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Integral Domains and Polynomials Euclidean Domains

Euclidean Domains

An integral domain D is called a Euclidean domain if there is a
mapping δ from D into the set N0 of non-negative integers with the
properties:

δ(0)= 0;
For all a in D and all b in D\{0}, there exist q,r in D, such that

a= qb+ r , δ(r)< δ(b).

It follows that δ−1{0} = {0}.

Suppose for some b 6= 0, δ(b)= 0.

Then it would not be possible to find r , such that δ(r)<δ(b).
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Example: The Integers

The most important example of a Euclidean domain is the ring Z.

δ(a) is defined as |a|.
The process, known as the division algorithm, is the familiar one of
dividing a by b and obtaining a quotient q and a remainder r .

If b is positive, then there exists q, such that

qb ≤ a< (q+1)b.

Thus 0≤ a−qb < b. Taking r = a−qb, we see that a= qb+ r and
|r | < |b|.
If b is negative, then there exists q, such that

(q+1)b< a≤ qb.

Thus, b < r = a−qb≤ 0. It follows again that a= qb+ r and |r | < |b|.
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Principal Ideal Domains

An integral domain D is called a principal ideal domain if all of its
ideals are principal.

Theorem

Every Euclidean domain is a principal ideal domain.

Let D be a Euclidean domain. The ideal {0} is certainly principal. Let
I be a non-zero ideal. Let b be a non-zero element of I , such that

δ(b)=min{δ(x) : x ∈ I \{0}}.

Let a ∈ I . There exist q,r , such that a= qb+ r and δ(r)<δ(b). But
r = a−qb ∈ I . By the minimality of δ(b), r = 0. Thus, a= qb.

So I =Db = 〈b〉 is a principal ideal.
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Greatest Common Divisors

Let a,b be non-zero members of a principal ideal domain D.

Let 〈a,b〉 = {sa+ tb : s ,t ∈D} be the ideal generated by a and b.

Since D is a principal ideal domain, there exists d in D, such that
〈a,b〉 = 〈d〉.

Since 〈a〉 ⊆ 〈d〉 and 〈b〉 ⊆ 〈d〉, we have d | a and d | b.
Since d ∈ 〈a,b〉, there exist s ,t in D, such that d = sa+ tb.
If d ′ | a and d ′ | b, then d ′ | sa+ tb, i.e., d ′ | d .

We say that d is a greatest common divisor, or a highest common

factor, of a and b.

If 〈a,b〉 = 〈d〉 = 〈d∗〉, then that d∗ ∼ d .
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Greatest Common Divisors (Cont’d)

Let a,b be non-zero members of a principal ideal domain D.

Summarizing, d is the greatest common divisor of a and b, written

d = gcd(a,b),

if it has the following properties:

(GCD1) d | a and d | b;
(GCD2) if d ′ | a and d ′ | b, then d ′ | d .

If gcd(a,b)∼ 1, we call a and b coprime, or relatively prime.
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Examples of Greatest Common Divisor

In the case of the domain Z, where the group of units is {1,−1}, we
have, e.g., that

〈12,18〉 = 〈6〉 = 〈−6〉.

A simple modification of the argument enables us to conclude that, in
a principal ideal domain D, every finite set {a1,a2, . . . ,an} has a
greatest common divisor.
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The Euclidean Algorithm (Dividing)

Let a and b be non-zero elements of a Euclidean domain D.

Suppose, without loss of generality, that δ(b)≤ δ(a).

Then there exist q1,q2, . . . and r1,r2, . . ., such that:

a= q1b+ r1, δ(r1)< δ(b),

b = q2r1+ r2, δ(r2)< δ(r1),

r1 = q3r2+ r3, δ(r3)< δ(r2),

r2 = q4r3+ r4, δ(r4)< δ(r3),

...

The process must end with some rk = 0.

The final equations are:

rk−3 = qk−1rk−2+ rk−1, δ(rk−1)< δ(rk−2),

rk−2 = qkrk−1.
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The Euclidean Algorithm (Finding the GCD)

From a= q1b+ r1, we deduce that 〈a,b〉 = 〈b,r1〉.
Every element sa+ tb in 〈a,b〉 can be rewritten as

sa+ tb= s(q1b+ r1)+ tb = (t + sq1)b+ sr1 ∈ 〈b,r1〉.

Every element xb+yr1 in 〈b,r1〉 can be rewritten as

xb+yr1 = xb+y(a−q1b)= ya+ (x −yq1)b ∈ 〈a,b〉.

Similarly, the subsequent equations give

〈b,r1〉 = 〈r1,r2〉,〈r1,r2〉 = 〈r2,r3〉, . . . ,

〈rk−3,rk−2〉 = 〈rk−2,rk−1〉,〈rk−2,rk−1〉 = 〈rk−1〉.

We conclude that 〈a,b〉 = 〈rk−1〉.
So rk−1 is the (essentially unique) greatest common divisor of a and b.
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Example

We determine the greatest common divisor of 615 and 345, and
express it in the form 615x +345y .

615 = 1×345+270
345 = 1×270+75
270 = 3×75+45
75 = 1×45+30
45 = 1×30+15
30 = 2×15+0.

