Fields and Galois Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

- Solvability of Galois Group and Solvability by Radicals
- Insolvable Quintics
- General Polynomials

Subsection 1

Solvability of Galois Group and Solvability by Radicals

Theorem

Let K be a field of characteristic zero. Let f be a polynomial in $K[X]$ whose Galois group $\operatorname{Gal}(f)$ is solvable. Then f is solvable by radicals.

- Let L be a splitting field of f over K. We are supposing that $\operatorname{Gal}(L: K)$ is solvable. Suppose also that $|\operatorname{Gal}(L: K)|=m$.

If K does not contain an m-th root of unity, we can adjoin one. Let E be the splitting field over K of the polynomial $X^{m}-1$. Now let M be a splitting field for f over E. By a previous theorem, we may regard M as an extension of L, and $\operatorname{Gal}(M: E) \cong \operatorname{Gal}(L: E \cap L)$.

Now $\operatorname{Gal}(L: E \cap L)$ is a subgroup of the soluble group $\operatorname{Gal}(L: K)$. So, by a previous theorem, $G=\operatorname{Gal}(M: E)$ is soluble.

- $G=\operatorname{Gal}(M: E)$ is soluble. Thus there exist subgroups

$$
\{1\}=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{r}=G,
$$

such that G_{i+1} / G_{i} is cyclic for $0 \leq i \leq r-1$. By the Fundamental Theorem, there is a corresponding sequence of subfields of M

$$
E=M_{r} \subseteq M_{r-1} \subseteq \cdots \subseteq M_{0}=M,
$$

such that $\operatorname{Gal}\left(M: M_{i}\right)=G_{i}$, and $\operatorname{Gal}\left(M_{i}: M_{i+1}\right) \cong G_{i+1} / G_{i}$.
Thus M_{i} is a cyclic extension of M_{i+1}.
Let $\left[M_{i}: M_{i+1}\right]=d_{i}, i=0,1, \ldots, r$. Then $d_{i}|[M: E]=|\operatorname{Gal}(M: E)|$. Also $|\operatorname{Gal}(M: E)|=|\operatorname{Gal}(L: E \cap L)|| | \operatorname{Gal}(L: K) \mid=m$.
Since M_{i+1} contains E, it contains every m-th root ω of unity. So certainly contains all d_{i}-th roots of unity, these being powers of ω. Hence, by a theorem, there exists β_{i} in M_{i}, such that $M_{i}=M_{i+1}\left(\beta_{i}\right)$, where β_{i} is a root of an irreducible $X^{d_{i}}-c_{i+1}$, with c_{i+1} in M_{i+1}. So the polynomial f is solvable by radicals.

Radical Extensions and Solvable Groups

Theorem

Let K be a field of characteristic zero, and let $K \subseteq L \subseteq M$, where M is a radical extension. Then $\operatorname{Gal}(L: K)$ is a solvable group.

- Suppose there is a sequence $K=M_{0}, M_{1}, \ldots, M_{r}=M$, such that $M_{i+1}=M_{i}\left(\alpha_{i}\right), i=0,1, \ldots, r-1$, where α_{i} is a root of a polynomial $X^{n_{i}}-a_{i}$, irreducible in $M_{i}[X]$.
- The idea of the proof is simple.

At each stage, where the element α_{i} is a root of $X^{n_{i}}-b_{i}$, we use preceding theorems to get useful information about the Galois groups.

- However, we have to be careful that we have normal extensions at each stage.

Radical Extensions and Solvable Groups: The Start

- First, note that L need not be a normal extension of K. Instead of repairing L, we modify the base field K.
The fixed field $K^{\prime}=\Phi(\Gamma(K))$ of $\mathrm{Gal}(L: K)$ will in general be larger than K. On the other hand, we know that

$$
\Phi\left(Г\left(K^{\prime}\right)\right)=(Ф Г Ф Г)(K)=(Ф Г)(K)=K^{\prime} .
$$

Hence, L is a normal extension of K^{\prime}.
Note that:

- Any polynomial f in $K[X]$ may be regarded as a polynomial in $K^{\prime}[X]$;
- $\operatorname{Gal}(L: K)=\operatorname{Gal}\left(L: K^{\prime}\right)$.

