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Field Extensions

o If K, L are fields and ¢ : K — L is a monomorphism, we say that L is
an extension of K.

o We write “L: K is a (field) extension”.

o This is not essentially different from saying that K is a subfield of L,
since we may always identify K with its image ¢(K).
o Then L can be regarded as a vector space over K, since the vector
space axioms are all consequences of the field axioms for L:
(x+y)+z=x+(y+2), x,y,z€eL;
X+y=y+x, x,y€lL;
There exists 0 in L, such that x+0=x, x€ L;
For all x in L, there exists —x in L, such that x+(-x)=0;
a(x+y)=ax+ay, ac K,x,y€L;
(a+b)x=ax+bx, a,be K,xeL;
(ab)x = a(bx), a,be K,x € L;
Ix=x, xel.
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Field Extensions

o Let L: K be a field extension.

o Since L can be regarded as a vector space over K, there exists a basis
of L over K.

o Different bases have the same cardinality, and there is a well-defined
dimension of L, equal to the cardinality of an arbitrarily chosen basis.

o The term used in field theory for this dimension is the degree of L
over K, or the degree of the extension L: K, denoted by [L: K].

o We say that L is a finite extension of K if [L: K] is finite.

o Otherwise L is an infinite extension.
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Field Extensions

o The field R of real numbers is an infinite extension of Q.
Any finite extension of @ is countable, and R is not.

o The field € of complex numbers is a finite extension of IR, with basis
{1,i}.

Every complex number has a unique expression as al + bi, with
a,beR.

o Of course, bases are not unique.

o For C: R, we can write a+ bi as
1 L1 )
§(a+ b)(1+1)+§(a—b)(1—1).

So {1+/,1—/} is also a basis.

But every basis has exactly two elements, and [C: R] =2.
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Field Extensions

Let L: K be a field extension. Then L= K if and only if [L: K] =1.

o Suppose first that L= K. Then {1} is a basis for L over K, since every
element x of L is expressible as x1, with x in K. Thus, [L: K]=1.

Conversely, suppose that [L: K] =1.
Let {x}, where x #0, be a basis of L over K.

In particular, there exists a in K such that 1 =ax. So x= % eK.

Now, let y in L. Then, there exists b in K, such that y = bx = 13’.
Thus, y € K. This proves that L= K.
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Field Extensions

o Suppose we have field extensions L: K and M: L.
That is, there are monomorphisms a: K — L, f:L— M.
Then Boa: K — M is a monomorphism, and so M: K is an extension.

Let L: K and M: L be field extensions. Then [M: L][L: K] =[M:K].

o Let {a1,as,...,a,} be a linearly independent subset of M over L.
Let {b1,by,..., bs} be a linearly independent subset of L over K.
We show that {a;b;j:i=1,2,...,r,j=1,2,...,s} is a linearly independent
subset of M over K.
Suppose that ¥, Zj:1 Aijaib;j =0, with 1 € K, for all i and ;.
Rewrite as Zf:l(zjzl Aijbj)a; =0. Since the a; are linearly
independent over L, st.zlﬂt,-jbj =0, i=12,...,r. Since the b; are
linearly independent over K, 1;; =0, for all j and ;.
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Field Extensions

o Suppose [M: L] or [L: K] is infinite. Then either r or s can be made
arbitrarily large. So the set {a;bj:i=1,...,r,j=1,...,s} can be made
arbitrarily large. Hence, [M: K] is infinite.

Suppose, next, that [M: L] =r<oo, [L: K]=s<oo. Let {a1,ap,...,a,}
be a basis of M over L, and {b1, b,...,bs} a basis of L over K.

For each z in M, there exist A1,12,...,A, in L, such that z=3%"_, A;a;.
For each A; there exist i1, j2,..., s in K such that A; =27:1u,-jbj.
Hence z:ZfZIijlp,-j(a,-bj).

We showed that the set {ajbj:i=1,...,r,j=1,...,s} is an independent
spanning set (a basis) for M over K. So [M: K]=rs=[M:L][L: K].

