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Groups and Equations

Let K be a field of characteristic zero. Let f be a polynomial in K[X]
whose Galois group Gal(f) is solvable. Then f is solvable by radicals.

o Let L be a splitting field of f over K. We are supposing that
Gal(L: K) is solvable. Suppose also that |Gal(L: K)| = m.

If K does not contain an m-th root of unity, M

we can adjoin one. Let E be the splitting field E 7N i
over K of the polynomial X™—1. Now let M N
be a splitting field for f over E. By a previous EnL
theorem, we may regard M as an extension of !

L, and Gal(M: E)=Gal(L: EnL). aS

Now Gal(L: ENL) is a subgroup of the soluble group Gal(L: K).
So, by a previous theorem, G = Gal(M : E) is soluble.
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Groups and Equations

o G=Gal(M:E) is soluble. Thus there exist subgroups
L1=Gy< Gy <---<G, =G,

such that Gj,1/G;j is cyclic for 0<i<r—1. By the Fundamental
Theorem, there is a corresponding sequence of subfields of M

E=M,cM,_1c---cMy=M,

such that Gal(M: M;) = G;, and Gal(M; : Mj41) = Gj;1/G;.

Thus M; is a cyclic extension of M 1.

Let [M;: Mjs1]=d;,i=0,1,...,r. Then d;|[M: E]=|Gal(M:E)|.

Also |Gal(M: E)| =|Gal(L: EnL)|||Gal(L: K)l=m.

Since M;,; contains E, it contains every m-th root w of unity.

So certainly contains all d;-th roots of unity, these being powers of w.
Hence, by a theorem, there exists B; in M;, such that M; = M;.1(B;),
where B; is a root of an irreducible X% —ci 1, with ¢iyq in Mi,q.

So the polynomial f is solvable by radicals.
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Groups and Equations

Let K be a field of characteristic zero, and let K< L < M, where M is a
radical extension. Then Gal(L: K) is a solvable group.

o Suppose there is a sequence K = My, My, ..., M, = M, such that
Mii1=Mi(a;), i=0,1,...,r—1, where a; is a root of a polynomial
X" — aj, irreducible in M;[X].

o The idea of the proof is simple.

At each stage, where the element a; is a root of X" — b;, we use
preceding theorems to get useful information about the Galois groups.

o However, we have to be careful that we have normal extensions at
each stage.
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Groups and Equations

o First, note that L need not be a normal extension of K.
Instead of repairing L, we modify the base field K.

The fixed field K" = ®(T(K)) of Gal(L: K) will in general be larger
than K. On the other hand, we know that

®(T(K')) = (®reT)(K) = (oI')(K) = K.

Hence, L is a normal extension of K.

Note that:
o Any polynomial f in K[X] may be regarded as a polynomial in K'[X];
o Gal(L:K)=Gal(L: K").

So we may replace K by K.

To avoid complicating the notation, we suppose that L is a normal
extension of K.
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Groups and Equations

o If N is a normal closure of M, then N is a radical extension, by a
preceding theorem. So we may assume that M is both radical and
normal. Note also that:

o Gal(M: L)< Gal(M: K);

o Gal(L:K)=Gal(M: K)/Gal(M:L).
So, if we prove that Gal(M : K) is solvable, it will follow, by preceding
theorems, that Gal(L: K) is solvable.
So we set out to prove that Gal(M : K) is solvable, our assumption
being that M is a normal (separable) radical extension of K.
Let M=K(ay,az,...,a,), with (xf.”' eK(ay,az,...,ai-1),i=12,...,n.
We may assume that p; is prime for all i, at a cost of increasing n.
If, e.g., we have a?? € K(ay,az,...,aj_1), we can define § as af, and
say

p9¢ K(ay,az,...,a;—1) and afeK(ﬁ,al,ag,...,a;_l).
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Groups and Equations

o We prove the result by induction on n. We have that a’fl =b eK.

To have enough roots of unity, we let P = M(w) be a splitting field for
XPt —1 over M, where w is a primitive p;-th root of unity.

o Certainly, P, being a splitting field, is a normal extension of M.
o By the Fundamental Theorem, Gal(P: M) < Gal(P: K);
o By the Fundamental Theorem, Gal(M: K) = Gal(P: K)/Gal(P: M).
By a previous theorem, if Gal(P: K) is solvable, so will be Gal(M : K).

