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Field Extensions The Degree of an Extension

Field Extensions

If K ,L are fields and ϕ :K → L is a monomorphism, we say that L is
an extension of K .

We write “L :K is a (field) extension”.

This is not essentially different from saying that K is a subfield of L,
since we may always identify K with its image ϕ(K ).

Then L can be regarded as a vector space over K , since the vector
space axioms are all consequences of the field axioms for L:

(V1) (x +y)+z = x + (y +z), x ,y ,z ∈ L;
(V2) x +y = y +x , x ,y ∈ L;
(V3) There exists 0 in L, such that x +0= x , x ∈ L;
(V4) For all x in L, there exists −x in L, such that x + (−x)= 0;
(V5) a(x +y)= ax +ay , a ∈K ,x ,y ∈ L;
(V6) (a+b)x = ax +bx , a,b ∈K ,x ∈ L;
(V7) (ab)x = a(bx), a,b ∈K ,x ∈ L;
(V8) 1x = x , x ∈ L.
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Field Extensions The Degree of an Extension

Dimension of Field Extensions

Let L :K be a field extension.

Since L can be regarded as a vector space over K , there exists a basis

of L over K .

Different bases have the same cardinality, and there is a well-defined
dimension of L, equal to the cardinality of an arbitrarily chosen basis.

The term used in field theory for this dimension is the degree of L

over K , or the degree of the extension L :K , denoted by [L :K ].

We say that L is a finite extension of K if [L :K ] is finite.

Otherwise L is an infinite extension.
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Field Extensions The Degree of an Extension

Examples

The field R of real numbers is an infinite extension of Q.

Any finite extension of Q is countable, and R is not.

The field C of complex numbers is a finite extension of R, with basis
{1, i }.

Every complex number has a unique expression as a1+bi , with
a,b ∈R.

Of course, bases are not unique.

For C :R, we can write a+bi as

1

2
(a+b)(1+ i)+

1

2
(a−b)(1− i).

So {1+ i ,1− i } is also a basis.

But every basis has exactly two elements, and [C :R]= 2.

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 6 / 42



Field Extensions The Degree of an Extension

Extensions of Degree One

Theorem

Let L :K be a field extension. Then L=K if and only if [L :K ]= 1.

Suppose first that L=K . Then {1} is a basis for L over K , since every
element x of L is expressible as x1, with x in K . Thus, [L :K ]= 1.

Conversely, suppose that [L :K ]= 1.

Let {x}, where x 6= 0, be a basis of L over K .

In particular, there exists a in K such that 1= ax . So x = 1
a ∈K .

Now, let y in L. Then, there exists b in K , such that y = bx = b
a .

Thus, y ∈K . This proves that L=K .
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Field Extensions The Degree of an Extension

Chain of Extensions

Suppose we have field extensions L :K and M : L.

That is, there are monomorphisms α :K → L, β : L→M.

Then β◦α :K →M is a monomorphism, and so M :K is an extension.

Theorem

Let L :K and M : L be field extensions. Then [M : L][L :K ]= [M :K ].

Let {a1,a2, . . . ,ar } be a linearly independent subset of M over L.

Let {b1,b2, . . . ,bs } be a linearly independent subset of L over K .

We show that {aibj : i = 1,2, . . . ,r , j = 1,2, . . . ,s} is a linearly independent
subset of M over K .

Suppose that
∑r

i=1

∑s
j=1

λijaibj = 0, with λij ∈K , for all i and j .

Rewrite as
∑r

i=1
(
∑s

j=1
λijbj)ai = 0. Since the ai are linearly

independent over L,
∑s

j=1
λijbj = 0, i = 1,2, . . . ,r . Since the bj are

linearly independent over K , λij = 0, for all i and j .
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Chain of Extensions (Cont’d)

Suppose [M : L] or [L :K ] is infinite. Then either r or s can be made
arbitrarily large. So the set {aibj : i = 1, . . . ,r , j = 1, . . . ,s} can be made
arbitrarily large. Hence, [M :K ] is infinite.
Suppose, next, that [M : L]= r <∞, [L :K ]= s <∞. Let {a1,a2, . . . ,ar }

be a basis of M over L, and {b1,b2, . . . ,bs } a basis of L over K .