So we may replace K by K^{\prime}.
To avoid complicating the notation, we suppose that L is a normal extension of K.

- If N is a normal closure of M, then N is a radical extension, by a preceding theorem. So we may assume that M is both radical and normal. Note also that:
- $\operatorname{Gal}(M: L) \triangleleft \operatorname{Gal}(M: K)$;
- $\operatorname{Gal}(L: K) \cong \operatorname{Gal}(M: K) / \operatorname{Gal}(M: L)$.

So, if we prove that $\operatorname{Gal}(M: K)$ is solvable, it will follow, by preceding theorems, that $\mathrm{Gal}(L: K)$ is solvable.
So we set out to prove that $\operatorname{Gal}(M: K)$ is solvable, our assumption being that M is a normal (separable) radical extension of K. Let $M=K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, with $\alpha_{i}^{p_{i}} \in K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}\right), i=1,2, \ldots, n$. We may assume that p_{i} is prime for all i, at a cost of increasing n. If, e.g., we have $\alpha_{i}^{p q} \in K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}\right)$, we can define β as α_{i}^{p}, and say

$$
\beta^{q} \in K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}\right) \quad \text { and } \quad \alpha_{i}^{p} \in K\left(\beta, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}\right) .
$$

- We prove the result by induction on n. We have that $\alpha_{1}^{p_{1}}=b_{1} \in K$.

To have enough roots of unity, we let $P=M(\omega)$ be a splitting field for $X^{p_{1}}-1$ over M, where ω is a primitive p_{1}-th root of unity.

- Certainly, P, being a splitting field, is a normal extension of M.
- By the Fundamental Theorem, $\operatorname{Gal}(P: M) \triangleleft \operatorname{Gal}(P: K)$;
- By the Fundamental Theorem, $\operatorname{Gal}(M: K) \cong \operatorname{Gal}(P: K) / \operatorname{Gal}(P: M)$.

By a previous theorem, if $\operatorname{Gal}(P: K)$ is solvable, so will be $\operatorname{Gal}(M: K)$. Let M_{1} be the subfield $K(\omega)$ of $P . M_{1}$ is a splitting field over K of $X^{p_{1}}-1$. So it is a normal extension. By a previous corollary, $\mathrm{Gal}\left(M_{1}: K\right)$ is cyclic (and hence solvable). Thus:

- $\operatorname{Gal}\left(P: M_{1}\right) \triangleleft \operatorname{Gal}(P: K)$;
- $\operatorname{Gal}\left(M_{1}: K\right) \cong \operatorname{Gal}(P: K) / \operatorname{Gal}\left(P: M_{1}\right)$.

Hence, if $\operatorname{Gal}\left(P: M_{1}\right)$ is solvable, so will be $\operatorname{Gal}(P: K)$.

- So, having begun with $\operatorname{Gal}(L: K)$, we have now reduced the problem to showing that $\operatorname{Gal}\left(P: M_{1}\right)$ is solvable.
We may write $P=M_{1}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. Denote $\operatorname{Gal}\left(P: M_{1}\right)$ by G. Let $H=\operatorname{Gal}\left(P: M\left(\alpha_{1}\right)\right)$, a subgroup of G. Use induction on n.
In $M_{1}[X], X^{p_{1}}-1=(X-1)(X-\omega)\left(X-\omega^{2}\right) \cdots(X-$
$\left.\omega^{p_{1}-1}\right) . \ln \left(M\left(\alpha_{1}\right)\right)[X], X^{p_{1}}-b_{1}=X^{p_{1}}-\alpha_{1}^{p_{1}}=(X-$
$\left.\alpha_{1}\right)\left(X-\omega \alpha_{1}\right)\left(X-\omega^{2} \alpha_{1}\right) \cdots\left(X-\omega^{p_{1}-1} \alpha_{1}\right)$.
Thus, $M\left(\alpha_{1}\right)$ is a splitting field for $X^{p_{1}}-b_{1}$ over M_{1}.
Therefore, $\Gamma\left(M\left(\alpha_{1}\right)\right)=\operatorname{Gal}\left(M_{1}\left(\alpha_{1}\right): M_{1}\right)$ is cyclic.

