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Integral Domains and Polynomials

o An integral domain D is called a Euclidean domain if there is a
mapping & from D into the set IN® of non-negative integers with the
properties:

o 6(0)=0;
o Forall ain D and all b in D\{0}, there exist g,r in D, such that

a=qgb+r, 6(r) <8(b).

o It follows that §71{0} = {0}.
Suppose for some b#0, §(b)=0.
Then it would not be possible to find r, such that §(r) <8(b).
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Integral Domains and Polynomials

o The most important example of a Euclidean domain is the ring Z.
o &(a) is defined as |al.

o The process, known as the division algorithm, is the familiar one of
dividing a by b and obtaining a quotient g and a remainder r.

o If b is positive, then there exists g, such that
gb<a<(g+1)b.
Thus 0<a—gb< b. Taking r=a—gb, we see that a= gb+r and
[r| <|bl.
o If b is negative, then there exists g, such that

(g+1)b<a<gb.

Thus, b<r=a-qgb=<0. It follows again that a=gb+r and |r| <|b|.
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Integral Domains and Polynomials

o An integral domain D is called a principal ideal domain if all of its
ideals are principal.

Every Euclidean domain is a principal ideal domain.

o Let D be a Euclidean domain. The ideal {0} is certainly principal. Let
| be a non-zero ideal. Let b be a non-zero element of /, such that

8(b) = min{8(x) : x € I\{0}}.

Let ae /. There exist g,r, such that a=gb+r and §(r) <5(b). But
r=a—qbel. By the minimality of §(b), r=0. Thus, a=gb.

So | = Db=(b) is a principal ideal.
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Integral Domains and Polynomials

o Let a,b be non-zero members of a principal ideal domain D.
o Let (a,b) ={sa+tb:s,te D} be the ideal generated by a and b.

o Since D is a principal ideal domain, there exists d in D, such that
(a, by = (d).
o Since (a) € (d) and (b) = (d), we have d|a and d | b.
o Since d € (a, b), there exist s,t in D, such that d =sa+ tb.
If d’|a and d’| b, then d'|sa+tbh, ie., d'|d.
o We say that d is a greatest common divisor, or a highest common
factor, of a and b.

o If (a,b) = (d) = (d*), then that d* ~d.

George Voutsadakis (LSSU)



Integral Domains and Polynomials

o Let a,b be non-zero members of a principal ideal domain D.
o Summarizing, d is the greatest common divisor of a and b, written
d =gcd(a, b),

if it has the following properties:
d|aand d|b;
if d|aand d'|b, then d’|d.

o If gcd(a,b) ~1, we call a and b coprime, or relatively prime.
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Integral Domains and Polynomials

o In the case of the domain Z, where the group of units is {1,—1}, we

have, e.g., that
(12,18) = (6) = (-6).

o A simple modification of the argument enables us to conclude that, in
a principal ideal domain D, every finite set {a1,ap,...,an} has a
greatest common divisor.
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Integral Domains and Polynomials

o Let a and b be non-zero elements of a Euclidean domain D.

o Suppose, without loss of generality, that §(b) < d(a).

o Then there exist g1,q>,... and ry,r,..., such that:
a:q1b+r1, 5(/’1)<5(b),
b=q2r1+r2, 6(r2)<6(r1),
n=qn+r, 06(r)<di(r),
rp=qar3+ry, 6(ry)<6(rs),

o The process must end with some r, = 0.
The final equations are:

k-3 = Qk-1rk—2+ k=1, 0(rk—1) <6(rk-2),
Fk—2 = qkrk-1-
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Integral Domains and Polynomials

o From a=qg1b+ry, we deduce that (a, b) = (b, r1).
o Every element sa+tb in (a,b) can be rewritten as

sa+tb=s(gib+nr)+tb=(t+sq1)b+sr €(b,r).

Every element xb+ yr; in (b,r1) can be rewritten as
xb+yr =xb+y(a—qi1b)=ya+(x-yq1)be(a,b).
o Similarly, the subsequent equations give

(b,r1) ={r1,r),{r,n)=(r,n),...,
(Fi—=3, k=2) = k=2, k=15 rk=2, rk—1) = {rk—1)-

o We conclude that (a, by = {rx_1).

o So ri_1 is the (essentially unique) greatest common divisor of a and b.
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Integral Domains and Polynomials

o We determine the greatest common divisor of 615 and 345, and
express it in the form 615x +345y.

