Fields and Galois Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 1 / 6

ntegral Domains and Polynomials

- Euclidean Domains
- Unique Factorization
- Polynomials
- Irreducible Polynomials

Subsection 1

Euclidean Domains

Euclidean Domains

- An integral domain D is called a **Euclidean domain** if there is a mapping δ from D into the set \mathbb{N}^0 of non-negative integers with the properties:
 - $\delta(0) = 0;$
 - For all a in D and all b in $D \setminus \{0\}$, there exist q, r in D, such that

$$a = qb + r, \qquad \delta(r) < \delta(b).$$

• It follows that $\delta^{-1}\{0\} = \{0\}$.

Suppose for some $b \neq 0$, $\delta(b) = 0$.

Then it would not be possible to find r, such that $\delta(r) < \delta(b)$.

Example: The Integers

- ullet The most important example of a Euclidean domain is the ring \mathbb{Z} .
- $\delta(a)$ is defined as |a|.
- The process, known as the **division algorithm**, is the familiar one of dividing *a* by *b* and obtaining a **quotient** *q* and a **remainder** *r*.
 - If b is positive, then there exists q, such that

$$qb \le a < (q+1)b.$$

Thus $0 \le a - qb < b$. Taking r = a - qb, we see that a = qb + r and |r| < |b|.

• If b is negative, then there exists q, such that

$$(q+1)b < a \le qb.$$

Thus, $b < r = a - qb \le 0$. It follows again that a = qb + r and |r| < |b|.

Principal Ideal Domains

• An integral domain *D* is called a **principal ideal domain** if all of its ideals are principal.

Theorem

Every Euclidean domain is a principal ideal domain.

• Let *D* be a Euclidean domain. The ideal {0} is certainly principal. Let *I* be a non-zero ideal. Let *b* be a non-zero element of *I*, such that

$$\delta(b) = \min \{\delta(x) : x \in I \setminus \{0\}\}.$$

Let $a \in I$. There exist q, r, such that a = qb + r and $\delta(r) < \delta(b)$. But $r = a - qb \in I$. By the minimality of $\delta(b)$, r = 0. Thus, a = qb. So $I = Db = \langle b \rangle$ is a principal ideal.

Greatest Common Divisors

- Let a, b be non-zero members of a principal ideal domain D.
- Let $\langle a, b \rangle = \{sa + tb : s, t \in D\}$ be the ideal generated by a and b.
- Since D is a principal ideal domain, there exists d in D, such that $\langle a, b \rangle = \langle d \rangle$.
 - Since $\langle a \rangle \subseteq \langle d \rangle$ and $\langle b \rangle \subseteq \langle d \rangle$, we have $d \mid a$ and $d \mid b$.
 - Since $d \in \langle a, b \rangle$, there exist *s*, *t* in *D*, such that d = sa + tb. If $d' \mid a$ and $d' \mid b$, then $d' \mid sa + tb$, i.e., $d' \mid d$.
- We say that *d* is a **greatest common divisor**, or a **highest common factor**, of *a* and *b*.

• If
$$\langle a, b \rangle = \langle d \rangle = \langle d^* \rangle$$
, then that $d^* \sim d$.

Greatest Common Divisors (Cont'd)

- Let a, b be non-zero members of a principal ideal domain D.
- Summarizing, d is the greatest common divisor of a and b, written

 $d = \gcd(a, b),$

```
if it has the following properties:
(GCD1) d | a and d | b;
(GCD2) if d' | a and d' | b, then d' | d.
If gcd(a, b) ~ 1, we call a and b coprime, or relatively prime.
```

Examples of Greatest Common Divisor

• In the case of the domain $\mathbb Z,$ where the group of units is $\{1,-1\},$ we have, e.g., that

$$\langle 12, 18 \rangle = \langle 6 \rangle = \langle -6 \rangle.$$

• A simple modification of the argument enables us to conclude that, in a principal ideal domain *D*, every finite set {*a*₁, *a*₂,..., *a*_n} has a greatest common divisor.

The Euclidean Algorithm (Dividing)

- Let a and b be non-zero elements of a Euclidean domain D.
- Suppose, without loss of generality, that $\delta(b) \leq \delta(a)$.
- Then there exist q_1, q_2, \ldots and r_1, r_2, \ldots , such that:

$$\begin{aligned} a &= q_1 b + r_1, & \delta(r_1) < \delta(b), \\ b &= q_2 r_1 + r_2, & \delta(r_2) < \delta(r_1), \\ r_1 &= q_3 r_2 + r_3, & \delta(r_3) < \delta(r_2), \\ r_2 &= q_4 r_3 + r_4, & \delta(r_4) < \delta(r_3), \\ \vdots \end{aligned}$$

• The process must end with some $r_k = 0$. The final equations are:

$$r_{k-3} = q_{k-1}r_{k-2} + r_{k-1}, \quad \delta(r_{k-1}) < \delta(r_{k-2}),$$

$$r_{k-2} = q_k r_{k-1}.$$

The Euclidean Algorithm (Finding the GCD)

• From $a = q_1b + r_1$, we deduce that $\langle a, b \rangle = \langle b, r_1 \rangle$.

• Every element sa + tb in $\langle a, b \rangle$ can be rewritten as

 $sa+tb=s(q_1b+r_1)+tb=(t+sq_1)b+sr_1\in\langle b,r_1\rangle.$

Every element $xb + yr_1$ in $\langle b, r_1 \rangle$ can be rewritten as

$$xb + yr_1 = xb + y(a - q_1b) = ya + (x - yq_1)b \in \langle a, b \rangle.$$

• Similarly, the subsequent equations give

$$\langle b, r_1 \rangle = \langle r_1, r_2 \rangle, \langle r_1, r_2 \rangle = \langle r_2, r_3 \rangle, \dots, \langle r_{k-3}, r_{k-2} \rangle = \langle r_{k-2}, r_{k-1} \rangle, \langle r_{k-2}, r_{k-1} \rangle = \langle r_{k-1} \rangle.$$

• We conclude that $\langle a, b \rangle = \langle r_{k-1} \rangle$.

• So r_{k-1} is the (essentially unique) greatest common divisor of a and b.