$M_{1}(\alpha)$ is a normal extension (being a splitting field) of M_{1}.
So $H \triangleleft G$ and $G / H \cong \Gamma\left(M\left(\alpha_{1}\right)\right)$ is cyclic.
$H=\operatorname{Gal}\left(P: M\left(\alpha_{1}\right)\right)=\operatorname{Gal}\left(M_{1}\left(\alpha_{1}\right)\left(\alpha_{2}, \ldots, \alpha_{n}\right): M_{1}\left(\alpha_{1}\right)\right)$.
P is a normal extension of $M_{1}\left(\alpha_{1}\right)$.
By the induction hypothesis, H is solvable.
Since G / H is certainly solvable, we deduce that G is solvable.
- The Theorem makes no reference to polynomials or equations, but this omission is easily repaired.
- Let f be a polynomial in $K[X]$, and suppose that it is solvable by radicals.
- Then its splitting field L is contained in a radical extension M of K.
- The theorem tells us that $\operatorname{Gal}(f)=\operatorname{Gal}(L: K)$ is solvable.

Theorem

A polynomial f with coefficients in a field K of characteristic zero is solvable by radicals if and only if its Galois group is solvable.

- Immediate by the preceding two theorems.

Subsection 2

Insolvable Quintics

Theorem

Let p be a prime, and let f be a monic irreducible polynomial of degree p, with coefficients in \mathbb{Q}. Suppose that f has precisely two zeros in $\mathbb{C} \backslash \mathbb{R}$. Then the Galois group of f is the symmetric group S_{p}.

- The polynomial f has a splitting field L contained in \mathbb{C}. The roots of f in L are all distinct. The Galois group $G=\operatorname{Gal}(L: \mathbb{Q})$ is a group of permutations on the p roots of f in L. Thus G is a subgroup of S_{p}. In constructing the splitting field of f, the first step is to form $\mathbb{Q}(\alpha)$, where α has minimum polynomial f. Then $[\mathrm{Q}(\alpha): \mathbb{Q}]=p$.
But $p=|\operatorname{Gal}(\mathbb{Q}(\alpha): \mathbb{Q})|=\frac{|\operatorname{Gal}|(L: \mathbb{Q}) \mid}{|\operatorname{Gal}(L: \mathbb{Q}(\alpha))|}$. So p divides $|G|$.
Thus, G contains an element of order p.
But the only elements of order p in S_{p} are cycles of length p. So G contains a cycle of length p.
- The two non-real roots of f are complex conjugates of each other. So the splitting field contains a transposition, interchanging the two non-real roots and leaving the rest unchanged.
There is no loss of generality in denoting the transposition by (12). We may also suppose that the p-cycle $\sigma=\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{p}\end{array}\right)$ has $a_{1}=1$, for the choice of first element is arbitrary.
If $a_{k}=2$, then $\sigma^{k-1}=\left(\begin{array}{ll}1 & \cdots\end{array}\right)$.
We may as well write it as ($12 \cdots p$).
By a previous theorem, (12) and (12 $2 \cdots p$) generate S_{p}.
Since G contains (1 2) and (12 $\cdots p), G=S_{p}$.
- We show that $f(X)=X^{5}-8 X+2$ is not soluble by radicals.
f is irreducible over \mathbb{Q}, by Eisenstein's Criterion.
A table of values,

X	-2	-1	0	1	2
$f(X)$	-14	9	2	-5	18

implies that there are roots in the intervals $(-2,-1),(0,1)$ and $(1,2)$.
So f has at least three real roots.
The derivative $f^{\prime}(X)=5 X^{4}-8$ has two real roots.
By Rolle's theorem, there is at least one real zero of $f^{\prime}(X)$ between zeros of $f(X)$.
So f has at most 3 real roots.
Thus, f has precisely three real roots.
By preceding theorems, $f(X)$ is not solvable by radicals.

