Fields and Galois Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

- The Degree of an Extension
- Extensions and Polynomials
- Polynomials and Extensions

Subsection 1

The Degree of an Extension

- If K, L are fields and $\varphi: K \rightarrow L$ is a monomorphism, we say that L is an extension of K.
- We write " $L: K$ is a (field) extension".
- This is not essentially different from saying that K is a subfield of L, since we may always identify K with its image $\varphi(K)$.
- Then L can be regarded as a vector space over K, since the vector space axioms are all consequences of the field axioms for L :

$$
\begin{aligned}
& (x+y)+z=x+(y+z), x, y, z \in L ; \\
& x+y=y+x, x, y \in L
\end{aligned}
$$

There exists 0 in L, such that $x+0=x, x \in L$;
For all x in L, there exists $-x$ in L, such that $x+(-x)=0$;
$a(x+y)=a x+a y, a \in K, x, y \in L ;$
$(a+b) x=a x+b x, a, b \in K, x \in L ;$
($a b$) $x=a(b x), a, b \in K, x \in L$;
$1 x=x, x \in L$.

- Let $L: K$ be a field extension.
- Since L can be regarded as a vector space over K, there exists a basis of L over K.
- Different bases have the same cardinality, and there is a well-defined dimension of L, equal to the cardinality of an arbitrarily chosen basis.
- The term used in field theory for this dimension is the degree of L over K, or the degree of the extension $L: K$, denoted by $[L: K]$.
- We say that L is a finite extension of K if $[L: K]$ is finite.
- Otherwise L is an infinite extension.
- The field \mathbb{R} of real numbers is an infinite extension of \mathbb{Q}. Any finite extension of \mathbb{Q} is countable, and \mathbb{R} is not.
- The field \mathbb{C} of complex numbers is a finite extension of \mathbb{R}, with basis $\{1, i\}$.

Every complex number has a unique expression as $a 1+b i$, with $a, b \in \mathbb{R}$.

- Of course, bases are not unique.
- For $\mathbb{C}: \mathbb{R}$, we can write $a+b i$ as

$$
\frac{1}{2}(a+b)(1+i)+\frac{1}{2}(a-b)(1-i) .
$$

So $\{1+i, 1-i\}$ is also a basis.
But every basis has exactly two elements, and $[\mathbb{C}: \mathbb{R}]=2$.

Extensions of Degree One

Theorem

Let $L: K$ be a field extension. Then $L=K$ if and only if $[L: K]=1$.

- Suppose first that $L=K$. Then $\{1\}$ is a basis for L over K, since every element x of L is expressible as $x 1$, with x in K. Thus, $[L: K]=1$.
Conversely, suppose that $[L: K]=1$.
Let $\{x\}$, where $x \neq 0$, be a basis of L over K.
In particular, there exists a in K such that $1=a x$. So $x=\frac{1}{a} \in K$. Now, let y in L. Then, there exists b in K, such that $y=b x=\frac{b}{a}$. Thus, $y \in K$. This proves that $L=K$.
- Suppose we have field extensions $L: K$ and $M: L$.

That is, there are monomorphisms $\alpha: K \rightarrow L, \beta: L \rightarrow M$.
Then $\beta \circ \alpha: K \rightarrow M$ is a monomorphism, and so $M: K$ is an extension.

Theorem

Let $L: K$ and $M: L$ be field extensions. Then $[M: L][L: K]=[M: K]$.

- Let $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be a linearly independent subset of M over L. Let $\left\{b_{1}, b_{2}, \ldots, b_{s}\right\}$ be a linearly independent subset of L over K. We show that $\left\{a_{i} b_{j}: i=1,2, \ldots, r, j=1,2, \ldots, s\right\}$ is a linearly independent subset of M over K.
Suppose that $\sum_{i=1}^{r} \sum_{j=1}^{s} \lambda_{i j} a_{i} b_{j}=0$, with $\lambda_{i j} \in K$, for all i and j. Rewrite as $\sum_{i=1}^{r}\left(\sum_{j=1}^{s} \lambda_{i j} b_{j}\right) a_{i}=0$. Since the a_{i} are linearly independent over $L, \sum_{j=1}^{s} \lambda_{i j} b_{j}=0, i=1,2, \ldots, r$. Since the b_{j} are linearly independent over $K, \lambda_{i j}=0$, for all i and j.
- Suppose $[M: L]$ or $[L: K]$ is infinite. Then either r or s can be made arbitrarily large. So the set $\left\{a_{i} b_{j}: i=1, \ldots, r, j=1, \ldots, s\right\}$ can be made arbitrarily large. Hence, $[M: K]$ is infinite.
Suppose, next, that $[M: L]=r<\infty,[L: K]=s<\infty$. Let $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be a basis of M over L, and $\left\{b_{1}, b_{2}, \ldots, b_{s}\right\}$ a basis of L over K.
For each z in M, there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ in L, such that $z=\sum_{i=1}^{r} \lambda_{i} a_{i}$.
For each λ_{i} there exist $\mu_{i 1}, \mu_{i 2}, \ldots, \mu_{i s}$ in K such that $\lambda_{i}=\sum_{j=1}^{s} \mu_{i j} b_{j}$. Hence $z=\sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{i j}\left(a_{i} b_{j}\right)$.
We showed that the set $\left\{a_{i} b_{j}: i=1, \ldots, r, j=1, \ldots, s\right\}$ is an independent spanning set (a basis) for M over K. So $[M: K]=r s=[M: L][L: K]$.