Example

• We determine the greatest common divisor of 615 and 345, and express it in the form 615x + 345y.

615	=	$1 \times 345 + 270$
345	=	$1 \times 270 + 75$
270	=	$3 \times 75 + 45$
75	=	$1 \times 45 + 30$
45	=	$1 \times 30 + 15$
30	=	$2 \times 15 + 0.$

The greatest common divisor is 15, the last non-zero remainder. Moreover,

$$15 = 45 - 30 = 45 - (75 - 45) = 2 \times 45 - 75$$

= 2 \times (270 - 3 \times 75) - 75 = 2 \times 270 - 7 \times 75
= 2 \times 270 - 7 \times (345 - 270) = 9 \times 270 - 7 \times 345
= 9 \times (615 - 345) - 7 \times 345 = 9 \times 615 - 16 \times 345.

Example of Coprime Elements

- Two elements *a* and *b* of a principal ideal domain *D* are coprime if their greatest common divisor is 1.
- This happens if and only if there exist *s* and *t* in *D*, such that sa + tb = 1.
- For example, 75 and 64 are coprime:

75	=	$1 \times 64 + 11$
64	=	$5 \times 11 + 9$
11	=	$1 \times 9 + 2$
9	=	$4 \times 2 + 1$
2	=	$2 \times 1 + 0.$

Therefore,

$$1 = 9 - 4 \times 2 = 9 - 4(11 - 9) = 5 \times 9 - 4 \times 11$$

= 5(64 - 5 \times 11) - 4 \times 11 = 5 \times 64 - 29 \times 11
= 5 \times 64 - 29(75 - 64) = 34 \times 64 - 29 \times 75.

Subsection 2

Unique Factorization

Irreducibles in Principal Ideal Domains

• Let D be an integral domain with group U of units, and let $p \in D$ be such that $p \neq 0, p \notin U$.

Then p is said to be **irreducible** if it has no proper factors.

Theorem

Let p be an element of a principal ideal domain D. Then the following statements are equivalent:

- *p* is irreducible;
- (ii) $\langle p \rangle$ is a maximal proper ideal of D;
- (iii) $D/\langle p \rangle$ is a field.

(i) \Rightarrow (ii): Suppose that *p* is irreducible. Then *p* is not a unit, and so $\langle p \rangle$ is a proper ideal of *D*. Suppose, for a contradiction, that there is a (principal) ideal $\langle q \rangle$, such that $\langle p \rangle \subset \langle q \rangle \subset D$. Then $p \in \langle q \rangle$. So p = aq, for some non-unit *a*. This contradicts the irreducibility of *p*.

Irreducibles in Principal Ideal Domains (Cont'd)

(ii) \Rightarrow (iii): Let $a + \langle p \rangle$ be a non-zero element of $D/\langle p \rangle$. Then $a \notin \langle p \rangle$. So the ideal $\langle a \rangle + \langle p \rangle$ properly contains $\langle p \rangle$. Since $\langle p \rangle$ is maximal, $\langle a \rangle + \langle p \rangle = \{sa + tp : s, t \in D\} = D$. Hence, there exist s, t in D such that sa + tp = 1. Therefore, $sa - 1 = tp \in \langle p \rangle$. That is,

$$(s + \langle p \rangle)(a + \langle p \rangle) = 1 + \langle p \rangle.$$

Thus, $D/\langle p \rangle$ is a field.

(iii) \Rightarrow (i): If p is not irreducible, then there exist non-units q and r, such that p = qr. Then $q + \langle p \rangle$ and $r + \langle p \rangle$ are both non-zero elements of $D/\langle p \rangle$. On the other hand,

$$(q + \langle p \rangle)(r + \langle p \rangle) = p + \langle p \rangle = 0 + \langle p \rangle.$$

Thus, $D/\langle p \rangle$ has divisors of zero. So it is not a field.

George Voutsadakis (LSSU)

Fields and Galois Theory

Unique Factorization Domains

 An element d of an integral domain D has a factorization into irreducible elements if there exist irreducible elements p₁, p₂,..., p_k, such that

$$d=p_1p_2\cdots p_k.$$

• The factorization is essentially unique if, for irreducible elements $p_1, p_2, ..., p_k$ and $q_1, q_2, ..., q_\ell$,

$$d=p_1p_2\cdots p_k=q_1q_2\cdots q_\ell$$

implies that $k = \ell$ and, for some permutation $\sigma: \{1, 2, \dots, k\} \rightarrow \{1, 2, \dots, k\},\$

$$p_i \sim q_{\sigma(i)}, \qquad i=1,2,\ldots,k.$$

An integral domain D is said to be a factorial domain, or a unique factorization domain, if every non-unit a ≠ 0 of D has an essentially unique factorization into irreducible elements.

George Voutsadakis (LSSU)

Fields and Galois Theory

Example of a Unique Factorization Domain

- Z, in which the (positive and negative) prime numbers are the irreducible elements, provides a familiar example of a unique factorization domain.
- For example

$$60 = 2 \cdot 2 \cdot 3 \cdot 5.$$

The factorization is essentially unique, for nothing more different than (say) $(-2) \cdot (-5) \cdot 3 \cdot 2$ is possible.

Chains of Ideals in Principal Ideal Domains

Lemma

In a principal ideal domain there are no infinite ascending chains of ideals.

- In any integral domain *D*, an ascending chain *I*₁ ⊆ *I*₂ ⊆₃⊆ ··· of ideals has the property that *I* = ∪_{*j*≥1} *I_j* is an ideal.
 - Let $a, b \in I$. There exist k, ℓ , such that $a \in I_k, b \in I_\ell$. So $a b \in I_{\max\{k,\ell\}} \subseteq I$.
 - Let $a \in I$ and $s \in D$. Then $a \in I_k$, for some k. So $sa \in I_k \subseteq I$.