For each z in M, there exist λ1,λ2, . . . ,λr in L, such that z =
∑r

i=1
λiai .

For each λi there exist µi1,µi2, . . . ,µis in K such that λi =
∑s

j=1
µijbj .

Hence z =
∑r

i=1

∑s
j=1

µij(aibj).

We showed that the set {aibj : i = 1, . . . ,r , j = 1, . . . ,s} is an independent
spanning set (a basis) for M over K . So [M :K ]= rs = [M : L][L :K ].

Corollary

Let K1,K2, . . . ,Kn be fields. Suppose that Ki+1 :Ki is an extension, for
1≤ i ≤ n−1. Then

[Kn :K1]= [Kn :Kn−1][Kn−1 :Kn−2] · · · [K2 :K1].
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Subsection 2

Extensions and Polynomials
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Field Extensions Extensions and Polynomials

The Field Q[
p

2]

The equation X 2 = 2 cannot be solved within the field of rationals.

It has the solutions ±
p

2 in the field R of real numbers.

In fact, its solutions lie within a subfield of R, namely, the extension

Q[
p

2]= {a+b
p

2 : a,b ∈Q} of Q.

It is easy to verify the subfield conditions:

If a+b
p

2,c +d
p

2 ∈Q[
p

2], then

(a+b
p

2)− (c +d
p

2)= (a−c)+ (b−d)
p

2 ∈Q[
p

2];

if c +d
p

2 6= 0,

a+b
p

2

c +d
p

2
=
(a+b

p
2)(c −d

p
2)

(c +d
p

2)(c −d
p

2)
=
ac −2bd

c2−2d2
+

bc −ad

c2−2d2

p
2.

Since
p

2 is irrational, c2−2d2 = 0 if and only if c = d = 0.
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Subfield Generated by a Set

Let K be a subfield of a field L.

Let S be a subset of L.

Let K (S) be the intersection of all subfields of L containing K ∪S .

There is at least one such subfield, namely L itself.

It is clear that K (S) is the smallest subfield containing K ∪S .

K (S) is called the subfield of L generated over K by S .

If S = {α1,α2, . . . ,αn} is finite, we write K (S) as K (α1,α2, . . . ,αn).
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Characterization of Subfield Generated by a Set

Theorem

The subfield K (S) of the field L coincides with the set E of all elements of
L that can be expressed as quotients of finite linear combinations (with
coefficients in K ) of finite products of elements of S .

Let P be the set of all finite linear combinations of finite products of
elements of S . If p,q ∈P , then p±q,pq ∈P . Let x = p

q and y = r
s be

typical elements of E , with p,q,r ,s in P and q,s 6= 0.
x −y = ps−qr

qs ∈E ;
If y 6= 0, x

y
= ps

qr
∈E .

Thus, E is a subfield of L containing K and S . So K (S)⊆E .
Any subfield containing K and S must also contain:

All finite products of elements in S ;
All linear combinations of such products;
All quotients of such linear combinations.

In short, it must contain E . Hence, in particular, K (S)⊇E .
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Simple Extensions

If S has just one element α 6∈K , by the theorem, K (α) is the set of all
quotients of polynomials in α with coefficients in K .

We say that K (α) is a simple extension of K .

The link with polynomials is important:

Theorem

Let L be a field, let K be a subfield and let α ∈ L. Then one of the
following two alternatives holds:

(i) K (α) is isomorphic to K (X ), the field of all rational forms with coefficients
in K .

(ii) There exists a unique monic irreducible polynomial m in K [X ] with the
property that, for all f in K [X ],

(a) f (α)= 0 if and only if m | f ;
(b) The field K(α) coincides with K [α], the ring of all polynomials in α with

coefficients in K ;
(c) [K [α] :K ]= ∂m.
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Field Extensions Extensions and Polynomials

Proof of the Simple Extension Theorem Case (i)

Suppose first that there is no non-zero polynomial f in K [X ] such that
f (α)= 0. Then α 6∈K , since f =X −α would contradict the hypothesis.