Corollary

Let $K_{1}, K_{2}, \ldots, K_{n}$ be fields. Suppose that $K_{i+1}: K_{i}$ is an extension, for $1 \leq i \leq n-1$. Then

$$
\left[K_{n}: K_{1}\right]=\left[K_{n}: K_{n-1}\right]\left[K_{n-1}: K_{n-2}\right] \cdots\left[K_{2}: K_{1}\right]
$$

Subsection 2

Extensions and Polynomials

- The equation $X^{2}=2$ cannot be solved within the field of rationals.
- It has the solutions $\pm \sqrt{2}$ in the field \mathbb{R} of real numbers.
- In fact, its solutions lie within a subfield of \mathbb{R}, namely, the extension

$$
\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\} \text { of } \mathbb{Q}
$$

- It is easy to verify the subfield conditions:
- If $a+b \sqrt{2}, c+d \sqrt{2} \in \mathbb{Q}[\sqrt{2}]$, then

$$
(a+b \sqrt{2})-(c+d \sqrt{2})=(a-c)+(b-d) \sqrt{2} \in \mathbb{Q}[\sqrt{2}] ;
$$

- if $c+d \sqrt{2} \neq 0$,

$$
\frac{a+b \sqrt{2}}{c+d \sqrt{2}}=\frac{(a+b \sqrt{2})(c-d \sqrt{2})}{(c+d \sqrt{2})(c-d \sqrt{2})}=\frac{a c-2 b d}{c^{2}-2 d^{2}}+\frac{b c-a d}{c^{2}-2 d^{2}} \sqrt{2} .
$$

Since $\sqrt{2}$ is irrational, $c^{2}-2 d^{2}=0$ if and only if $c=d=0$.

- Let K be a subfield of a field L.
- Let S be a subset of L.
- Let $K(S)$ be the intersection of all subfields of L containing $K \cup S$. There is at least one such subfield, namely L itself.
- It is clear that $K(S)$ is the smallest subfield containing $K \cup S$.
- $K(S)$ is called the subfield of L generated over K by S.
- If $S=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ is finite, we write $K(S)$ as $K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Theorem

The subfield $K(S)$ of the field L coincides with the set E of all elements of L that can be expressed as quotients of finite linear combinations (with coefficients in K) of finite products of elements of S.

- Let P be the set of all finite linear combinations of finite products of elements of S. If $p, q \in P$, then $p \pm q, p q \in P$. Let $x=\frac{p}{q}$ and $y=\frac{r}{s}$ be typical elements of E, with p, q, r, s in P and $q, s \neq 0$.
- $x-y=\frac{p s-q r}{q s} \in E$;
- If $y \neq 0, \frac{x}{y}=\frac{p s}{q r} \in E$.

Thus, E is a subfield of L containing K and S. So $K(S) \subseteq E$. Any subfield containing K and S must also contain:

- All finite products of elements in S;
- All linear combinations of such products;
- All quotients of such linear combinations.

In short, it must contain E. Hence, in particular, $K(S) \supseteq E$.

- If S has just one element $\alpha \notin K$, by the theorem, $K(\alpha)$ is the set of all quotients of polynomials in α with coefficients in K.
- We say that $K(\alpha)$ is a simple extension of K.
- The link with polynomials is important:

Theorem

Let L be a field, let K be a subfield and let $\alpha \in L$. Then one of the following two alternatives holds:
$K(\alpha)$ is isomorphic to $K(X)$, the field of all rational forms with coefficients in K.

There exists a unique monic irreducible polynomial m in $K[X]$ with the property that, for all f in $K[X]$,

```
f(\alpha)=0 if and only if m|f;
The field K(\alpha) coincides with K[\alpha], the ring of all polynomials in \alpha with
coefficients in K;
[K[\alpha]:K]=\partialm.
```

- Suppose first that there is no non-zero polynomial f in $K[X]$ such that $f(\alpha)=0$. Then $\alpha \notin K$, since $f=X-\alpha$ would contradict the hypothesis. Note that $g(\alpha)=0$ only if g is the zero polynomial. Hence, there is a mapping $\varphi: K(X) \rightarrow K(\alpha)$ given by $\varphi\left(\frac{f}{g}\right)=\frac{f(\alpha)}{g(\alpha)}$.
- It is routine to verify that φ is a homomorphism.
- It clearly maps onto $K(\alpha)$.
- It is both well defined and one-to-one.