The greatest common divisor is 15, the last non-zero remainder.

Moreover,

15 = 45−30= 45− (75−45)= 2×45−75
= 2× (270−3×75)−75 = 2×270−7×75
= 2×270−7× (345−270) = 9×270−7×345
= 9× (615−345)−7×345 = 9×615−16×345.
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Example of Coprime Elements

Two elements a and b of a principal ideal domain D are coprime if
their greatest common divisor is 1.
This happens if and only if there exist s and t in D, such that
sa+ tb = 1.

For example, 75 and 64 are coprime:

75 = 1×64+11
64 = 5×11+9
11 = 1×9+2
9 = 4×2+1
2 = 2×1+0.

Therefore,

1 = 9−4×2= 9−4(11−9)= 5×9−4×11
= 5(64−5×11)−4×11 = 5×64−29×11
= 5×64−29(75−64) = 34×64−29×75.
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Subsection 2

Unique Factorization
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Irreducibles in Principal Ideal Domains

Let D be an integral domain with group U of units, and let p ∈D be
such that p 6= 0,p 6∈U .

Then p is said to be irreducible if it has no proper factors.

Theorem

Let p be an element of a principal ideal domain D. Then the following
statements are equivalent:

(i) p is irreducible;

(ii) 〈p〉 is a maximal proper ideal of D;

(iii) D/〈p〉 is a field.

(i)⇒(ii): Suppose that p is irreducible. Then p is not a unit, and so
〈p〉 is a proper ideal of D. Suppose, for a contradiction, that there is a
(principal) ideal 〈q〉, such that 〈p〉 ⊂ 〈q〉 ⊂D. Then p ∈ 〈q〉. So p = aq,
for some non-unit a. This contradicts the irreducibility of p.
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Irreducibles in Principal Ideal Domains (Cont’d)

(ii)⇒(iii): Let a+〈p〉 be a non-zero element of D/〈p〉. Then a 6∈ 〈p〉.
So the ideal 〈a〉+〈p〉 properly contains 〈p〉. Since 〈p〉 is maximal,
〈a〉+〈p〉= {sa+ tp : s ,t ∈D}=D. Hence, there exist s ,t in D such that
sa+ tp = 1. Therefore, sa−1= tp ∈ 〈p〉. That is,

(s +〈p〉)(a+〈p〉)= 1+〈p〉.

Thus, D/〈p〉 is a field.

(iii)⇒(i): If p is not irreducible, then there exist non-units q and r ,
such that p = qr . Then q+〈p〉 and r +〈p〉 are both non-zero elements
of D/〈p〉. On the other hand,

(q+〈p〉)(r +〈p〉)= p+〈p〉 = 0+〈p〉.

Thus, D/〈p〉 has divisors of zero. So it is not a field.
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Unique Factorization Domains

An element d of an integral domain D has a factorization into

irreducible elements if there exist irreducible elements p1,p2, . . . ,pk ,
such that

d = p1p2 · · ·pk .

The factorization is essentially unique if, for irreducible elements
p1,p2, . . . ,pk and q1,q2, . . . ,qℓ,

d = p1p2 · · ·pk = q1q2 · · ·qℓ

implies that k = ℓ and, for some permutation
σ : {1,2, . . . ,k} → {1,2, . . . ,k},

pi ∼ qσ(i), i = 1,2, . . . ,k .

An integral domain D is said to be a factorial domain, or a unique

factorization domain, if every non-unit a 6= 0 of D has an essentially
unique factorization into irreducible elements.
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Example of a Unique Factorization Domain

Z, in which the (positive and negative) prime numbers are the
irreducible elements, provides a familiar example of a unique
factorization domain.

For example
60= 2 ·2 ·3 ·5.

The factorization is essentially unique, for nothing more different than
(say) (−2) · (−5) ·3 ·2 is possible.

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 18 / 61



Integral Domains and Polynomials Unique Factorization

Chains of Ideals in Principal Ideal Domains

Lemma

In a principal ideal domain there are no infinite ascending chains of ideals.

In any integral domain D, an ascending chain I1 ⊆ I2 ⊆3⊆ ·· · of ideals
has the property that I =⋃

j≥1 Ij is an ideal.

Let a,b ∈ I . There exist k ,ℓ, such that a ∈ Ik ,b ∈ Iℓ. So
a−b ∈ Imax{k ,ℓ} ⊆ I .
Let a ∈ I and s ∈D. Then a ∈ Ik , for some k . So sa ∈ Ik ⊆ I .

Let D be a principal ideal domain, and 〈a1〉 ⊆ 〈a2〉 ⊆ 〈a3〉 ⊆ · · · be an
ascending chain of (principal) ideals. We know that the union of all
the ideals in this chain must be an ideal. By our assumption, this
must be a principal ideal 〈a〉. Since a ∈⋃

j≥1〈aj〉, a ∈ 〈ak〉, for some k .
Thus, 〈a〉 ⊆ 〈ak〉. But we also have 〈ak〉 ⊆ 〈a〉. Hence, 〈a〉 = 〈ak〉. So
〈ak〉 = 〈ak+1〉 = 〈ak+2〉 = · · · = 〈a〉. Thus, the infinite chain of inclusions
terminates at 〈ak〉.
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Irreducible Elements and Divisilbility

Lemma

Let D be a principal ideal domain, let p be an irreducible element in D,
and let a,b ∈D. If p | ab, then p | a or p | b.