Note that g(α)= 0 only if g is the zero polynomial.

Hence, there is a mapping ϕ :K (X )→K (α) given by ϕ
(
f
g

)
= f (α)

g (α)
.

It is routine to verify that ϕ is a homomorphism.
It clearly maps onto K (α).
It is both well defined and one-to-one.
Suppose that f ,g ,p,q are polynomials, with g ,q 6= 0. Then

ϕ
(
f
g

)
=ϕ

(
p
q

)
iff f (α)q(α)−p(α)g(α) = 0 in L

iff fq−pg = 0 in K [X ]

iff f
g = p

q in K (X ).
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Proof of the Simple Extension Theorem Case (ii)

Suppose there exists a non-zero polynomial g such that g(α)= 0.

Assume that g is a polynomial with least degree having this property.

If a is the leading coefficient of g , then g
a is monic. Denote g

a by m.
Certainly m(α)= 0.
Clearly, if m | f , then f (α)= 0.
Conversely, suppose that f (α)= 0. Then, f = qm+ r , where ∂r < ∂m.
Now 0= f (α)= q(α)m(α)+ r(α) = 0+ r(α)= r(α). Since ∂r < ∂m, r is
the zero polynomial. Hence f = qm. So m | f .

m is unique. Suppose that m′ is another polynomial with the same
properties. Then m(α)=m′(α)= 0. So m |m′ and m′ |m. Since both
polynomials are monic, m′ =m.

m is irreducible. Suppose that there exist polynomials p and q, such
that pq =m, with ∂p,∂q < ∂m. Then p(α)q(α)=m(α)= 0. So either
p(α)= 0 or q(α)= 0. This is impossible, since both p and q are of
smaller degree than m.
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Proof of the Simple Extension Theorem Case (ii) (Cont’d)

K (α)=K [α]. Consider a typical element
f (α)
g (α) in K (α), g(α) 6= 0.

Then m does not divide g . Since m has no divisors other than itself
and 1, the greatest common divisor of g and m is 1.

Hence, there exist polynomials a,b, such that ag +bm= 1.

Substituting α for X , a(α)g(α)= 1. Thus,
f (α)
g (α) = f (α)a(α) ∈K [α].

We close by showing that [K [α] :K ]= ∂m.

Let ∂m= n and p(α) ∈K [α]=K (α), where p is a polynomial.

Then p = qm+ r , where ∂r < ∂m= n. Therefore, p(α)= r(α).

So there exist c0,c1, . . . ,cn−1 (the coefficients of r , some of which may,
of course, be zero) in K , such that

p(α)= c0+c1α+·· ·+cn−1α
n−1

.

Hence {1,α, . . . ,αn−1} is a spanning set for K [α].
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Field Extensions Extensions and Polynomials

Proof of the Simple Extension Theorem Case (ii) (Cont’d)

Moreover, the set {1,α, . . . ,αn−1} is linearly independent over K .

Let a0,a1, . . . ,an−1 in K be such that

a0+a1α+·· ·+an−1α
n−1 = 0.

Then a0 = a1 = ·· · = an−1 = 0. Otherwise there would be a non-zero
polynomial p = a0+a1X +·· ·+an−1X

n−1 of degree ≤ n−1, such that
p(α)= 0.

Thus {1,α, . . . ,αn−1} is a basis of K (α) over K . So [K (α) :K ]= n.

The polynomial m is called the minimum polynomial of the element
α.
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A Useful Consequence

Corollary

Let L be a field, let K be a subfield and let α ∈ L. If [K [α] :K ]= n and g is
a monic polynomial in K [X ] of degree n, such that g(α)= 0, then g is the
minimum polynomial of α.

Let m be the minimum polynomial of α.

Since g(α)= 0, m | g .

Since g is monic of degree n, m= g .