Let K1, K>, ..., K, be fields. Suppose that K;,1: K; is an extension, for
l1<i=n-1. Then

[Kn: K1] = [Kn: Kn—1][Kn=1: Kn—2] -+ [K2 - Kq].
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Field Extensions

Subsection 2
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Field Extensions

o The equation X2 =2 cannot be solved within the field of rationals.
o It has the solutions +v/2 in the field R of real numbers.

o In fact, its solutions lie within a subfield of IR, namely, the extension
Q[v2]=f{a+bV2:a,be Q) of Q.

o It is easy to verify the subfield conditions:

o If a+bv2,c+dv2eQ[v2], then
(a+bV2)—(c+dVv2)=(a-c)+(b-d)V2eQ[V2];

o if c+dV2#0,
a+bv2 (a+bV2)(c-dv2) ac-2bd bc—ad\/E
crdv2 (ctdva)(c—dva) 2-2d?  2-2d?

Since V2 is irrational, ¢2—2d? =0 if and only if c=d=0.



Field Extensions

Let K be a subfield of a field L.

Let S be a subset of L.

Let K(S) be the intersection of all subfields of L containing KuUS.
There is at least one such subfield, namely L itself.

It is clear that K(S) is the smallest subfield containing KuUS.
K(S) is called the subfield of L generated over K by S.

If S={ay,az,...,a,} is finite, we write K(S) as K(a1,az,...,an).

©

©

©

©

©

©
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Field Extensions

The subfield K(S) of the field L coincides with the set E of all elements of
L that can be expressed as quotients of finite linear combinations (with
coefficients in K) of finite products of elements of S.

o Let P be the set of all finite linear combinations of finite products of
elements of S. If p,ge P, then p+q,pge P. Let x:§ and y =< be
typical elements of E, with p,q,r,s in P and q,s #0.

9 X—y= % e E;

9 |fy;é0, fzs—fEE.
Thus, E is a subfield of L containing K and S. So K(S) < E.
Any subfield containing K and S must also contain:

o All finite products of elements in S;

o All linear combinations of such products;

o All quotients of such linear combinations.

In short, it must contain E. Hence, in particular, K(S)2 E.
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Field Extensions

o If S has just one element a ¢ K, by the theorem, K(a) is the set of all
quotients of polynomials in a with coefficients in K.

o We say that K(a) is a simple extension of K.

o The link with polynomials is important:

Let L be a field, let K be a subfield and let @ € L. Then one of the
following two alternatives holds:

K(a) is isomorphic to K(X), the field of all rational forms with coefficients
in K.

There exists a unique monic irreducible polynomial m in K[X] with the
property that, for all £ in K[X],

f(a) =0 if and only if m|f;

The field K(a) coincides with K[a], the ring of all polynomials in & with

coefficients in K;
[K[a] : K]=0m.
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Field Extensions

o Suppose first that there is no non-zero polynomial f in K[X] such that
f(a)=0. Then a ¢ K, since f = X —a would contradict the hypothesis.

Note that g(a) =0 only if g is the zero polynomial.
Hence, there is a mapping ¢ : K(X) — K(a) given by ‘P(g£) _ )

o It is routine to verify that ¢ is a homomorphism.
o It clearly maps onto K(a).
o It is both well defined and one-to-one.

Suppose that f, g, p,q are polynomials, with g,q#0. Then

(P(é) =(,0(§) iff f(a)q(a)-p(a)g(a)=0in L
ifft fg—pg=0in K[X]

. i—B
iff g=gn K(X).
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Field Extensions

o Suppose there exists a non-zero polynomial g such that g(a)=0.

Assume that g is a polynomial with least degree having this property.
If ais the leading coefficient of g, then % is monic. Denote % by m.
o Certainly m(a) =0.
o Clearly, if m|f, then f(a)=0.
Conversely, suppose that f(a)=0. Then, f = gm+r, where dr <om.
Now 0= f(a)=q(a)m(a)+r(a) =0+ r(a) = r(a). Since dr <0m, r is
the zero polynomial. Hence f =gm. So m|f.
m is unique. Suppose that m’ is another polynomial with the same
properties. Then m(a)=m'(a)=0. So m|m' and m’'| m. Since both
polynomials are monic, m' = m.
m is irreducible. Suppose that there exist polynomials p and g, such
that pg =m, with dp,0g <dm. Then p(a)q(a)= m(a)=0. So either
p(a) =0 or g(a@) =0. This is impossible, since both p and g are of
smaller degree than m.

