Fields and Galois Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

- Preliminaries
- The Construction of Regular Polygons

Subsection 1

Preliminaries

Closure Properties of Constructible Points

- Recall that a point (a, b) is constructible if it can be obtained from $O=(0,0)$ and $I=(1,0)$ by ruler and compasses constructions.

Lemma

Let $a, b \in \mathbb{R}$.
The point $(a, 0)$ is constructible if and only if $(0, a)$ is constructible.
The point (a, b) is constructible if and only if $(a, 0)$ and $(b, 0)$ are constructible.

If $(a, 0)$ and $(b, 0)$ are constructible, then so are $(a+b, 0),(a-b, 0),(a b, 0)$ and, if $b \neq 0,\left(\frac{a}{b}, 0\right)$.

Suppose that $(a, 0)$ is constructible. The circle with center O passing through $(a, 0)$ meets the positive y-axis in $(0, a)$. So $(0, a)$ is constructible. The converse is similar.

Suppose that (a, b) is constructible.

- We can drop a perpendicular from (a, b) on to the x-axis to construct the point $(a, 0)$.
- Dropping a perpendicular on to the y-axis gives the point $(0, b)$.

So, by Part (i), both $(a, 0)$ and $(b, 0)$ are constructible.
Conversely, suppose that $(a, 0)$ and $(b, 0)$ (and hence also $(0, b)$) are constructible.

- We may draw a line through $(a, 0)$ perpendicular to the x-axis.
- We may draw a line through $(0, b)$ perpendicular to the y-axis.

The lines meet in (a, b), which is therefore constructible.

Suppose that $A=(a, 0)$ and $B=(b, 0)$ are constructible. A circle with center A and radius equal to the length of $O B$ meets the x-axis in $(a+b, 0)$ and $(a-b, 0)$. Hence, both these points are constructible.
We now show that $(a b, 0)$ is constructible.
Let $A^{\prime}=(0, a)$ and $I^{\prime}=(0,1)$, both constructible, by Part (i).

Draw a line though A^{\prime} parallel to $I^{\prime} B$, meeting the x-axis in P. The triangles $O B I^{\prime}$ and $O P A^{\prime}$ are similar. So we have $\frac{O P}{O A^{\prime}}=\frac{O B}{O I^{\prime}}$. Hence, P is the point $(a b, 0)$. So it is constructible.

- Finally, we show that $\left(\frac{a}{b}, 0\right)$ is constructible.

Let B be the point $(b, 0)$, where $b \neq 0$, and let $I^{\prime}=(0,1)$.

Draw a line through I parallel to $B I^{\prime}$, meeting the y-axis in P.
The triangles $O I P$ and $O B I^{\prime}$ are similar. So we have $\frac{O P}{O I}=\frac{O I^{\prime}}{O B}$.
Thus, P is the point $\left(0, \frac{1}{b}\right)$. So $\left(\frac{1}{b}, 0\right)$ is also constructible.
From the preceding result, we deduce that $\left(\frac{a}{b}, 0\right)$ is constructible.

Constructibility of Rational Pairs

Corollary

If $a, b \in \mathbb{Q}$, then (a, b) is constructible.

- From Part (iii) of the lemma, we can deduce that $\left(\frac{m}{n}, 0\right)$ is constructible for every rational number $\frac{m}{n}$.
Thus, by Part (i), $(a, 0)$ and $(0, b)$ are constructible. So, by Part (ii), (a, b) is constructible.

Theorem

Let $B=\{O, I\}$. If there is a sequence of subfields $\mathbb{Q}=K_{0} \subset K_{1} \subset \cdots \subset K_{n}=L$ of \mathbb{R}, such that $\left[K_{i}: K_{i-1}\right]=2, i=1,2, \ldots, n$, then every point with coordinates in L is constructible.

- By the corollary, every (a, b) with coordinates in $\mathbb{Q}=K_{0}$ is constructible. Let $i \geq 1$. Suppose inductively that every point with coordinates in K_{i-1} is constructible. By hypothesis, $\left[K_{i}: K_{i-1}\right]=2$. So $K_{i}=K_{i-1}(\beta)$, where β is an arbitrarily chosen element of $K_{i} \backslash K_{i-1}$. The minimum polynomial of β over K_{i-1} is of the form $X^{2}+b X+c$, with $b, c \in K_{i-1}$. Its discriminant $\Delta=b^{2}-4 c \geq 0$, since K_{i} is certainly a subfield of \mathbb{R}. Then $\beta=\frac{1}{2}(b \pm \sqrt{\Delta})$. So $K_{i}=K_{i-1}(\sqrt{\Delta})$, where $\Delta \in K_{i-1}$. It suffices to show that $(\sqrt{\Delta}, 0)$ is constructible.
- Let D be the point $(\Delta, 0)$. Let E be the point on the x-axis such that $I E=$ Δ. Let M be the midpoint of $O E$. Let \mathcal{K} be the circle with center M passing through O (and E).
Let the line through I perpendicular to the x-axis meet the circle \mathbb{K} in P.

