is equivalent to the property that:
 - α_1 is transcendental over *K*;
 - α_r is transcendental over $K(\alpha_1, \alpha_2, ..., \alpha_{r-1})$, for each r in $\{2, 3, ..., n\}$.
- { $\alpha_1, \alpha_2, ..., \alpha_n$ } is algebraically independent over K if and only if $K(\alpha_1, \alpha_2, ..., \alpha_n)$ is isomorphic to $K(X_1, X_2, ..., X_n)$, the field of all rational forms with n indeterminates and coefficients in K.

Finitely Generated Extensions

- An extension L of a field K is said to be finitely generated if, for some natural number m, there exist elements α₁, α₂,..., α_m, such that L = K(α₁, α₂,..., α_m).
- Every finite extension is certainly finitely generated, but the converse statement is false.

Theorem

Let $L = K(\alpha_1, \alpha_2, ..., \alpha_n)$ be a finitely generated extension of K. Then there exists a field E, such that $K \subseteq E \subseteq L$, such that, for some m such that $0 \le m \le n$:

- (i) $E = K(\alpha_1, \alpha_2, ..., \alpha_m)$, where $\{\alpha_1, \alpha_2, ..., \alpha_m\}$ is algebraically independent over K;
- (ii) [L:E] is finite.

Proof of the Theorem

- Suppose, first, that all elements α₁, α₂,..., α_n are algebraic over K. Then [L: K] is finite. We may take E = K and m = 0. Suppose not all of α₁, α₂,..., α_n are algebraic over K.
 - There exists an α_i which is transcendental over K. Call it β_1 .
 - If [L: K(β₁)] is not finite, there is an α_j which is transcendental over K(α₁). Call it β₂.
 - The process continues, and must terminate in at most *n* steps.

Thus:

- $E = K(\beta_1, \beta_2, ..., \beta_m)$, where $m \le n$ and $\{\beta_1, \beta_2, ..., \beta_m\}$ is algebraically independent over K;
- [L: E] is finite.

Transcendence Degree

Theorem

Keeping the notation of the preceding theorem, suppose that there is another field F, such that $K \subseteq F \subseteq L$, and:

- (i) $F = K(\gamma_1, \gamma_2, ..., \gamma_p)$, where $\{\gamma_1, \gamma_2, ..., \gamma_p\}$ is algebraically independent over K;
- (ii) [L:F] is finite.

Then p = m.

• Suppose that p > m.

Since [L:E] is finite, the element γ_1 is algebraic over E. Thus, γ_1 is a root of a polynomial with coefficients in $E = \mathcal{K}(\beta_1, \beta_2, ..., \beta_m)$. Equivalently, there is a non-zero polynomial f, such that $f(\beta_1, \beta_2, ..., \beta_m, \gamma_1) = 0$. But γ_1 is transcendental over \mathcal{K} . So at least one of the β_i 's, say β_1 , must actually occur in the coefficients of f.

Transcendence Degree (Cont'd)

- Thus, β₁ is algebraic over K(β₂,...,β_m,γ₁). Moreover, [L: K(β₂,...,β_m,γ₁)] is finite. We continue the argument, replacing each successive β_i by γ_i. So [L: K(γ₁,γ₂,...,γ_m)] is finite. We are assuming that p > m. But γ_{m+1} is transcendental over K(γ₁,γ₂,...,γ_m). This gives a contradiction. Similarly, we obtain a contradiction if we assume that m > p.
- The number *m* is called the **transcendence degree** of *L* over *K*.

Automorphisms Induced by Permutations

- Let K be a field.
- Let L be an extension of K with transcendence degree n.
- Suppose that $L = K(t_1, t_2, ..., t_n)$, where $t_1, t_2, ..., t_n$ are algebraically independent over K.
- For all σ in the symmetric group S_n we can define a *K*-automorphism φ_σ of *L*, given by

$$\varphi_{\sigma}(t_i) = t_{\sigma(i)},$$

and extending in the usual way to *L*. Example: Say n = 3 and $L = K(t_1, t_2, t_3)$. Let $\sigma = (1 \ 2 \ 3)$ and $q = \frac{t_1 + 3t_2 - t_3}{t_1^3 t_2} \in L$. Then $\sigma(q) = \frac{t_2 + 3t_3 - t_1}{t_2^3 t_3}$. Let us denote by Aut_n the group { $\varphi_{\sigma} : \sigma \in S_n$ }.

• The map $S_n \to \operatorname{Aut}_n$; $\sigma \mapsto \varphi_\sigma$ is an isomorphism.

0

Elementary Symmetric Polynomials

- Consider again L = K(t₁, t₂,..., t_n), where t₁, t₂,..., t_n are algebraically independent over K.
- The fixed field F of Aut_n includes:
 - All the elementary symmetric polynomials

$$s_1 = t_1 + t_2 + \dots + t_n, s_2 = t_1 t_2 + t_1 t_3 + \dots + t_{n-1} t_n, \vdots s_n = t_1 t_2 \cdots t_n;$$

• All rational combinations of these polynomials.

Example:

- $t_1^2 + t_2^2 + \dots + t_n^2$ is clearly in *F*.
- Note that we have

$$t_1^2 + \dots + t_n^2 = (t_1 + \dots + t_n)^2 - 2(t_1t_2 + \dots + t_{n-1}t_n) = s_1^2 - 2s_2.$$

Characterization of the Fixed Field

Theorem

The fixed field F of Aut_n is $F = K(s_1, s_2, ..., s_n)$.