Suppose that p | ab and p ∤ a. Then the greatest common divisor of a
and p must be 1. So there exist s ,t in D, such that sa+ tp = 1.
Hence, sab+ tpb = b. But p clearly divides sab+ tpb. Therefore, p | b.

It is a routine matter to extend this result to products of more than
two elements.

Corollary

Let D be a principal ideal domain, let p be an irreducible element in D, and
let a1,a2, . . . ,am ∈D. If p | a1a2 · · ·am, then p | a1 or p | a2 or · · · or p | am.
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Factoriality of Principal Ideal Domains

Theorem

Every principal ideal domain is factorial.

We show, first, that any a 6= 0 in D can be expressed as a product of
irreducible elements. Let a be a non-unit in D. Then either a is
irreducible, or it has a proper divisor a1. Similarly, either a1 is
irreducible, or a1 has a proper divisor a2. Continuing, we obtain a
sequence a= a0,a1,a2, . . . in which, for i = 1,2, . . ., ai is a proper divisor
of ai−1. The sequence must terminate at some ak ; Otherwise the
infinite ascending sequence 〈a〉 ⊂ 〈a1〉 ⊂ 〈a2〉 ⊂ · · · would contradict the
lemma.

Hence a has a proper irreducible divisor ak = z1, and a= z1b1.
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Factoriality of Principal Ideal Domains (Cont’d)

We found a proper irreducible divisor ak = z1 of a, yielding the
expression a= z1b1.

If b1 is irreducible, then the proof is complete.

Otherwise we can repeat the argument we used for a to find a proper
irreducible divisor z2 of b1, and a= z1z2b2.

We continue this process.

It too must terminate; Otherwise the infinite ascending sequence
〈a〉 ⊂ 〈b1〉 ⊂ 〈b2〉 ⊂ · · · would again contradict the lemma.

Hence, some bℓ must be irreducible.

So a= z1z2 · · ·zℓ−1bℓ is a product of irreducible elements.
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Uniqueness of the Factorization

Suppose that p1p2 · · ·pk ∼ q1q2 · · ·qℓ, where p1,p2, . . . ,pk and
q1,q2, . . . ,qℓ are irreducible.

Suppose first that k = 1. Since q1q2 · · ·qℓ is irreducible, ℓ= 1. So
p1 ∼ q1.
Suppose inductively that, for all n≥ 2 and all k < n, any statement of
the form p1p2 · · ·pk ∼ q1q2 · · ·qℓ implies that k = ℓ and that, for some
permutation σ of {1,2, . . . ,k}, qi ∼ pσ(i), i = 1,2, . . . ,k .
Let k = n. Since p1 | q1q2 · · ·qℓ, by the corollary p1 | qj , for some j in
{1,2, . . . ,ℓ}. Since qj is irreducible and p1 is not a unit, p1 ∼ qj . By
cancelation, p2p3 · · ·pn ∼ q1 · · ·qj−1qj+1 · · ·qℓ. By the induction
hypothesis, n−1= ℓ−1 and, for i ∈ {1,2, . . . ,n}\{j }, qi ∼ pσ(i), for some
permutation σ of {2,3, . . . ,n}. Hence, extending σ to a permutation σ

of {1,2, . . . ,n} by defining σ(1)= j , we obtain the desired result.

Corollary

Every Euclidean domain is factorial.
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Subsection 3

Polynomials
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Polynomials

In the following, R is an integral domain and K is a field.

A polynomial f with coefficients in R is a sequence (a0,a1, . . .),
where ai ∈R , for all i ≥ 0, and where only finitely many of {a0,a1, . . .}

are non-zero.

If the last non-zero element in the sequence is an, we say that f has
degree n, and write ∂f = n.

The entry an is called the leading coefficient of f .

If an = 1 we say that the polynomial is monic.
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More on Polynomials

In the case where all of the coefficients are 0, it is convenient to
ascribe the formal degree of −∞ to the polynomial (0,0,0, . . .).

We also make the conventions, for every n in Z,

−∞< n, −∞+ (−∞)=−∞, −∞+n =−∞.

Polynomials (a,0,0, . . .) of degree 0 or −∞ are called constant.

For other polynomials of small degree we have names as follows:

∂f 1 2 3 4 5 6

name linear quadratic cubic quartic quintic sextic
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Addition and Multiplication of Polynomials

Addition of polynomials is defined as follows:

(a0,a1, . . .)+ (b0,b1, . . .)= (a0+b0,a1+b1, . . .).

Multiplication is defined by

(a0,a1, . . .)(b0,b1, . . .)= (c0,c1, . . .),

where, for k = 0,1,2, . . .,

ck =
∑

{(i ,j):i+j=k}

aibj .