Hence, g must be the minimum polynomial of α.
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Example

Let α be in C with minimum polynomial X 2+X +1 over Q.
We show that α2−1 6= 0;
We express the element α2+1

α2−1
of Q(α) in the form a+bα, a,b ∈Q.

We have α2+α+1= 0. So α2−1= −α−2 6= 0.

Now we get
α2+1

α2−1
=

−α
−α−2

=
α

α+2
= 1−

2

α+2
.

Dividing X 2+X +1 by X +2 gives

X 2+X +1= (X +2)(X −1)+3.

So (α+2)(α−1) =−3. Hence 1
α+2

=−1
3
(α−1). We finally get

α2+1

α2−1
= 1+

2

3
(α−1)=

1

3
+

2

3
α.
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Example

If K is the field Q and L the field C, the minimum polynomial of i
p

3
is X 2+3.

Then
Q[i

p
3]= {a+bi

p
3 : a,b ∈Q}.

The multiplicative inverse of a non-zero element a+bi
p

3 is

a′+b′i
p

3 =
1

a+bi
p

3
=

a−bi
p

3

(a+bi
p

3)(a−bi
p

3)

=
a−bi

p
3

a2+3b2
=

a

a2+3b2
−

b

a2+3b2
i
p

3.
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Example: The Subfield Q(
p

2,
p

3)

It might seem that the subfield Q(
p

2,
p

3) is not a simple extension,
but in fact it coincides with the visibly simple extension Q(

p
2+

p
3).

It is clear that
p

2+
p

3 ∈Q(
p

2,
p

3). So Q(
p

2+
p

3)⊆Q(
p

2,
p

3).

Note (
p

3+
p

2)(
p

3−
p

2)= 1. So
p

3−
p

2= 1p
3+

p
2
∈Q(

p
2+

p
3).

Now we have
p

2= 1
2
(
p

2+
p

3)+ 1
2
(
p

2−
p

3) ∈Q(
p

2+
p

3);
p

3= 1
2
(
p

2+
p

3)− 1
2
(
p

2−
p

3) ∈Q(
p

2+
p

3).

Hence Q(
p

2,
p

3)⊆Q(
p

2+
p

3).
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Example: The Subfield Q(
p

2,
p

3) (Cont’d)

We can write Q(
p

2,
p

3) as (Q[
p

2])[
p

3].

The set {1,
p

2} is clearly a basis for Q[
p

2] over Q.

Since
p

3 6∈Q[
p

2], we must have [Q(
p

2,
p

3) :Q[
p

2]]≥ 2.

On the other hand, observe (
p

3)2−3= 0. So X 2−3 is the minimum
polynomial of

p
3 over Q[

p
2]. So {1,

p
3} is a basis.

Hence {1,
p

2,
p

3,
p

6} is a basis for Q(
p

2,
p

3) over Q.

The minimum polynomial of
p

2+
p

3 is of degree 4.

We have

(
p

2+
p

3)2 = 2+2
p

6+3= 5+2
p

6;

(
p

2+
p

3)4 = (5+2
p

6)2 = 25+20
p

6+24= 49+20
p

6.

Hence, we obtain

(
p

2+
p

3)4−10(
p

2+
p

3)2+1= 49+20
p

6−50−20
p

6+1= 0.

So the minimum polynomial is X 4−10X 2+1.
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Algebraic and Transcendental Extensions

If α has a minimum polynomial over K ,

α is called algebraic over K ;
K [α](=K (α)) is called a simple algebraic extension of K .

A complex number that is algebraic over Q is called an algebraic

number.

If K (α) is isomorphic to the field K (X ) of rational functions,

α is called transcendental over K ;
K (α) is called a simple transcendental extension of K .

A complex number that is transcendental over Q is called a
transcendental number.

Example: The preceding examples feature simple algebraic extensions.

The elements i
p

3,
p

2,
p

3,
p

2+
p

3 are algebraic numbers.

On the other hand, let L=K (X ) be the field of rational forms over X .