615 = 1x345+270
345 = 1x270+75
270 = 3x75+45
75 = 1x45+30
45 = 1x30+15
30 = 2x15+0.
The greatest common divisor is 15, the last non-zero remainder.
Moreover,
15 = 45-30=45—(75-45)=2x45-75
= 2x(270-3x75)-75=2x270-7x75
= 2x270-7x(345-270) =9x270—7 x 345
= Ox(615-345)—7x345 =9 x 61516 x 345,
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Integral Domains and Polynomials

o Two elements a and b of a principal ideal domain D are coprime if
their greatest common divisor is 1.

o This happens if and only if there exist s and t in D, such that
sa+tb=1.

o For example, 75 and 64 are coprime:

75 = 1x64+11
64 = 5x11+9

11 = 1x9+2
9 = 4x2+1
2 = 2x1+0.
Therefore,
1 = 9—4XZ=9—401—9)ZSXQ—4XI1

5(64-5%x11)—4x11=5x64-29x11
5x64—29(75—-64) =34 x 64 —29 x 75.
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Integral Domains and Polynomials

o Let D be an integral domain with group U of units, and let pe D be
such that p#0,p¢ U.

Then p is said to be irreducible if it has no proper factors.

Let p be an element of a principal ideal domain D. Then the following
statements are equivalent:

p is irreducible;

{p) is a maximal proper ideal of D;
D/{py is a field.

(i)=(ii): Suppose that p is irreducible. Then p is not a unit, and so
(p) is a proper ideal of D. Suppose, for a contradiction, that there is a
(principal) ideal (@), such that (p) c(g) < D. Then pe{(q). So p=aq,
for some non-unit a. This contradicts the irreducibility of p.
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Integral Domains and Polynomials

(ii))=(iii): Let a+(p) be a non-zero element of D/{p). Then a¢ (p).
So the ideal (a) + (p) properly contains {p). Since (p) is maximal,

(@) +{p) ={sa+tp:s,t € D} = D. Hence, there exist s,t in D such that
sa+tp=1. Therefore, sa—1=tpe(p). That is,

(s+<p))(a+(p))=1+<(p).

Thus, D/(p) is a field.

(iii)=(i): If p is not irreducible, then there exist non-units ¢ and r,
such that p=gr. Then g+ {p) and r+(p) are both non-zero elements
of D/{p). On the other hand,

(g+<pY)(r+<p))=p+(p)=0+{p).

Thus, D/(p) has divisors of zero. So it is not a field.
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Integral Domains and Polynomials

o An element d of an integral domain D has a factorization into
irreducible elements if there exist irreducible elements p1, po,..., pk.
such that

d=pip2-- pk-
o The factorization is essentially unique if, for irreducible elements
p1,P2,.--, Pk and q1,92,...,qe,

d=pip2---Pk=G1G2" " Qe
implies that k = ¢ and, for some permutation
o:{1,2,....,k} —{1,2,..., k},

p,'~qg(,'), i=12,..., k.

o An integral domain D is said to be a factorial domain, or a unique
factorization domain, if every non-unit a# 0 of D has an essentially
unique factorization into irreducible elements.
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Integral Domains and Polynomials

o Z, in which the (positive and negative) prime numbers are the
irreducible elements, provides a familiar example of a unique
factorization domain.

o For example
60=2-2-3-5.

The factorization is essentially unique, for nothing more different than
(say) (=2)-(-5)-3-2 is possible.
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Integral Domains and Polynomials

In a principal ideal domain there are no infinite ascending chains of ideals.

o In any integral domain D, an ascending chain /; €/, S3<--- of ideals

has the property that / =J;>1/; is an ideal.

o Let a,be /. There exist k,#, such that ae l,bel,. So

3= b€ hnaxikn < -

o Let ae/ and se D. Then a€ /i, for some k. So sael, <.
Let D be a principal ideal domain, and (a;) S(ay) S(a3z) <--- be an
ascending chain of (principal) ideals. We know that the union of all
the ideals in this chain must be an ideal. By our assumption, this
must be a principal ideal (a). Since a€U;>1(a;), a€(ax), for some k.
Thus, (a) < (ax). But we also have (a,) = (a). Hence, (a) = (ax). So
(ag) = (ak+1) = {ak42) = ---=(a). Thus, the infinite chain of inclusions
terminates at (ay).
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Integral Domains and Polynomials

Lemma

Let D be a principal ideal domain, let p be an irreducible element in D,
and let a,be D. If p|ab, then p|aor p| b.

o Suppose that p|ab and pta. Then the greatest common divisor of a
and p must be 1. So there exist s,t in D, such that sa+tp=1.
Hence, sab+ tpb=b. But p clearly divides sab+ tpb. Therefore, p| b.

o It is a routine matter to extend this result to products of more than
two elements.

