Fields and Galois Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 1 / 23

Preliminaries

• The Construction of Regular Polygons

Subsection 1

Preliminaries

Closure Properties of Constructible Points

Recall that a point (a, b) is constructible if it can be obtained from O = (0,0) and I = (1,0) by ruler and compasses constructions.

Lemma

Let $a, b \in \mathbb{R}$.

- (i) The point (a,0) is constructible if and only if (0,a) is constructible.
- (ii) The point (*a*, *b*) is constructible if and only if (*a*, 0) and (*b*, 0) are constructible.
- (iii) If (a,0) and (b,0) are constructible, then so are (a+b,0), (a-b,0), (ab,0)and, if $b \neq 0, (\frac{a}{b}, 0)$.
- (i) Suppose that (a,0) is constructible. The circle with center O passing through (a,0) meets the positive y-axis in (0,a). So (0,a) is constructible. The converse is similar.

Closure Properties of Constructible Points (ii)

(ii) Suppose that (*a*, *b*) is constructible.

- We can drop a perpendicular from (*a*, *b*) on to the *x*-axis to construct the point (*a*, 0).
- Dropping a perpendicular on to the y-axis gives the point (0, b).
- So, by Part (i), both (a,0) and (b,0) are constructible.

Conversely, suppose that (a,0) and (b,0) (and hence also (0,b)) are constructible.

- We may draw a line through (a,0) perpendicular to the x-axis.
- We may draw a line through (0, b) perpendicular to the y-axis.

The lines meet in (a, b), which is therefore constructible.

Closure Properties of Constructible Points (iii)

(iii) Suppose that A = (a,0) and B = (b,0) are constructible. A circle with center A and radius equal to the length of OB meets the x-axis in (a+b,0) and (a-b,0). Hence, both these points are constructible. We now show that (ab,0) is constructible.

Let A' = (0, a) and I' = (0, 1), both constructible, by Part (i).

Draw a line though A' parallel to I'B, meeting the x-axis in P. The triangles OBI' and OPA' are similar. So we have $\frac{OP}{OA'} = \frac{OB}{OI'}$. Hence, P is the point (ab, 0). So it is constructible.

George Voutsadakis (LSSU)

Fields and Galois Theory

Closure Properties of Constructible Points (iii Cont'd)

• Finally, we show that $\left(\frac{a}{b}, 0\right)$ is constructible.

Let B be the point (b,0), where $b \neq 0$, and let I' = (0,1).

Draw a line through *I* parallel to *BI'*, meeting the *y*-axis in *P*. The triangles *OIP* and *OBI'* are similar. So we have $\frac{OP}{OI} = \frac{OI'}{OB}$. Thus, *P* is the point $(0, \frac{1}{b})$. So $(\frac{1}{b}, 0)$ is also constructible. From the preceding result, we deduce that $(\frac{a}{b}, 0)$ is constructible.

Constructibility of Rational Pairs

Corollary

If $a, b \in \mathbb{Q}$, then (a, b) is constructible.

From Part (iii) of the lemma, we can deduce that (m/n,0) is constructible for every rational number m/n.
 Thus, by Part (i), (a,0) and (0,b) are constructible.
 So, by Part (ii), (a,b) is constructible.

Constructibility Theorem

Theorem

Let $B = \{O, I\}$. If there is a sequence of subfields $\mathbb{Q} = K_0 \subset K_1 \subset \cdots \subset K_n = L$ of \mathbb{R} , such that $[K_i : K_{i-1}] = 2$, i = 1, 2, ..., n, then every point with coordinates in L is constructible.

By the corollary, every (a, b) with coordinates in Q = K₀ is constructible. Let i ≥ 1. Suppose inductively that every point with coordinates in K_{i-1} is constructible. By hypothesis, [K_i : K_{i-1}] = 2. So K_i = K_{i-1}(β), where β is an arbitrarily chosen element of K_i\K_{i-1}. The minimum polynomial of β over K_{i-1} is of the form X² + bX + c, with b, c ∈ K_{i-1}. Its discriminant Δ = b² - 4c ≥ 0, since K_i is certainly a subfield of ℝ. Then β = ½(b±√Δ). So K_i = K_{i-1}(√Δ), where Δ ∈ K_{i-1}. It suffices to show that (√Δ,0) is constructible.