Let *D* be a principal ideal domain, and $\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \langle a_3 \rangle \subseteq \cdots$ be an ascending chain of (principal) ideals. We know that the union of all the ideals in this chain must be an ideal. By our assumption, this must be a principal ideal $\langle a \rangle$. Since $a \in \bigcup_{j \ge 1} \langle a_j \rangle$, $a \in \langle a_k \rangle$, for some *k*. Thus, $\langle a \rangle \subseteq \langle a_k \rangle$. But we also have $\langle a_k \rangle \subseteq \langle a \rangle$. Hence, $\langle a \rangle = \langle a_k \rangle$. So $\langle a_k \rangle = \langle a_{k+1} \rangle = \langle a_{k+2} \rangle = \cdots = \langle a \rangle$. Thus, the infinite chain of inclusions terminates at $\langle a_k \rangle$.

Irreducible Elements and Divisibility

Lemma

Let D be a principal ideal domain, let p be an irreducible element in D, and let $a, b \in D$. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

- Suppose that p | ab and p ∤ a. Then the greatest common divisor of a and p must be 1. So there exist s, t in D, such that sa + tp = 1. Hence, sab + tpb = b. But p clearly divides sab + tpb. Therefore, p | b.
- It is a routine matter to extend this result to products of more than two elements.

Corollary

Let *D* be a principal ideal domain, let *p* be an irreducible element in *D*, and let $a_1, a_2, \ldots, a_m \in D$. If $p \mid a_1 a_2 \cdots a_m$, then $p \mid a_1$ or $p \mid a_2$ or \cdots or $p \mid a_m$.

Factoriality of Principal Ideal Domains

Theorem

Every principal ideal domain is factorial.

We show, first, that any a ≠ 0 in D can be expressed as a product of irreducible elements. Let a be a non-unit in D. Then either a is irreducible, or it has a proper divisor a₁. Similarly, either a₁ is irreducible, or a₁ has a proper divisor a₂. Continuing, we obtain a sequence a = a₀, a₁, a₂,... in which, for i = 1, 2, ..., a_i is a proper divisor of a_{i-1}. The sequence must terminate at some a_k; Otherwise the infinite ascending sequence ⟨a⟩ ⊂ ⟨a₁⟩ ⊂ ⟨a₂⟩ ⊂ … would contradict the lemma.

Hence *a* has a proper irreducible divisor $a_k = z_1$, and $a = z_1 b_1$.

Factoriality of Principal Ideal Domains (Cont'd)

• We found a proper irreducible divisor $a_k = z_1$ of a, yielding the expression $a = z_1 b_1$.

If b_1 is irreducible, then the proof is complete.

Otherwise we can repeat the argument we used for *a* to find a proper irreducible divisor z_2 of b_1 , and $a = z_1 z_2 b_2$.

We continue this process.

It too must terminate; Otherwise the infinite ascending sequence $\langle a \rangle \subset \langle b_1 \rangle \subset \langle b_2 \rangle \subset \cdots$ would again contradict the lemma.

Hence, some b_{ℓ} must be irreducible.

So $a = z_1 z_2 \cdots z_{\ell-1} b_{\ell}$ is a product of irreducible elements.

Uniqueness of the Factorization

- Suppose that $p_1p_2\cdots p_k \sim q_1q_2\cdots q_\ell$, where p_1, p_2, \dots, p_k and q_1, q_2, \dots, q_ℓ are irreducible.
 - Suppose first that k = 1. Since $q_1q_2 \cdots q_\ell$ is irreducible, $\ell = 1$. So $p_1 \sim q_1$.
 - Suppose inductively that, for all n≥ 2 and all k < n, any statement of the form p₁p₂···p_k ~ q₁q₂···q_ℓ implies that k = ℓ and that, for some permutation σ of {1,2,...,k}, q_i ~ p_{σ(i)}, i = 1,2,...,k.
 - Let k = n. Since $p_1 | q_1 q_2 \cdots q_\ell$, by the corollary $p_1 | q_j$, for some j in $\{1, 2, \dots, \ell\}$. Since q_j is irreducible and p_1 is not a unit, $p_1 \sim q_j$. By cancelation, $p_2 p_3 \cdots p_n \sim q_1 \cdots q_{j-1} q_{j+1} \cdots q_\ell$. By the induction hypothesis, $n 1 = \ell 1$ and, for $i \in \{1, 2, \dots, n\} \setminus \{j\}$, $q_i \sim p_{\sigma(i)}$, for some permutation σ of $\{2, 3, \dots, n\}$. Hence, extending σ to a permutation σ of $\{1, 2, \dots, n\}$ by defining $\sigma(1) = j$, we obtain the desired result.

Corollary

Every Euclidean domain is factorial.

George Voutsadakis (LSSU)

Fields and Galois Theory

Subsection 3

Polynomials

Polynomials

- In the following, R is an integral domain and K is a field.
- A polynomial f with coefficients in R is a sequence $(a_0, a_1, ...)$, where $a_i \in R$, for all $i \ge 0$, and where only finitely many of $\{a_0, a_1, ...\}$ are non-zero.
- If the last non-zero element in the sequence is a_n , we say that f has degree n, and write $\partial f = n$.
- The entry a_n is called the **leading coefficient** of f.
- If $a_n = 1$ we say that the polynomial is monic.

More on Polynomials

- In the case where all of the coefficients are 0, it is convenient to ascribe the formal degree of -∞ to the polynomial (0,0,0,...).
- We also make the conventions, for every n in \mathbb{Z} ,

$$-\infty < n$$
, $-\infty + (-\infty) = -\infty$, $-\infty + n = -\infty$.