Corollary

Let D be a principal ideal domain, let p be an irreducible element in D, and
let aj,az,...,am€eD. If plajaz---am, then plaj or plas or --- or p|am.
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Integral Domains and Polynomials

Every principal ideal domain is factorial.

o We show, first, that any a#0 in D can be expressed as a product of
irreducible elements. Let a be a non-unit in D. Then either a is
irreducible, or it has a proper divisor a;. Similarly, either a; is
irreducible, or a; has a proper divisor a;. Continuing, we obtain a
sequence a = ag, a1,4az,... in which, for i=1,2,..., a; is a proper divisor
of a;_1. The sequence must terminate at some ay; Otherwise the

infinite ascending sequence (a) c {(a;) = (a>) = --- would contradict the
lemma.

Hence a has a proper irreducible divisor a, = z;, and a= z, b;.
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Integral Domains and Polynomials

o We found a proper irreducible divisor ay = z; of a, yielding the
expression a=zib;.

If by is irreducible, then the proof is complete.

Otherwise we can repeat the argument we used for a to find a proper
irreducible divisor z» of by, and a=z;z>b,.

We continue this process.

It too must terminate; Otherwise the infinite ascending sequence
(a) € (b1) € (by) c--- would again contradict the lemma.

Hence, some by, must be irreducible.

So a=2z12z-+-zp_1by is a product of irreducible elements.
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Integral Domains and Polynomials

o Suppose that p1po---pix ~ g1G2---qp, Where p1,po,...,px and
qi,9>,...,qp are irreducible.

o Suppose first that k=1. Since g1g2---qy is irreducible, £=1. So
p1~q1.

o Suppose inductively that, for all n=2 and all k < n, any statement of
the form p1po---px ~q1g2---qp implies that k = ¢ and that, for some
permutation o of {1,2,...,k}, g; ~ Po (i) i=1,2,..., k.

o Let k=n. Since p1191g2---q¢, by the corollary p1 | gj, for some j in
{1,2,...,4}. Since g; is irreducible and p; is not a unit, p; ~g;. By
cancelation, pop3---pn~q1---qj-19j+1---qe. By the induction
hypothesis, n—1=¢-1 and, for i€ {1,2,...,n\{j}, g; ~ Po(i): for some
permutation ¢ of {2,3,...,n}. Hence, extending ¢ to a permutation o
of {1,2,...,n} by defining g(1) =, we obtain the desired result.

Every Euclidean domain is factorial.
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Integral Domains and Polynomials

In the following, R is an integral domain and K is a field.

©

A polynomial f with coefficients in R is a sequence (ag, a1, ...),
where a; € R, for all i =0, and where only finitely many of {ag, a1,...}
are non-zero.

©

If the last non-zero element in the sequence is a,, we say that f has
degree n, and write of = n.

©

©

The entry a, is called the leading coefficient of f.

If a, =1 we say that the polynomial is monic.

©
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Integral Domains and Polynomials

o In the case where all of the coefficients are 0, it is convenient to
ascribe the formal degree of —oo to the polynomial (0,0,0,...).

o We also make the conventions, for every n in Z,
—oco<n, —oo+(-00)=-00, —00+n=-co.

o Polynomials (a,0,0,...) of degree 0 or —co are called constant.

