Fields and Galois Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

- Euclidean Domains
- Unique Factorization
- Polynomials
- Irreducible Polynomials

Subsection 1

Euclidean Domains

- An integral domain D is called a Euclidean domain if there is a mapping δ from D into the set \mathbb{N}^{0} of non-negative integers with the properties:
- $\delta(0)=0$;
- For all a in D and all b in $D \backslash\{0\}$, there exist q, r in D, such that

$$
a=q b+r, \quad \delta(r)<\delta(b)
$$

- It follows that $\delta^{-1}\{0\}=\{0\}$.

Suppose for some $b \neq 0, \delta(b)=0$.
Then it would not be possible to find r, such that $\delta(r)<\delta(b)$.

- The most important example of a Euclidean domain is the ring \mathbb{Z}.
- $\delta(a)$ is defined as |a|.
- The process, known as the division algorithm, is the familiar one of dividing a by b and obtaining a quotient q and a remainder r.
- If b is positive, then there exists q, such that

$$
q b \leq a<(q+1) b .
$$

Thus $0 \leq a-q b<b$. Taking $r=a-q b$, we see that $a=q b+r$ and $|r|<|b|$.

- If b is negative, then there exists q, such that

$$
(q+1) b<a \leq q b .
$$

Thus, $b<r=a-q b \leq 0$. It follows again that $a=q b+r$ and $|r|<|b|$.

Principal Ideal Domains

- An integral domain D is called a principal ideal domain if all of its ideals are principal.

Theorem

Every Euclidean domain is a principal ideal domain.

- Let D be a Euclidean domain. The ideal $\{0\}$ is certainly principal. Let I be a non-zero ideal. Let b be a non-zero element of I, such that

$$
\delta(b)=\min \{\delta(x): x \in ハ \backslash\{0\}\}
$$

Let $a \in I$. There exist q, r, such that $a=q b+r$ and $\delta(r)<\delta(b)$. But $r=a-q b \in l$. By the minimality of $\delta(b), r=0$. Thus, $a=q b$.
So $I=D b=\langle b\rangle$ is a principal ideal.

- Let a, b be non-zero members of a principal ideal domain D.
- Let $\langle a, b\rangle=\{s a+t b: s, t \in D\}$ be the ideal generated by a and b.
- Since D is a principal ideal domain, there exists d in D, such that $\langle a, b\rangle=\langle d\rangle$.
- Since $\langle a\rangle \subseteq\langle d\rangle$ and $\langle b\rangle \subseteq\langle d\rangle$, we have $d \mid a$ and $d \mid b$.
- Since $d \in\langle a, b\rangle$, there exist s, t in D, such that $d=s a+t b$. If $d^{\prime} \mid a$ and $d^{\prime} \mid b$, then $d^{\prime} \mid s a+t b$, i.e., $d^{\prime} \mid d$.
- We say that d is a greatest common divisor, or a highest common factor, of a and b.
- If $\langle a, b\rangle=\langle d\rangle=\left\langle d^{*}\right\rangle$, then that $d^{*} \sim d$.

Greatest Common Divisors (Cont'd)

- Let a, b be non-zero members of a principal ideal domain D.
- Summarizing, d is the greatest common divisor of a and b, written

$$
d=\operatorname{gcd}(a, b)
$$

if it has the following properties:
$d \mid a$ and $d \mid b$;
if $d^{\prime} \mid a$ and $d^{\prime} \mid b$, then $d^{\prime} \mid d$.

- If $\operatorname{gcd}(a, b) \sim 1$, we call a and b coprime, or relatively prime.

Examples of Greatest Common Divisor

- In the case of the domain \mathbb{Z}, where the group of units is $\{1,-1\}$, we have, e.g., that

$$
\langle 12,18\rangle=\langle 6\rangle=\langle-6\rangle .
$$

- A simple modification of the argument enables us to conclude that, in a principal ideal domain D, every finite set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ has a greatest common divisor.

The Euclidean Agorithm (Dividing)

- Let a and b be non-zero elements of a Euclidean domain D.
- Suppose, without loss of generality, that $\delta(b) \leq \delta(a)$.
- Then there exist q_{1}, q_{2}, \ldots and r_{1}, r_{2}, \ldots, such that:

$$
\begin{array}{ll}
a=q_{1} b+r_{1}, & \delta\left(r_{1}\right)<\delta(b), \\
b=q_{2} r_{1}+r_{2}, & \delta\left(r_{2}\right)<\delta\left(r_{1}\right), \\
r_{1}=q_{3} r_{2}+r_{3}, & \delta\left(r_{3}\right)<\delta\left(r_{2}\right), \\
r_{2}=q_{4} r_{3}+r_{4}, & \delta\left(r_{4}\right)<\delta\left(r_{3}\right),
\end{array}
$$

- The process must end with some $r_{k}=0$. The final equations are:

$$
\begin{aligned}
& r_{k-3}=q_{k-1} r_{k-2}+r_{k-1}, \quad \delta\left(r_{k-1}\right)<\delta\left(r_{k-2}\right), \\
& r_{k-2}=q_{k} r_{k-1} .
\end{aligned}
$$

- From $a=q_{1} b+r_{1}$, we deduce that $\langle a, b\rangle=\left\langle b, r_{1}\right\rangle$.
- Every element sa+tb in $\langle a, b\rangle$ can be rewritten as

$$
s a+t b=s\left(q_{1} b+r_{1}\right)+t b=\left(t+s q_{1}\right) b+s r_{1} \in\left\langle b, r_{1}\right\rangle .
$$

Every element $x b+y r_{1}$ in $\left\langle b, r_{1}\right\rangle$ can be rewritten as

$$
x b+y r_{1}=x b+y\left(a-q_{1} b\right)=y a+\left(x-y q_{1}\right) b \in\langle a, b\rangle .
$$

- Similarly, the subsequent equations give

$$
\begin{aligned}
\left\langle b, r_{1}\right\rangle & =\left\langle r_{1}, r_{2}\right\rangle,\left\langle r_{1}, r_{2}\right\rangle=\left\langle r_{2}, r_{3}\right\rangle, \ldots \\
\left\langle r_{k-3}, r_{k-2}\right\rangle & =\left\langle r_{k-2}, r_{k-1}\right\rangle,\left\langle r_{k-2}, r_{k-1}\right\rangle=\left\langle r_{k-1}\right\rangle .
\end{aligned}
$$

- We conclude that $\langle a, b\rangle=\left\langle r_{k-1}\right\rangle$.
- So r_{k-1} is the (essentially unique) greatest common divisor of a and b.
- We determine the greatest common divisor of 615 and 345 , and express it in the form $615 x+345 y$.