The angle $O P E$ is a right angle.
The triangles $O I P$ and $P I E$ are similar. Hence, $\frac{O I}{I P}=\frac{I P}{I E}$. So $I P^{2}=\Delta$. The point $(\sqrt{\Delta}, 0)$ is obtained as the intersection with the positive x-axis of a circle with center O and radius equal to the length $I P$. It follows that an arbitrary point $(p+q \sqrt{\Delta}, r+s \sqrt{\Delta})$, where $p, q, r, s \in K_{i-1}$, is constructible.

Theorem

Let K be a normal extension of \mathbb{Q}, such that $[K: \mathbb{Q}]=2^{m}$, where m is a positive integer. Then, every point (α, β) in $K \times K$ is constructible.

- The group $G=\operatorname{Gal}(K: \mathbb{Q})$ is of order 2^{m}. By a preceding theorem, there exist normal subgroups

$$
\{e\}=H_{0} \subset H_{1} \subset \cdots \subset H_{m-1} \subset H_{m}=G,
$$

such that $\left|H_{i}\right|=2^{i}, i=0,1, \ldots, m$. Thus, there exist subfields

$$
K=\Phi\left(H_{0}\right) \supset \Phi\left(H_{1}\right) \supset \cdots \supset \Phi\left(H_{m-1}\right) \supset \Phi\left(H_{m}\right)=\mathbb{Q},
$$

with $\left[K: \Phi\left(H_{i}\right)\right]=2^{i}, i=0,1, \ldots, m$.
Hence, $\left[\Phi\left(H_{i}\right): \Phi\left(H_{i+1}\right)\right]=2, i=0,1, \ldots, m-1$.
The conclusion now follows from the preceding theorem.

Subsection 2

The Construction of Regular Polygons

- For all $n \geq 3$, denote the regular polygon with n sides by Π_{n}.
- We specify exactly the set of n for which Π_{n} is constructible.
- The key is that a geometric construction is possible if and only if the degree of the associated field extension is a power of 2.
- Note, first, that the construction of Π_{n} depends on the construction of the angle $\theta_{n}=\frac{2 \pi}{n}$ at the center of the polygon
- Once we construct the isosceles triangle IOA for which the angle IOA is θ_{n}, we may form the polygon by pasting copies of the triangle all the way round.

Sum/Difference of Constructible Angles

- A similar pasting technique allows us to deduce that constructibility of θ_{m} and θ_{n} implies constructibility of $\theta_{m} \pm \theta_{n}$.

- In both diagrams, $A O B$ is the angle θ_{m}.
- In (i), $\angle B O C=\theta_{n}$ and $\angle A O C=\theta_{m}+\theta_{n}$.
- In (ii), $\angle C O B=\theta_{n}$ and $\angle A O C=\theta_{m}-\theta_{n}$.

Theorem

If θ_{m} and θ_{n} are constructible and $s, t \in \mathbb{Z}$, then $s \theta_{m}+t \theta_{n}$ is constructible.

Constructibility of an Angle

Theorem

The following statements are equivalent:
θ_{n} is constructible;
The point $\left(\cos \theta_{n}, \sin \theta_{n}\right)$ is constructible;
The point $\left(\cos \theta_{n}, 0\right)$ is constructible.
(i) \Rightarrow (ii): This is clear from the diagram:
(ii) \Rightarrow (iii): This is clear from the preceding lemma.
(iii) \Rightarrow (i): In the diagram, suppose we have constructed the point $C\left(\cos \theta_{n}, 0\right)$. The
 line though C perpendicular to $O I$ meets the circle with center O and radius 1 in the point $\left(\cos \theta_{n}, \sin \theta_{n}\right)$. Joining this point to O gives the required angle.

Lemma

Let m and n be relatively prime positive integers. $\Pi_{m n}$ is constructible if and only if Π_{m} and Π_{n} are constructible.