Let My be the subfield K(w) of P. My is a splitting field over K of
XP1—1. So it is a normal extension. By a previous corollary,
Gal(Ms : K) is cyclic (and hence solvable). Thus:

o Gal(P: M) < Gal(P: K);
o Gal(My:K)=zGal(P: K)/Gal(P: My).

Hence, if Gal(P: M) is solvable, so will be Gal(P: K).
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o So, having begun with Gal(L: K), we have now reduced the problem
to showing that Gal(P: M) is solvable.
We may write P = My(ay,az,...,a,). Denote Gal(P: M) by G. Let
H=Gal(P: M(a1)), a subgroup of G. Use induction on n.

In My[X], XPr—1=(X-1)(X —w)(X -0?)-(X - NS
P71 In (M(aq))[X], XPr—by = XPr—al = (X - My (ay)
a1)(X —war)(X -w?ar)-- (X —wPlay). Ll M
Thus, M(a1) is a splitting field for XPt — b; over M;. \ e !
Therefore, I'(M(a1)) = Gal(Mi(a1) : My) is cyclic. K

M (@) is a normal extension (being a splitting field) of M;.
So H< G and G/H=T(M(ay)) is cyclic.

H= GaI(P . M(al)) = GaI(Ml(al)(ag,...,a,,) . Ml(al)).

P is a normal extension of M;(a;).

By the induction hypothesis, H is solvable.

Since G/H is certainly solvable, we deduce that G is solvable.
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Groups and Equations

o The Theorem makes no reference to polynomials or equations, but this
omission is easily repaired.

o Let f be a polynomial in K[X], and suppose that it is solvable by
radicals.

o Then its splitting field L is contained in a radical extension M of K.
o The theorem tells us that Gal(f) = Gal(L: K) is solvable.

A polynomial f with coefficients in a field K of characteristic zero is
solvable by radicals if and only if its Galois group is solvable.

o Immediate by the preceding two theorems.

George Voutsadakis (LSSU)



Groups and Equations

Subsection 2

George Voutsadakis (LSSU) Fields and Galois Theory



Groups and Equations

Let p be a prime, and let f be a monic irreducible polynomial of degree p,
with coefficients in Q). Suppose that f has precisely two zeros in C\RR.
Then the Galois group of f is the symmetric group Sp.

o The polynomial f has a splitting field L contained in C. The roots of
f in L are all distinct. The Galois group G =Gal(L: Q) is a group of
permutations on the p roots of f in L. Thus G is a subgroup of Sp,.
In constructing the splitting field of f, the first step is to form Q(a),
where a has minimum polynomial f. Then [Q(a): Q] = p.

But p=1Gal(Q(a): Q)| = % So p divides |G|.
Thus, G contains an element of order p.
But the only elements of order p in S, are cycles of length p.

So G contains a cycle of length p.



Groups and Equations

o The two non-real roots of f are complex conjugates of each other.

So the splitting field contains a transposition, interchanging the two
non-real roots and leaving the rest unchanged.

There is no loss of generality in denoting the transposition by (1 2).

We may also suppose that the p-cycle 0 =(a; ap -+ ap) has a; =1,
for the choice of first element is arbitrary.

If ax =2, then ok1=(12 -.-).

We may as well write it as (12 --- p).

By a previous theorem, (1 2) and (1 2 --- p) generate Sp,.
Since G contains (1 2) and (12 -+ p), G=S5,.
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Groups and Equations

o We show that £(X)=X%-8X +2 is not soluble by radicals.
f is irreducible over Q, by Eisenstein's Criterion.
A table of values,
X|-2 -1 0 1 2
f(X)|-14 9 2 -5 18

implies that there are roots in the intervals (-2,-1), (0,1) and (1,2).
So f has at least three real roots.

The derivative f/(X)=5X*-8 has two real roots.

By Rolle’s theorem, there is at least one real zero of '(X) between
zeros of f(X).

So f has at most 3 real roots.

Thus, f has precisely three real roots.