$$
\begin{aligned}
615 & =1 \times 345+270 \\
345 & =1 \times 270+75 \\
270 & =3 \times 75+45 \\
75 & =1 \times 45+30 \\
45 & =1 \times 30+15 \\
30 & =2 \times 15+0
\end{aligned}
$$

The greatest common divisor is 15 , the last non-zero remainder. Moreover,

$$
\begin{aligned}
15 & =45-30=45-(75-45)=2 \times 45-75 \\
& =2 \times(270-3 \times 75)-75=2 \times 270-7 \times 75 \\
& =2 \times 270-7 \times(345-270)=9 \times 270-7 \times 345 \\
& =9 \times(615-345)-7 \times 345=9 \times 615-16 \times 345
\end{aligned}
$$

Example of Coprime Elements

- Two elements a and b of a principal ideal domain D are coprime if their greatest common divisor is 1 .
- This happens if and only if there exist s and t in D, such that $s a+t b=1$.
- For example, 75 and 64 are coprime:

$$
\begin{aligned}
75 & =1 \times 64+11 \\
64 & =5 \times 11+9 \\
11 & =1 \times 9+2 \\
9 & =4 \times 2+1 \\
2 & =2 \times 1+0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
1 & =9-4 \times 2=9-4(11-9)=5 \times 9-4 \times 11 \\
& =5(64-5 \times 11)-4 \times 11=5 \times 64-29 \times 11 \\
& =5 \times 64-29(75-64)=34 \times 64-29 \times 75 .
\end{aligned}
$$

Subsection 2

Unique Factorization

- Let D be an integral domain with group U of units, and let $p \in D$ be such that $p \neq 0, p \notin U$.
Then p is said to be irreducible if it has no proper factors.

Theorem

Let p be an element of a principal ideal domain D. Then the following statements are equivalent:
p is irreducible;
$\langle p\rangle$ is a maximal proper ideal of D;
$D /\langle p\rangle$ is a field.
(i) \Rightarrow (ii): Suppose that p is irreducible. Then p is not a unit, and so $\langle p\rangle$ is a proper ideal of D. Suppose, for a contradiction, that there is a (principal) ideal $\langle q\rangle$, such that $\langle p\rangle \subset\langle q\rangle \subset D$. Then $p \in\langle q\rangle$. So $p=a q$, for some non-unit a. This contradicts the irreducibility of p.
(ii) \Rightarrow (iii): Let $a+\langle p\rangle$ be a non-zero element of $D /\langle p\rangle$. Then $a \notin\langle p\rangle$.

So the ideal $\langle a\rangle+\langle p\rangle$ properly contains $\langle p\rangle$. Since $\langle p\rangle$ is maximal, $\langle a\rangle+\langle p\rangle=\{s a+t p: s, t \in D\}=D$. Hence, there exist s, t in D such that $s a+t p=1$. Therefore, sa-1=tp $\langle p\rangle$. That is,

$$
(s+\langle p\rangle)(a+\langle p\rangle)=1+\langle p\rangle .
$$

Thus, $D /\langle p\rangle$ is a field.
(iii) \Rightarrow (i): If p is not irreducible, then there exist non-units q and r, such that $p=q r$. Then $q+\langle p\rangle$ and $r+\langle p\rangle$ are both non-zero elements of $D /\langle p\rangle$. On the other hand,

$$
(q+\langle p\rangle)(r+\langle p\rangle)=p+\langle p\rangle=0+\langle p\rangle .
$$

Thus, $D /\langle p\rangle$ has divisors of zero. So it is not a field.

- An element d of an integral domain D has a factorization into irreducible elements if there exist irreducible elements $p_{1}, p_{2}, \ldots, p_{k}$, such that

$$
d=p_{1} p_{2} \cdots p_{k}
$$

- The factorization is essentially unique if, for irreducible elements $p_{1}, p_{2}, \ldots, p_{k}$ and $q_{1}, q_{2}, \ldots, q_{\ell}$,

$$
d=p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{\ell}
$$

implies that $k=\ell$ and, for some permutation
$\sigma:\{1,2, \ldots, k\} \rightarrow\{1,2, \ldots, k\}$,

$$
p_{i} \sim q_{\sigma(i)}, \quad i=1,2, \ldots, k
$$

- An integral domain D is said to be a factorial domain, or a unique factorization domain, if every non-unit $a \neq 0$ of D has an essentially unique factorization into irreducible elements.
- \mathbb{Z}, in which the (positive and negative) prime numbers are the irreducible elements, provides a familiar example of a unique factorization domain.
- For example

$$
60=2 \cdot 2 \cdot 3 \cdot 5
$$

The factorization is essentially unique, for nothing more different than (say) $(-2) \cdot(-5) \cdot 3 \cdot 2$ is possible.

Chains of deals in Principal Ideal Domains

Lemma

In a principal ideal domain there are no infinite ascending chains of ideals.

- In any integral domain D, an ascending chain $I_{1} \subseteq I_{2} \subseteq_{3} \subseteq \cdots$ of ideals has the property that $I=\bigcup_{j \geq 1} l_{j}$ is an ideal.
- Let $a, b \in I$. There exist k, ℓ, such that $a \in I_{k}, b \in I_{\ell}$. So

$$
a-b \in I_{\max \{k, \ell\}} \subseteq I .
$$

- Let $a \in I$ and $s \in D$. Then $a \in I_{k}$, for some k. So $s a \in I_{k} \subseteq I$.

Let D be a principal ideal domain, and $\left\langle a_{1}\right\rangle \subseteq\left\langle a_{2}\right\rangle \subseteq\left\langle a_{3}\right\rangle \subseteq \cdots$ be an ascending chain of (principal) ideals. We know that the union of all the ideals in this chain must be an ideal. By our assumption, this must be a principal ideal $\langle a\rangle$. Since $a \in \bigcup_{j \geq 1}\left\langle a_{j}\right\rangle, a \in\left\langle a_{k}\right\rangle$, for some k. Thus, $\langle a\rangle \subseteq\left\langle a_{k}\right\rangle$. But we also have $\left\langle a_{k}\right\rangle \subseteq\langle a\rangle$. Hence, $\langle a\rangle=\left\langle a_{k}\right\rangle$. So $\left\langle a_{k}\right\rangle=\left\langle a_{k+1}\right\rangle=\left\langle a_{k+2}\right\rangle=\cdots=\langle a\rangle$. Thus, the infinite chain of inclusions terminates at $\left\langle a_{k}\right\rangle$.

Irreducible Elements and Divisibility

Lemma

Let D be a principal ideal domain, let p be an irreducible element in D, and let $a, b \in D$. If $p \mid a b$, then $p \mid a$ or $p \mid b$.