- Suppose first that $\Pi_{m n}$, with vertices $V_{0}, V_{1}, \ldots, V_{m n-1}$, is constructible. It is clear that Π_{m} is constructible. Simply join up the vertices $V_{0}, V_{n}, V_{2 n}, \ldots, V_{(m-1) n}, V_{0}$ in sequence. Similarly, Π_{n} is constructible.
Note that "relatively prime" was not used in this part of the proof. Conversely, suppose that Π_{m} and Π_{n} are constructible, where m and n are relatively prime. Then, there exist integers s and t, such that $s m+t n=1$. So

$$
s \theta_{n}+t \theta_{m}=\frac{2 \pi s}{n}+\frac{2 \pi t}{m}=\frac{2 \pi(s m+t n)}{m n}=\theta_{m n}
$$

By a previous theorem, $s \theta_{n}+t \theta_{m}$ is constructible. Thus, so is $\theta_{m n}$.

Lemma

Let $\omega_{p}=e^{\theta_{p}}=e^{2 \pi i / p}$, where p is prime. Then θ_{p} is constructible if and only if $\left[\mathrm{Q}\left(\omega_{p}\right): \mathbb{Q}\right]$ is a power of 2 .

- Let $\omega=e^{2 \pi i / p}$. Over the field $\mathbb{Q}(\omega)$ the polynomial $X^{p}-1$ factorizes as $(X-1)(X-\omega)\left(X-\omega^{2}\right) \cdots\left(X-\omega^{p-1}\right)$. So $\mathbb{Q}(\omega)$ is the splitting field over \mathbb{Q} of the polynomial $\frac{X^{p}-1}{X-1}=X^{p-1}+X^{p-2}+\cdots+X+1$. The polynomial is irreducible over $\mathbb{Q} . \operatorname{Gal}(\mathbb{Q}(\omega): \mathbb{Q})$ is abelian. Let $K=\mathbb{Q}(\omega) \cap \mathbb{R}$. This is a subfield of \mathbb{R} containing $\zeta=\frac{\omega+\omega^{-1}}{2}=\cos \frac{2 \pi}{p}$. The minimum polynomial of ω over K is $X^{2}-2 \zeta X+1$. So $[\mathbb{Q}(\omega): K]=2$. Hence, $\operatorname{Gal}(\mathbb{Q}(\omega): K)$ is a subgroup of $\operatorname{Gal}(\mathbb{Q}(\omega): \mathbb{Q})$ of order 2. It is a normal subgroup, since $\operatorname{Gal}(\mathbb{Q}(\omega): \mathbb{Q})$ is abelian. Hence, the extension $K: \mathbb{Q}$ is normal. By preceding results, $\frac{2 \pi}{p}$ is constructible if and only if $[K: \mathbb{Q}]$ is a power of 2 . Hence, (since $[\mathbb{Q}(\omega): \mathbb{Q}]=2[K: \mathbb{Q}])$ if and only if $[\mathbb{Q}(\omega): \mathbb{Q}]$ is a power of 2.
- Let p be a prime, $q=p^{m}$ and $\omega \in \mathbb{C}$ a primitive q-th root of unity, i.e., $\omega^{p^{m}}=1$, but $\omega^{p^{m-1}} \neq 1$.

Lemma

The minimum polynomial of ω is $f=1+X^{p^{m-1}}+X^{2 p^{m-1}}+\cdots+X^{(p-1) p^{m-1}}$.

- Write $X^{p^{m-1}}$ as Z. Then

$$
f=1+Z+\cdots+Z^{p-1}=\frac{Z^{p}-1}{Z-1}=\frac{X^{p^{m}}-1}{X^{p^{m-1}}-1} .
$$

We have $f(\omega)=0$. It remains to show that f is irreducible over \mathbb{Q}.
Let $X=1+T$. Then $f=\frac{(1+T)^{p^{m}}-1}{(1+T)^{\rho^{m-1}}-1}$.
All the intermediate binomial coefficients are divisible by p.
So we may write $f=\frac{T^{p^{m}}+p u(T)}{T^{p^{m-1}}+p v(T)}$, where u and v are polynomials, and $\partial u \leq p^{m}-1, \partial v \leq p^{m-1}-1$.

Minimum Polynomial of Primitive Roots (Cont'd)

- We now have

$$
\begin{aligned}
f & =\frac{(1+T)^{p^{m}}-1}{(1+T)^{p^{m-1}}-1} \\
& =\frac{T^{p^{m}}+p T^{p^{m-1}(p-1)} v(T)-p T^{p^{m-1}(p-1)} v(T)+p u(T)}{T^{p^{m-1}}+p v(T)} \\
& =\frac{T^{p^{m-1}(p-1)}\left(T^{p^{m-1}}+p v(T)\right)-p T^{p^{m-1}(p-1)} v(T)+p u(T)}{T^{p^{m-1}+p v(T)}} \\
& =T^{p^{m-1}(p-1)}+\frac{p u(T)-p T^{p^{m-1}(p-1)} v(T)}{T^{p^{m-1}}+p v(T)} .
\end{aligned}
$$

- We got $f=T^{p^{m-1}(p-1)}+\frac{p u(T)-p T^{p^{m-1}(p-1)} v(T)}{T^{p^{m-1}}+p v(T)}$.