Suppose that f, g, p, q are polynomials, with $g, q \neq 0$. Then

$$
\begin{array}{lll}
\varphi\left(\frac{f}{g}\right)=\varphi\left(\frac{p}{q}\right) & \text { iff } & f(\alpha) q(\alpha)-p(\alpha) g(\alpha)=0 \text { in } L \\
& \text { iff } & f q-p g=0 \text { in } K[X] \\
& \text { iff } & \frac{f}{g}=\frac{p}{q} \text { in } K(X) .
\end{array}
$$

- Suppose there exists a non-zero polynomial g such that $g(\alpha)=0$. Assume that g is a polynomial with least degree having this property. If a is the leading coefficient of g, then $\frac{g}{a}$ is monic. Denote $\frac{g}{a}$ by m.
- Certainly $m(\alpha)=0$.
- Clearly, if $m \mid f$, then $f(\alpha)=0$.

Conversely, suppose that $f(\alpha)=0$. Then, $f=q m+r$, where $\partial r<\partial m$. Now $0=f(\alpha)=q(\alpha) m(\alpha)+r(\alpha)=0+r(\alpha)=r(\alpha)$. Since $\partial r<\partial m, r$ is the zero polynomial. Hence $f=q m$. So $m \mid f$.
m is unique. Suppose that m^{\prime} is another polynomial with the same properties. Then $m(\alpha)=m^{\prime}(\alpha)=0$. So $m \mid m^{\prime}$ and $m^{\prime} \mid m$. Since both polynomials are monic, $m^{\prime}=m$.
m is irreducible. Suppose that there exist polynomials p and q, such that $p q=m$, with $\partial p, \partial q<\partial m$. Then $p(\alpha) q(\alpha)=m(\alpha)=0$. So either $p(\alpha)=0$ or $q(\alpha)=0$. This is impossible, since both p and q are of smaller degree than m.

- $K(\alpha)=K[\alpha]$. Consider a typical element $\frac{f(\alpha)}{g(\alpha)}$ in $K(\alpha), g(\alpha) \neq 0$.

Then m does not divide g. Since m has no divisors other than itself and 1 , the greatest common divisor of g and m is 1 .
Hence, there exist polynomials a, b, such that $a g+b m=1$.
Substituting α for $X, a(\alpha) g(\alpha)=1$. Thus, $\frac{f(\alpha)}{g(\alpha)}=f(\alpha) a(\alpha) \in K[\alpha]$.
We close by showing that $[K[\alpha]: K]=\partial m$.
Let $\partial m=n$ and $p(\alpha) \in K[\alpha]=K(\alpha)$, where p is a polynomial.
Then $p=q m+r$, where $\partial r<\partial m=n$. Therefore, $p(\alpha)=r(\alpha)$.
So there exist $c_{0}, c_{1}, \ldots, c_{n-1}$ (the coefficients of r, some of which may, of course, be zero) in K, such that

$$
p(\alpha)=c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1}
$$

Hence $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ is a spanning set for $K[\alpha]$.

- Moreover, the set $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ is linearly independent over K. Let $a_{0}, a_{1}, \ldots, a_{n-1}$ in K be such that

$$
a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}=0 .
$$

Then $a_{0}=a_{1}=\cdots=a_{n-1}=0$. Otherwise there would be a non-zero polynomial $p=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1}$ of degree $\leq n-1$, such that $p(\alpha)=0$.
Thus $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ is a basis of $K(\alpha)$ over K. So $[K(\alpha): K]=n$.

- The polynomial m is called the minimum polynomial of the element α.

A Useful Consequence

Corollary

Let L be a field, let K be a subfield and let $\alpha \in L$. If $[K[\alpha]: K]=n$ and g is a monic polynomial in $K[X]$ of degree n, such that $g(\alpha)=0$, then g is the minimum polynomial of α.

- Let m be the minimum polynomial of α.

Since $g(\alpha)=0, m \mid g$.
Since g is monic of degree $n, m=g$.
Hence, g must be the minimum polynomial of α.

- Let α be in \mathbb{C} with minimum polynomial $X^{2}+X+1$ over \mathbb{Q}.
- We show that $\alpha^{2}-1 \neq 0$;
- We express the element $\frac{\alpha^{2}+1}{\alpha^{2}-1}$ of $\mathbb{Q}(\alpha)$ in the form $a+b \alpha, a, b \in \mathbb{Q}$.