Thus,

c0 = a0b0, c1 = a0b1+a1b0, c2 = a0b2+a1b1+a2b0, . . . .
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Structure of the Set P of Polynomials

With respect to these two operations, the set P of all polynomials
with coefficients in R becomes a commutative ring with unity.
Most of the ring axioms are easily verified.

The zero element is (0,0,0, . . .);
The unity element is (1,0,0, . . .);
The negative of (a0,a1, . . .) is (−a0,−a1, . . .).

For associativity of multiplication: Let p = (a0,a1, . . .), q = (b0,b1, . . .),
r = (c0,c1, . . .) be polynomials. Then (pq)r = (d0,d1, . . .), where, for
m= 0,1,2, . . .,

dm =
∑

{(k ,ℓ):k+ℓ=m}

(
∑

{(i ,j):i+j=k}

aibj

)

cℓ =
∑

{(i ,j ,ℓ):i+j+ℓ=m}

aibjcℓ

=
∑

{(i ,n):i+n=m}

ai

(
∑

{(j ,ℓ):j+ℓ=n}

bjcℓ

)

.

The latter is the m-th entry of p(qr). So multiplication is associative.
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Identifying R in P

There is a monomorphism θ :R →P given by

θ(a)= (a,0,0, . . .), for all a ∈R .

Thus, we may identify

θ(a)= (a,0,0, . . .)

with the element a of R .

In this way we view R as a subring of P .

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 29 / 61



Integral Domains and Polynomials Polynomials

The Indeterminate Form

Let X be the polynomial (0,1,0,0, . . .).
Then the multiplication rule gives:

X 2 = (0,0,1,0, . . .);
X 3 = (0,0,0,1,0, . . .);
In general,

X n = (x0,x1, . . .), where xm =
{

1, if m= n

0, otherwise

Now we get

(a0,a1, . . . ,an,0, . . .)
= (a0,0, . . . ,0,0, . . .)+ (0,a1,0, . . . ,0,0, . . .)+·· ·+ (0,0,0, . . . ,an,0, . . .)
= (a0,0, . . . ,0,0,0, . . .)+ (a1,0,0, . . . ,0,0,0, . . .)(0,1,0, . . . ,0,0,0, . . .)+·· ·
+ (an,0,0, . . . ,0,0,0, . . .)(0,0,0, . . . ,1,0,0, . . .)

= θ(a0)+θ(a1)X +·· ·+θ(an)X
n.

Identifying θ(ai ) with ai , we get a0+a1X +a2X
2+·· ·+anX

n.
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Polynomial Ring of R

Despite the expression of a polynomial in terms of X := (0,1,0,0, . . .)
(regarded as an “indeterminate”) it is important to note that:

We are talking of polynomial forms, wholly determined by the
coefficients ai in R ;
X is not a member of R but only a notation for the tuple (0,1,0, . . .) of
the ring P of polynomials with coefficients in R .

We sometimes write f = f (X ) and say that it is a polynomial over R

in the indeterminate X .

The ring P of all such polynomials is written R [X ].

We refer to R [X ] simply as the polynomial ring of R .

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 31 / 61



Integral Domains and Polynomials Polynomials

Properties of Polynomials

Theorem

Let D be an integral domain, and let D[X ] be the polynomial ring of D.
Then:

(i) D[X ] is an integral domain.

(ii) If p,q ∈D[X ], then ∂(p+q)≤max {∂p,∂q}.

(iii) For all p,q in D[X ], ∂(pq)= ∂p+∂q.

(iv) The group of units of D[X ] coincides with the group of units of D.

(i) We have already noted that D[X ] is a commutative ring with unity.

We show that D[X ] has no divisors of 0.

Suppose that p and q are non-zero polynomials with leading terms am,
bn, respectively. The product of p and q has leading term ambn. By
hypothesis, D has no zero divisors. So the coefficient ambn is
non-zero. This ensures that pq 6= 0.
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Properties of Polynomials

(ii) Let p and q be non-zero. Let ∂p =m, ∂q = n, and suppose, without
loss of generality, that m≥ n.

If m> n, then it is clear that the leading term of p+q is am. So
∂(p+q)=max{∂p,∂q}.
If m= n, then we may have am+bm = 0. So all we can say is that
∂(p+q)≤max{∂p,∂q}.

The conventions regarding −∞ ensure that this result holds also if one
or both of p,q are equal to 0.

(iii) By the argument in Part (i), if p and q are non-zero, then
∂(pq)=m+n= ∂p+∂q. If one or both of p and q are zero, then the
result holds by the conventions on −∞.

(iv) Let p,q ∈D[X ], and suppose that pq = 1. From Part (iii), ∂p = ∂q = 0.
Thus p,q ∈D, and pq = 1 if and only if p and q are in the group of
units of D.
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Polynomial in Several Variables

Since the ring of polynomials over the integral domain D is itself an
integral domain, we can repeat the preceding process.

So we may form the ring of polynomials with coefficients in D[X ].

We need to use a different letter for a new indeterminate, and the new
integral domain is (D[X ])[Y ], denoted by D[X ,Y ].