Subsection 3

General Polynomials

- Let K be a field of characteristic zero.
- Let L be an extension of K.
- A subset $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ of L is said to be algebraically independent over K if, for all polynomials $f=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, with coefficients in K,

$$
f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=0 \quad \text { implies } \quad f=0
$$

- This is a much stronger condition than linear independence.

Example: Consider the set $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$.

- It is linearly independent over \mathbb{Q}.
- It is not algebraically independent.

Let $f\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{2} X_{3}-X_{4}$.
Then $f(1, \sqrt{2}, \sqrt{3}, \sqrt{6})=\sqrt{2} \sqrt{3}-\sqrt{6}=0$.

Agebraic Independence (Aternative Formulations)

- Algebraic independence of $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ over K is equivalent to the property that:
- α_{1} is transcendental over K;
- α_{r} is transcendental over $K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r-1}\right)$, for each r in $\{2,3, \ldots, n\}$.
- $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ is algebraically independent over K if and only if $K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is isomorphic to $K\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, the field of all rational forms with n indeterminates and coefficients in K.
- An extension L of a field K is said to be finitely generated if, for some natural number m, there exist elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$, such that $L=K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$.
- Every finite extension is certainly finitely generated, but the converse statement is false.

Theorem

Let $L=K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ be a finitely generated extension of K. Then there exists a field E, such that $K \subseteq E \subseteq L$, such that, for some m such that $0 \leq m \leq n$:
$E=K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$, where $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is algebraically independent over K;
[$L: E]$ is finite.

Proof of the Theorem

- Suppose, first, that all elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are algebraic over K. Then $[L: K]$ is finite. We may take $E=K$ and $m=0$. Suppose not all of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are algebraic over K.
- There exists an α_{i} which is transcendental over K. Call it β_{1}.
- If $\left[L: K\left(\beta_{1}\right)\right]$ is not finite, there is an α_{j} which is transcendental over $K\left(\alpha_{1}\right)$. Call it β_{2}.
- The process continues, and must terminate in at most n steps.

Thus:

- $E=K\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$, where $m \leq n$ and $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ is algebraically independent over K;
- $[L: E]$ is finite.

Theorem

Keeping the notation of the preceding theorem, suppose that there is another field F, such that $K \subseteq F \subseteq L$, and:
$F=K\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}\right)$, where $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}\right\}$ is algebraically independent over K;
$[L: F]$ is finite.
Then $p=m$.

- Suppose that $p>m$.

Since $[L: E]$ is finite, the element γ_{1} is algebraic over E. Thus, γ_{1} is a root of a polynomial with coefficients in $E=K\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$.
Equivalently, there is a non-zero polynomial f, such that $f\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}, \gamma_{1}\right)=0$. But γ_{1} is transcendental over K. So at least one of the β_{i} 's, say β_{1}, must actually occur in the coefficients of f.

- Thus, β_{1} is algebraic over $K\left(\beta_{2}, \ldots, \beta_{m}, \gamma_{1}\right)$.

Moreover, $\left[L: K\left(\beta_{2}, \ldots, \beta_{m}, \gamma_{1}\right)\right]$ is finite.
We continue the argument, replacing each successive β_{i} by γ_{i}.
So $\left[L: K\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right)\right]$ is finite.
We are assuming that $p>m$.
But γ_{m+1} is transcendental over $K\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right)$.
This gives a contradiction.
Similarly, we obtain a contradiction if we assume that $m>p$.