We have $\alpha^{2}+\alpha+1=0$. So $\alpha^{2}-1=-\alpha-2 \neq 0$.
Now we get

$$
\frac{\alpha^{2}+1}{\alpha^{2}-1}=\frac{-\alpha}{-\alpha-2}=\frac{\alpha}{\alpha+2}=1-\frac{2}{\alpha+2}
$$

Dividing $X^{2}+X+1$ by $X+2$ gives

$$
X^{2}+X+1=(X+2)(X-1)+3
$$

So $(\alpha+2)(\alpha-1)=-3$. Hence $\frac{1}{\alpha+2}=-\frac{1}{3}(\alpha-1)$. We finally get

$$
\frac{\alpha^{2}+1}{\alpha^{2}-1}=1+\frac{2}{3}(\alpha-1)=\frac{1}{3}+\frac{2}{3} \alpha .
$$

- If K is the field \mathbb{Q} and L the field \mathbb{C}, the minimum polynomial of $i \sqrt{3}$ is $X^{2}+3$.
Then

$$
\mathbb{Q}[i \sqrt{3}]=\{a+b i \sqrt{3}: a, b \in \mathbb{Q}\} .
$$

The multiplicative inverse of a non-zero element $a+b i \sqrt{3}$ is

$$
\begin{aligned}
a^{\prime}+b^{\prime} i \sqrt{3} & =\frac{1}{a+b i \sqrt{3}}=\frac{a-b i \sqrt{3}}{(a+b i \sqrt{3})(a-b i \sqrt{3})} \\
& =\frac{a-b i \sqrt{3}}{a^{2}+3 b^{2}}=\frac{a}{a^{2}+3 b^{2}}-\frac{b}{a^{2}+3 b^{2}} i \sqrt{3}
\end{aligned}
$$

- It might seem that the subfield $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is not a simple extension, but in fact it coincides with the visibly simple extension $\mathbb{Q}(\sqrt{2}+\sqrt{3})$. It is clear that $\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$. So $\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Note $(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})=1$. So $\sqrt{3}-\sqrt{2}=\frac{1}{\sqrt{3}+\sqrt{2}} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Now we have

$$
\begin{aligned}
& \sqrt{2}=\frac{1}{2}(\sqrt{2}+\sqrt{3})+\frac{1}{2}(\sqrt{2}-\sqrt{3}) \in \mathbb{Q}(\sqrt{2}+\sqrt{3}) \\
& \sqrt{3}=\frac{1}{2}(\sqrt{2}+\sqrt{3})-\frac{1}{2}(\sqrt{2}-\sqrt{3}) \in \mathbb{Q}(\sqrt{2}+\sqrt{3})
\end{aligned}
$$

Hence $Q(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}+\sqrt{3})$.

- We can write $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ as $(\mathbb{Q}[\sqrt{2}])[\sqrt{3}]$.

The set $\{1, \sqrt{2}\}$ is clearly a basis for $\mathbb{Q}[\sqrt{2}]$ over \mathbb{Q}. Since $\sqrt{3} \notin \mathbb{Q}[\sqrt{2}]$, we must have $[Q(\sqrt{2}, \sqrt{3}): Q[\sqrt{2}]] \geq 2$.
On the other hand, observe $(\sqrt{3})^{2}-3=0$. So $X^{2}-3$ is the minimum polynomial of $\sqrt{3}$ over $\mathbb{Q}[\sqrt{2}]$. So $\{1, \sqrt{3}\}$ is a basis. Hence $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q}.
The minimum polynomial of $\sqrt{2}+\sqrt{3}$ is of degree 4 .
We have

$$
\begin{aligned}
& (\sqrt{2}+\sqrt{3})^{2}=2+2 \sqrt{6}+3=5+2 \sqrt{6} \\
& (\sqrt{2}+\sqrt{3})^{4}=(5+2 \sqrt{6})^{2}=25+20 \sqrt{6}+24=49+20 \sqrt{6}
\end{aligned}
$$

Hence, we obtain

$$
(\sqrt{2}+\sqrt{3})^{4}-10(\sqrt{2}+\sqrt{3})^{2}+1=49+20 \sqrt{6}-50-20 \sqrt{6}+1=0
$$

So the minimum polynomial is $X^{4}-10 X^{2}+1$.

- If α has a minimum polynomial over K,
- α is called algebraic over K;
- $K[\alpha](=K(\alpha))$ is called a simple algebraic extension of K.
- A complex number that is algebraic over \mathbb{Q} is called an algebraic number.
- If $K(\alpha)$ is isomorphic to the field $K(X)$ of rational functions,
- α is called transcendental over K;
- $K(\alpha)$ is called a simple transcendental extension of K.
- A complex number that is transcendental over \mathbb{Q} is called a transcendental number.
Example: The preceding examples feature simple algebraic extensions. The elements $i \sqrt{3}, \sqrt{2}, \sqrt{3}, \sqrt{2}+\sqrt{3}$ are algebraic numbers.
On the other hand, let $L=K(X)$ be the field of rational forms over X.
By the definitions, the element X is transcendental over K.

Agebraic, Transcendental Extensions and Degrees

Theorem

Let $K(\alpha)$ be a simple transcendental extension of a field K. Then the degree of $K(\alpha)$ over K is infinite.