George Voutsadakis (LSSU)



Field Extensions

o K(a)=K]a]. Consider a typical element % in K(a), g(a)#0.
Then m does not divide g. Since m has no divisors other than itself
and 1, the greatest common divisor of g and m is 1.

Hence, there exist polynomials a, b, such that ag+ bm=1.
Substituting a for X, a(a)g(a)=1. Thus, % =f(a)a(a) € K|a].
We close by showing that [K[a]: K] =dm.

Let dm=n and p(a) € K[a] = K(a), where p is a polynomial.

Then p=gm+r, where dr <dm = n. Therefore, p(a) = r(a).

So there exist ¢, cy,...,cn-1 (the coefficients of r, some of which may,
of course, be zero) in K, such that

p(a)= C+Cia+ - +cy1a™ L.

Hence {1,a,...,a" 1} is a spanning set for K[a].
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Field Extensions

o Moreover, the set {1,a,...,a" !} is linearly independent over K.

Let ag,a1,...,an—1 in K be such that

ap+ard+-+ap_1a™1=0.

Then ag=a; =---=a,_1 =0. Otherwise there would be a non-zero
polynomial p=ag+a1 X +---+ap,_1 X" ! of degree <n—1, such that
p(a)=0.

Thus {1,a,...,a" 1} is a basis of K(a) over K. So [K(a):K]=n.
o The polynomial m is called the minimum polynomial of the element
a.
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Field Extensions

Corollary

Let L be a field, let K be a subfield and let @€ L. If [K[a]: K]=n and g is
a monic polynomial in K[X] of degree n, such that g(a) =0, then g is the
minimum polynomial of a.

o Let m be the minimum polynomial of a.
Since g(a)=0, m|g.
Since g is monic of degree n, m=g.
Hence, g must be the minimum polynomial of a.
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Field Extensions

o Let @ be in C with minimum polynomial X2+ X +1 over Q.
o> We show that a? -1 #0:; R
o We express the element sz of Q(a) in the form a+ ba, a,be Q.

We have a?+a+1=0. So a®-1= —a—-2#0.
Now we get

a2+1_ - a 2
a2-1 —-a-2 a+2 = a+2

Dividing X2+ X +1 by X +2 gives
X2+ X+1=(X+2)(X-1)+3.

So (a@+2)(a—1)=-3. Hence 55 =—3(a—1). We finally get
a’+1 2 1 2
=1+S(a-1)==-+2a.
2-1 T3l l=gtge
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Field Extensions

o If K is the field Q and L the field C, the minimum polynomial of iv/3
is X2 +3.
Then
Q[ivV3]={a+biV3:abeqQ).

The multiplicative inverse of a non-zero element a+ biv/3 is

d4bivE = — - o= /e
a+biv3 (a+biv3)(a-biV3)
_ a-biv3_ a b_.1»

24302 224302 22 +362
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o It might seem that the subfield Q(v/2,V/3) is not a simple extension,
but in fact it coincides with the visibly simple extension Q(v2+v/3).

It is clear that vV2+v3€eQ(v2,v3). So Q(v2+Vv3)cQ(v2,V3).
Note (vV3+v2)(v3-v2)=1. So V3-V2= L= Q(v2+V3).

Now we have

V2=3(vV2+V3)+3(vV2-V3)eQ(vV2+V3);
V3=1(v2+V3)-1(vV2-V3) e Q(vV2+V3).

Hence Q(v2,v3) < Q(vV2+V3).
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Field Extensions

o We can write Q(v'2,v3) as (Q[v2])[V3].
The set {1,v/2} is clearly a basis for Q[\/ﬁ] over Q.
Since V3¢ Q[v2], we must have [Q(V2,V3): Q[V2]] = 2.
On the other hand, observe (vV3)?>-3=0. So X?-3 is the minimum
polynomial of v/3 over Q[\/ﬁ] So {1,v/3} is a basis.
Hence {1,v2,V/3,V6} is a basis for Q(v2,V/3) over Q.
The minimum polynomial of v2+ /3 is of degree 4.
We have
(V2+V3)2=2+2V6+3=5+2V6;
(V2+V3)* = (5+2v6)% = 25+20v6 + 24 = 49+ 20V/6.