o For other polynomials of small degree we have names as follows:

of | 1+ | 2 | 3| 4 | 5 | 6

name ‘ linear ‘ quadratic ‘ cubic ‘ quartic ‘ quintic ‘ sextic
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Integral Domains and Polynomials

o Addition of polynomials is defined as follows:
(a0, a1,...)+ (bo, b1,...) = (a0 + bo, a1 + by, ...).
o Multiplication is defined by
(a0, a1,...)(bo, b1,...) = (co, c1,--.),

where, for k=0,1,2,...,

Ck = Z a,-bj.
{(7,j):i+j=k}

Thus,

C():aobo, c1:a0b1+a1bo, C2=aob2+alb1+32bo,
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Integral Domains and Polynomials

o With respect to these two operations, the set P of all polynomials
with coefficients in R becomes a commutative ring with unity.
o Most of the ring axioms are easily verified.
o The zero element is (0,0,0,...);
o The unity element is (1,0,0,...);
o The negative of (ag,as,...) is (—ag,—a1,...).
o For associativity of multiplication: Let p=(ag,as,...), = (bo, b1,...),
r=(co,c1,...) be polynomials. Then (pg)r=(do,d,...), where, for
m=0,1,2,...,

dm

Z }a,-bj) Cy = Z a,'bjC[

{(k,0):k+¢=m} ({(i,j):i+j:k {(i,0):i+j+¢=m}

aj ( bjC[) °
{(i,n):i+n=m} {(j,€):j+¢=n}

The latter is the m-th entry of p(qr). So multiplication is associative.



Integral Domains and Polynomials

o There is a monomorphism 6 : R — P given by
0(a)=(a,0,0,...), forall aeR.
o Thus, we may identify
0(a)=(a,0,0,...)

with the element a of R.

o In this way we view R as a subring of P.
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Integral Domains and Polynomials

o Let X be the polynomial (0,1,0,0,...).
o Then the multiplication rule gives:

o X2=(0,0,1,0,...);

> X3=(0,0,0,1,0,...);

o In general,

1, ifm=n
n_ _ )
X" =(x0,x1,...), where xm —{ 0. otherwise
o Now we get

(a0, a1,---,an,0,...)
=(a0,0,...,0,0,...)+(0,21,0,...,0,0,..) +---+(0,0,0,...,25,0,...)

= (a0,0,...,0,0,0,...) + (21,0,0,...,0,0,0,...)(0,1,0,...,0,0,0,...) + -~

+(an0,0,...,0,0,0,...)(0,0,0,...,1,0,0,...)
=0(ap)+6(ar)X +---+0(an)X".

o Identifying 0(a;) with a;, we get ag+ay X +ax X% +---+ap,X".



Integral Domains and Polynomials

o Despite the expression of a polynomial in terms of X :=(0,1,0,0,...)
(regarded as an “indeterminate”) it is important to note that:

o We are talking of polynomial forms, wholly determined by the
coefficients a; in R;

o X is not a member of R but only a notation for the tuple (0,1,0,...) of
the ring P of polynomials with coefficients in R.

o We sometimes write f = f(X) and say that it is a polynomial over R
in the indeterminate X.

o The ring P of all such polynomials is written R[X].
o We refer to R[X] simply as the polynomial ring of R.
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Integral Domains and Polynomials

Let D be an integral domain, and let D[X] be the polynomial ring of D.
Then:

D[X] is an integral domain.

If p,ge D[X], then d(p+ q) < max{dp,dq}.

For all p,q in D[X], d(pq) =0p+0q.

The group of units of D[X] coincides with the group of units of D.

We have already noted that D[X] is a commutative ring with unity.
We show that D[X] has no divisors of 0.

Suppose that p and g are non-zero polynomials with leading terms a,,
b, respectively. The product of p and g has leading term an,b,. By
hypothesis, D has no zero divisors. So the coefficient an, b, is
non-zero. This ensures that pg #0.
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Integral Domains and Polynomials

Let p and g be non-zero. Let dp=m, dg = n, and suppose, without
loss of generality, that m= n.
o If m>n, then it is clear that the leading term of p+q is am,. So
d(p+q) = max{dp,dq}.
o If m=n, then we may have a,, + b, =0. So all we can say is that
d(p+q) <max{dp,dq}.
The conventions regarding —oo ensure that this result holds also if one
or both of p,q are equal to 0.
By the argument in Part (i), if p and g are non-zero, then
d(pq)=m+n=0p+0dq. If one or both of p and g are zero, then the
result holds by the conventions on —co.
Let p, g€ D[X], and suppose that pg=1. From Part (iii), dp=3q =0.
Thus p,ge D, and pg=1 if and only if p and g are in the group of
units of D.
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Integral Domains and Polynomials

o Since the ring of polynomials over the integral domain D is itself an
integral domain, we can repeat the preceding process.

o So we may form the ring of polynomials with coefficients in D[X].

o We need to use a different letter for a new indeterminate, and the new
integral domain is (D[X])[Y], denoted by D[X, Y].