- Suppose that $p \mid a b$ and $p \nmid a$. Then the greatest common divisor of a and p must be 1 . So there exist s, t in D, such that $s a+t p=1$. Hence, sab+tpb=b. But p clearly divides sab+tpb. Therefore, $p \mid b$.
- It is a routine matter to extend this result to products of more than two elements.

Corollary

Let D be a principal ideal domain, let p be an irreducible element in D, and let $a_{1}, a_{2}, \ldots, a_{m} \in D$. If $p \mid a_{1} a_{2} \cdots a_{m}$, then $p \mid a_{1}$ or $p \mid a_{2}$ or \cdots or $p \mid a_{m}$.

Factoriality of Principa Ideal Domains

Theorem

Every principal ideal domain is factorial.

- We show, first, that any $a \neq 0$ in D can be expressed as a product of irreducible elements. Let a be a non-unit in D. Then either a is irreducible, or it has a proper divisor a_{1}. Similarly, either a_{1} is irreducible, or a_{1} has a proper divisor a_{2}. Continuing, we obtain a sequence $a=a_{0}, a_{1}, a_{2}, \ldots$ in which, for $i=1,2, \ldots, a_{i}$ is a proper divisor of a_{i-1}. The sequence must terminate at some a_{k}; Otherwise the infinite ascending sequence $\langle a\rangle \subset\left\langle a_{1}\right\rangle \subset\left\langle a_{2}\right\rangle \subset \cdots$ would contradict the lemma.
Hence a has a proper irreducible divisor $a_{k}=z_{1}$, and $a=z_{1} b_{1}$.
- We found a proper irreducible divisor $a_{k}=z_{1}$ of a, yielding the expression $a=z_{1} b_{1}$.
If b_{1} is irreducible, then the proof is complete.
Otherwise we can repeat the argument we used for a to find a proper irreducible divisor z_{2} of b_{1}, and $a=z_{1} z_{2} b_{2}$.
We continue this process.
It too must terminate; Otherwise the infinite ascending sequence $\langle a\rangle \subset\left\langle b_{1}\right\rangle \subset\left\langle b_{2}\right\rangle \subset \cdots$ would again contradict the lemma.
Hence, some b_{ℓ} must be irreducible.
So $a=z_{1} z_{2} \cdots z_{\ell-1} b_{\ell}$ is a product of irreducible elements.
- Suppose that $p_{1} p_{2} \cdots p_{k} \sim q_{1} q_{2} \cdots q_{\ell}$, where $p_{1}, p_{2}, \ldots, p_{k}$ and $q_{1}, q_{2}, \ldots, q_{\ell}$ are irreducible.
- Suppose first that $k=1$. Since $q_{1} q_{2} \cdots q_{\ell}$ is irreducible, $\ell=1$. So $p_{1} \sim q_{1}$.
- Suppose inductively that, for all $n \geq 2$ and all $k<n$, any statement of the form $p_{1} p_{2} \cdots p_{k} \sim q_{1} q_{2} \cdots q_{\ell}$ implies that $k=\ell$ and that, for some permutation σ of $\{1,2, \ldots, k\}, q_{i} \sim p_{\sigma(i)}, i=1,2, \ldots, k$.
- Let $k=n$. Since $p_{1} \mid q_{1} q_{2} \cdots q_{\ell}$, by the corollary $p_{1} \mid q_{j}$, for some j in $\{1,2, \ldots, \ell\}$. Since q_{j} is irreducible and p_{1} is not a unit, $p_{1} \sim q_{j}$. By cancelation, $p_{2} p_{3} \cdots p_{n} \sim q_{1} \cdots q_{j-1} q_{j+1} \cdots q_{\ell}$. By the induction hypothesis, $n-1=\ell-1$ and, for $i \in\{1,2, \ldots, n\} \backslash\{j\}, q_{i} \sim p_{\sigma(i)}$, for some permutation σ of $\{2,3, \ldots, n\}$. Hence, extending σ to a permutation σ of $\{1,2, \ldots, n\}$ by defining $\sigma(1)=j$, we obtain the desired result.

Corollary

Every Euclidean domain is factorial.

Subsection 3

Polynomials

- In the following, R is an integral domain and K is a field.
- A polynomial f with coefficients in R is a sequence $\left(a_{0}, a_{1}, \ldots\right)$, where $a_{i} \in R$, for all $i \geq 0$, and where only finitely many of $\left\{a_{0}, a_{1}, \ldots\right\}$ are non-zero.
- If the last non-zero element in the sequence is a_{n}, we say that f has degree n, and write $\partial f=n$.
- The entry a_{n} is called the leading coefficient of f.
- If $a_{n}=1$ we say that the polynomial is monic.
- In the case where all of the coefficients are 0 , it is convenient to ascribe the formal degree of $-\infty$ to the polynomial $(0,0,0, \ldots)$.
- We also make the conventions, for every n in \mathbb{Z},

$$
-\infty<n, \quad-\infty+(-\infty)=-\infty, \quad-\infty+n=-\infty .
$$

- Polynomials $(a, 0,0, \ldots)$ of degree 0 or $-\infty$ are called constant.
- For other polynomials of small degree we have names as follows:

∂f	1	2	3	4	5	6
name	linear	quadratic	cubic	quartic	quintic	sextic

Addition and Multiplication of Polynomias

- Addition of polynomials is defined as follows:

$$
\left(a_{0}, a_{1}, \ldots\right)+\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots\right)
$$

- Multiplication is defined by

$$
\left(a_{0}, a_{1}, \ldots\right)\left(b_{0}, b_{1}, \ldots\right)=\left(c_{0}, c_{1}, \ldots\right)
$$

where, for $k=0,1,2, \ldots$,

$$
c_{k}=\sum_{\{(i, j): i+j=k\}} a_{i} b_{j} .
$$

Thus,

$$
c_{0}=a_{0} b_{0}, c_{1}=a_{0} b_{1}+a_{1} b_{0}, \quad c_{2}=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}, \ldots .
$$

- With respect to these two operations, the set P of all polynomials with coefficients in R becomes a commutative ring with unity.
- Most of the ring axioms are easily verified.
- The zero element is $(0,0,0, \ldots)$;
- The unity element is $(1,0,0, \ldots)$;
- The negative of $\left(a_{0}, a_{1}, \ldots\right)$ is $\left(-a_{0},-a_{1}, \ldots\right)$.
- For associativity of multiplication: Let $p=\left(a_{0}, a_{1}, \ldots\right), q=\left(b_{0}, b_{1}, \ldots\right)$, $r=\left(c_{0}, c_{1}, \ldots\right)$ be polynomials. Then $(p q) r=\left(d_{0}, d_{1}, \ldots\right)$, where, for $m=0,1,2, \ldots$,

$$
\begin{aligned}
d_{m} & =\sum_{\{(k, \ell): k+\ell=m\}}\left(\sum_{\{(i, j): i+j=k\}} a_{i} b_{j}\right) c_{\ell}=\sum_{\{(i, j, \ell): i+j+\ell=m\}} a_{i} b_{j} c_{\ell} \\
& =\sum_{\{(i, n): i+n=m\}} a_{i}\left(\sum_{\{(j, \ell): j+\ell=n\}} b_{j} c_{\ell}\right) .
\end{aligned}
$$

The latter is the m-th entry of $p(q r)$. So multiplication is associative.