We show, by induction on n, that

$$[K(t_1, t_2, ..., t_n) : K(s_1, s_2, ..., s_n)] \le n!.$$

This is obvious for n = 1.

Certainly $K(s_1, s_2, ..., s_n) \subseteq K(s_1, s_2, ..., s_n, t_n) \subseteq K(t_1, t_2, ..., t_n)$. The polynomial $f(X) = X^n - s_1 X^{n-1} + \dots + (-1)^n s_n$ factorizes into $(X - t_1)(X - t_2) \cdots (X - t_n)$ over $K(t_1, t_2, ..., t_n)$. Hence, the minimum polynomial of t_n over $K(s_1, s_2, ..., s_n)$ divides f. Consequently $[K(s_1, s_2, ..., s_n, t_n) : K(s_1, s_2, ..., s_n)] \leq n$.

George Voutsadakis (LSSU)

Characterization of the Fixed Field (Cont'd)

• Let $s'_1, s'_2, \ldots, s'_{n-1}$ be the elementary symmetric polynomials in $t_1, t_2, \ldots, t_{n-1}$. Then $s_1 = s'_1 + t_n$, $s_n = s'_{n-1}t_n$, and $s_j = s'_{j-1}t_n + s'_j$, $j = 2, 3, \ldots, n-1$. Hence, $K(s_1, s_2, \ldots, s_n) = K(s'_1, s'_2, \ldots, s'_{n-1}, t_n)$. So, by the induction hypothesis,

$$\begin{bmatrix} K(t_1, t_2, \dots, t_n) : K(s_1, s_2, \dots, s_n, t_n) \end{bmatrix} \\ = \begin{bmatrix} K(t_n)(t_1, t_2, \dots, t_{n-1}) : K(t_n)(s'_1, s'_2, \dots, s'_{n-1}) \end{bmatrix} \\ \le (n-1)!.$$

This concludes the induction.

Note that $K(s_1, s_2, ..., s_n)$ is contained in the fixed field F of Aut_n . By a preceding theorem, $[K(t_1, t_2, ..., t_n) : F] = |Aut_n| = n!$. So, by what was just proven, $F = K(s_1, s_2, ..., s_n)$.

Algebraic Independence of the Symmetric Polynomials

Theorem

The symmetric polynomials s_1, s_2, \ldots, s_n are algebraically independent.

t₁, t₂,..., t_n are the roots of X_n - s₁Xⁿ⁻¹ + s₂Xⁿ⁻² - ... + (-1)ⁿs_n.
 So the field F(t₁, t₂,..., t_n) is a finite extension of F(s₁, s₂,..., s_n).
 Thus, F(t₁, t₂,..., t_n) and F(s₁, s₂,..., s_n) have the same transcendence degree. So s₁, s₂,..., s_n are algebraically independent.

The General Polynomial

- Let K be a field of characteristic 0.
- Consider a set of *n* algebraically independent elements over *K*.
- We name these elements as s_1, s_2, \ldots, s_n .
- The **general polynomial of degree** *n* "over K" (its coefficients are actually in $K(s_1, s_2, ..., s_n)$) is

$$X^n - s_1 X^{n-1} + s_2 X^{n-2} - \dots + (-1)^n s_n.$$

 We can call it a general (or generic) polynomial, because there is no algebraic connection among the coefficients.

The Splitting Field of the General Polynomial

Theorem

Let K be a field of characteristic zero and

$$g(X) = X^n - s_1 X^{n-1} + s_2 X^{n-2} - \dots + (-1)^n s_n.$$

Let *M* be a splitting field for *g* over $K(s_1, s_2, ..., s_n)$.

- The zeros $t_1, t_2, ..., t_n$ of g in M are algebraically independent over K.
- The Galois group of *M* over $K(s_1, s_2, ..., s_n)$ is the symmetric group S_n .
- The degree [M: K(s₁, s₂,..., s_n)] is finite.
 So, over K, the transcendence degree of M = K(t₁, t₂,..., t_n) is the same as that of K(s₁, s₂,..., s_n), namely, n.
 So the elements t₁, t₂,..., t_n must be algebraically independent.

The Splitting Field of the General Polynomial (Cont'd)

We have

$$X^{n} - s_{1}X^{n-1} + s_{2}X^{n-2} = \dots + (-1)^{n}s_{n} = (X - t_{1})(X - t_{2})\cdots(X - t_{n}).$$

So s_1, s_2, \ldots, s_n are the elementary symmetric polynomials in t_1, t_2, \ldots, t_n .

We have seen that:

- Aut_n is a group of automorphisms of M;
- Its fixed field is $K(s_1, s_2, ..., s_n)$.

Thus, by a previous theorem,

$$[M: \mathcal{K}(s_1, s_2, \dots, s_n)] = [M: \Phi(\operatorname{Aut}_n)] = |\operatorname{Aut}_n| = |S_n| = n!.$$

Hence $Gal(M: K(s_1, s_2, \ldots, s_n)) \cong S_n$.

Insolvability of the General Polynomial by Radicals

Theorem

Let K is a field with characteristic zero and $n \ge 5$. The general polynomial

$$X^n - s_1 X^{n-1} + s_2 X^{n-2} - \dots + (-1)^n s_n.$$

is not solvable by radicals.

By a previous theorem, a polynomial *f* is solvable by radicals if and only if its Galois group is solvable.
 By the preceding theorem the Galois group of the general polynomial of degree *n* is S_n.

By a preceding corollary, S_n is not solvable for $n \ge 5$.