o It consists of polynomials in X and Y with coefficients in D.

o By repeating, we obtain the integral domain D[X1, X2,...,Xs].
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Integral Domains and Polynomials

o The field of fractions of D[X] consists of rational forms

at+ar X+ +apX"
bo+bi X +---+b, X"’

where the denominator is not the zero polynomial.
o The field is denoted by D(X) (with parenthesis instead of brackets).

o In a similar way one arrives at the field D(X3, X3,..., X,) of rational
forms in the n indeterminates Xi, Xo,..., X, with coefficients in D.
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Integral Domains and Polynomials

Theorem

Let D, D’ be integral domains, and let ¢ : D — D’ be an isomorphism.
Then the mapping @ : D[X] — D'[X] defined by

P(ao+ar X +---+a,X") = ¢(ag) +p(ar) X +---+¢p(an) X"

is an isomorphism.

o The isomorphism @ is called the canonical extension of ¢.
o A further extension ¢* : D(X)— D’(X) is defined by
p(f
gl oe) ¢
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Integral Domains and Polynomials

o Suppose that the ring R of coefficients is actually a field K.
o The group of units of K[X] is the group of units of K.
That is, it the group K* of non-zero elements of the field K.

o As usual, we write

f~g iff f=ag, for some ain K.
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Integral Domains and Polynomials

Let K be a field, and let f,g be elements of the polynomial ring K[X],
with g #0. Then there exist unique elements g, r in K[X], such that
f=qg+r and dr<adg.

o If £ =0 the result is trivial, since f =0g +0.
So suppose that f #0. The proof is by induction on of.
o First, suppose that df =0, so that f € K*. If dg=0 also, let g= é and
r=0; otherwise, let g=0 and r="1.
o Suppose now that f = n, and suppose also that the theorem holds for
all polynomials f of all degrees up to n—1.

o If 0g>0df, let g=0and r="7.

2 Assume dg <0f. Let apX", by, X™, be the leading terms of f,g, where
m<n. Then the polynomial h= f—(;—;X"‘m)g has degree <n-1. So
there exist gq,r, such that h= g g +r, with dr <dg. It follows that
f= h+[g—;X"_m)gz(q1g+r)+(g—;X"_m)g= [q1+ g—;X”_m)g+r.
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Integral Domains and Polynomials

o To prove uniqueness, suppose that
f=qg+r=q'g+r, with or,0r' <og.
Then
r—r'=(q'-q)g.

So
0((q'~a)g)=0(r—r')<og.

By a previous theorem, this cannot happen unless g’ — g =0.
Hence g = ¢’. Consequently, r=r" also.
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Integral Domains and Polynomials

o Let f=X*—X and g=X?+3X+2.

We have

X2+3X+2]

Thus, X* =X = (X2 =3X +7)(X?+3X +2) —(16X +14).

X4

X4 +3x3
-3x3
-3X3

N

X2

+2x2
-2X?2
—9x2
7X?
7X?

-3X
-X

-X
-6X
+5X

+21X
—-16X
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Integral Domains and Polynomials

If K is a field, then K[X] is a Euclidean domain.

o If, for all f in K[X], we define §(f) as 2%, with the convention that
27° =0, we have the right properties.
o We summarize the important properties of K[X].

Let K be a field. Then:

Every pair (f,g) of polynomials in K[X] has a greatest common divisor d,
which can be expressed as af + bg, with a,b in K[X];

K[X] is a principal ideal domain;
K[X] is a factorial domain;

If f e K[X], then K[X]/(f) is a field if and only if f is irreducible.



Integral Domains and Polynomials

o Consider the polynomials X2+ X +1 and X3+2X -4 in Q[X].
o Then one may calculate that
X3+2X -4 = (X-1)(X?+X+1)+2X-3
X2+ X+1 = (3X+2)(2x-3)+L.

o So the greatest common divisor is %.
o But the group of units of Q[X] is Q* = Q\{0}. So 1749 ~
o The two given polynomials are coprime.