Hence, we obtain
(V2+V3)*-10(V2+v3)? +1=49+20v6-50-20v6+1=0.

So the minimum polynomial is X*—10X2 +1.



Field Extensions

o If @ has a minimum polynomial over K,
o a is called algebraic over K;
o Kla](=K(a)) is called a simple algebraic extension of K.
A complex number that is algebraic over Q is called an algebraic
number.
If K(a) is isomorphic to the field K(X) of rational functions,

o a is called transcendental over K;
o K(a) is called a simple transcendental extension of K.

©

©

A complex number that is transcendental over @Q is called a
transcendental number.

©

: The preceding examples feature simple algebraic extensions.

The elements iv/3,v2,v/3,v2 + /3 are algebraic numbers.
On the other hand, let L= K(X) be the field of rational forms over X.

By the definitions, the element X is transcendental over K.
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Field Extensions

Let K(a) be a simple transcendental extension of a field K. Then the
degree of K(a) over K is infinite.

o The elements 1,a,a?,... are linearly independent over K.

o An extension L of K is said to be an algebraic extension if every
element of L is algebraic over K.

o Otherwise, L is called a transcendental extension.

Every finite extension is algebraic.

o Let L be a finite extension of K. Suppose, for a contradiction, that L
contains an element a that is transcendental over K. Then the
elements 1,@,a?,... are linearly independent over K. So [L: K] cannot

be finite.



Field Extensions

Let L: K and M: L be field extensions, and let @ € M. If « is algebraic over
K, then it is also algebraic over L.

o Since a is algebraic over K, there exists a non-zero polynomial £ in
K[X], such that f(a)=0. Since f is also in L[X], we deduce that a is
algebraic over L.

o The minimum polynomial of a over L may of course be of smaller
degree than the minimum polynomial over K.

: We saw [Q[v2+V3]:Q] =4 and [Q[v2+V3]: Q[v2]] =2.
We can verify that:
o (V2+v3)*-10(v2+V3)2+1=0;
o (V2+V3)2-2v2(V2+V3)-1=0.
So the minimum polynomial of v2+v/3
o over Q is X4—10X2+1;
> over Q[V2] is X2 -2v2X -1.
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Field Extensions

Let L be an extension of a field K, and let </(L) be the set of all elements
in L that are algebraic over K. Then /(L) is a subfield of L.

o Suppose that a,fe «/(L). Then a-pe K(a,B)=(K[a])[B].
By the theorem, B is algebraic over K[a].
So both [K[a]: K] and [(K[a])[B] : K[a]] are finite.
It follows that [K(a, B) : K] is finite.
So, a— B is algebraic over K.

By a similar argument, %E.sz{(L), for all @ and B(#0) in </ (L).
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Field Extensions

o If we take K as the field @ of rational numbers and L as the field C of
complex numbers, then </(L) is the field A of algebraic numbers.

The field A of algebraic numbers is countable.

o The proof depends on some knowledge of the arithmetic of infinite
cardinal numbers. It is known that @ is countable. To put it in the
standard notation for cardinal numbers, |Q| =Rg. Since Q € A, we
know that |A| = Rg.

Now, the number of monic polynomials of degree n with coefficients in
Q is R =Rg. Each such polynomial has at most n distinct roots in C.
So the number of roots of monic polynomials of degree n is at most
nXg = Rg. Hence, the number of roots of monic polynomials of all
possible degrees is at most Rg-Ng =Rg. Thus |[A]| <Ng.
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Field Extensions

Transcendental numbers exist.

o It is known that |R| = |C| = 2% > Ry. It follows that C\A, the set of
transcendental numbers, is non-empty.

o Since |C\A|=2% > |A|, we can say that “most” complex numbers are
transcendental.

o This argument of Cantor was extraordinary in that it demonstrated the
existence of transcendental numbers without producing a single

example of such a number!
o Liouville demonstrated that ¥2° # is transcendental.
o Hermite proved that e is transcendental.

o Lindemann proved that 7 is transcendental.
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Field Extensions

Let L be an extension of F, and let the elements a1, as,...,a, of L have
minimum polynomials my, mo,..., m,, respectively, over F. Then

[F(ai,az,...,ap): F]<dmiomy---dm,.

o The proof is by induction on n, it being clear that [F(ay): F]=0m;.
Suppose inductively that [F(ay,a2,...,a@p-1): F]<dmidmy---0m,_1.
We know that mp(a,)=0. The element a, is certainly algebraic over
F(ai,az,...,ap-1). Its minimum polynomial over that field must have
degree =dmy. So [F(ai,az,...,an): F(ai, az,...,ap-1)] <0my,.