- The elements $1, \alpha, \alpha^{2}, \ldots$ are linearly independent over K.
- An extension L of K is said to be an algebraic extension if every element of L is algebraic over K.
- Otherwise, L is called a transcendental extension.

Theorem

Every finite extension is algebraic.

- Let L be a finite extension of K. Suppose, for a contradiction, that L contains an element α that is transcendental over K. Then the elements $1, \alpha, \alpha^{2}, \ldots$ are linearly independent over K. So $[L: K]$ cannot be finite.

Agebraicity and Chains of Extensions

Theorem

Let $L: K$ and $M: L$ be field extensions, and let $\alpha \in M$. If α is algebraic over K, then it is also algebraic over L.

- Since α is algebraic over K, there exists a non-zero polynomial f in $K[X]$, such that $f(\alpha)=0$. Since f is also in $L[X]$, we deduce that α is algebraic over L.
- The minimum polynomial of α over L may of course be of smaller degree than the minimum polynomial over K.
Example: We saw $[\mathbb{Q}[\sqrt{2}+\sqrt{3}]: \mathbb{Q}]=4$ and $[\mathbb{Q}[\sqrt{2}+\sqrt{3}]: \mathbb{Q}[\sqrt{2}]]=2$.
We can verify that:
- $(\sqrt{2}+\sqrt{3})^{4}-10(\sqrt{2}+\sqrt{3})^{2}+1=0 ;$
- $(\sqrt{2}+\sqrt{3})^{2}-2 \sqrt{2}(\sqrt{2}+\sqrt{3})-1=0$.

So the minimum polynomial of $\sqrt{2}+\sqrt{3}$

- over \mathbb{Q} is $X^{4}-10 X^{2}+1$;
- over $\mathbb{Q}[\sqrt{2}]$ is $X^{2}-2 \sqrt{2} X-1$.

Subfield of Algebraic Elements

Theorem

Let L be an extension of a field K, and let $\mathscr{A}(L)$ be the set of all elements in L that are algebraic over K. Then $\mathscr{A}(L)$ is a subfield of L.

- Suppose that $\alpha, \beta \in \mathscr{A}(L)$. Then $\alpha-\beta \in K(\alpha, \beta)=(K[\alpha])[\beta]$.

By the theorem, β is algebraic over $K[\alpha]$.
So both $[K[\alpha]: K]$ and $[(K[\alpha])[\beta]: K[\alpha]]$ are finite.
It follows that $[K(\alpha, \beta): K]$ is finite.
So, $\alpha-\beta$ is algebraic over K.
By a similar argument, $\frac{\alpha}{\beta} \in \mathscr{A}(L)$, for all α and $\beta(\neq 0)$ in $\mathscr{A}(L)$.

- If we take K as the field \mathbb{Q} of rational numbers and L as the field \mathbb{C} of complex numbers, then $\mathscr{A}(L)$ is the field \mathbb{A} of algebraic numbers.

Theorem

The field \mathbb{A} of algebraic numbers is countable.

- The proof depends on some knowledge of the arithmetic of infinite cardinal numbers. It is known that \mathbb{Q} is countable. To put it in the standard notation for cardinal numbers, $|\mathbb{Q}|=\aleph_{0}$. Since $\mathbb{Q} \subseteq \mathbb{A}$, we know that $|\mathbb{A}| \geq \aleph_{0}$.
Now, the number of monic polynomials of degree n with coefficients in \mathbb{Q} is $\aleph_{0}^{n}=\aleph_{0}$. Each such polynomial has at most n distinct roots in \mathbb{C}. So the number of roots of monic polynomials of degree n is at most $n \aleph_{0}=\aleph_{0}$. Hence, the number of roots of monic polynomials of all possible degrees is at most $\aleph_{0} \cdot \aleph_{0}=\aleph_{0}$. Thus $|\mathbb{A}| \leq \aleph_{0}$.

Existence of Transcendental Numbers

Theorem

Transcendental numbers exist.

- It is known that $|\mathbb{R}|=|\mathbb{C}|=2^{\aleph_{0}}>\mathcal{\aleph}_{0}$. It follows that $\mathbb{C} \backslash \mathbb{A}$, the set of transcendental numbers, is non-empty.
- Since $|\mathbb{C} \backslash \mathbb{A}|=2^{N_{0}}>|\mathbb{A}|$, we can say that "most" complex numbers are transcendental.
- This argument of Cantor was extraordinary in that it demonstrated the existence of transcendental numbers without producing a single example of such a number!
- Liouville demonstrated that $\sum_{n=1}^{\infty} \frac{1}{10^{n} \text { ! }}$ is transcendental.
- Hermite proved that e is transcendental.
- Lindemann proved that π is transcendental.