The degree of the numerator $p u(T)-p T^{p^{m-1}(p-1)}$ is less than p^{m}. The degree of the denominator is $p^{m-1} . f$ is a polynomial in T. The fractional term must be a polynomial of degree $<p^{m-1}(p-1)$. The numerator is divisible by p and the denominator is not. So we may write $f=T^{p^{m-1}(p-1)}+p g(T)$, where g is a polynomial and $\partial g<p^{m-1}(p-1)$. But we also have the expression

$$
f(1+T)=1+(1+T)^{p^{m-1}}+(1+T)^{2 p^{m-1}}+\cdots+(1+T)^{(p-1) p^{m-1}} .
$$

From this it is evident that the constant term of $f(1+T)$ is p. By Eisenstein's Criterion, $f=T^{p^{m-1}(p-1)}+p g(T)$ is irreducible.

Constructible Regular Polygons

Theorem

A regular polygon with n sides is constructible if and only if

$$
n=2^{k} p_{1} p_{2} \cdots p_{r}
$$

where k and r are non-negative integers and $p_{1}, p_{2}, \ldots, p_{r}$ are distinct prime numbers of the form $2^{2^{m}}+1$.

- Let $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{s}^{m_{s}}$, where $p_{1}, p_{2}, \ldots, p_{s}$ are distinct primes and $m_{1}, m_{2}, \ldots, m_{s} \geq 1$, and suppose that Π_{n} is constructible.
By a previous lemma, Π_{q} is constructible, where $q=p^{m}$ is any of $p_{j}^{m_{j}}$.
So the point $\left(\cos \theta_{q}, \sin \theta_{q}\right)$ is constructible, where $\theta_{q}=\frac{2 \pi}{q}$. Hence, $\left[\mathbb{Q}\left(\cos \theta_{q}, \sin \theta_{q}\right): \mathbb{Q}\right]$ is a power of 2 .
Also $\mathbb{Q}(\omega)=\mathbb{Q}\left(\cos \theta_{q}, \sin \theta_{q}, i\right): \mathbb{Q}\left(\cos \theta_{q}, \sin \theta_{q}\right)$ is of degree 2 .
So $[\mathrm{Q}(\omega): \mathbb{Q}]$ is also a power of 2 .
The complex number ω is a primitive q-th root of unity.
- We know that $\left[\mathbb{Q}\left(e^{2 \pi i / q}\right): \mathbb{Q}\right]=2^{r}$, a power of 2 .

From the lemma, $\left[\mathbb{Q}\left(e^{2 \pi i / q}\right): \mathbb{Q}\right]=p^{m-1}(p-1)$.

- If $p=2$, no conflict occurs.
- If p is odd, then $m=1$ and $p-1$ is a power of 2 . Suppose that $p=2^{k}+1$ and $k=2^{v} u$, where $u>1$ is odd.
Then, writing $2^{2^{v}}$ as w, we have

$$
\begin{aligned}
p & =2^{2^{v} u}+1=\left(2^{2^{v}}\right)^{u}+1=w^{u}+1 \\
& =(w+1)\left(w^{u-1}-w^{u-2}+\cdots-w+1\right)
\end{aligned}
$$

This is impossible, since p is prime.
Hence, k has no odd factors.
We conclude that p is a Fermat prime, of the form $2^{2^{m}}+1$.
So, if Π_{n} is constructible, $n=2^{k} p_{1} p_{2} \cdots p_{r}$, where each p_{i} is a Fermat prime.

- Conversely, suppose that

$$
n=2^{k} p_{1} p_{2} \cdots p_{r}
$$

where each $p_{j}=2^{2^{m_{j}}}+1$ is a Fermat prime.
It suffices to show that $\Pi_{2^{k}}$ and $\Pi_{p_{j}}, i=1,2, \ldots, r$, are constructible.
We can repeatedly bisect the angle $\frac{\pi}{2}$ to obtain $\frac{\pi}{2^{k-1}}$.
So $\Pi_{2^{k}}$ is constructible.
We must show that each $\Pi_{p_{j}}$ is constructible. Let $\omega=e^{2 \pi i / p_{j}}$.
Then, by a previous lemma, $\mathbb{Q}(\omega)$ is a normal extension of \mathbb{Q}, with

$$
[\mathbb{Q}(\omega): \mathbb{Q}]=p_{j}-1=2^{2^{m_{j}}}
$$

Also by a previous lemma, the angle $\frac{2 \pi i}{p_{j}}$ is constructible.