B = (XZ+X+1)-(3X+2)(2X-3)

(X?2+X+1)- (2X+ X3 +2X —4)— (X -1)(X?+ X +1)]
[L+(EX+2)(X-1)|(X2+X +1)- (2X+ S)(X3+2X - 4)
BAX2+3X-DH(X2+X+1)-(3X+2)(X3+2X -4).
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Integral Domains and Polynomials

o Since X2 +1 is irreducible in R[X], K =R[X]/(X?+1) is a field.
o The elements of K are the residue classes a+ bX + (X%2+1), a,beR.
o Addition is defined by the rule

(a+bX+(X?+ 1))+ (c+dX +(X?+1))=(a+c)+(b+d)X +(X?+1).
o Multiplication is given by
(a+bX +(X?+1))(c+dX +(X?+1))
=ac+(ad +bc)X + bdX?+ (X% +1)
= (ac—bd) +(ad + bc)X + bd(X? +1) + (X% +1)
= (ac—bd) + (ad + bc) X + (X2 +1).
o These mimic the rules for adding and multiplying complex numbers.
o The map ¢: R[X]/(X?+1) — C, given by
p(a+bX+(X?+1))=a+bi, abeR,
is in fact an isomorphism.
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Integral Domains and Polynomials

o Let D be an integral domain and let ¢ € D.
o The homomorphism g, from D[X] into D is defined by

og(ao+arX+--+apX")=ag+a1a+---+apa”.

o This is indeed a homomorphism. Let f(X)=ap+a1 X +---+a,X",
g(X)=bo+b1 X+ +bnX™. We have, e.g.,

oa(f-g) = 0a(Zt0(Titjmkaibj)Xk)
= YU(Eisjokaibj)ak
= (ag+ara+---+apa”)(bp+bra+---+byma™)
= 0a(f)oalg)
o We usually write f(a) instead of a4(f).
o If f(a@) =0, we say that a is a root, or a zero, of the polynomial f.
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Let K be a field, let e K and let f be a non-zero polynomial in K[X].
Then the remainder upon dividing f by X - is f(B). In particular, B is a
root of f if and only if (X—p)|f.

o By the division algorithm, there exist g,r in K[X], such that
f=(X-B)g+r, 0r<d(X-p)=1.

Thus r is a constant.
Substituting B for X, we see that f(B) =r.
In particular, f(8) =0 if and only if r=0 if and only if (X—-p)|f.

George Voutsadakis (LSSU)
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Subsection 4
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Let K be a field, and let g(X) be an irreducible polynomial in K[X]. Then
K[X]/{g(X)) is a field containing K up to isomorphism.

o We know that K[X]/(g(X)) is a field. The map
¢: K — K[X]/{g(X)), given by

p(a)=a+(g(X), aekK,
is easily seen to be a homomorphism. It is even a monomorphism,
since

a+(g(X))=b+{g(X)y iff a—be(g(X))
iff a=bh.

George Voutsadakis (LSSU) Fields and Galois Theory
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o This shows we have a highly effective method of constructing new
fields provided we have a way of identifying irreducible polynomials.

o Certainly every linear polynomial is irreducible.

o If the field of coefficients is the complex field C, by the Fundamental

Theorem of Algebra, every polynomial in C[X] factorizes, essentially
uniquely, into linear factors.

o Linear polynomials are of little interest as related to the preceding
theorem, for K[X]/{g(X)) coincides with ¢(K) in this case, and so is
isomorphic to K.

Suppose g(X)=X—a. Let f(X) in K[X] be arbitrary. By the
Euclidean Property of K[X], we have that f(X)=gq(X —a)+f(a).
So f(X)+(gy=f(a) +(g) € 9(K).

George Voutsadakis (LSSU)
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The irreducible elements of the polynomial ring R[X] are either linear or
quadratic. Every polynomial g(X)=a,X" + a1 X" 14+ X +3ag in
R[X] has a unique factorization

an(X=B1) (X =B ) X2+ A1 X + 1) - (X% + As X + s),
in R[X], where a,€R, r,s=0 and r+2s=n.

o If ye C\R is a root, then a,y" + an_ly”‘l +---+a1y+ap=0. Hence,
the complex conjugate of the left-hand side is zero also. Since the
coefficients ag, a,...,an are real,

anY" +an_1y" L+ -+ a1y +ag=0.

Thus, the non-real roots of the polynomial occur in conjugate pairs.

George Voutsadakis (LSSU)
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o Thus, we obtain a factorization

g(X)=an(X = 1) (X =B ) (X =y1)(X =71) - (X =ys)(X =),

in C[X], where B1,...,6,€R, y1,...,ys€ C\R, r,s=0 and r+2s=n.