Degree of an Extension and Minimum Polynomials

Theorem

Let L be an extension of F, and let the elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ of L have minimum polynomials $m_{1}, m_{2}, \ldots, m_{n}$, respectively, over F. Then

$$
\left[F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right): F\right] \leq \partial m_{1} \partial m_{2} \cdots \partial m_{n}
$$

- The proof is by induction on n, it being clear that $\left[F\left(\alpha_{1}\right): F\right]=\partial m_{1}$. Suppose inductively that $\left[F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right): F\right] \leq \partial m_{1} \partial m_{2} \cdots \partial m_{n-1}$. We know that $m_{n}\left(\alpha_{n}\right)=0$. The element α_{n} is certainly algebraic over $F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right)$. Its minimum polynomial over that field must have degree $\leq \partial m_{n}$. So $\left[F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right): F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right)\right] \leq \partial m_{n}$. Now we have

$$
\begin{aligned}
& {\left[F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right): F\right]} \\
& =\left[F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right): F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right)\right] \cdot\left[F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right): F\right] \\
& \leq \partial m_{1} \partial m_{2} \cdots \partial m_{n-1} \partial m_{n} .
\end{aligned}
$$

- We cannot assert equality in the preceding formula.
- We have

$$
\begin{aligned}
& {[\mathrm{Q}(\sqrt{2}): \mathbb{Q}]=[\mathrm{Q}(\sqrt{3}): \mathbb{Q}]=[\mathrm{Q}(\sqrt{6}): \mathbb{Q}]=2,} \\
& {[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{6}): \mathbb{Q}]=4 .}
\end{aligned}
$$

This shows that

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{6}): \mathbb{Q}]<[\mathbb{Q}(\sqrt{2}): \mathbb{Q}][\mathbb{Q}(\sqrt{3}): \mathbb{Q}][\mathbb{Q}(\sqrt{6}): \mathbb{Q}] .
$$

Finite Extensions and A gebraic Elements

Proposition

An extension L of a field K is finite if and only if, for some n, there exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, algebraic over K, such that $L=K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

- The theorem gives half of this result. Suppose now that $[L: K]$ is finite.
Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a basis for L over K.
The elements α_{i} are all algebraic.
Then L consists of linear combinations (with coefficients in K) of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.
This set contains (and is thus equal to) the seemingly larger set $K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Subsection 3

Polynomials and Extensions

Theorem

Let K be a field and let m be a monic irreducible polynomial with coefficients in K. Then $L=K[X] /\langle m\rangle$ is a simple algebraic extension $K[\alpha]$ of K, and $\alpha=X+\langle m\rangle$ has minimum polynomial m over K.

- Let K be a field, and let $m \in K[X]$ be irreducible and monic. Let $L=K[X] /\langle m\rangle$. Then L is a field. The mapping $a \mapsto a+\langle m\rangle$ is a monomorphism from K into L. So L is an extension of K.
Let $\alpha=X+\langle m\rangle$. Then, for $f=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n}$ in $K[X]$,

$$
\begin{aligned}
f(\alpha) & =a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n} \\
& =a_{0}+a_{1}(X+\langle m\rangle)+a_{2}(X+\langle m\rangle)^{2}+\cdots+a_{n}(X+\langle m\rangle)^{n} \\
& =a_{0}+a_{1}(X+\langle m\rangle)+a_{2}\left(X^{2}+\langle m\rangle\right)+\cdots+a_{n}\left(X^{n}+\langle m\rangle\right) \\
& =\left(a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n}\right)+\langle m\rangle=f+\langle m\rangle .
\end{aligned}
$$

So $f(\alpha)=0+\langle m\rangle$ if and only if $m \mid f$.
Thus, m is the minimum polynomial of α.

Isomorphisms of Extension Fields

Theorem

Let K, K^{\prime} be fields, and let $\varphi: K \rightarrow K^{\prime}$ be an isomorphism with canonical extension $\widehat{\varphi}: K[X] \rightarrow K^{\prime}[X]$. Let $f=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}$ be an irreducible polynomial of degree n with coefficients in K, and let $f^{\prime}=\widehat{\varphi}(f)=\varphi\left(a_{n}\right) X^{n}+\varphi\left(a_{n-1}\right) X^{n-1}+\cdots+\varphi\left(a_{0}\right)$. Let L be an extension of K containing a root α of f, and let L^{\prime} be an extension of K^{\prime} containing a root α^{\prime} of f^{\prime}. Then there is an isomorphism ψ from $K[\alpha]$ onto $K^{\prime}\left[\alpha^{\prime}\right]$, extending φ.

- The field $K[\alpha]$ consists of polynomials $b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1}$. Addition is obvious. Multiplication is carried out using the equation $\alpha^{n}=-\frac{1}{a_{n}}\left(a_{n-1} \alpha^{n-1}+\cdots+a_{0}\right)$. The mapping ψ is defined by

$$
\psi\left(b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1}\right)=\varphi\left(b_{0}\right)+\varphi\left(b_{1}\right) \alpha^{\prime}+\cdots+\varphi\left(b_{n-1}\right) \alpha^{\prime n-1} .
$$

More compactly, $\psi(u(\alpha))=(\widehat{\varphi}(u))\left(\alpha^{\prime}\right)$, for all u in $K[X]$ with $\partial u<n$.