By preceding theorems, f(X) is not solvable by radicals.
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Groups and Equations

o Let K be a field of characteristic zero.

o Let L be an extension of K.

o A subset {a1,as,...,a,} of L is said to be algebraically independent
over K if, for all polynomials f = (X1, Xa,...,X,), with coefficients in

K1
f(ai,az,...,an)=0 implies f=0.

o This is a much stronger condition than linear independence.

- Consider the set {1,v/2,v/3,V6}.

o It is linearly independent over Q.
o It is not algebraically independent.
Let f(X]_,X2,X3,X4) = Xo X3 - Xjy.
Then £(1,v2,v3,v6) = v2v3-v6=0.
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Groups and Equations

o Algebraic independence of {a1,as,...,a,} over K is equivalent to the
property that:

o aq is transcendental over K;
o a, is transcendental over K(a1,as,...,a,-1), for each r in {2,3,..., n}.
o {ai,an,...,an,} is algebraically independent over K if and only if
K(ai,az,...,ap) is isomorphic to K(X1,Xa,...,Xy), the field of all
rational forms with n indeterminates and coefficients in K.
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Groups and Equations

o An extension L of a field K is said to be finitely generated if, for

some natural number m, there exist elements a1, as,...,am, such that
L=K(a1,az,...,am).

o Every finite extension is certainly finitely generated, but the converse
statement is false.

Let L=K(a1,az,...,an) be a finitely generated extension of K. Then there

exists a field E, such that K < E c L, such that, for some m such that
Osm=n:

E=K(ai,a2,...,am), where {a1,as,...,am} is algebraically independent
over K;

[L: E] is finite.
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Groups and Equations

o Suppose, first, that all elements a1, ay,...,a, are algebraic over K.

Then [L: K] is finite. We may take E =K and m=0.
Suppose not all of ay,ay,...,a, are algebraic over K.

o There exists an a; which is transcendental over K. Call it B;.

o If [L:K(B1)] is not finite, there is an a; which is transcendental over

K(al). Call it Bo.

o The process continues, and must terminate in at most n steps.

Thus:

o E=K(B1,B2,-.-,Bm), where m=<n and {B1,B2,...,Bm} is algebraically
independent over K;
o [L: E] is finite.
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Keeping the notation of the preceding theorem, suppose that there is
another field F, such that K< Fc L, and:

F=K(y1,v2,.-.,Yp), Where {y1,72,...,7,} is algebraically independent
over K;

[L: F] is finite.
Then p=m.

o Suppose that p> m.

Since [L: E] is finite, the element y; is algebraic over E. Thus, y; is a
root of a polynomial with coefficients in E = K(B1,B2,---,Bm)-
Equivalently, there is a non-zero polynomial f, such that
f(B1,B2,---,Bm,y1) =0. But y; is transcendental over K. So at least
one of the B;'s, say 1, must actually occur in the coefficients of f.

George Voutsadakis (LSSU)



Groups and Equations

o Thus, By is algebraic over K(B2,...,Bm,Y1)-
Moreover, [L: K(B2,...,Bm,Y1)] is finite.
We continue the argument, replacing each successive f; by v;.
So [L:K(Y1,Y2,---»¥Ym)] is finite.
We are assuming that p> m.
But ym+1 is transcendental over K(y1,Y2,.-.,Ym)-
This gives a contradiction.
Similarly, we obtain a contradiction if we assume that m > p.

o The number m is called the transcendence degree of L over K.
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Groups and Equations

o Let K be a field.
o Let L be an extension of K with transcendence degree n.

o Suppose that L= K(ty,tp,...,t,), where t,t,..., t, are algebraically
independent over K.

o For all o in the symmetric group S, we can define a K-automorphism
o of L, given by
@o(ti) = to(i)
and extending in the usual way to L.
: Say n=3 and L= K(t]_,t2,t3)

Let 0=(123)and g= W% €L Then o(q) = 21350,
2

o Let us denote by Aut, the group {@py:0 € S,}.

o The map S, — Aut,,; 0 — @4 is an isomorphism.
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o Consider again L=K(ty,t,...,tn), where t1,tp,...,t, are algebraically
independent over K.
o The fixed field F of Aut, includes:

o All the elementary symmetric polynomials

s1 = ti+tr+---+1tp
S = thitp+titz+---+th_1tp,
Sn = tito---tp;

o All rational combinations of these polynomials.