- Polynomials (a, 0, 0, ...) of degree 0 or $-\infty$ are called **constant**.
- For other polynomials of small degree we have names as follows:

∂f	1	2	3	4	5	6
name	linear	quadratic	cubic	quartic	quintic	sextic

Addition and Multiplication of Polynomials

• Addition of polynomials is defined as follows:

$$(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots).$$

• Multiplication is defined by

$$(a_0, a_1, \ldots)(b_0, b_1, \ldots) = (c_0, c_1, \ldots),$$

where, for k = 0, 1, 2, ...,

$$c_k = \sum_{\{(i,j):i+j=k\}} a_i b_j.$$

Thus,

$$c_0 = a_0 b_0, \ c_1 = a_0 b_1 + a_1 b_0, \ c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0, \ \dots$$

Structure of the Set *P* of Polynomials

- With respect to these two operations, the set *P* of all polynomials with coefficients in *R* becomes a commutative ring with unity.
- Most of the ring axioms are easily verified.
 - The zero element is (0,0,0,...);
 - The unity element is (1,0,0,...);
 - The negative of $(a_0, a_1, ...)$ is $(-a_0, -a_1, ...)$.
- For associativity of multiplication: Let p = (a₀, a₁,...), q = (b₀, b₁,...), r = (c₀, c₁,...) be polynomials. Then (pq)r = (d₀, d₁,...), where, for m = 0, 1, 2, ...,

$$d_{m} = \sum_{\{(k,\ell):k+\ell=m\}} \left(\sum_{\{(i,j):i+j=k\}} a_{i}b_{j} \right) c_{\ell} = \sum_{\{(i,j,\ell):i+j+\ell=m\}} a_{i}b_{j}c_{\ell}$$
$$= \sum_{\{(i,n):i+n=m\}} a_{i} \left(\sum_{\{(j,\ell):j+\ell=n\}} b_{j}c_{\ell} \right).$$

The latter is the *m*-th entry of p(qr). So multiplication is associative.

Identifying R in P

• There is a monomorphism $\theta: R \to P$ given by

$$\theta(a) = (a, 0, 0, \ldots), \text{ for all } a \in R.$$

• Thus, we may identify

$$\theta(a) = (a, 0, 0, \ldots)$$

with the element a of R.

• In this way we view R as a subring of P.

The Indeterminate Form

- Let X be the polynomial $(0,1,0,0,\ldots)$.
- Then the multiplication rule gives:

•
$$X^2 = (0, 0, 1, 0, ...);$$

• $X^3 = (0, 0, 0, 1, 0, ...);$

In general,

$$X^n = (x_0, x_1, ...)$$
, where $x_m = \begin{cases} 1, & \text{if } m = n \\ 0, & \text{otherwise} \end{cases}$

Now we get

$$\begin{aligned} &(a_0, a_1, \dots, a_n, 0, \dots) \\ &= (a_0, 0, \dots, 0, 0, \dots) + (0, a_1, 0, \dots, 0, 0, \dots) + \dots + (0, 0, 0, \dots, a_n, 0, \dots) \\ &= (a_0, 0, \dots, 0, 0, 0, \dots) + (a_1, 0, 0, \dots, 0, 0, 0, \dots) (0, 1, 0, \dots, 0, 0, 0, \dots) + \dots \\ &+ (a_n, 0, 0, \dots, 0, 0, 0, \dots) (0, 0, 0, \dots, 1, 0, 0, \dots) \\ &= \theta(a_0) + \theta(a_1)X + \dots + \theta(a_n)X^n. \end{aligned}$$

• Identifying $\theta(a_i)$ with a_i , we get $a_0 + a_1X + a_2X^2 + \cdots + a_nX^n$.

Polynomial Ring of R

- Despite the expression of a polynomial in terms of X := (0,1,0,0,...) (regarded as an "indeterminate") it is important to note that:
 - We are talking of *polynomial forms*, wholly determined by the coefficients *a_i* in *R*;
 - X is not a member of R but only a notation for the tuple (0,1,0,...) of the ring P of polynomials with coefficients in R.
- We sometimes write f = f(X) and say that it is a polynomial over R in the indeterminate X.
- The ring P of all such polynomials is written R[X].
- We refer to R[X] simply as the **polynomial ring** of R.

Properties of Polynomials

Theorem

Let D be an integral domain, and let D[X] be the polynomial ring of D. Then:

- (i) D[X] is an integral domain.
- (ii) If $p, q \in D[X]$, then $\partial(p+q) \le \max\{\partial p, \partial q\}$.
- (iii) For all p,q in D[X], $\partial(pq) = \partial p + \partial q$.

iv) The group of units of D[X] coincides with the group of units of D.

(i) We have already noted that D[X] is a commutative ring with unity. We show that D[X] has no divisors of 0.
 Suppose that p and q are non-zero polynomials with leading terms a_m, b_n, respectively. The product of p and q has leading term a_mb_n. By hypothesis, D has no zero divisors. So the coefficient a_mb_n is non-zero. This ensures that pq ≠ 0.

Properties of Polynomials

- (ii) Let p and q be non-zero. Let $\partial p = m$, $\partial q = n$, and suppose, without loss of generality, that $m \ge n$.
 - If m > n, then it is clear that the leading term of p + q is a_m . So $\partial(p+q) = \max{\{\partial p, \partial q\}}$.
 - If m = n, then we may have $a_m + b_m = 0$. So all we can say is that $\partial(p+q) \le \max{\{\partial p, \partial q\}}$.

The conventions regarding $-\infty$ ensure that this result holds also if one or both of p, q are equal to 0.

- (iii) By the argument in Part (i), if p and q are non-zero, then $\partial(pq) = m + n = \partial p + \partial q$. If one or both of p and q are zero, then the result holds by the conventions on $-\infty$.
- (iv) Let $p, q \in D[X]$, and suppose that pq = 1. From Part (iii), $\partial p = \partial q = 0$. Thus $p, q \in D$, and pq = 1 if and only if p and q are in the group of units of D.

Polynomial in Several Variables

- Since the ring of polynomials over the integral domain *D* is itself an integral domain, we can repeat the preceding process.
- So we may form the ring of polynomials with coefficients in D[X].
- We need to use a different letter for a new indeterminate, and the new integral domain is (D[X])[Y], denoted by D[X, Y].
- It consists of polynomials in X and Y with coefficients in D.
- By repeating, we obtain the integral domain $D[X_1, X_2, ..., X_n]$.

Rational Forms

• The field of fractions of D[X] consists of rational forms

$$\frac{a_0+a_1X+\cdots+a_mX^m}{b_0+b_1X+\cdots+b_nX^n},$$

where the denominator is not the zero polynomial.

- The field is denoted by D(X) (with parenthesis instead of brackets).
- In a similar way one arrives at the field $D(X_1, X_2, ..., X_n)$ of rational forms in the *n* indeterminates $X_1, X_2, ..., X_n$, with coefficients in *D*.