Identifying R in P

- There is a monomorphism $\theta: R \rightarrow P$ given by

$$
\theta(a)=(a, 0,0, \ldots), \quad \text { for all } a \in R
$$

- Thus, we may identify

$$
\theta(a)=(a, 0,0, \ldots)
$$

with the element a of R.

- In this way we view R as a subring of P.
- Let X be the polynomial $(0,1,0,0, \ldots)$.
- Then the multiplication rule gives:
- $X^{2}=(0,0,1,0, \ldots)$;
- $X^{3}=(0,0,0,1,0, \ldots)$;
- In general,

$$
X^{n}=\left(x_{0}, x_{1}, \ldots\right), \text { where } x_{m}= \begin{cases}1, & \text { if } m=n \\ 0, & \text { otherwise }\end{cases}
$$

- Now we get

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{n}, 0, \ldots\right) \\
& =\left(a_{0}, 0, \ldots, 0,0, \ldots\right)+\left(0, a_{1}, 0, \ldots, 0,0, \ldots\right)+\cdots+\left(0,0,0, \ldots, a_{n}, 0, \ldots\right) \\
& =\left(a_{0}, 0, \ldots, 0,0,0, \ldots\right)+\left(a_{1}, 0,0, \ldots, 0,0,0, \ldots\right)(0,1,0, \ldots, 0,0,0, \ldots)+\cdots \\
& \quad+\left(a_{n}, 0,0, \ldots, 0,0,0, \ldots\right)(0,0,0, \ldots, 1,0,0, \ldots) \\
& =\theta\left(a_{0}\right)+\theta\left(a_{1}\right) X+\cdots+\theta\left(a_{n}\right) X^{n} .
\end{aligned}
$$

- Identifying $\theta\left(a_{i}\right)$ with a_{i}, we get $a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n}$.
- Despite the expression of a polynomial in terms of $X:=(0,1,0,0, \ldots)$ (regarded as an "indeterminate") it is important to note that:
- We are talking of polynomial forms, wholly determined by the coefficients a_{i} in R;
- X is not a member of R but only a notation for the tuple ($0,1,0, \ldots$) of the ring P of polynomials with coefficients in R.
- We sometimes write $f=f(X)$ and say that it is a polynomial over R in the indeterminate X.
- The ring P of all such polynomials is written $R[X]$.
- We refer to $R[X]$ simply as the polynomial ring of R.

Properties of Polynomials

Theorem

Let D be an integral domain, and let $D[X]$ be the polynomial ring of D. Then:
$D[X]$ is an integral domain.
If $p, q \in D[X]$, then $\partial(p+q) \leq \max \{\partial p, \partial q\}$.
For all p, q in $D[X], \partial(p q)=\partial p+\partial q$.
The group of units of $D[X]$ coincides with the group of units of D.
We have already noted that $D[X]$ is a commutative ring with unity.
We show that $D[X]$ has no divisors of 0 .
Suppose that p and q are non-zero polynomials with leading terms a_{m}, b_{n}, respectively. The product of p and q has leading term $a_{m} b_{n}$. By hypothesis, D has no zero divisors. So the coefficient $a_{m} b_{n}$ is non-zero. This ensures that $p q \neq 0$.

Let p and q be non-zero. Let $\partial p=m, \partial q=n$, and suppose, without loss of generality, that $m \geq n$.

- If $m>n$, then it is clear that the leading term of $p+q$ is a_{m}. So $\partial(p+q)=\max \{\partial p, \partial q\}$.
- If $m=n$, then we may have $a_{m}+b_{m}=0$. So all we can say is that $\partial(p+q) \leq \max \{\partial p, \partial q\}$.
The conventions regarding $-\infty$ ensure that this result holds also if one or both of p, q are equal to 0 .
By the argument in Part (i), if p and q are non-zero, then
$\partial(p q)=m+n=\partial p+\partial q$. If one or both of p and q are zero, then the result holds by the conventions on $-\infty$.

Let $p, q \in D[X]$, and suppose that $p q=1$. From Part (iii), $\partial p=\partial q=0$. Thus $p, q \in D$, and $p q=1$ if and only if p and q are in the group of units of D.

- Since the ring of polynomials over the integral domain D is itself an integral domain, we can repeat the preceding process.
- So we may form the ring of polynomials with coefficients in $D[X]$.
- We need to use a different letter for a new indeterminate, and the new integral domain is $(D[X])[Y]$, denoted by $D[X, Y]$.
- It consists of polynomials in X and Y with coefficients in D.
- By repeating, we obtain the integral domain $D\left[X_{1}, X_{2}, \ldots, X_{n}\right]$.

Rational Forms

- The field of fractions of $D[X]$ consists of rational forms

$$
\frac{a_{0}+a_{1} X+\cdots+a_{m} X^{m}}{b_{0}+b_{1} X+\cdots+b_{n} X^{n}}
$$

where the denominator is not the zero polynomial.

- The field is denoted by $D(X)$ (with parenthesis instead of brackets).
- In a similar way one arrives at the field $D\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of rational forms in the n indeterminates $X_{1}, X_{2}, \ldots, X_{n}$, with coefficients in D.

Extension of an Isomorphism $\varphi: D \rightarrow D^{\prime}$

Theorem

Let D, D^{\prime} be integral domains, and let $\varphi: D \rightarrow D^{\prime}$ be an isomorphism. Then the mapping $\widehat{\varphi}: D[X] \rightarrow D^{\prime}[X]$ defined by

$$
\widehat{\varphi}\left(a_{0}+a_{1} X+\cdots+a_{n} X^{n}\right)=\varphi\left(a_{0}\right)+\varphi\left(a_{1}\right) X+\cdots+\varphi\left(a_{n}\right) X^{n}
$$

is an isomorphism.