- The number m is called the transcendence degree of L over K.
- Let K be a field.
- Let L be an extension of K with transcendence degree n.
- Suppose that $L=K\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, where $t_{1}, t_{2}, \ldots, t_{n}$ are algebraically independent over K.
- For all σ in the symmetric group S_{n} we can define a K-automorphism φ_{σ} of L, given by

$$
\varphi_{\sigma}\left(t_{i}\right)=t_{\sigma(i)}
$$

and extending in the usual way to L.
Example: Say $n=3$ and $L=K\left(t_{1}, t_{2}, t_{3}\right)$.
Let $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and $q=\frac{t_{1}+3 t_{2}-t_{3}}{t_{1}^{3} t_{2}} \in L$. Then $\sigma(q)=\frac{t_{2}+3 t_{3}-t_{1}}{t_{2}^{3} t_{3}}$.

- Let us denote by Aut ${ }_{n}$ the group $\left\{\varphi_{\sigma}: \sigma \in S_{n}\right\}$.
- The map $S_{n} \rightarrow$ Aut $_{n} ; \sigma \mapsto \varphi_{\sigma}$ is an isomorphism.

Elementary Symmetric Polynomials

- Consider again $L=K\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, where $t_{1}, t_{2}, \ldots, t_{n}$ are algebraically independent over K.
- The fixed field F of $A u t_{n}$ includes:
- All the elementary symmetric polynomials

$$
\begin{aligned}
s_{1} & =t_{1}+t_{2}+\cdots+t_{n} \\
s_{2} & =t_{1} t_{2}+t_{1} t_{3}+\cdots+t_{n-1} t_{n} \\
& \vdots \\
s_{n} & =t_{1} t_{2} \cdots t_{n}
\end{aligned}
$$

- All rational combinations of these polynomials.

Example:

- $t_{1}^{2}+t_{2}^{2}+\cdots+t_{n}^{2}$ is clearly in F.
- Note that we have

$$
t_{1}^{2}+\cdots+t_{n}^{2}=\left(t_{1}+\cdots+t_{n}\right)^{2}-2\left(t_{1} t_{2}+\cdots+t_{n-1} t_{n}\right)=s_{1}^{2}-2 s_{2} .
$$

Characterization of the Fixed Field

Theorem

The fixed field F of Aut $_{n}$ is $F=K\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.

- We show, by induction on n, that

$$
\left[K\left(t_{1}, t_{2}, \ldots, t_{n}\right): K\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right] \leq n!.
$$

This is obvious for $n=1$.
Certainly $K\left(s_{1}, s_{2}, \ldots, s_{n}\right) \subseteq K\left(s_{1}, s_{2}, \ldots, s_{n}, t_{n}\right) \subseteq K\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
The polynomial $f(X)=X^{n}-s_{1} X^{n-1}+\cdots+(-1)^{n} s_{n}$ factorizes into $\left(X-t_{1}\right)\left(X-t_{2}\right) \cdots\left(X-t_{n}\right)$ over $K\left(t_{1}, t_{2}, \ldots, t_{n}\right)$. Hence, the minimum polynomial of t_{n} over $K\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ divides f. Consequently $\left[K\left(s_{1}, s_{2}, \ldots, s_{n}, t_{n}\right): K\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right] \leq n$.

- Let $s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{n-1}^{\prime}$ be the elementary symmetric polynomials in $t_{1}, t_{2}, \ldots, t_{n-1}$.
Then $s_{1}=s_{1}^{\prime}+t_{n}, s_{n}=s_{n-1}^{\prime} t_{n}$, and $s_{j}=s_{j-1}^{\prime} t_{n}+s_{j}^{\prime}, j=2,3, \ldots, n-1$. Hence, $K\left(s_{1}, s_{2}, \ldots, s_{n}\right)=K\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{n-1}^{\prime}, t_{n}\right)$.
So, by the induction hypothesis,

$$
\begin{aligned}
& {\left[K\left(t_{1}, t_{2}, \ldots, t_{n}\right): K\left(s_{1}, s_{2}, \ldots, s_{n}, t_{n}\right)\right]} \\
& =\left[K\left(t_{n}\right)\left(t_{1}, t_{2}, \ldots, t_{n-1}\right): K\left(t_{n}\right)\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{n-1}^{\prime}\right)\right] \\
& \leq(n-1)!.
\end{aligned}
$$