Extension of an Isomorphism arphi: D o D'

Theorem

Let D, D' be integral domains, and let $\varphi : D \to D'$ be an isomorphism. Then the mapping $\widehat{\varphi} : D[X] \to D'[X]$ defined by

$$\widehat{\varphi}(a_0 + a_1X + \dots + a_nX^n) = \varphi(a_0) + \varphi(a_1)X + \dots + \varphi(a_n)X^n$$

is an isomorphism.

- The isomorphism $\widehat{\varphi}$ is called the **canonical extension** of φ .
- A further extension $\varphi^* : D(X) \to D'(X)$ is defined by

$$\varphi^*\left(\frac{f}{g}\right) = \frac{\widehat{\varphi}(f)}{\widehat{\varphi}(g)}, \quad \frac{f}{g} \in D(X).$$

On the Case of Coefficients in a Field

- Suppose that the ring R of coefficients is actually a field K.
- The group of units of K[X] is the group of units of K.
 That is, it the group K* of non-zero elements of the field K.
- As usual, we write

$$f \sim g$$
 iff $f = ag$, for some a in K^* .

The Euclidean Process in K[X]

Theorem (Euclidean Algorithm in K[X])

Let K be a field, and let f,g be elements of the polynomial ring K[X], with $g \neq 0$. Then there exist unique elements q,r in K[X], such that f = qg + r and $\partial r < \partial g$.

- If f = 0 the result is trivial, since f = 0g + 0. So suppose that $f \neq 0$. The proof is by induction on ∂f .
 - First, suppose that $\partial f = 0$, so that $f \in K^*$. If $\partial g = 0$ also, let $q = \frac{t}{g}$ and r = 0; otherwise, let q = 0 and r = f.
 - Suppose now that $\partial f = n$, and suppose also that the theorem holds for all polynomials f of all degrees up to n-1.
 - If $\partial g > \partial f$, let q = 0 and r = f.
 - Assume $\partial g \leq \partial f$. Let $a_n X^n, b_m X^m$, be the leading terms of f, g, where $m \leq n$. Then the polynomial $h = f \left(\frac{a_n}{b_m} X^{n-m}\right)g$ has degree $\leq n-1$. So there exist q_1, r , such that $h = q_1g + r$, with $\partial r < \partial g$. It follows that $f = h + \left(\frac{a_n}{b_m} X^{n-m}\right)g = (q_1g + r) + \left(\frac{a_n}{b_m} X^{n-m}\right)g = \left(q_1 + \frac{a_n}{b_m} X^{n-m}\right)g + r$.

To prove uniqueness, suppose that

$$f = qg + r = q'g + r'$$
, with $\partial r, \partial r' < \partial g$.

Then

$$r-r'=(q'-q)g.$$

So

$$\partial((q'-q)g) = \partial(r-r') < \partial g.$$

By a previous theorem, this cannot happen unless q' - q = 0. Hence q = q'. Consequently, r = r' also.

George Voutsadakis (LSSU)

Example of Polynomial Division

• Let
$$f = X^4 - X$$
 and $g = X^2 + 3X + 2$.
We have

Thus,
$$X^4 - X = \underbrace{(X^2 - 3X + 7)}_{q} \underbrace{(X^2 + 3X + 2)}_{g} \underbrace{-(16X + 14)}_{r}.$$

Properties of K[X] for a Field K

Theorem

If K is a field, then K[X] is a Euclidean domain.

- If, for all f in K[X], we define $\delta(f)$ as $2^{\partial f}$, with the convention that $2^{-\infty} = 0$, we have the right properties.
- We summarize the important properties of K[X].

Theorem

Let K be a field. Then:

- (i) Every pair (f,g) of polynomials in K[X] has a greatest common divisor d, which can be expressed as af + bg, with a, b in K[X];
- (ii) K[X] is a principal ideal domain;
- (iii) K[X] is a factorial domain;
- (iv) If $f \in K[X]$, then $K[X]/\langle f \rangle$ is a field if and only if f is irreducible.

Example

- Consider the polynomials $X^2 + X + 1$ and $X^3 + 2X 4$ in $\mathbb{Q}[X]$.
- Then one may calculate that

$$\begin{array}{rcl} X^3 + 2X - 4 &=& (X - 1)(X^2 + X + 1) + 2X - 3 \\ X^2 + X + 1 &=& (\frac{1}{2}X + \frac{5}{4})(2X - 3) + \frac{19}{4}. \end{array}$$

- So the greatest common divisor is $\frac{19}{4}$.
- But the group of units of $\mathbb{Q}[X]$ is $Q^* = \mathbb{Q} \setminus \{0\}$. So $\frac{19}{4} \sim 1$.
- The two given polynomials are coprime.

$$\begin{array}{rcl} \frac{19}{4} &=& (X^2+X+1)-(\frac{1}{2}X+\frac{5}{4})(2X-3) \\ &=& (X^2+X+1)-(\frac{1}{2}X+\frac{5}{4})[(X^3+2X-4)-(X-1)(X^2+X+1)] \\ &=& [1+(\frac{1}{2}X+\frac{5}{4})(X-1)](X^2+X+1)-(\frac{1}{2}X+\frac{5}{4})(X^3+2X-4) \\ &=& (\frac{1}{2}X^2+\frac{3}{4}X-\frac{1}{4})(X^2+X+1)-(\frac{1}{2}X+\frac{5}{4})(X^3+2X-4). \end{array}$$

Isomorphism $\mathbb{R}[X]/\langle X^2+1\rangle \cong \mathbb{C}$

- Since $X^2 + 1$ is irreducible in $\mathbb{R}[X]$, $K = \mathbb{R}[X]/\langle X^2 + 1 \rangle$ is a field.
- The elements of K are the residue classes $a + bX + \langle X^2 + 1 \rangle$, $a, b \in \mathbb{R}$.
- Addition is defined by the rule

$$(a+bX+\langle X^2+1\rangle)+(c+dX+\langle X^2+1\rangle)=(a+c)+(b+d)X+\langle X^2+1\rangle.$$

Multiplication is given by

$$(a+bX+\langle X^2+1\rangle)(c+dX+\langle X^2+1\rangle) = ac+(ad+bc)X+bdX^2+\langle X^2+1\rangle = (ac-bd)+(ad+bc)X+bd(X^2+1)+\langle X^2+1\rangle = (ac-bd)+(ad+bc)X+\langle X^2+1\rangle.$$

• These mimic the rules for adding and multiplying complex numbers. • The map $\varphi: \mathbb{R}[X]/\langle X^2+1 \rangle \to \mathbb{C}$, given by

$$\varphi(a+bX+\langle X^2+1\rangle)=a+bi,\quad a,b\in\mathbb{R},$$

is in fact an isomorphism.