- The isomorphism $\widehat{\varphi}$ is called the canonical extension of φ.
- A further extension $\varphi^{*}: D(X) \rightarrow D^{\prime}(X)$ is defined by

$$
\varphi^{*}\left(\frac{f}{g}\right)=\frac{\widehat{\varphi}(f)}{\widehat{\varphi}(g)}, \quad \frac{f}{g} \in D(X)
$$

On the Case of Coefficients in a Field

- Suppose that the ring R of coefficients is actually a field K.
- The group of units of $K[X]$ is the group of units of K. That is, it the group K^{*} of non-zero elements of the field K.
- As usual, we write

$$
f \sim g \quad \text { iff } \quad f=a g, \text { for some } a \text { in } K^{*} .
$$

The Euclidean Process in K[X]

Theorem (Euclidean Algorithm in K[X])

Let K be a field, and let f, g be elements of the polynomial ring $K[X]$, with $g \neq 0$. Then there exist unique elements q, r in $K[X]$, such that $f=q g+r$ and $\partial r<\partial g$.

- If $f=0$ the result is trivial, since $f=0 g+0$.

So suppose that $f \neq 0$. The proof is by induction on ∂f.

- First, suppose that $\partial f=0$, so that $f \in K^{*}$. If $\partial g=0$ also, let $q=\frac{f}{g}$ and $r=0$; otherwise, let $q=0$ and $r=f$.
- Suppose now that $\partial f=n$, and suppose also that the theorem holds for all polynomials f of all degrees up to $n-1$.
- If $\partial g>\partial f$, let $q=0$ and $r=f$.
- Assume $\partial g \leq \partial f$. Let $a_{n} X^{n}, b_{m} X^{m}$, be the leading terms of f, g, where $m \leq n$. Then the polynomial $h=f-\left(\frac{a_{n}}{b_{m}} X^{n-m}\right) g$ has degree $\leq n-1$. So there exist q_{1}, r, such that $h=q_{1} g+r$, with $\partial r<\partial g$. It follows that

$$
f=h+\left(\frac{a_{n}}{b_{m}} X^{n-m}\right) g=\left(q_{1} g+r\right)+\left(\frac{a_{n}}{b_{m}} X^{n-m}\right) g=\left(q_{1}+\frac{a_{n}}{b_{m}} X^{n-m}\right) g+r .
$$

- To prove uniqueness, suppose that

$$
f=q g+r=q^{\prime} g+r^{\prime}, \text { with } \partial r, \partial r^{\prime}<\partial g .
$$

Then

$$
r-r^{\prime}=\left(q^{\prime}-q\right) g
$$

So

$$
\partial\left(\left(q^{\prime}-q\right) g\right)=\partial\left(r-r^{\prime}\right)<\partial g .
$$

By a previous theorem, this cannot happen unless $q^{\prime}-q=0$. Hence $q=q^{\prime}$. Consequently, $r=r^{\prime}$ also.

Example of Polynomial Division

- Let $f=X^{4}-X$ and $g=X^{2}+3 X+2$.

We have

$$
\begin{array}{cccccc}
X^{2}+3 X+2 \mid & \overline{X^{4}} & - & & \frac{X^{2}}{} & \frac{-3 X}{-X} \\
& X^{4} & +3 X^{3} & +2 x^{2} & & +7 \\
& & -3 X^{3} & -2 X^{2} & -X & \\
& & -3 X^{3} & -9 x^{2} & -6 X & \\
& & & 7 X^{2} & +5 X & \\
& & & 7 X^{2} & +21 X & +14 \\
& & & & -16 X & -14
\end{array}
$$

Thus, $X^{4}-X=\underbrace{\left(X^{2}-3 X+7\right)}_{q} \underbrace{\left(X^{2}+3 X+2\right)}_{g} \underbrace{-(16 X+14)}_{r}$.

Properties of K[X] for a Field K

Theorem

If K is a field, then $K[X]$ is a Euclidean domain.

- If, for all f in $K[X]$, we define $\delta(f)$ as $2^{\partial f}$, with the convention that $2^{-\infty}=0$, we have the right properties.
- We summarize the important properties of $K[X]$.

Theorem

Let K be a field. Then:
Every pair (f, g) of polynomials in $K[X]$ has a greatest common divisor d, which can be expressed as $a f+b g$, with a, b in $K[X]$;
$K[X]$ is a principal ideal domain;
$K[X]$ is a factorial domain;
If $f \in K[X]$, then $K[X] /\langle f\rangle$ is a field if and only if f is irreducible.

- Consider the polynomials $X^{2}+X+1$ and $X^{3}+2 X-4$ in $\mathbb{Q}[X]$.
- Then one may calculate that

$$
\begin{aligned}
X^{3}+2 X-4 & =(X-1)\left(X^{2}+X+1\right)+2 X-3 \\
X^{2}+X+1 & =\left(\frac{1}{2} X+\frac{5}{4}\right)(2 X-3)+\frac{19}{4} .
\end{aligned}
$$

- So the greatest common divisor is $\frac{19}{4}$.
- But the group of units of $\mathbb{Q}[X]$ is $Q^{*}=\mathbb{Q} \backslash\{0\}$. So $\frac{19}{4} \sim 1$.
- The two given polynomials are coprime.

$$
\begin{aligned}
\frac{19}{4} & =\left(X^{2}+X+1\right)-\left(\frac{1}{2} X+\frac{5}{4}\right)(2 X-3) \\
& =\left(X^{2}+X+1\right)-\left(\frac{1}{2} X+\frac{5}{4}\right)\left[\left(X^{3}+2 X-4\right)-(X-1)\left(X^{2}+X+1\right)\right] \\
& =\left[1+\left(\frac{1}{2} X+\frac{5}{4}\right)(X-1)\right]\left(X^{2}+X+1\right)-\left(\frac{1}{2} X+\frac{5}{4}\right)\left(X^{3}+2 X-4\right) \\
& =\left(\frac{1}{2} X^{2}+\frac{3}{4} X-\frac{1}{4}\right)\left(X^{2}+X+1\right)-\left(\frac{1}{2} X+\frac{5}{4}\right)\left(X^{3}+2 X-4\right) .
\end{aligned}
$$

- Since $X^{2}+1$ is irreducible in $\mathbb{R}[X], K=\mathbb{R}[X] /\left\langle X^{2}+1\right\rangle$ is a field.
- The elements of K are the residue classes $a+b X+\left\langle X^{2}+1\right\rangle, a, b \in \mathbb{R}$.
- Addition is defined by the rule

$$
\left(a+b X+\left\langle X^{2}+1\right\rangle\right)+\left(c+d X+\left\langle X^{2}+1\right\rangle\right)=(a+c)+(b+d) X+\left\langle X^{2}+1\right\rangle .
$$

- Multiplication is given by

$$
\begin{aligned}
& \left(a+b X+\left\langle X^{2}+1\right\rangle\right)\left(c+d X+\left\langle X^{2}+1\right\rangle\right) \\
& =a c+(a d+b c) X+b d X^{2}+\left\langle X^{2}+1\right\rangle \\
& =(a c-b d)+(a d+b c) X+b d\left(X^{2}+1\right)+\left\langle X^{2}+1\right\rangle \\
& =(a c-b d)+(a d+b c) X+\left\langle X^{2}+1\right\rangle .
\end{aligned}
$$

- These mimic the rules for adding and multiplying complex numbers.
- The map $\varphi: \mathbb{R}[X] /\left\langle X^{2}+1\right\rangle \rightarrow \mathbb{C}$, given by

$$
\varphi\left(a+b X+\left\langle X^{2}+1\right\rangle\right)=a+b i, \quad a, b \in \mathbb{R},
$$

is in fact an isomorphism.