This concludes the induction.
Note that $K\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is contained in the fixed field F of Aut $_{n}$. By a preceding theorem, $\left[K\left(t_{1}, t_{2}, \ldots, t_{n}\right): F\right]=\left|A_{1} t_{n}\right|=n!$.
So, by what was just proven, $F=K\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.

Agebraic Independence of the Symmetric Polynomials

Theorem

The symmetric polynomials $s_{1}, s_{2}, \ldots, s_{n}$ are algebraically independent.

- $t_{1}, t_{2}, \ldots, t_{n}$ are the roots of $X_{n}-s_{1} X^{n-1}+s_{2} X^{n-2}-\cdots+(-1)^{n} s_{n}$. So the field $F\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a finite extension of $F\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. Thus, $F\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $F\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ have the same transcendence degree. So $s_{1}, s_{2}, \ldots, s_{n}$ are algebraically independent.
- Let K be a field of characteristic 0 .
- Consider a set of n algebraically independent elements over K.
- We name these elements as $s_{1}, s_{2}, \ldots, s_{n}$.
- The general polynomial of degree n "over K" (its coefficients are actually in $\left.K\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right)$ is

$$
X^{n}-s_{1} X^{n-1}+s_{2} X^{n-2}-\cdots+(-1)^{n} s_{n}
$$

- We can call it a general (or generic) polynomial, because there is no algebraic connection among the coefficients.

The Splitting Field of the General Polynomial

Theorem

Let K be a field of characteristic zero and

$$
g(X)=X^{n}-s_{1} X^{n-1}+s_{2} X^{n-2}-\cdots+(-1)^{n} s_{n}
$$

Let M be a splitting field for g over $K\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.

- The zeros $t_{1}, t_{2}, \ldots, t_{n}$ of g in M are algebraically independent over K.
- The Galois group of M over $K\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is the symmetric group S_{n}.
- The degree $\left[M: K\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right]$ is finite. So, over K, the transcendence degree of $M=K\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is the same as that of $K\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, namely, n.
So the elements $t_{1}, t_{2}, \ldots, t_{n}$ must be algebraically independent.
- We have

$$
X^{n}-s_{1} X^{n-1}+s_{2} X^{n-2}=\cdots+(-1)^{n} s_{n}=\left(X-t_{1}\right)\left(X-t_{2}\right) \cdots\left(X-t_{n}\right)
$$

So $s_{1}, s_{2}, \ldots, s_{n}$ are the elementary symmetric polynomials in $t_{1}, t_{2}, \ldots, t_{n}$.
We have seen that:

- Aut ${ }_{n}$ is a group of automorphisms of M;
- Its fixed field is $K\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.

Thus, by a previous theorem,

$$
\left[M: K\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right]=\left[M: \Phi\left(\mathrm{Aut}_{n}\right)\right]=\left|\mathrm{Aut}_{n}\right|=\left|S_{n}\right|=n!.
$$

Hence $\operatorname{Gal}\left(M: K\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right) \cong S_{n}$.

Insolvability of the General Polynomial by Radicals

Theorem

Let K is a field with characteristic zero and $n \geq 5$. The general polynomial

$$
X^{n}-s_{1} X^{n-1}+s_{2} X^{n-2}-\cdots+(-1)^{n} s_{n}
$$

is not solvable by radicals.

- By a previous theorem, a polynomial f is solvable by radicals if and only if its Galois group is solvable.
By the preceding theorem the Galois group of the general polynomial of degree n is S_{n}.
By a preceding corollary, S_{n} is not solvable for $n \geq 5$.