It consists of polynomials in X and Y with coefficients in D.

By repeating, we obtain the integral domain D[X1,X2, . . . ,Xn].
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Rational Forms

The field of fractions of D[X ] consists of rational forms

a0+a1X +·· ·+amX
m

b0+b1X +·· ·+bnX n
,

where the denominator is not the zero polynomial.

The field is denoted by D(X ) (with parenthesis instead of brackets).

In a similar way one arrives at the field D(X1,X2, . . . ,Xn) of rational
forms in the n indeterminates X1,X2, . . . ,Xn, with coefficients in D.
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Extension of an Isomorphism ϕ :D →D ′

Theorem

Let D ,D ′ be integral domains, and let ϕ :D →D ′ be an isomorphism.
Then the mapping ϕ̂ :D[X ]→D ′[X ] defined by

ϕ̂(a0+a1X +·· ·+anX
n)=ϕ(a0)+ϕ(a1)X +·· ·+ϕ(an)X

n

is an isomorphism.

The isomorphism ϕ̂ is called the canonical extension of ϕ.

A further extension ϕ∗ :D(X )→D ′(X ) is defined by

ϕ∗
(
f

g

)
=

ϕ̂(f )

ϕ̂(g)
,

f

g
∈D(X ).
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On the Case of Coefficients in a Field

Suppose that the ring R of coefficients is actually a field K .

The group of units of K [X ] is the group of units of K .

That is, it the group K∗ of non-zero elements of the field K .

As usual, we write

f ∼ g iff f = ag , for some a in K∗
.
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The Euclidean Process in K [X ]

Theorem (Euclidean Algorithm in K [X ])

Let K be a field, and let f ,g be elements of the polynomial ring K [X ],
with g 6= 0. Then there exist unique elements q,r in K [X ], such that
f = qg + r and ∂r < ∂g .

If f = 0 the result is trivial, since f = 0g +0.
So suppose that f 6= 0. The proof is by induction on ∂f .

First, suppose that ∂f = 0, so that f ∈K∗. If ∂g = 0 also, let q = f
g and

r = 0; otherwise, let q = 0 and r = f .
Suppose now that ∂f = n, and suppose also that the theorem holds for
all polynomials f of all degrees up to n−1.

If ∂g > ∂f , let q = 0 and r = f .
Assume ∂g ≤ ∂f . Let anX

n,bmXm, be the leading terms of f ,g , where

m≤ n. Then the polynomial h= f −
(
an
bm

Xn−m
)
g has degree ≤ n−1. So

there exist q1,r , such that h= q1g + r , with ∂r < ∂g . It follows that

f = h+
(
an
bm

Xn−m
)
g = (q1g + r)+

(
an
bm

Xn−m
)
g =

(
q1+

an
bm

Xn−m
)
g + r .
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The Euclidean Process in K [X ] (Uniqueness)

To prove uniqueness, suppose that

f = qg + r = q′g + r ′, with ∂r ,∂r ′ < ∂g .

Then
r − r ′ = (q′−q)g .

So
∂((q′−q)g)= ∂(r − r ′)< ∂g .

By a previous theorem, this cannot happen unless q′−q = 0.

Hence q = q′. Consequently, r = r ′ also.
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Example of Polynomial Division

Let f =X 4−X and g =X 2+3X +2.

We have

X 2 −3X +7

X 2+3X +2 | X 4 −X
X 4 +3X 3 +2x2

−3X 3 −2X 2 −X

−3X 3 −9x2 −6X
7X 2 +5X
7X 2 +21X +14

−16X −14

Thus, X 4−X = (X 2−3X +7)
︸ ︷︷ ︸

q

(X 2+3X +2)
︸ ︷︷ ︸

g

−(16X +14)
︸ ︷︷ ︸

r

.
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Properties of K [X ] for a Field K

Theorem

If K is a field, then K [X ] is a Euclidean domain.

If, for all f in K [X ], we define δ(f ) as 2∂f , with the convention that
2−∞ = 0, we have the right properties.

We summarize the important properties of K [X ].

Theorem

Let K be a field. Then:

(i) Every pair (f ,g) of polynomials in K [X ] has a greatest common divisor d ,
which can be expressed as af +bg , with a,b in K [X ];

(ii) K [X ] is a principal ideal domain;

(iii) K [X ] is a factorial domain;

(iv) If f ∈K [X ], then K [X ]/〈f 〉 is a field if and only if f is irreducible.
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Example

Consider the polynomials X 2+X +1 and X 3+2X −4 in Q[X ].

Then one may calculate that

X 3+2X −4 = (X −1)(X 2 +X +1)+2X −3
X 2+X +1 = (1

2
X + 5

4
)(2X −3)+ 19

4
.

So the greatest common divisor is 19
4

.

But the group of units of Q[X ] is Q∗ =Q\{0}. So 19
4
∼ 1.

The two given polynomials are coprime.