- Let D be an integral domain and let $\alpha \in D$.
- The homomorphism σ_{α} from $D[X]$ into D is defined by

$$
\sigma_{\alpha}\left(a_{0}+a_{1} X+\cdots+a_{n} X^{n}\right)=a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}
$$

- This is indeed a homomorphism. Let $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$, $g(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m}$. We have, e.g.,

$$
\begin{aligned}
\sigma_{\alpha}(f \cdot g) & =\sigma_{\alpha}\left(\sum_{k=0}^{n+m}\left(\sum_{i+j=k} a_{i} b_{j}\right) X^{k}\right) \\
& =\sum_{k=0}^{n+m}\left(\sum_{i+j=k} a_{i} b_{j}\right) \alpha^{k} \\
& =\left(a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}\right)\left(b_{0}+b_{1} \alpha+\cdots+b_{m} \alpha^{m}\right) \\
& =\sigma_{\alpha}(f) \sigma_{\alpha}(g) .
\end{aligned}
$$

- We usually write $f(\alpha)$ instead of $\sigma_{\alpha}(f)$.
- If $f(\alpha)=0$, we say that α is a root, or a zero, of the polynomial f.

The Remainder Theorem

Theorem (The Remainder Theorem)

Let K be a field, let $\beta \in K$ and let f be a non-zero polynomial in $K[X]$. Then the remainder upon dividing f by $X-\beta$ is $f(\beta)$. In particular, β is a root of f if and only if $(X-\beta) \mid f$.

- By the division algorithm, there exist q, r in $K[X]$, such that

$$
f=(X-\beta) q+r, \quad \partial r<\partial(X-\beta)=1 .
$$

Thus r is a constant.
Substituting β for X, we see that $f(\beta)=r$.
In particular, $f(\beta)=0$ if and only if $r=0$ if and only if $(X-\beta) \mid f$.

Subsection 4

Irreducible Polynomials

Embedding of K into $K[X] /\langle g(X)\rangle$

Theorem

Let K be a field, and let $g(X)$ be an irreducible polynomial in $K[X]$. Then $K[X] /\langle g(X)\rangle$ is a field containing K up to isomorphism.

- We know that $K[X] /\langle g(X)\rangle$ is a field. The map $\varphi: K \rightarrow K[X] /\langle g(X)\rangle$, given by

$$
\varphi(a)=a+\langle g(X)\rangle, \quad a \in K,
$$

is easily seen to be a homomorphism. It is even a monomorphism, since

$$
\begin{array}{lll}
a+\langle g(X)\rangle=b+\langle g(X)\rangle & \text { iff } \quad a-b \in\langle g(X)\rangle \\
& \text { iff } \quad a=b .
\end{array}
$$

- This shows we have a highly effective method of constructing new fields provided we have a way of identifying irreducible polynomials.
- Certainly every linear polynomial is irreducible.
- If the field of coefficients is the complex field \mathbb{C}, by the Fundamental Theorem of Algebra, every polynomial in $\mathbb{C}[X]$ factorizes, essentially uniquely, into linear factors.
- Linear polynomials are of little interest as related to the preceding theorem, for $K[X] /\langle g(X)\rangle$ coincides with $\varphi(K)$ in this case, and so is isomorphic to K.
Suppose $g(X)=X-a$. Let $f(X)$ in $K[X]$ be arbitrary. By the Euclidean Property of $K[X]$, we have that $f(X)=q(X-a)+f(a)$.
So $f(X)+\langle g\rangle=f(a)+\langle g\rangle \in \varphi(K)$.

Irreducible Elements in $\mathbb{R}[X]$

Theorem

The irreducible elements of the polynomial ring $\mathbb{R}[X]$ are either linear or quadratic. Every polynomial $g(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}$ in $\mathbb{R}[X]$ has a unique factorization

$$
a_{n}\left(X-\beta_{1}\right) \cdots\left(X-\beta_{r}\right)\left(X^{2}+\lambda_{1} X+\mu_{1}\right) \cdots\left(X^{2}+\lambda_{s} X+\mu_{s}\right)
$$

in $\mathbb{R}[X]$, where $a_{n} \in \mathbb{R}, r, s \geq 0$ and $r+2 s=n$.

- If $\gamma \in \mathbb{C} \backslash \mathbb{R}$ is a root, then $a_{n} \gamma^{n}+a_{n-1} \gamma^{n-1}+\cdots+a_{1} \gamma+a_{0}=0$. Hence, the complex conjugate of the left-hand side is zero also. Since the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ are real,

$$
a_{n} \bar{\gamma}^{n}+a_{n-1} \bar{\gamma}^{n-1}+\cdots+a_{1} \bar{\gamma}+a_{0}=0
$$

Thus, the non-real roots of the polynomial occur in conjugate pairs.

- Thus, we obtain a factorization

$$
g(X)=a_{n}\left(X-\beta_{1}\right) \cdots\left(X-\beta_{r}\right)\left(X-\gamma_{1}\right)\left(X-\bar{\gamma}_{1}\right) \cdots\left(X-\gamma_{s}\right)\left(X-\bar{\gamma}_{s}\right),
$$

in $\mathbb{C}[X]$, where $\beta_{1}, \ldots, \beta_{r} \in \mathbb{R}, \gamma_{1}, \ldots, \gamma_{s} \in \mathbb{C} \backslash \mathbb{R}, r, s \geq 0$ and $r+2 s=n$.
This gives rise to a factorization
$a_{n}\left(X-\beta_{1}\right) \cdots\left(X-\beta_{r}\right)\left(X^{2}-\left(\gamma_{+} \bar{\gamma}_{1}\right) X+\gamma_{1} \bar{\gamma}_{1}\right) \cdots\left(X^{2}-\left(\gamma_{s}+\bar{\gamma}_{s}\right) X+\gamma_{s} \bar{\gamma}_{s}\right)$
in $\mathbb{R}[X]$. In this factorization the quadratic factors must be irreducible in $\mathbb{R}[X]$. If they had real linear factors, they would have two distinct factorizations in $\mathbb{C}[X]$, which cannot happen.