George Voutsadakis (LSSU)

Evaluation Homomorphisms

- Let D be an integral domain and let $\alpha \in D$.
- The homomorphism σ_{α} from D[X] into D is defined by

$$\sigma_{\alpha}(a_0+a_1X+\cdots+a_nX^n)=a_0+a_1\alpha+\cdots+a_n\alpha^n.$$

• This is indeed a homomorphism. Let $f(X) = a_0 + a_1 X + \dots + a_n X^n$, $g(X) = b_0 + b_1 X + \dots + b_m X^m$. We have, e.g.,

$$\begin{aligned} \sigma_{\alpha}(f \cdot g) &= \sigma_{\alpha} \left(\sum_{k=0}^{n+m} (\sum_{i+j=k} a_i b_j) X^k \right) \\ &= \sum_{k=0}^{n+m} (\sum_{i+j=k} a_i b_j) \alpha^k \\ &= (a_0 + a_1 \alpha + \dots + a_n \alpha^n) (b_0 + b_1 \alpha + \dots + b_m \alpha^m) \\ &= \sigma_{\alpha}(f) \sigma_{\alpha}(g). \end{aligned}$$

• We usually write $f(\alpha)$ instead of $\sigma_{\alpha}(f)$.

• If $f(\alpha) = 0$, we say that α is a **root**, or a **zero**, of the polynomial f.

The Remainder Theorem

Theorem (The Remainder Theorem)

Let K be a field, let $\beta \in K$ and let f be a non-zero polynomial in K[X]. Then the remainder upon dividing f by $X - \beta$ is $f(\beta)$. In particular, β is a root of f if and only if $(X - \beta) | f$.

• By the division algorithm, there exist q, r in K[X], such that

$$f = (X - \beta)q + r$$
, $\partial r < \partial(X - \beta) = 1$.

Thus r is a constant.

Substituting β for X, we see that $f(\beta) = r$.

In particular, $f(\beta) = 0$ if and only if r = 0 if and only if $(X - \beta) | f$.

Subsection 4

Irreducible Polynomials

Embedding of K Into $K[X]/\langle g(X) \rangle$

Theorem

Let K be a field, and let g(X) be an irreducible polynomial in K[X]. Then $K[X]/\langle g(X) \rangle$ is a field containing K up to isomorphism.

• We know that $K[X]/\langle g(X) \rangle$ is a field. The map $\varphi: K \to K[X]/\langle g(X) \rangle$, given by

$$\varphi(a) = a + \langle g(X) \rangle, \quad a \in K,$$

is easily seen to be a homomorphism. It is even a monomorphism, since

$$a + \langle g(X) \rangle = b + \langle g(X) \rangle$$
 iff $a - b \in \langle g(X) \rangle$
iff $a = b$.

Irreducible Polynomials and Field Extensions

- This shows we have a highly effective method of constructing new fields provided we have a way of identifying irreducible polynomials.
- Certainly every linear polynomial is irreducible.
- If the field of coefficients is the complex field \mathbb{C} , by the Fundamental Theorem of Algebra, every polynomial in $\mathbb{C}[X]$ factorizes, essentially uniquely, into linear factors.
- Linear polynomials are of little interest as related to the preceding theorem, for $K[X]/\langle g(X) \rangle$ coincides with $\varphi(K)$ in this case, and so is isomorphic to K.

Suppose g(X) = X - a. Let f(X) in K[X] be arbitrary. By the Euclidean Property of K[X], we have that f(X) = q(X - a) + f(a). So $f(X) + \langle g \rangle = f(a) + \langle g \rangle \in \varphi(K)$.

Irreducible Elements in $\mathbb{R}[X]$

Theorem

The irreducible elements of the polynomial ring $\mathbb{R}[X]$ are either linear or quadratic. Every polynomial $g(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$ in $\mathbb{R}[X]$ has a unique factorization

$$a_n(X-\beta_1)\cdots(X-\beta_r)(X^2+\lambda_1X+\mu_1)\cdots(X^2+\lambda_sX+\mu_s),$$

in $\mathbb{R}[X]$, where $a_n \in \mathbb{R}$, $r, s \ge 0$ and r+2s = n.

If γ ∈ C\ℝ is a root, then a_nγⁿ + a_{n-1}γⁿ⁻¹ + ··· + a₁γ + a₀ = 0. Hence, the complex conjugate of the left-hand side is zero also. Since the coefficients a₀, a₁,..., a_n are real,

$$a_n\overline{\gamma}^n + a_{n-1}\overline{\gamma}^{n-1} + \dots + a_1\overline{\gamma} + a_0 = 0.$$

Thus, the non-real roots of the polynomial occur in conjugate pairs.

Irreducible Elements in $\mathbb{R}[X]$ (Cont'd)

• Thus, we obtain a factorization

$$g(X) = a_n(X - \beta_1) \cdots (X - \beta_r)(X - \gamma_1)(X - \overline{\gamma}_1) \cdots (X - \gamma_s)(X - \overline{\gamma}_s),$$

in $\mathbb{C}[X]$, where $\beta_1, \ldots, \beta_r \in \mathbb{R}$, $\gamma_1, \ldots, \gamma_s \in \mathbb{C} \setminus \mathbb{R}$, $r, s \ge 0$ and r + 2s = n. This gives rise to a factorization

$$a_n(X-\beta_1)\cdots(X-\beta_r)(X^2-(\gamma_+\overline{\gamma}_1)X+\gamma_1\overline{\gamma}_1)\cdots(X^2-(\gamma_s+\overline{\gamma}_s)X+\gamma_s\overline{\gamma}_s)$$

in $\mathbb{R}[X]$. In this factorization the quadratic factors must be irreducible in $\mathbb{R}[X]$. If they had real linear factors, they would have two distinct factorizations in $\mathbb{C}[X]$, which cannot happen.