19
4

= (X 2+X +1)− (1
2
X + 5

4
)(2X −3)

= (X 2+X +1)− (1
2
X + 5

4
)[(X 3 +2X −4)− (X −1)(X 2 +X +1)]

= [1+ (1
2
X + 5

4
)(X −1)](X 2+X +1)− (1

2
X + 5

4
)(X 3+2X −4)

= (1
2
X 2+ 3

4
X − 1

4
)(X 2+X +1)− (1

2
X + 5

4
)(X 3+2X −4).
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Isomorphism R[X ]/〈X 2+1〉 ∼=C

Since X 2+1 is irreducible in R[X ], K =R[X ]/〈X 2+1〉 is a field.

The elements of K are the residue classes a+bX +〈X 2+1〉, a,b ∈R.

Addition is defined by the rule

(a+bX +〈X 2+1〉)+ (c +dX +〈X 2+1〉)= (a+c)+ (b+d)X +〈X 2+1〉.

Multiplication is given by

(a+bX +〈X 2+1〉)(c +dX +〈X 2+1〉)
= ac + (ad +bc)X +bdX 2+〈X 2+1〉
= (ac −bd)+ (ad +bc)X +bd(X 2+1)+〈X 2+1〉
= (ac −bd)+ (ad +bc)X +〈X 2+1〉.

These mimic the rules for adding and multiplying complex numbers.

The map ϕ :R[X ]/〈X 2+1〉→C, given by

ϕ(a+bX +〈X 2+1〉)= a+bi , a,b ∈R,

is in fact an isomorphism.
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Evaluation Homomorphisms

Let D be an integral domain and let α ∈D.

The homomorphism σα from D[X ] into D is defined by

σα(a0+a1X +·· ·+anX
n)= a0+a1α+ ·· ·+anα

n
.

This is indeed a homomorphism. Let f (X )= a0+a1X +·· ·+anX
n,

g(X )= b0+b1X +·· ·+bmX
m. We have, e.g.,

σα(f ·g) = σα

(∑n+m
k=0

(
∑

i+j=k aibj)X
k
)

=
∑n+m

k=0
(
∑

i+j=k aibj)α
k

= (a0+a1α+·· ·+anα
n)(b0+b1α+·· ·+bmαm)

= σα(f )σα(g).

We usually write f (α) instead of σα(f ).

If f (α)= 0, we say that α is a root, or a zero, of the polynomial f .
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The Remainder Theorem

Theorem (The Remainder Theorem)

Let K be a field, let β ∈K and let f be a non-zero polynomial in K [X ].
Then the remainder upon dividing f by X −β is f (β). In particular, β is a
root of f if and only if (X −β) | f .

By the division algorithm, there exist q,r in K [X ], such that

f = (X −β)q+ r , ∂r < ∂(X −β)= 1.

Thus r is a constant.

Substituting β for X , we see that f (β)= r .

In particular, f (β)= 0 if and only if r = 0 if and only if (X −β) | f .
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Subsection 4

Irreducible Polynomials
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Embedding of K Into K [X ]/〈g(X )〉

Theorem

Let K be a field, and let g(X ) be an irreducible polynomial in K [X ]. Then
K [X ]/〈g(X )〉 is a field containing K up to isomorphism.

We know that K [X ]/〈g(X )〉 is a field. The map
ϕ :K →K [X ]/〈g(X )〉, given by

ϕ(a)= a+〈g(X )〉, a ∈K ,

is easily seen to be a homomorphism. It is even a monomorphism,
since

a+〈g(X )〉 = b+〈g(X )〉 iff a−b ∈ 〈g(X )〉
iff a= b.
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Irreducible Polynomials and Field Extensions

This shows we have a highly effective method of constructing new
fields provided we have a way of identifying irreducible polynomials.

Certainly every linear polynomial is irreducible.

If the field of coefficients is the complex field C, by the Fundamental
Theorem of Algebra, every polynomial in C[X ] factorizes, essentially
uniquely, into linear factors.

Linear polynomials are of little interest as related to the preceding
theorem, for K [X ]/〈g(X )〉 coincides with ϕ(K ) in this case, and so is
isomorphic to K .

Suppose g(X )=X −a. Let f (X ) in K [X ] be arbitrary. By the
Euclidean Property of K [X ], we have that f (X )= q(X −a)+ f (a).

So f (X )+〈g〉 = f (a)+〈g〉 ∈ϕ(K ).
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Irreducible Elements in R[X ]

Theorem

The irreducible elements of the polynomial ring R[X ] are either linear or
quadratic. Every polynomial g(X )= anX

n+an−1X
n−1+·· ·+a1X +a0 in

R[X ] has a unique factorization

an(X −β1) · · ·(X −βr )(X
2+λ1X +µ1) · · ·(X 2+λsX +µs),

in R[X ], where an ∈R, r ,s ≥ 0 and r +2s = n.

If γ ∈C\R is a root, then anγ
n+an−1γ

n−1+·· ·+a1γ+a0 = 0. Hence,
the complex conjugate of the left-hand side is zero also. Since the
coefficients a0,a1, . . . ,an are real,

anγ
n+an−1γ

n−1+ ·· ·+a1γ+a0 = 0.