- We know that a quadratic polynomial $a X^{2}+b X+c$ in $\mathbb{R}[X]$ is irreducible if and only if the discriminant $b^{2}-4 a c<0$.

Quadratic Poynomias in 0 (X

- In $\mathbb{Q}[X]$, the situation is not so easy, because there are irreducible polynomials of arbitrarily large degree.

Theorem

Let $g(X)=X^{2}+a_{1} X+a_{0}$ be a polynomial with coefficients in \mathbb{Q}. Then:
If $g(X)$ is irreducible over \mathbb{R}, then it is irreducible over \mathbb{Q};
If $g(X)=\left(X-\beta_{1}\right)\left(X-\beta_{2}\right)$, with $\beta_{1}, \beta_{2} \in \mathbb{R}$, then $g(X)$ is irreducible in $\mathbb{Q}[X]$ if and only if β_{1} and β_{2} are irrational.

Let $g(X)$ be irreducible over \mathbb{R}. Suppose $g(X)=\left(X-q_{1}\right)\left(X-q_{2}\right)$ were a factorization in $\mathbb{Q}[X]$. This would also be a factorization in $\mathbb{R}[X]$, a contradiction.
If β_{1}, β_{2} were rational we would have a factorization in $\mathbb{Q}[X]$, and $g(X)$ would not be irreducible. Suppose β_{1}, β_{2} are irrational. Then $\left(X-\beta_{1}\right)\left(X-\beta_{2}\right)$ is the only factorization in $\mathbb{R}[X]$. So a factorization in $\mathbb{Q}[X]$ into linear factors is not possible.

- We examine the following polynomials for irreducibility in $\mathbb{R}[X]$ and $\mathbb{Q}[X]$:

$$
X^{2}+X+1, \quad X^{2}+X-1, \quad X^{2}+X-2
$$

The first polynomial is irreducible over \mathbb{R}, since the discriminant is -3 . It follows that it is irreducible over \mathbb{Q}.
The second polynomial factorizes over \mathbb{R} as $\left(X-\beta_{1}\right)\left(X-\beta_{2}\right)$, where

$$
\beta_{1}=\frac{-1+\sqrt{5}}{2}, \quad \beta_{2}=\frac{-1-\sqrt{5}}{2}
$$

It is irreducible over \mathbb{Q}.
The third polynomial factorizes over \mathbb{Q} as $(X-1)(X+2)$.
So it is not irreducible.

Lemma

Suppose that $n \in \mathbb{Z}$ is positive and $f, g^{\prime}, h^{\prime} \in \mathbb{Z}[X]$, such that $n f=g^{\prime} h^{\prime}$. If p is a prime factor of n, then either p divides all the coefficients of g^{\prime}, or p divides all the coefficients of h^{\prime}.

- Suppose, for a contradiction, that p does not divide all the coefficients of $g^{\prime}=a_{0}+a_{1} X+\cdots+a_{k} X^{k}$, and that p does not divide all the coefficients of $h^{\prime}=b_{0}+b_{1} X+\cdots+b_{\ell} X^{\ell}$. Suppose that p divides a_{0}, \ldots, a_{i-1}, but $p \nmid a_{i}$, and that p divides b_{0}, \ldots, b_{j-1}, but $p \nmid b_{j}$. The coefficient of X^{i+j} in $n f$ is $a_{0} b_{i+j}+\cdots+a_{i} b_{j}+\cdots+a_{i+j} b_{0}$. In this sum, all the terms preceding $a_{i} b_{j}$ are divisible by p, since p divides a_{0}, \ldots, a_{j-1}; and all the terms following $a_{i} b_{j}$ are divisible by p, since p divides b_{0}, \ldots, b_{j-1}. Hence, only the term $a_{i} b_{j}$ is not divisible by p, and it follows that the coefficient of X^{i+j} in $n f$ is not divisible by p. This gives a contradiction, since the coefficient of f are integers, and so certainly all the coefficients of $n f$ are divisible by p.

Theorem (Gauss's Lemma)

Let f be a polynomial in $\mathbb{Z}[X]$, irreducible over \mathbb{Z}. Then f, considered as a polynomial in $\mathbb{Q}[X]$, is irreducible over \mathbb{Q}.

- Suppose, for a contradiction, that $f=g h$, with $g, h \in \mathbb{Q}[X]$ and $\partial g, \partial h<\partial f$. Then there exists a positive integer n, such that $n f=g^{\prime} h^{\prime}$, where $g^{\prime}, h^{\prime} \in \mathbb{Z}[X]$. Suppose that n is the smallest positive integer with this property. Let $g^{\prime}=a_{0}+a_{1} X+\cdots+a_{k} X^{k}$ and $h^{\prime}=b_{0}+b_{1} X+\cdots+b_{\ell} X^{\ell}$.
- If $n=1$, then $g^{\prime}=g, h^{\prime}=h$. This contradicts irreducibility of f over \mathbb{Z}.
- Otherwise, let p be a prime factor of n. By the lemma, we may suppose, without loss of generality, that $g^{\prime}=p g^{\prime \prime}$, where $g^{\prime \prime} \in \mathbb{Z}[X]$. It follows that $\frac{n}{p} f=g^{\prime \prime} h^{\prime}$. This contradicts the choice of n as the least positive integer with the property $n f=g^{\prime} h^{\prime}$, for $g^{\prime}, h^{\prime} \in \mathbb{Z}[X]$.
- We show that $g=X^{3}+2 X^{2}+4 X-6$ is irreducible over \mathbb{Q}.

If the polynomial g factorizes over \mathbb{Q}, then it factorizes over \mathbb{Z}, and at least one of the factors must be linear:

$$
g=X^{3}+2 X^{2}+4 X-6=(X-a)\left(X^{2}+b X+c\right)
$$

Then $a c=6$ So $a \in\{ \pm 1, \pm 2, \pm 3, \pm 6\}$. If we substitute a for X in g, we must have $g(a)=0$. However, the values of $g(a)$ are as follows:

a	1	-1	2	-2	3	-3	6	-6
$g(a)$	1	-9	14	-10	51	-27	306	-174

Hence, the assumed factorization is impossible.
So g is irreducible over \mathbb{Q}.