By the definitions, the element X is transcendental over K .
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Algebraic, Transcendental Extensions and Degrees

Theorem

Let K (α) be a simple transcendental extension of a field K . Then the
degree of K (α) over K is infinite.

The elements 1,α,α2, . . . are linearly independent over K .

An extension L of K is said to be an algebraic extension if every
element of L is algebraic over K .

Otherwise, L is called a transcendental extension.

Theorem

Every finite extension is algebraic.

Let L be a finite extension of K . Suppose, for a contradiction, that L
contains an element α that is transcendental over K . Then the
elements 1,α,α2, . . . are linearly independent over K . So [L :K ] cannot
be finite.
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Algebraicity and Chains of Extensions

Theorem

Let L :K and M : L be field extensions, and let α ∈M. If α is algebraic over
K , then it is also algebraic over L.

Since α is algebraic over K , there exists a non-zero polynomial f in
K [X ], such that f (α)= 0. Since f is also in L[X ], we deduce that α is
algebraic over L.

The minimum polynomial of α over L may of course be of smaller
degree than the minimum polynomial over K .

Example: We saw [Q[
p

2+
p

3] :Q]= 4 and [Q[
p

2+
p

3] :Q[
p

2]]= 2.
We can verify that:

(
p

2+
p

3)4−10(
p

2+
p

3)2+1= 0;
(
p

2+
p

3)2−2
p

2(
p

2+
p

3)−1= 0.

So the minimum polynomial of
p

2+
p

3
over Q is X 4−10X 2+1;
over Q[

p
2] is X 2−2

p
2X −1.
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Subfield of Algebraic Elements

Theorem

Let L be an extension of a field K , and let A (L) be the set of all elements
in L that are algebraic over K . Then A (L) is a subfield of L.

Suppose that α,β ∈A (L). Then α−β ∈K (α,β)= (K [α])[β].

By the theorem, β is algebraic over K [α].

So both [K [α] :K ] and [(K [α])[β] :K [α]] are finite.

It follows that [K (α,β) :K ] is finite.

So, α−β is algebraic over K .

By a similar argument, α
β ∈A (L), for all α and β(6= 0) in A (L).
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The Field A of Algebraic Numbers

If we take K as the field Q of rational numbers and L as the field C of
complex numbers, then A (L) is the field A of algebraic numbers.

Theorem

The field A of algebraic numbers is countable.

The proof depends on some knowledge of the arithmetic of infinite
cardinal numbers. It is known that Q is countable. To put it in the
standard notation for cardinal numbers, |Q| = ℵ0. Since Q⊆A, we
know that |A| ≥ ℵ0.

Now, the number of monic polynomials of degree n with coefficients in
Q is ℵn0 =ℵ0. Each such polynomial has at most n distinct roots in C.
So the number of roots of monic polynomials of degree n is at most
nℵ0 =ℵ0. Hence, the number of roots of monic polynomials of all
possible degrees is at most ℵ0 ·ℵ0 =ℵ0. Thus |A| ≤ ℵ0.
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Existence of Transcendental Numbers

Theorem

Transcendental numbers exist.

It is known that |R| = |C| = 2ℵ0 >ℵ0. It follows that C\A, the set of
transcendental numbers, is non-empty.

Since |C\A| = 2ℵ0 > |A|, we can say that “most” complex numbers are
transcendental.

This argument of Cantor was extraordinary in that it demonstrated the
existence of transcendental numbers without producing a single
example of such a number!

Liouville demonstrated that
∑∞

n=1
1

10n!
is transcendental.

Hermite proved that e is transcendental.

Lindemann proved that π is transcendental.
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Degree of an Extension and Minimum Polynomials

Theorem

Let L be an extension of F , and let the elements α1,α2, . . . ,αn of L have
minimum polynomials m1,m2, . . . ,mn, respectively, over F . Then

[F (α1,α2, . . . ,αn) :F ]≤ ∂m1∂m2 · · ·∂mn.