Now we have
[F(ai,az,...,an): F]

=[F(a1,az,...,an): Flai,az,...,an-1)]- [F(a1,az,...,an-1) : F]
<0momy---0mp_10my.
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o We cannot assert equality in the preceding formula.
o We have

[Q(v2): Q] = [Q(v3): Q] = [Q(V6) : Q] =2,
[Q(v2,v3,v6): Q| =

This shows that

[Q(v2,v3,v6): @] < [Q(v2): Ql[Q(v3): QI[Q(V6): Q].
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Field Extensions

An extension L of a field K is finite if and only if, for some n, there exist
a1,as,...,an, algebraic over K, such that L=K(ai,as,...,an).

o The theorem gives half of this result.
Suppose now that [L: K] is finite.
Let {a1,ao,...,an} be a basis for L over K.
The elements a; are all algebraic.

Then L consists of linear combinations (with coefficients in K) of
a1,qd2,...,An.

This set contains (and is thus equal to) the seemingly larger set
K(ai,az,...,an).
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Field Extensions

Subsection 3
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Field Extensions

Let K be a field and let m be a monic irreducible polynomial with
coefficients in K. Then L= K[X]/(m) is a simple algebraic extension K|[a]
of K, and a = X + (m) has minimum polynomial m over K.

o Let K be a field, and let me K[X] be irreducible and monic. Let
L=K[X]/{(m). Then L is a field. The mapping a— a+(m) is a
monomorphism from K into L. So L is an extension of K.

Let a =X +(m). Then, for f =ag+ar X +axX?+---+a,X" in K[X],

fla) = ap+aja+---+apa”

ag+ar(X +(m)) +ap(X +(m))2+---+a,(X +(m))"
ag+ar (X +(m))+ax(X%+(m))+---+an(X"+(m))
= (ag+arX+aX?+--+a,X")+(m)=f+(m).

So f(a) =0+ (m) if and only if m|f.
Thus, m is the minimum polynomial of a.
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Field Extensions

Let K, K’ be fields, and let ¢ : K — K’ be an isomorphism with canonical
extension @ : K[X] — K'[X]. Let f=a,X"+a,_1 X" 1+ ---+ag be an
irreducible polynomial of degree n with coefficients in K, and let
f'=p(F)=@(an) X" +@(an-1)X""1+---+¢(ag). Let L be an extension of
K containing a root a of f, and let L’ be an extension of K’ containing a
root a’ of f'. Then there is an isomorphism y from K[a] onto K'[a'],
extending ¢.

o The field K[a] consists of polynomials by +bya +---+ b, 1a" .

Addition is obvious. Multiplication is carried out using the equation
a"=-21(a,_1@" 1 +---+ag). The mapping v is defined by

an

n—1

w(bo+bra+--+b,1a" 1) =p(bo) +@(b1)a’ +---+¢(bp_1)a

More compactly, w(u(a)) = (§(u))(a’), for all uin K[X] with du < n.



Field Extensions

o 1 is onto. This follows by observing that:
o K'[@'] consists of polynomials of the form b+ bja’+--- + b;_la’”‘l,
with bé,...,b;_l in K;
s ¢:K— K'is onto.

o 1 is one-to-one: We have
w(bo+bra+---+b, 10" V) =y(cp+ca+--+cp1a™?t)
@(bo) +p(br)a’ + - +¢(bp-1)a’" = p(co) +¢(c1)a’ +---+p(cn-1)
(¢(bo) = (o)) + (¢(b1) — (1))’ + -+ + (p(bn-1) — p(cn-1))a’" "t = 0.
Since [K'[@'] : K] = n, the polynomial on the left must be zero.