• We know that a quadratic polynomial $aX^2 + bX + c$ in $\mathbb{R}[X]$ is irreducible if and only if the discriminant $b^2 - 4ac < 0$.

Quadratic Polynomials in $\mathbb{Q}[X]$

• In Q[X], the situation is not so easy, because there are irreducible polynomials of arbitrarily large degree.

Theorem

Let $g(X) = X^2 + a_1X + a_0$ be a polynomial with coefficients in \mathbb{Q} . Then:

- i) If g(X) is irreducible over \mathbb{R} , then it is irreducible over \mathbb{Q} ;
- (ii) If $g(X) = (X \beta_1)(X \beta_2)$, with $\beta_1, \beta_2 \in \mathbb{R}$, then g(X) is irreducible in $\mathbb{Q}[X]$ if and only if β_1 and β_2 are irrational.
- (i) Let g(X) be irreducible over \mathbb{R} . Suppose $g(X) = (X q_1)(X q_2)$ were a factorization in $\mathbb{Q}[X]$. This would also be a factorization in $\mathbb{R}[X]$, a contradiction.
- (ii) If β₁, β₂ were rational we would have a factorization in Q[X], and g(X) would not be irreducible. Suppose β₁, β₂ are irrational. Then (X − β₁)(X − β₂) is the only factorization in R[X]. So a factorization in Q[X] into linear factors is not possible.

Example

• We examine the following polynomials for irreducibility in $\mathbb{R}[X]$ and $\mathbb{Q}[X]$:

$$X^2 + X + 1$$
, $X^2 + X - 1$, $X^2 + X - 2$.

The first polynomial is irreducible over \mathbb{R} , since the discriminant is -3. It follows that it is irreducible over \mathbb{Q} .

The second polynomial factorizes over \mathbb{R} as $(X - \beta_1)(X - \beta_2)$, where

$$\beta_1 = \frac{-1 + \sqrt{5}}{2}, \quad \beta_2 = \frac{-1 - \sqrt{5}}{2}.$$

It is irreducible over \mathbb{Q} . The third polynomial factorizes over \mathbb{Q} as (X-1)(X+2). So it is not irreducible.

The Prime Factor Divisibility Lemma

Lemma

Suppose that $n \in \mathbb{Z}$ is positive and $f, g', h' \in \mathbb{Z}[X]$, such that nf = g'h'. If p is a prime factor of n, then either p divides all the coefficients of g', or p divides all the coefficients of h'.

 Suppose, for a contradiction, that p does not divide all the coefficients of $g' = a_0 + a_1 X + \dots + a_k X^k$, and that p does not divide all the coefficients of $h' = b_0 + b_1 X + \dots + b_\ell X^\ell$. Suppose that p divides a_0, \ldots, a_{i-1} , but $p \nmid a_i$, and that p divides b_0, \ldots, b_{i-1} , but $p \nmid b_i$. The coefficient of X^{i+j} in *nf* is $a_0b_{i+j} + \cdots + a_ib_i + \cdots + a_{i+j}b_0$. In this sum, all the terms preceding $a_i b_j$ are divisible by p, since p divides a_0, \ldots, a_{i-1} ; and all the terms following $a_i b_i$ are divisible by p, since p divides b_0, \ldots, b_{i-1} . Hence, only the term $a_i b_i$ is not divisible by p, and it follows that the coefficient of X^{i+j} in *nf* is not divisible by *p*. This gives a contradiction, since the coefficient of f are integers, and so certainly all the coefficients of nf are divisible by p.

George Voutsadakis (LSSU)

Fields and Galois Theory

Gauss's Lemma

Theorem (Gauss's Lemma)

Let f be a polynomial in $\mathbb{Z}[X]$, irreducible over \mathbb{Z} . Then f, considered as a polynomial in $\mathbb{Q}[X]$, is irreducible over \mathbb{Q} .

- Suppose, for a contradiction, that f = gh, with $g, h \in \mathbb{Q}[X]$ and $\partial g, \partial h < \partial f$. Then there exists a positive integer n, such that nf = g'h', where $g', h' \in \mathbb{Z}[X]$. Suppose that n is the smallest positive integer with this property. Let $g' = a_0 + a_1X + \dots + a_kX^k$ and $h' = b_0 + b_1X + \dots + b_\ell X^\ell$.
 - If n = 1, then g' = g, h' = h. This contradicts irreducibility of f over \mathbb{Z} .
 - Otherwise, let p be a prime factor of n. By the lemma, we may suppose, without loss of generality, that g' = pg", where g'' ∈ Z[X]. It follows that n/p f = g"h'. This contradicts the choice of n as the least positive integer with the property nf = g'h', for g', h' ∈ Z[X].

Example

- We show that $g = X^3 + 2X^2 + 4X 6$ is irreducible over \mathbb{Q} .
 - If the polynomial g factorizes over \mathbb{Q} , then it factorizes over \mathbb{Z} , and at least one of the factors must be linear:

$$g = X^{3} + 2X^{2} + 4X - 6 = (X - a)(X^{2} + bX + c).$$

Then ac = 6 So $a \in \{\pm 1, \pm 2, \pm 3, \pm 6\}$. If we substitute a for X in g, we must have g(a) = 0. However, the values of g(a) are as follows:

Hence, the assumed factorization is impossible. So g is irreducible over \mathbb{Q} .

Eisenstein's Criterion

Theorem (Eisenstein's Criterion)

Let $f(X) = a_0 + a_1 X + \dots + a_n X^n$ be a polynomial in $\mathbb{Z}[X]$. Suppose that there exists a prime number p, such that:

(i)
$$p \nmid a_n;$$

(ii) $p \mid a_i, i = 0, ..., n-1;$

(iii)
$$p^2 \nmid a_0$$
.