Constructibility of $(\sqrt{\Delta},0)$

Let D be the point (Δ,0). Let E be the point on the x-axis such that IE = Δ. Let M be the midpoint of OE. Let K be the circle with center M passing through O (and E). Let the line through I perpendicular to the x-axis meet the circle K in P.

The angle OPE is a right angle.

The triangles *OIP* and *PIE* are similar. Hence, $\frac{OI}{IP} = \frac{IP}{IE}$. So $IP^2 = \Delta$. The point $(\sqrt{\Delta}, 0)$ is obtained as the intersection with the positive x-axis of a circle with center *O* and radius equal to the length *IP*. It follows that an arbitrary point $(p + q\sqrt{\Delta}, r + s\sqrt{\Delta})$, where $p, q, r, s \in K_{i-1}$, is constructible.

Extensions of ${ m Q}$ of Degree a Power of 2

Theorem

Let K be a normal extension of \mathbb{Q} , such that $[K : \mathbb{Q}] = 2^m$, where m is a positive integer. Then, every point (α, β) in $K \times K$ is constructible.

 The group G = Gal(K : Q) is of order 2^m. By a preceding theorem, there exist normal subgroups

$$\{e\}=H_0\subset H_1\subset\cdots\subset H_{m-1}\subset H_m=G,$$

such that $|H_i| = 2^i$, i = 0, 1, ..., m. Thus, there exist subfields

$$K = \Phi(H_0) \supset \Phi(H_1) \supset \cdots \supset \Phi(H_{m-1}) \supset \Phi(H_m) = \mathbb{Q},$$

with $[K : \Phi(H_i)] = 2^i$, i = 0, 1, ..., m. Hence, $[\Phi(H_i) : \Phi(H_{i+1})] = 2$, i = 0, 1, ..., m-1. The conclusion now follows from the preceding theorem.

George Voutsadakis (LSSU)

Subsection 2

The Construction of Regular Polygons

Construction of the Canonical *n*-Gon

- For all $n \ge 3$, denote the regular polygon with *n* sides by Π_n .
- We specify exactly the set of *n* for which Π_n is constructible.
- The key is that a geometric construction is possible if and only if the degree of the associated field extension is a power of 2.
- Note, first, that the construction of Π_n depends on the construction of the angle $\theta_n = \frac{2\pi}{n}$ at the center of the polygon
- Once we construct the isosceles triangle *IOA* for which the angle *IOA* is θ_n , we may form the polygon by pasting copies of the triangle all the way round.

Sum/Difference of Constructible Angles

• A similar pasting technique allows us to deduce that constructibility of θ_m and θ_n implies constructibility of $\theta_m \pm \theta_n$.

• In both diagrams, AOB is the angle θ_m .

- In (i), $\angle BOC = \theta_n$ and $\angle AOC = \theta_m + \theta_n$.
- In (ii), $\angle COB = \theta_n$ and $\angle AOC = \theta_m \theta_n$.

Theorem

If θ_m and θ_n are constructible and $s, t \in \mathbb{Z}$, then $s\theta_m + t\theta_n$ is constructible.

Constructibility of an Angle

Theorem

The following statements are equivalent:

- (i) θ_n is constructible;
- (ii) The point $(\cos \theta_n, \sin \theta_n)$ is constructible;
- iii) The point $(\cos \theta_n, 0)$ is constructible.

(i)⇒(ii): This is clear from the diagram:
(ii)⇒(iii): This is clear from the preceding lemma.

(iii) \Rightarrow (i): In the diagram, suppose we have constructed the point $C(\cos\theta_n, 0)$. The line though C perpendicular to OI meets the single with center Q and redice 1 in the

the circle with center O and radius 1 in the point $(\cos \theta_n, \sin \theta_n)$. Joining this point to O gives the required angle.

Constructibility of Π_{mn} from Π_m and Π_n

Lemma

Let *m* and *n* be relatively prime positive integers. Π_{mn} is constructible if and only if Π_m and Π_n are constructible.

 Suppose first that Π_{mn}, with vertices V₀, V₁,..., V_{mn-1}, is constructible. It is clear that Π_m is constructible. Simply join up the vertices V₀, V_n, V_{2n},..., V_{(m-1)n}, V₀ in sequence. Similarly, Π_n is constructible.