So we get ¢(bo) = (<o), ¢(b1) = p(c1),...,9(bn-1) = p(cn-1)-
As ¢ is one-to-one, by = ¢y, by =c1,...,bp—1 = Cp-1.

n—1

Therefore, v is one-to-one.
o That y extends ¢ is clear.
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o From the definition of v it is also clear that
y(u(a)+v(a)) =y (u(a)) +y(v(a)).

o In multiplying u(a) and v(a), we use the minimum polynomial to
reduce the answer to the form w(a), dw <n—1.
We use the division algorithm to write uv = gm+ w, where dw < n.
Hence y(u(a)v(a)) = y(w(a)) = (@(w))(a').
The isomorphism @ implies that the division algorithm in K'[X] gives
P(u)@(v) =@(q)p(m)+p(w). Hence,

(w(u(a))y(v(a)) P(u))(@)(@(v))(a)

(1)p(v))(a')

(@)@(m) +p(w))(a)
(@))(@)(@(m))(a) +(p(w))(a)
(w))(a)

y(u(a)v(a)).

(
(
(
(
(

@
7
7
@
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Field Extensions

Let K be a field, and let f be an irreducible polynomial with coefficients in
K. If L,L’ are extensions of K containing roots a,a’ of f, respectively, then
there is an isomorphism from K[a] onto K[a'] which fixes every element of
K.

o An isomorphism a from L onto L’ with the property that
a(x) = x, for every element x of K,

i.e., that fixes every element of K, is called a K-isomorphism.
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Field Extensions

o If K=R and m= X?+1, the field L= K[X]/(X?+1) contains an
element 6 = X + (X2 +1), such that §2=-1.

The polynomial X?+1 is irreducible over R.

It factorizes into (X +8)(X —9) in the field L.

Every element of L can be uniquely expressed in the form a+ bé.
So L is none other than the field C of complex numbers.

o By the Fundamental Theorem of Algebra every polynomial with
coefficients in C factorizes into linear factors.

So every irreducible m in Q[X] factorizes completely in C[X].

If we know the factors, it is easier to deal, e.g., with the subfield
Q[ivV3]={a+biv3:a,beQ} of C than with Q[X]/(X?+3).
The two fields are, of course, isomorphic to each other.
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Field Extensions

o The polynomial m= X2+ X +1 is irreducible over Zj.

Any proper factor would be either X —0 or X —1, and neither 0 nor 1
is a root of m.

We form the field L =Z;[X]/{(m).
It has 4 elements, namely,

0+(m), 1+{(m), X+{(m), 1+ X +{(m).
We write them as 0,1, and 1+, where a®?+a+1=0.
The addition and multiplication in L are given by

+| 0 1 a l+a -|0 1 a l+a
0 0 1 a l+a 0(0 0 0 0
1 1 0 l+a a 10 1 a l+a
a a l+a 0 1 a |0 a l+a 1
l+a | 1+a (01 1 0 l1+a |0 l+a 1 (01
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Field Extensions

o We show that ¢ : Q[i + V2] — Q[X]/(X*-2X?+9), defined by
p(a) = a+(X*=2X2+9), aeQ, p(i+v2)=X+(X*-2X?+9),
is an isomorphism. Then, we determine ¢(/).

It is clear that [Q[i+Vv2]: Q] =4.

We compute
(i+v2)?=i?+2iV2+2=1+2iV2;
(i+v2)*=(1+2ivV2)?=1+4iV2-8= -T+4iV2.
We verify
(i +V2)*=2(i+v2)?+9= —7+4ivV2-2-4ivV2+9=0.

So the minimum polynomial of i +v/2 over Q is X*-2X?+9.
By uniqueness ¢ is an isomorphism.
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Field Extensions

o Let ap,...,a3€Q.
Observe that
ag+a1(i+v2)+ax(i+v2)?+a3(i+v2)3
=ag+a1(i+v2) +ax(1+2ivV2) +a3(5i —V2)
= (ap +a2) + (a1 +5a3)i + (a1 — a3) V2 + (2a2)i V2.

Since {1,i,v2,iv/2} is linearly independent over @, this equals i if and

only if
ag+a = 0 a = 0
1
aj+baz =1 a = z
1 3 - 1 5
dp—as = 0 dy = 0
dy = 0 a3 = %

Thus, i =2((i+Vv2)+(i+V2)3).
So (i) = g (X + X3) +(X*=2X2+9).
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