Thus, the non-real roots of the polynomial occur in conjugate pairs.
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Irreducible Elements in R[X ] (Cont’d)

Thus, we obtain a factorization

g(X )= an(X −β1) · · ·(X −βr )(X −γ1)(X −γ1) · · ·(X −γs)(X −γs),

in C[X ], where β1, . . . ,βr ∈R, γ1, . . . ,γs ∈C\R, r ,s ≥ 0 and r +2s = n.

This gives rise to a factorization

an(X −β1) · · ·(X −βr )(X
2−(γ+γ1)X +γ1γ1) · · ·(X

2−(γs+γs)X +γsγs)

in R[X ]. In this factorization the quadratic factors must be irreducible
in R[X ]. If they had real linear factors, they would have two distinct
factorizations in C[X ], which cannot happen.

We know that a quadratic polynomial aX 2+bX +c in R[X ] is
irreducible if and only if the discriminant b2−4ac < 0.
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Quadratic Polynomials in Q[X ]

In Q[X ], the situation is not so easy, because there are irreducible
polynomials of arbitrarily large degree.

Theorem

Let g(X )=X 2+a1X +a0 be a polynomial with coefficients in Q. Then:

(i) If g(X ) is irreducible over R, then it is irreducible over Q;

(ii) If g(X )= (X −β1)(X −β2), with β1,β2 ∈R, then g(X ) is irreducible in Q[X ]
if and only if β1 and β2 are irrational.

(i) Let g(X ) be irreducible over R. Suppose g(X )= (X −q1)(X −q2)
were a factorization in Q[X ]. This would also be a factorization in
R[X ], a contradiction.

(ii) If β1, β2 were rational we would have a factorization in Q[X ], and
g(X ) would not be irreducible. Suppose β1,β2 are irrational. Then
(X −β1)(X −β2) is the only factorization in R[X ]. So a factorization
in Q[X ] into linear factors is not possible.
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Example

We examine the following polynomials for irreducibility in R[X ] and
Q[X ]:

X 2+X +1, X 2+X −1, X 2+X −2.

The first polynomial is irreducible over R, since the discriminant is −3.
It follows that it is irreducible over Q.

The second polynomial factorizes over R as (X −β1)(X −β2), where

β1 =
−1+

p
5

2
, β2 =

−1−
p

5

2
.

It is irreducible over Q.

The third polynomial factorizes over Q as (X −1)(X +2).

So it is not irreducible.
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The Prime Factor Divisibility Lemma

Lemma

Suppose that n ∈Z is positive and f ,g ′,h′ ∈Z[X ], such that nf = g ′h′. If p
is a prime factor of n, then either p divides all the coefficients of g ′, or p
divides all the coefficients of h′.

Suppose, for a contradiction, that p does not divide all the coefficients
of g ′ = a0+a1X +·· ·+akX

k , and that p does not divide all the
coefficients of h′ = b0+b1X +·· ·+bℓX

ℓ. Suppose that p divides
a0, . . . ,ai−1, but p ∤ ai , and that p divides b0, . . . ,bj−1, but p ∤ bj . The
coefficient of X i+j in nf is a0bi+j +·· ·+aibj +·· ·+ai+jb0. In this sum,
all the terms preceding aibj are divisible by p, since p divides
a0, . . . ,aj−1; and all the terms following aibj are divisible by p, since p

divides b0, . . . ,bj−1. Hence, only the term aibj is not divisible by p, and
it follows that the coefficient of X i+j in nf is not divisible by p. This
gives a contradiction, since the coefficient of f are integers, and so
certainly all the coefficients of nf are divisible by p.
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Gauss’s Lemma

Theorem (Gauss’s Lemma)

Let f be a polynomial in Z[X ], irreducible over Z. Then f , considered as a
polynomial in Q[X ], is irreducible over Q.

Suppose, for a contradiction, that f = gh, with g ,h ∈Q[X ] and
∂g ,∂h< ∂f . Then there exists a positive integer n, such that
nf = g ′h′, where g ′,h′ ∈Z[X ]. Suppose that n is the smallest positive
integer with this property. Let g ′ = a0+a1X +·· ·+akX

k and
h′ = b0+b1X +·· ·+bℓX

ℓ.

If n= 1, then g ′ = g ,h′ = h. This contradicts irreducibility of f over Z.
Otherwise, let p be a prime factor of n. By the lemma, we may
suppose, without loss of generality, that g ′ = pg ′′, where g ′′ ∈Z[X ].
It follows that n

p f = g ′′h′. This contradicts the choice of n as the least

positive integer with the property nf = g ′h′, for g ′,h′ ∈Z[X ].
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Example

We show that g =X 3+2X 2+4X −6 is irreducible over Q.

If the polynomial g factorizes over Q, then it factorizes over Z, and at
least one of the factors must be linear:

g =X 3+2X 2+4X −6= (X −a)(X 2+bX +c).

Then ac = 6 So a ∈ {±1, ±2, ±3, ±6}. If we substitute a for X in g , we
must have g(a)= 0. However, the values of g(a) are as follows:

a 1 −1 2 −2 3 −3 6 −6

g(a) 1 −9 14 −10 51 −27 306 −174

Hence, the assumed factorization is impossible.