The proof is by induction on n, it being clear that [F (α1) : F ]= ∂m1.
Suppose inductively that [F (α1,α2, . . . ,αn−1) : F ]≤ ∂m1∂m2 · · ·∂mn−1.
We know that mn(αn)= 0. The element αn is certainly algebraic over
F (α1,α2, . . . ,αn−1). Its minimum polynomial over that field must have
degree ≤ ∂mn. So [F (α1,α2, . . . ,αn) :F (α1,α2, . . . ,αn−1)]≤ ∂mn.
Now we have

[F (α1,α2, . . . ,αn) : F ]
= [F (α1,α2, . . . ,αn) : F (α1,α2, . . . ,αn−1)] · [F (α1 ,α2, . . . ,αn−1) :F ]
≤ ∂m1∂m2 · · ·∂mn−1∂mn.
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Example

We cannot assert equality in the preceding formula.

We have

[Q(
p

2) :Q]= [Q(
p

3) :Q]= [Q(
p

6) :Q]= 2,[
Q(

p
2,
p

3,
p

6) :Q
]
= 4.

This shows that
[
Q(

p
2,
p

3,
p

6) :Q
]
< [Q(

p
2) :Q][Q(

p
3) :Q][Q(

p
6) :Q].
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Finite Extensions and Algebraic Elements

Proposition

An extension L of a field K is finite if and only if, for some n, there exist
α1,α2, . . . ,αn, algebraic over K , such that L=K (α1,α2, . . . ,αn).

The theorem gives half of this result.

Suppose now that [L :K ] is finite.

Let {α1,α2, . . . ,αn} be a basis for L over K .

The elements αi are all algebraic.

Then L consists of linear combinations (with coefficients in K ) of
α1,α2, . . . ,αn.

This set contains (and is thus equal to) the seemingly larger set
K (α1,α2, . . . ,αn).
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Subsection 3

Polynomials and Extensions
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Irreducible Polynomials and Simple Algebraic Extensions

Theorem

Let K be a field and let m be a monic irreducible polynomial with
coefficients in K . Then L=K [X ]/〈m〉 is a simple algebraic extension K [α]
of K , and α=X +〈m〉 has minimum polynomial m over K .

Let K be a field, and let m ∈K [X ] be irreducible and monic. Let
L=K [X ]/〈m〉. Then L is a field. The mapping a 7→ a+〈m〉 is a
monomorphism from K into L. So L is an extension of K .

Let α=X +〈m〉. Then, for f = a0+a1X +a2X
2+ ·· ·+anX

n in K [X ],

f (α) = a0+a1α+·· ·+anα
n

= a0+a1(X +〈m〉)+a2(X +〈m〉)2+·· ·+an(X +〈m〉)n
= a0+a1(X +〈m〉)+a2(X

2+〈m〉)+·· ·+an(X
n+〈m〉)

= (a0+a1X +a2X
2+·· ·+anX

n)+〈m〉 = f +〈m〉.

So f (α)= 0+〈m〉 if and only if m | f .
Thus, m is the minimum polynomial of α.
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Isomorphisms of Extension Fields

Theorem

Let K ,K ′ be fields, and let ϕ :K →K ′ be an isomorphism with canonical
extension ϕ̂ :K [X ]→K ′[X ]. Let f = anX

n+an−1X
n−1+ ·· ·+a0 be an

irreducible polynomial of degree n with coefficients in K , and let
f ′ = ϕ̂(f )=ϕ(an)X

n+ϕ(an−1)X
n−1+ ·· ·+ϕ(a0). Let L be an extension of

K containing a root α of f , and let L′ be an extension of K ′ containing a
root α′ of f ′. Then there is an isomorphism ψ from K [α] onto K ′[α′],
extending ϕ.

The field K [α] consists of polynomials b0+b1α+·· ·+bn−1α
n−1.

Addition is obvious. Multiplication is carried out using the equation
αn =− 1

an
(an−1α

n−1+·· ·+a0). The mapping ψ is defined by

ψ(b0+b1α+·· ·+bn−1α
n−1)=ϕ(b0)+ϕ(b1)α

′+·· ·+ϕ(bn−1)α
′n−1

.