- ψ is onto. This follows by observing that:
- $K^{\prime}\left[\alpha^{\prime}\right]$ consists of polynomials of the form $b_{0}^{\prime}+b_{1}^{\prime} \alpha^{\prime}+\cdots+b_{n-1}^{\prime} \alpha^{\prime n-1}$, with $b_{0}^{\prime}, \ldots, b_{n-1}^{\prime}$ in K^{\prime};
- $\varphi: K \rightarrow K^{\prime}$ is onto.
- ψ is one-to-one: We have

$$
\begin{aligned}
& \psi\left(b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1}\right)=\psi\left(c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1}\right) \\
& \varphi\left(b_{0}\right)+\varphi\left(b_{1}\right) \alpha^{\prime}+\cdots+\varphi\left(b_{n-1}\right) \alpha^{\prime n-1}=\varphi\left(c_{0}\right)+\varphi\left(c_{1}\right) \alpha^{\prime}+\cdots+\varphi\left(c_{n-1}\right) \alpha^{\prime n-1} \\
&\left(\varphi\left(b_{0}\right)-\varphi\left(c_{0}\right)\right)+\left(\varphi\left(b_{1}\right)-\varphi\left(c_{1}\right)\right) \alpha^{\prime}+\cdots+\left(\varphi\left(b_{n-1}\right)-\varphi\left(c_{n-1}\right)\right) \alpha^{\prime n-1}=0
\end{aligned}
$$

Since $\left[K^{\prime}\left[\alpha^{\prime}\right]: K^{\prime}\right]=n$, the polynomial on the left must be zero.
So we get $\varphi\left(b_{0}\right)=\varphi\left(c_{0}\right), \varphi\left(b_{1}\right)=\varphi\left(c_{1}\right), \ldots, \varphi\left(b_{n-1}\right)=\varphi\left(c_{n-1}\right)$.
As ϕ is one-to-one, $b_{0}=c_{0}, b_{1}=c_{1}, \ldots, b_{n-1}=c_{n-1}$.
Therefore, ψ is one-to-one.

- That ψ extends ϕ is clear.
- From the definition of ψ it is also clear that $\psi(u(\alpha)+v(\alpha))=\psi(u(\alpha))+\psi(v(\alpha))$.
- In multiplying $u(\alpha)$ and $v(\alpha)$, we use the minimum polynomial to reduce the answer to the form $w(\alpha), \partial w \leq n-1$.
We use the division algorithm to write $u v=q m+w$, where $\partial w<n$. Hence $\psi(u(\alpha) v(\alpha))=\psi(w(\alpha))=(\widehat{\varphi}(w))\left(\alpha^{\prime}\right)$.
The isomorphism $\widehat{\varphi}$ implies that the division algorithm in $K^{\prime}[X]$ gives $\widehat{\varphi}(u) \widehat{\varphi}(v)=\widehat{\varphi}(q) \widehat{\varphi}(m)+\widehat{\varphi}(w)$. Hence,

$$
\begin{aligned}
(\psi(u(\alpha)) \psi(v(\alpha)) & =(\widehat{\varphi}(u))\left(\alpha^{\prime}\right)(\widehat{\varphi}(v))\left(\alpha^{\prime}\right) \\
& =(\widehat{\varphi}(u) \widehat{\varphi}(v))\left(\alpha^{\prime}\right) \\
& =(\widehat{\varphi}(q) \widehat{\varphi}(m)+\widehat{\varphi}(w))\left(\alpha^{\prime}\right) \\
& =(\widehat{\varphi}(q))\left(\alpha^{\prime}\right)(\widehat{\varphi}(m))\left(\alpha^{\prime}\right)+(\widehat{\varphi}(w))\left(\alpha^{\prime}\right) \\
& =(\widehat{\varphi}(w))\left(\alpha^{\prime}\right) \\
& =\psi(u(\alpha) v(\alpha)) .
\end{aligned}
$$

K-Isomorphisms

Corollary

Let K be a field, and let f be an irreducible polynomial with coefficients in K. If L, L^{\prime} are extensions of K containing roots α, α^{\prime} of f, respectively, then there is an isomorphism from $K[\alpha]$ onto $K\left[\alpha^{\prime}\right]$ which fixes every element of K.

- An isomorphism α from L onto L^{\prime} with the property that

$$
\alpha(x)=x, \text { for every element } x \text { of } K,
$$

i.e., that fixes every element of K, is called a K-isomorphism.