So g is irreducible over Q.
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Eisenstein’s Criterion

Theorem (Eisenstein’s Criterion)

Let f (X )= a0+a1X +·· ·+anX
n be a polynomial in Z[X ]. Suppose that

there exists a prime number p, such that:

(i) p ∤ an;

(ii) p | ai , i = 0, . . . ,n−1;

(iii) p2 ∤ a0.

Then f is irreducible over Q.

By Gauss’s Lemma, it suffices to show that f is irreducible over Z.
Suppose that f = gh, where

g = b0+b1X +·· ·+brX
r ,

h = c0+c1X +·· ·+csX
s ,

with r ,s < n and r + s = n.
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Eisenstein’s Criterion (Cont’d)

Since a0 = b0c0, it follows from (ii) that p | b0 or p | c0.
Since p2 ∤ a0, the coefficients b0 and c0 cannot both be divisible by p.

We assume, without loss of generality, that p | b0, p ∤ c0.

Suppose inductively that p divides b0,b1, . . . ,bk−1, where 1≤ k ≤ r .

Then ak = b0ck +b1ck−1+ ·· ·+bk−1c1+bkc0.
Since p divides each of ak ,b0ck ,b1ck−1, . . . ,bk−1c1, p | bkc0.
Hence, p | bk .

We conclude that p | br .
So, since an = brcs , we have that p | an.
This contradicts (i).

Hence f is irreducible.
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Examples

The polynomial X 5+2X 3+ 8
7
X 2− 4

7
X + 2

7
is irreducible over Q:

7X 5+14X 3+8X 2−4X +2 satisfies Eisenstein’s criterion, with p = 2.

We show that f (X )= 2X 5−4X 4+8X 3+14X 2+7 is irreducible over Q.

The polynomial f does not satisfy the required conditions.

Suppose we have a factorization f = gh, with (say) ∂g = 3 and ∂h = 2.

Then

7X 5+14X 3+8X 2−4X +2 = X 5
(
2 1
X 5 −4 1

X 4 +8 1
X 3 +14 1

X 2 +7
)

= X 5f
(

1
X

)

=
(
X 3g

(
1
X

))(
X 2h

(
1
X

))
.

This is a factorization of 7X 5+14X 3+8X 2−4X +2.

By the preceding example, we know that this cannot happen.
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The Polynomial f (X )= 1+X +X 2+·· ·+X p−1

We show that, if p > 2 is prime, then

f (X )= 1+X +X 2+·· ·+X p−1

is irreducible over Q.

Observe that f (X )= X p−1
X−1

. Define g(X )= f (X +1). Then

g(X )=
1

X
((X +1)p −1)=

p−1∑

r=0

(
p

r

)

X p−r−1
.

The coefficients
(p
1

)
,
(p
2

)
, . . . ,

( p
p−1

)
are all divisible by p.

Hence g is irreducible, by Eisenstein’s Criterion.

Suppose f = uv , with ∂u,∂v < ∂f and ∂u+∂v = ∂f .

Then g(X )= u(X +1)v(X +1). The factors u(X +1) and v(X +1) are
polynomials in X , of the same degrees (respectively) as u and v .

This contradicts the irreducibility of g .
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Reduction Modulo a Prime

A method for determining irreducibility over Z (and so over Q) is to
map the polynomial onto Zp[X ], for some suitably chosen prime p.

Let g = a0+a1X +·· ·+anX
n ∈Z[X ], and let p be a prime, p ∤ an.

Let ai be the residue class ai +〈p〉 in the field Zp =Z/〈p〉, i = 0, . . . ,n.

Write the polynomial a0+a1X +·· ·+anX
n as g .

Our choice of p ensures that ∂g = n.

Suppose that g = uv , with ∂u,∂v < ∂g and ∂u+∂v = ∂g .

Then g = uv .

So, if g is irreducible in Zp[X ], then g is irreducible.

The advantage of transferring the problem from Z[X ] to Zp[X ] is that
Zp is finite, and the verification of irreducibility is a matter of
checking a finite number of cases.
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Illustration of the Reduction Technique

We show that g = 7X 4+10X 3−2X 2+4X −5 is irreducible over Q.

If we choose p = 3, then g =X 4+X 3+X 2+X +1.

The elements of Z3 may be taken as 0,1,−1, with 1+1=−1.

g has no linear factor: We have g(0)= 1, g(1)=−1 and g(−1)= 1.
There remains the possibility that (in Z3[X ])
X 4+X 3+X 2+X +1= (X 2+aX +b)(X 2 +cX +d).
Equating coefficients gives a+c = 1, b+ac+d = 1, bd = 1, ad +bc = 1.

(i) If b = d = 1, then ac =−1. So (a,c)= (1,−1) or (a,c)= (−1,1). In either
case a+c = 0, a contradiction.

(ii) If b = d =−1, then ac = 0.
If a= 0 then c = 1. So 1= ad +bc = b, a contradiction.
If c = 0, then a= 1. Then 1= ad +bc = d , again a contradiction.

We have shown that g is irreducible over Z3.

It follows that g is irreducible over Q.
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