Note that "relatively prime" was not used in this part of the proof. Conversely, suppose that Π_m and Π_n are constructible, where *m* and *n* are relatively prime. Then, there exist integers *s* and *t*, such that sm + tn = 1. So

$$s\theta_n + t\theta_m = \frac{2\pi s}{n} + \frac{2\pi t}{m} = \frac{2\pi(sm + tn)}{mn} = \theta_{mn}.$$

By a previous theorem, $s\theta_n + t\theta_m$ is constructible. Thus, so is θ_{mn} .

Constructibility of θ_p

Lemma

Let $\omega_p = e^{\theta_p} = e^{2\pi i/p}$, where p is prime. Then θ_p is constructible if and only if $[\mathbb{Q}(\omega_p):\mathbb{Q}]$ is a power of 2.

• Let $\omega = e^{2\pi i/p}$. Over the field $\mathbb{Q}(\omega)$ the polynomial $X^p - 1$ factorizes as $(X-1)(X-\omega)(X-\omega^2)\cdots(X-\omega^{p-1})$. So $\mathbb{Q}(\omega)$ is the splitting field over \mathbb{Q} of the polynomial $\frac{X^{p-1}}{X-1} = X^{p-1} + X^{p-2} + \dots + X + 1$. The polynomial is irreducible over \mathbb{Q} . Gal $(\mathbb{Q}(\omega):\mathbb{Q})$ is abelian. Let $K = \mathbb{Q}(\omega) \cap \mathbb{R}$. This is a subfield of \mathbb{R} containing $\zeta = \frac{\omega + \omega^{-1}}{2} = \cos \frac{2\pi}{n}$. The minimum polynomial of ω over K is $X^2 - 2\zeta X + 1$. So $[\mathbb{Q}(\omega): K] = 2$. Hence, $Gal(\mathbb{Q}(\omega): K)$ is a subgroup of $Gal(\mathbb{Q}(\omega): \mathbb{Q})$ of order 2. It is a normal subgroup, since $Gal(\mathbb{Q}(\omega):\mathbb{Q})$ is abelian. Hence, the extension $K : \mathbb{Q}$ is normal. By preceding results, $\frac{2\pi}{n}$ is constructible if and only if $[K : \mathbb{Q}]$ is a power of 2. Hence, (since $[\mathbb{Q}(\omega):\mathbb{Q}] = 2[K:\mathbb{Q}])$ if and only if $[\mathbb{Q}(\omega):\mathbb{Q}]$ is a power of 2.

Minimum Polynomial of Primitive Roots

• Let p be a prime, $q = p^m$ and $\omega \in \mathbb{C}$ a primitive q-th root of unity, i.e., $\omega^{p^m} = 1$, but $\omega^{p^{m-1}} \neq 1$.

Lemma

The minimum polynomial of ω is $f = 1 + X^{p^{m-1}} + X^{2p^{m-1}} + \dots + X^{(p-1)p^{m-1}}$

• Write
$$X^{p^{m-1}}$$
 as Z. Then

$$f = 1 + Z + \dots + Z^{p-1} = \frac{Z^p - 1}{Z - 1} = \frac{X^{p^m} - 1}{X^{p^{m-1}} - 1}$$

We have $f(\omega) = 0$. It remains to show that f is irreducible over \mathbb{Q} . Let X = 1 + T. Then $f = \frac{(1+T)^{p^m} - 1}{(1+T)^{p^{m-1}} - 1}$. All the intermediate binomial coefficients are divisible by p. So we may write $f = \frac{T^{p^m} + pu(T)}{T^{p^{m-1}} + pv(T)}$, where u and v are polynomials, and $\partial u \le p^m - 1$, $\partial v \le p^{m-1} - 1$.