This gives rise to a factorization

an(X=P1)-(X=Br) (X2 = (y+ 1) X +7171) - (XP = (Ys +T )X +757)

in R[X]. In this factorization the quadratic factors must be irreducible
in R[X]. If they had real linear factors, they would have two distinct
factorizations in C[X], which cannot happen.

o We know that a quadratic polynomial aX?+bX +c in R[X] is
irreducible if and only if the discriminant b —4ac <0.

George Voutsadakis (LSSU)
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o In Q[X], the situation is not so easy, because there are irreducible
polynomials of arbitrarily large degree.

Let g(X)=X?+a1X +ag be a polynomial with coefficients in Q. Then:

If g(X) is irreducible over R, then it is irreducible over @;

If g(X)=(X-p1)(X—-PB2), with B1,B2 € R, then g(X) is irreducible in Q[X]
if and only if B1 and B2 are irrational.

Let g(X) be irreducible over R. Suppose g(X)=(X-q1)(X-q2)
were a factorization in Q[X]. This would also be a factorization in
R[X], a contradiction.

If B1, B2 were rational we would have a factorization in Q[X], and
g(X) would not be irreducible. Suppose f1, B> are irrational. Then
(X = B1)(X — B2) is the only factorization in R[X]. So a factorization
in Q[X] into linear factors is not possible.

George Voutsadakis (LSSU)
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o We examine the following polynomials for irreducibility in R[X] and
QIX]:
X2+ X+1, X?+X-1, X?+X-2.

The first polynomial is irreducible over R, since the discriminant is —3.
It follows that it is irreducible over Q.
The second polynomial factorizes over R as (X — f1)(X — B2), where

:—1+\/§ -1-v5

> P=—H—

B1

It is irreducible over Q.
The third polynomial factorizes over Q as (X —1)(X +2).
So it is not irreducible.

George Voutsadakis (LSSU)



Integral Domains and Polynomials

Suppose that ne Z is positive and f,g’, h' € Z[ X], such that nf =g'h". If p
is a prime factor of n, then either p divides all the coefficients of g/, or p
divides all the coefficients of h'.

o Suppose, for a contradiction, that p does not divide all the coefficients
of g'=ap+aiX+---+a,X¥, and that p does not divide all the
coefficients of ' = by + by X +---+ by X’. Suppose that p divides
ap,...,aj-1, but ptaj, and that p divides by,...,bj_1, but p{b;. The
coefficient of X'/ in nf is agbj,j+---+ajbj+---+aj.jbo. In this sum,
all the terms preceding a;b; are divisible by p, since p divides
ag,...,aj-1; and all the terms following a;b; are divisible by p, since p
divides by, ..., bj_1. Hence, only the term a;b; is not divisible by p, and
it follows that the coefficient of X'*/ in nf is not divisible by p. This
gives a contradiction, since the coefficient of f are integers, and so
certainly all the coefficients of nf are divisible by p.

George Voutsadakis (LSSU)
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Let f be a polynomial in Z[X], irreducible over Z. Then f, considered as a
polynomial in Q[X], is irreducible over Q.

o Suppose, for a contradiction, that f = gh, with g, he Q[X] and
0g,0h < 0f. Then there exists a positive integer n, such that
nf =g'h’, where g’,h' € Z[X]. Suppose that n is the smallest positive
integer with this property. Let g’ = ag+a1 X +---+ axX* and
h'=bg+bi X +---+ b X"
o If n=1, then g’ =g,h = h. This contradicts irreducibility of f over Z.
o Otherwise, let p be a prime factor of n. By the lemma, we may
suppose, without loss of generality, that g’ = pg”, where g" € Z[X].
It follows that Jf = g"h'. This contradicts the choice of n as the least
positive integer with the property nf = g'h’, for g',h’ € Z[X].

George Voutsadakis (LSSU)
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o We show that g = X3 +2X2+4X —6 is irreducible over Q.

If the polynomial g factorizes over Q, then it factorizes over Z, and at
least one of the factors must be linear:

g=X342X?+4X -6=(X-a)(X?+bX +¢).

Then ac =6 So a€ {1, +2, £3, £ 6}. If we substitute a for X in g, we
must have g(a) =0. However, the values of g(a) are as follows:

a |1 -1 2 2 3 -3 6 -6
g(a)|1 -9 14 -10 51 -27 306 -174

Hence, the assumed factorization is impossible.