Eisenstein's Criterion

Theorem (Eisenstein's Criterion)

Let $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ be a polynomial in $\mathbb{Z}[X]$. Suppose that there exists a prime number p, such that:
$p \nmid a_{n}$;
$p \mid a_{i}, i=0, \ldots, n-1 ;$
$p^{2} \nmid a_{0}$.
Then f is irreducible over \mathbb{Q}.

- By Gauss's Lemma, it suffices to show that f is irreducible over \mathbb{Z}. Suppose that $f=g h$, where

$$
\begin{aligned}
g & =b_{0}+b_{1} X+\cdots+b_{r} X^{r}, \\
h & =c_{0}+c_{1} X+\cdots+c_{s} X^{s},
\end{aligned}
$$

with $r, s<n$ and $r+s=n$.

Eisenstein's Criterion (Cont'd)

- Since $a_{0}=b_{0} c_{0}$, it follows from (ii) that $p \mid b_{0}$ or $p \mid c_{0}$. Since $p^{2} \nmid a_{0}$, the coefficients b_{0} and c_{0} cannot both be divisible by p.
We assume, without loss of generality, that $p \mid b_{0}, p \nmid c_{0}$.
Suppose inductively that p divides $b_{0}, b_{1}, \ldots, b_{k-1}$, where $1 \leq k \leq r$.
Then $a_{k}=b_{0} c_{k}+b_{1} c_{k-1}+\cdots+b_{k-1} c_{1}+b_{k} c_{0}$.
Since p divides each of $a_{k}, b_{0} c_{k}, b_{1} c_{k-1}, \ldots, b_{k-1} c_{1}, p \mid b_{k} c_{0}$. Hence, $p \mid b_{k}$.
We conclude that $p \mid b_{r}$.
So, since $a_{n}=b_{r} c_{s}$, we have that $p \mid a_{n}$.
This contradicts (i).
Hence f is irreducible.
- The polynomial $X^{5}+2 X^{3}+\frac{8}{7} X^{2}-\frac{4}{7} X+\frac{2}{7}$ is irreducible over \mathbb{Q} : $7 X^{5}+14 X^{3}+8 X^{2}-4 X+2$ satisfies Eisenstein's criterion, with $p=2$.
- We show that $f(X)=2 X^{5}-4 X^{4}+8 X^{3}+14 X^{2}+7$ is irreducible over \mathbb{Q}. The polynomial f does not satisfy the required conditions. Suppose we have a factorization $f=g h$, with (say) $\partial g=3$ and $\partial h=2$. Then

$$
\begin{aligned}
7 X^{5}+14 X^{3}+8 X^{2}-4 X+2 & =X^{5}\left(2 \frac{1}{X^{5}}-4 \frac{1}{X^{4}}+8 \frac{1}{X^{3}}+14 \frac{1}{X^{2}}+7\right) \\
& =X^{5} f\left(\frac{1}{X}\right) \\
& =\left(X^{3} g\left(\frac{1}{X}\right)\right)\left(X^{2} h\left(\frac{1}{X}\right)\right) .
\end{aligned}
$$

This is a factorization of $7 X^{5}+14 X^{3}+8 X^{2}-4 X+2$.
By the preceding example, we know that this cannot happen.

- We show that, if $p>2$ is prime, then

$$
f(X)=1+X+X^{2}+\cdots+X^{p-1}
$$

is irreducible over \mathbb{Q}.
Observe that $f(X)=\frac{X^{p}-1}{X-1}$. Define $g(X)=f(X+1)$. Then

$$
g(X)=\frac{1}{X}\left((X+1)^{p}-1\right)=\sum_{r=0}^{p-1}\binom{p}{r} X^{p-r-1}
$$

The coefficients $\binom{p}{1},\binom{p}{2}, \ldots,\binom{p}{p-1}$ are all divisible by p. Hence g is irreducible, by Eisenstein's Criterion.
Suppose $f=u v$, with $\partial u, \partial v<\partial f$ and $\partial u+\partial v=\partial f$.
Then $g(X)=u(X+1) v(X+1)$. The factors $u(X+1)$ and $v(X+1)$ are polynomials in X, of the same degrees (respectively) as u and v.
This contradicts the irreducibility of g.

- A method for determining irreducibility over \mathbb{Z} (and so over \mathbb{Q}) is to map the polynomial onto $\mathbb{Z}_{p}[X]$, for some suitably chosen prime p.
- Let $g=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in \mathbb{Z}[X]$, and let p be a prime, $p \nmid a_{n}$.
- Let \bar{a}_{i} be the residue class $a_{i}+\langle p\rangle$ in the field $\mathbb{Z}_{p}=\mathbb{Z} /\langle p\rangle, i=0, \ldots, n$.
- Write the polynomial $\bar{a}_{0}+\bar{a}_{1} X+\cdots+\bar{a}_{n} X^{n}$ as \bar{g}.
- Our choice of p ensures that $\partial \bar{g}=n$.
- Suppose that $g=u v$, with $\partial u, \partial v<\partial g$ and $\partial u+\partial v=\partial g$.
- Then $\bar{g}=\overline{u v}$.
- So, if g is irreducible in $\mathbb{Z}_{p}[X]$, then g is irreducible.
- The advantage of transferring the problem from $\mathbb{Z}[X]$ to $\mathbb{Z}_{p}[X]$ is that \mathbb{Z}_{p} is finite, and the verification of irreducibility is a matter of checking a finite number of cases.
- We show that $g=7 X^{4}+10 X^{3}-2 X^{2}+4 X-5$ is irreducible over \mathbb{Q}. If we choose $p=3$, then $\bar{g}=X^{4}+X^{3}+X^{2}+X+1$.
The elements of \mathbb{Z}_{3} may be taken as $0,1,-1$, with $1+1=-1$.
- \bar{g} has no linear factor: We have $\bar{g}(0)=1, \bar{g}(1)=-1$ and $\bar{g}(-1)=1$.
- There remains the possibility that (in $\mathbb{Z}_{3}[X]$)

$$
X^{4}+X^{3}+X^{2}+X+1=\left(X^{2}+a X+b\right)\left(X^{2}+c X+d\right)
$$

Equating coefficients gives $a+c=1, b+a c+d=1, b d=1, a d+b c=1$.
If $b=d=1$, then $a c=-1$. So $(a, c)=(1,-1)$ or $(a, c)=(-1,1)$. In either case $a+c=0$, a contradiction.
If $b=d=-1$, then $a c=0$.
If $a=0$ then $c=1$. So $1=a d+b c=b$, a contradiction.
If $c=0$, then $a=1$. Then $1=a d+b c=d$, again a contradiction.
We have shown that \bar{g} is irreducible over \mathbb{Z}_{3}.
It follows that g is irreducible over \mathbb{Q}.