Minimum Polynomial of Primitive Roots (Cont'd)

We now have

$$F = \frac{(1+T)^{p^{m}}-1}{(1+T)^{p^{m-1}}-1}$$

$$= \frac{T^{p^{m}}+pT^{p^{m-1}(p-1)}v(T)-pT^{p^{m-1}(p-1)}v(T)+pu(T)}{T^{p^{m-1}}+pv(T)}$$

$$= \frac{T^{p^{m-1}(p-1)}(T^{p^{m-1}}+pv(T))-pT^{p^{m-1}(p-1)}v(T)+pu(T)}{T^{p^{m-1}}+pv(T)}$$

$$= T^{p^{m-1}(p-1)}+\frac{pu(T)-pT^{p^{m-1}(p-1)}v(T)}{T^{p^{m-1}}+pv(T)}.$$

George Voutsadakis (LSSU)

Minimum Polynomial of Primitive Roots (Cont'd)

• We got
$$f = T^{p^{m-1}(p-1)} + \frac{pu(T) - pT^{p^{m-1}(p-1)}v(T)}{T^{p^{m-1}} + pv(T)}$$

The degree of the numerator $pu(T) - pT^{p^{m-1}(p-1)}$ is less than p^m . The degree of the denominator is p^{m-1} . f is a polynomial in T. The fractional term must be a polynomial of degree $< p^{m-1}(p-1)$. The numerator is divisible by p and the denominator is not.

So we may write $f = T^{p^{m-1}(p-1)} + pg(T)$, where g is a polynomial and $\partial g < p^{m-1}(p-1)$. But we also have the expression

$$f(1+T) = 1 + (1+T)^{p^{m-1}} + (1+T)^{2p^{m-1}} + \dots + (1+T)^{(p-1)p^{m-1}}$$

From this it is evident that the constant term of f(1+T) is p. By Eisenstein's Criterion, $f = T^{p^{m-1}(p-1)} + pg(T)$ is irreducible.

Constructible Regular Polygons

Theorem

A regular polygon with n sides is constructible if and only if

$$n=2^kp_1p_2\cdots p_r,$$

where k and r are non-negative integers and $p_1, p_2, ..., p_r$ are distinct prime numbers of the form $2^{2^m} + 1$.

Let n = p₁^{m₁}p₂^{m₂}...p_s^{m_s}, where p₁, p₂,..., p_s are distinct primes and m₁, m₂,..., m_s ≥ 1, and suppose that Π_n is constructible. By a previous lemma, Π_q is constructible, where q = p^m is any of p_j^{m_j}. So the point (cosθ_q, sinθ_q) is constructible, where θ_q = ^{2π}/_q. Hence, [Q(cosθ_q, sinθ_q): Q] is a power of 2. Also Q(ω) = Q(cosθ_q, sinθ_q, i) : Q(cosθ_q, sinθ_q) is of degree 2. So [Q(ω): Q] is also a power of 2. The complex number ω is a primitive q-th root of unity.

Constructible Regular Polygons (Cont'd)

- We know that $[\mathbb{Q}(e^{2\pi i/q}):\mathbb{Q}] = 2^r$, a power of 2. From the lemma, $[\mathbb{Q}(e^{2\pi i/q}):\mathbb{Q}] = p^{m-1}(p-1)$.
 - If p = 2, no conflict occurs.
 - If p is odd, then m = 1 and p 1 is a power of 2. Suppose that $p = 2^k + 1$ and $k = 2^v u$, where u > 1 is odd. Then, writing 2^{2^v} as w, we have

$$p = 2^{2^{\nu}u} + 1 = (2^{2^{\nu}})^{u} + 1 = w^{u} + 1$$

= (w+1)(w^{u-1} - w^{u-2} + ... - w + 1).

This is impossible, since p is prime.

Hence, k has no odd factors.

We conclude that p is a Fermat prime, of the form $2^{2^m} + 1$.

So, if Π_n is constructible, $n = 2^k p_1 p_2 \cdots p_r$, where each p_i is a Fermat prime.

Constructible Regular Polygons (Converse)

Conversely, suppose that

$$n=2^kp_1p_2\cdots p_r,$$

where each $p_j = 2^{2^{m_j}} + 1$ is a Fermat prime.

It suffices to show that Π_{2^k} and Π_{p_j} , i = 1, 2, ..., r, are constructible. We can repeatedly bisect the angle $\frac{\pi}{2}$ to obtain $\frac{\pi}{2^{k-1}}$.

So Π_{2^k} is constructible.

We must show that each Π_{p_j} is constructible. Let $\omega = e^{2\pi i/p_j}$. Then, by a previous lemma, $\mathbb{Q}(\omega)$ is a normal extension of \mathbb{Q} , with

$$[\mathbb{Q}(\omega):\mathbb{Q}]=p_j-1=2^{2^{m_j}}.$$

Also by a previous lemma, the angle $\frac{2\pi i}{p_i}$ is constructible.