Then f is irreducible over \mathbb{Q} .

By Gauss's Lemma, it suffices to show that *f* is irreducible over ℤ.
 Suppose that *f* = *gh*, where

$$g = b_0 + b_1 X + \dots + b_r X^r,$$

$$h = c_0 + c_1 X + \dots + c_s X^s,$$

with r, s < n and r + s = n.

Eisenstein's Criterion (Cont'd)

Since a₀ = b₀c₀, it follows from (ii) that p | b₀ or p | c₀.
 Since p² ∤ a₀, the coefficients b₀ and c₀ cannot both be divisible by p.
 We assume, without loss of generality, that p | b₀, p ∤ c₀.
 Suppose inductively that p divides b₀, b₁,..., b_{k-1}, where 1 ≤ k ≤ r.

Then $a_k = b_0 c_k + b_1 c_{k-1} + \dots + b_{k-1} c_1 + b_k c_0$. Since *p* divides each of $a_k, b_0 c_k, b_1 c_{k-1}, \dots, b_{k-1} c_1, p | b_k c_0$. Hence, $p | b_k$.

We conclude that $p \mid b_r$.

```
So, since a_n = b_r c_s, we have that p \mid a_n.
```

This contradicts (i).

Hence f is irreducible.

Examples

- The polynomial $X^5 + 2X^3 + \frac{8}{7}X^2 \frac{4}{7}X + \frac{2}{7}$ is irreducible over \mathbb{Q} : $7X^5 + 14X^3 + 8X^2 - 4X + 2$ satisfies Eisenstein's criterion, with p = 2.
- We show that f(X) = 2X⁵-4X⁴+8X³+14X²+7 is irreducible over Q. The polynomial f does not satisfy the required conditions. Suppose we have a factorization f = gh, with (say) ∂g = 3 and ∂h = 2. Then

$$\begin{aligned} 7X^5 + 14X^3 + 8X^2 - 4X + 2 &= X^5 \left(2\frac{1}{X^5} - 4\frac{1}{X^4} + 8\frac{1}{X^3} + 14\frac{1}{X^2} + 7 \right) \\ &= X^5 f \left(\frac{1}{X} \right) \\ &= \left(X^3 g \left(\frac{1}{X} \right) \right) \left(X^2 h \left(\frac{1}{X} \right) \right). \end{aligned}$$

This is a factorization of $7X^5 + 14X^3 + 8X^2 - 4X + 2$. By the preceding example, we know that this cannot happen.

George Voutsadakis (LSSU)

Fields and Galois Theory

The Polynomial $f(X) = 1 + X + X^2 + \dots + X^{p-1}$

• We show that, if p > 2 is prime, then

$$f(X) = 1 + X + X^2 + \dots + X^{p-1}$$

is irreducible over Q.

Observe that $f(X) = \frac{X^{p}-1}{X-1}$. Define g(X) = f(X+1). Then

$$g(X) = \frac{1}{X}((X+1)^{p}-1) = \sum_{r=0}^{p-1} {p \choose r} X^{p-r-1}.$$

The coefficients $\binom{p}{1}, \binom{p}{2}, \dots, \binom{p}{p-1}$ are all divisible by p. Hence g is irreducible, by Eisenstein's Criterion. Suppose f = uv, with $\partial u, \partial v < \partial f$ and $\partial u + \partial v = \partial f$. Then g(X) = u(X+1)v(X+1). The factors u(X+1) and v(X+1) are polynomials in X, of the same degrees (respectively) as u and v. This contradicts the irreducibility of g.

George Voutsadakis (LSSU)

Reduction Modulo a Prime

- A method for determining irreducibility over Z (and so over Q) is to map the polynomial onto Z_p[X], for some suitably chosen prime p.
- Let $g = a_0 + a_1X + \dots + a_nX^n \in \mathbb{Z}[X]$, and let p be a prime, $p \nmid a_n$.
- Let \overline{a}_i be the residue class $a_i + \langle p \rangle$ in the field $\mathbb{Z}_p = \mathbb{Z}/\langle p \rangle$, i = 0, ..., n.
- Write the polynomial $\overline{a}_0 + \overline{a}_1 X + \dots + \overline{a}_n X^n$ as \overline{g} .
- Our choice of p ensures that $\partial \overline{g} = n$.
- Suppose that g = uv, with $\partial u, \partial v < \partial g$ and $\partial u + \partial v = \partial g$.
- Then $\overline{g} = \overline{uv}$.
- So, if g is irreducible in $\mathbb{Z}_p[X]$, then g is irreducible.
- The advantage of transferring the problem from Z[X] to Z_p[X] is that Z_p is finite, and the verification of irreducibility is a matter of checking a finite number of cases.

Illustration of the Reduction Technique

• We show that $g = 7X^4 + 10X^3 - 2X^2 + 4X - 5$ is irreducible over \mathbb{Q} . If we choose p = 3, then $\overline{g} = X^4 + X^3 + X^2 + X + 1$. The elements of \mathbb{Z} may be taken as 0.1 -1 with 1+1 - 1

The elements of \mathbb{Z}_3 may be taken as 0, 1, -1, with 1+1 = -1.

- \overline{g} has no linear factor: We have $\overline{g}(0) = 1$, $\overline{g}(1) = -1$ and $\overline{g}(-1) = 1$.
- There remains the possibility that (in $\mathbb{Z}_3[X]$) $X^4 + X^3 + X^2 + X + 1 = (X^2 + aX + b)(X^2 + cX + d)$. Equating coefficients gives a + c = 1, b + ac + d = 1, bd = 1, ad + bc = 1.
 - (i) If b = d = 1, then ac = −1. So (a, c) = (1, −1) or (a, c) = (−1, 1). In either case a + c = 0, a contradiction.
 - (ii) If b = d = -1, then ac = 0. If a = 0 then c = 1. So 1 = ad + bc = b, a contradiction. If c = 0, then a = 1. Then 1 = ad + bc = d, again a contradiction.

We have shown that \overline{g} is irreducible over \mathbb{Z}_3 .

It follows that g is irreducible over \mathbb{Q} .