- If $K=\mathbb{R}$ and $m=X^{2}+1$, the field $L=K[X] /\left\langle X^{2}+1\right\rangle$ contains an element $\delta=X+\left\langle X^{2}+1\right\rangle$, such that $\delta^{2}=-1$.
The polynomial $X^{2}+1$ is irreducible over \mathbb{R}.
It factorizes into $(X+\delta)(X-\delta)$ in the field L.
Every element of L can be uniquely expressed in the form $a+b \delta$. So L is none other than the field \mathbb{C} of complex numbers.
- By the Fundamental Theorem of Algebra every polynomial with coefficients in \mathbb{C} factorizes into linear factors.
So every irreducible m in $\mathbb{Q}[X]$ factorizes completely in $\mathbb{C}[X]$.
If we know the factors, it is easier to deal, e.g., with the subfield $\mathbb{Q}[i \sqrt{3}]=\{a+b i \sqrt{3}: a, b \in \mathbb{Q}\}$ of \mathbb{C} than with $\mathbb{Q}[X] /\left\langle X^{2}+3\right\rangle$.
The two fields are, of course, isomorphic to each other.
- The polynomial $m=X^{2}+X+1$ is irreducible over \mathbb{Z}_{2}.

Any proper factor would be either $X-0$ or $X-1$, and neither 0 nor 1 is a root of m.
We form the field $L=\mathbb{Z}_{2}[X] /\langle m\rangle$.
It has 4 elements, namely,

$$
0+\langle m\rangle, 1+\langle m\rangle, X+\langle m\rangle, 1+X+\langle m\rangle .
$$

We write them as $0,1, \alpha$ and $1+\alpha$, where $\alpha^{2}+\alpha+1=0$.
The addition and multiplication in L are given by

+	0	1	α	$1+\alpha$
0	0	1	α	$1+\alpha$
1	1	0	$1+\alpha$	α
α	α	$1+\alpha$	0	1
$1+\alpha$	$1+\alpha$	α	1	0

\cdot	0	1	α	$1+\alpha$
0	0	0	0	0
1	0	1	α	$1+\alpha$
α	0	α	$1+\alpha$	1
$1+\alpha$	0	$1+\alpha$	1	α

- We show that $\varphi: \mathbb{Q}[i+\sqrt{2}] \rightarrow \mathbb{Q}[X] /\left\langle X^{4}-2 X^{2}+9\right\rangle$, defined by

$$
\varphi(a)=a+\left\langle X^{4}-2 X^{2}+9\right\rangle, \quad a \in \mathbb{Q}, \varphi(i+\sqrt{2})=X+\left\langle X^{4}-2 X^{2}+9\right\rangle,
$$

is an isomorphism. Then, we determine $\varphi(i)$.
It is clear that $[Q[i+\sqrt{2}]: Q]=4$.
We compute

$$
\begin{aligned}
& (i+\sqrt{2})^{2}=i^{2}+2 i \sqrt{2}+2=1+2 i \sqrt{2} \\
& (i+\sqrt{2})^{4}=(1+2 i \sqrt{2})^{2}=1+4 i \sqrt{2}-8=-7+4 i \sqrt{2} .
\end{aligned}
$$

We verify

$$
(i+\sqrt{2})^{4}-2(i+\sqrt{2})^{2}+9=-7+4 i \sqrt{2}-2-4 i \sqrt{2}+9=0 .
$$

So the minimum polynomial of $i+\sqrt{2}$ over \mathbb{Q} is $X^{4}-2 X^{2}+9$. By uniqueness φ is an isomorphism.

- Let $a_{0}, \ldots, a_{3} \in \mathbb{Q}$.

Observe that

$$
\begin{aligned}
& a_{0}+a_{1}(i+\sqrt{2})+a_{2}(i+\sqrt{2})^{2}+a_{3}(i+\sqrt{2})^{3} \\
& =a_{0}+a_{1}(i+\sqrt{2})+a_{2}(1+2 i \sqrt{2})+a_{3}(5 i-\sqrt{2}) \\
& =\left(a_{0}+a_{2}\right)+\left(a_{1}+5 a_{3}\right) i+\left(a_{1}-a_{3}\right) \sqrt{2}+\left(2 a_{2}\right) i \sqrt{2} .
\end{aligned}
$$

Since $\{1, i, \sqrt{2}, i \sqrt{2}\}$ is linearly independent over \mathbb{Q}, this equals i if and only if

$$
\left\{\begin{array}{rll}
a_{0}+a_{2} & = & 0 \\
a_{1}+5 a_{3} & =1 \\
a_{1}-a_{3} & =0 \\
a_{2} & =0
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
a_{0}
\end{array}\right\}=0
$$

Thus, $i=\frac{1}{6}\left((i+\sqrt{2})+(i+\sqrt{2})^{3}\right)$.
So $\varphi(i)=\frac{1}{6}\left(X+X^{3}\right)+\left\langle X^{4}-2 X^{2}+9\right\rangle$.