9 tf+t22+---+t,2, is clearly in F.
o Note that we have

2

24t 2= (b o+ )2 = 2(t1tp + e+t 1) = 52— 25,
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The fixed field F of Aut, is F = K(s1,%,...,5n)-

o We show, by induction on n, that
[K(tl,tg,...,tn) : K(51,52,...,Sn)] <nl.

This is obvious for n=1.

Certainly K(s1,52,-..,5n) € K(51,52,---,Sn, tn) € K(t1, t2, ..., tn)-

The polynomial f(X)=X"-s3 X" +...+(~1)"s, factorizes into
(X—t1)(X=t2)---(X —tp) over K(t1,t2,...,tpn).

Hence, the minimum polynomial of t, over K(si,sy,...,s,) divides f.

Consequently [K(s1,52,-.-,5n, tn) : K(S1,%2,...,5n)] = n.
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Groups and Equations

o Let s7,s),...,s,_; be the elementary symmetric polynomials in

t1,t0,..., th-1.

Then sy =s] +t,, s, =5/ _;tp, and sj—s t,,+s j=2,3,.
Hence, K(s1,%,...,5n) = K(51,55---,5)_1,tn)-

So, by the induction hypothesis,

[K(tl,tg,...,tn) : K(Sl,SQ,...,Sn,tn)]
= [K(tn)(t1, to, .. tno1) : K(tn)(S1,Sh--r5)_1)]
<(n-1)L

This concludes the induction.

Note that K(s1,5p,...,5n) is contained in the fixed field F of Aut,.

By a preceding theorem, [K(t1,t2,...,tn) : F] =|Aut,| = nl.
So, by what was just proven, F = K(s1,s2,...,5n).
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Groups and Equations

The symmetric polynomials s1,s,...,s, are algebraically independent.

o t1,ty,...,t, are the roots of X, —s; X" 1+ 5X"72—... +(=1)"s,.
So the field F(t1,t,...,t,) is a finite extension of F(s1,sy,...,Sp).

Thus, F(t1,t,...,ty) and F(s1,s,...,5,) have the same transcendence
degree. So s1,5»,...,S, are algebraically independent.
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Let K be a field of characteristic 0.
Consider a set of n algebraically independent elements over K.

We name these elements as sy, so,...,5n.

¢ © © ¢

The general polynomial of degree n “over K" (its coefficients are
actually in K(s1,sp,...,5p)) is

X — g X 45 X2 — 4 (=1)"s,.

o We can call it a general (or generic) polynomial, because there is no
algebraic connection among the coefficients.
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Let K be a field of characteristic zero and
g(X)=X"—5 X" 4 X2 (=1)"s),.

Let M be a splitting field for g over K(s1,sp,...,5n)-
o The zeros ty,t,...,t, of g in M are algebraically independent over K.

o The Galois group of M over K(si1,sy,...,Sp) is the symmetric group Sp,.

o The degree [M: K(s1,52,...,5n)] is finite.

So, over K, the transcendence degree of M = K(ty,t,...,t,) is the
same as that of K(s1,sy,...,5p), namely, n.

So the elements ty, ty,..., t, must be algebraically independent.
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o We have
X" X" X2 = (=1) s, = (X = 1) (X = t2) -+ (X — ).
So s1,,...,5, are the elementary symmetric polynomials in
t1, to,..., th.
We have seen that:

o Aut, is a group of automorphisms of M;
o lts fixed field is K(s1,2,..,5n).

Thus, by a previous theorem,

[M:K(s1,52,...,5n)] = [M: ®(Aut,)] = |Aut,| = |Spl = n!.

Hence Gal(M: K(s1,52,...,5n)) = Sp.
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Let K is a field with characteristic zero and n=5. The general polynomial
PAUISD (aniN- (s EEPEEI (=1)"sp.
is not solvable by radicals.

o By a previous theorem, a polynomial f is solvable by radicals if and
only if its Galois group is solvable.
By the preceding theorem the Galois group of the general polynomial
of degree nis Sp,.
By a preceding corollary, S, is not solvable for n>5.

George Voutsadakis (LSSU)



	Groups and Equations
	Solvability of Galois Group and Solvability by Radicals
	Insolvable Quintics
	General Polynomials