So g is irreducible over Q.

George Voutsadakis (LSSU)
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Theorem (Eisenstein’s Criterion)
Let f(X)=ap+a1 X +---+ap,X" be a polynomial in Z[X]. Suppose that
there exists a prime number p, such that:
p1an;
plaj, i=0,...,n-1;
p*tao.
Then f is irreducible over Q.

o By Gauss's Lemma, it suffices to show that f is irreducible over Z.
Suppose that f = gh, where

bo+ b1 X +---+ b X",
taX+-+c X5,

g
h

with r,s<nand r+s=n.
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o Since ag = by ¢y, it follows from (ii) that p| by or p|cp.
Since p?tap, the coefficients by and ¢y cannot both be divisible by p.

We assume, without loss of generality, that p| by, ptco.

Suppose inductively that p divides by, by, ..., bx_1, where 1<k <r.
Then ax =bock+bic_1+ -+ br_1¢1+ brcp.
Since p divides each of ay, bgck, bick_1,...,bx_1¢1, p| brcop.
Hence, p| by.

We conclude that p| b;,.

So, since a, = b,cs, we have that p|a,.
This contradicts (i).

Hence f is irreducible.

George Voutsadakis (LSSU)
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o The polynomial X% +2X3 + §X2 - §X+% is irreducible over Q:
7X5 +14X3 +8X? —4X +2 satisfies Eisenstein’s criterion, with p=2.
o We show that f(X)=2X5%-4X*+8X3+14X?+7 is irreducible over Q.
The polynomial f does not satisfy the required conditions.
Suppose we have a factorization f = gh, with (say) dg =3 and dh=2.
Then

TX®+14X3+8X2—4X+2

|
>
(6]
—_—
— N
|.—-
><
.:;
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+
~
—
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=
w

0q
=
=
N
>
=

This is a factorization of 7X° +14X3+8X2—4X +2.

By the preceding example, we know that this cannot happen.
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o We show that, if p>2 is prime, then
F(X)=1+X+X2+...+ XP71

is irreducible over Q.
Observe that f(X)= %=L Define g(X)=f(X +1). Then

£00 = 2(X+1P-1)= T (”)X"‘f—l-

r=0\"

The coefficients (‘f),(’;),...,(p‘_’l) are all divisible by p.

Hence g is irreducible, by Eisenstein's Criterion.

Suppose f = uv, with du,dv <0f and du+Adv =0f.

Then g(X) =u(X+1)v(X+1). The factors u(X+1) and v(X +1) are
polynomials in X, of the same degrees (respectively) as v and v.

This contradicts the irreducibility of g.
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A method for determining irreducibility over Z (and so over Q) is to
map the polynomial onto Z,[X], for some suitably chosen prime p.

Let g=ap+a1 X +---+a,X"€Z[X], and let p be a prime, pta,.

Let 3; be the residue class a; + (p) in the field Z,=7Z/{p), i=0,...,n.
Write the polynomial ag+a1; X +---+a,X" as g.

Our choice of p ensures that dg = n.

Suppose that g = uv, with du,0v <0dg and du+0v =0g.

Then g =1v.

So, if g is irreducible in Zy[X], then g is irreducible.

The advantage of transferring the problem from Z[X] to Z,[X] is that

Z,, is finite, and the verification of irreducibility is a matter of
checking a finite number of cases.
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o We show that g =7X*+10X3-2X?+4X -5 is irreducible over Q.
If we choose p=3, then g=X*+X3+ X%+ X +1.
The elements of Z3 may be taken as 0,1,—1, with 1+1=-1.
o g has no linear factor: We have g(0) =1, g(1)=-1 and g(-1)=1.
o There remains the possibility that (in Z3[X])
X 4+ X3+ X2+ X +1=(X?+aX+b)(X?+cX+d).
Equating coefficients gives a+c=1, b+ac+d=1, bd=1, ad+bc=1.
If b=d=1, then ac=-1. So (a,c)=(1,-1) or (a,c)=(-1,1). In either
case a+c =0, a contradiction.
If b=d=-1, then ac=0.
If a=0then c=1. So 1=ad+ bc=b, a contradiction.
If c=0, then a=1. Then 1=ad+ bc =d, again a contradiction.
We have shown that g is irreducible over Zs.

It follows that g is irreducible over Q.

George Voutsadakis (LSSU)
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