More compactly, ψ(u(α))= (ϕ̂(u))(α′), for all u in K [X ] with ∂u < n.
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Isomorphisms of Extension Fields (Cont’d)

ψ is onto. This follows by observing that:
K ′[α′] consists of polynomials of the form b′

0
+b′

1
α′+·· ·+b′

n−1
α′n−1,

with b′
0

, . . . ,b′
n−1

in K ′;
ϕ :K →K ′ is onto.

ψ is one-to-one: We have

ψ(b0+b1α+·· ·+bn−1α
n−1)=ψ(c0 +c1α+·· ·+cn−1α

n−1)

ϕ(b0)+ϕ(b1)α
′+·· ·+ϕ(bn−1)α

′n−1 =ϕ(c0)+ϕ(c1)α
′+·· ·+ϕ(cn−1)α

′n−1

(ϕ(b0)−ϕ(c0))+ (ϕ(b1)−ϕ(c1))α
′+·· ·+ (ϕ(bn−1)−ϕ(cn−1))α

′n−1 = 0.

Since [K ′[α′] :K ′]= n, the polynomial on the left must be zero.

So we get ϕ(b0)=ϕ(c0),ϕ(b1)=ϕ(c1), . . . ,ϕ(bn−1)=ϕ(cn−1).

As φ is one-to-one, b0 = c0,b1 = c1, . . . ,bn−1 = cn−1.

Therefore, ψ is one-to-one.

That ψ extends φ is clear.
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Isomorphisms of Extension Fields (Conclusion)

From the definition of ψ it is also clear that
ψ(u(α)+v(α))=ψ(u(α))+ψ(v(α)).

In multiplying u(α) and v(α), we use the minimum polynomial to
reduce the answer to the form w(α), ∂w ≤ n−1.

We use the division algorithm to write uv = qm+w , where ∂w < n.

Hence ψ(u(α)v(α))=ψ(w(α))= (ϕ̂(w))(α′).

The isomorphism ϕ̂ implies that the division algorithm in K ′[X ] gives
ϕ̂(u)ϕ̂(v)= ϕ̂(q)ϕ̂(m)+ ϕ̂(w). Hence,

(ψ(u(α))ψ(v(α)) = (ϕ̂(u))(α′)(ϕ̂(v))(α′)
= (ϕ̂(u)ϕ̂(v))(α′)
= (ϕ̂(q)ϕ̂(m)+ ϕ̂(w))(α′)
= (ϕ̂(q))(α′)(ϕ̂(m))(α′)+ (ϕ̂(w))(α′)
= (ϕ̂(w))(α′)
= ψ(u(α)v(α)).
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K -Isomorphisms

Corollary

Let K be a field, and let f be an irreducible polynomial with coefficients in
K . If L,L′ are extensions of K containing roots α,α′ of f , respectively, then
there is an isomorphism from K [α] onto K [α′] which fixes every element of
K .

An isomorphism α from L onto L′ with the property that

α(x)= x , for every element x of K ,

i.e., that fixes every element of K , is called a K -isomorphism.
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Example

If K =R and m=X 2+1, the field L=K [X ]/〈X 2+1〉 contains an
element δ=X +〈X 2+1〉, such that δ2 =−1.

The polynomial X 2+1 is irreducible over R.

It factorizes into (X +δ)(X −δ) in the field L.

Every element of L can be uniquely expressed in the form a+bδ.

So L is none other than the field C of complex numbers.

By the Fundamental Theorem of Algebra every polynomial with
coefficients in C factorizes into linear factors.

So every irreducible m in Q[X ] factorizes completely in C[X ].

If we know the factors, it is easier to deal, e.g., with the subfield
Q[i

p
3]= {a+bi

p
3 : a,b ∈Q} of C than with Q[X ]/〈X 2+3〉.

The two fields are, of course, isomorphic to each other.
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Example

The polynomial m=X 2+X +1 is irreducible over Z2.

Any proper factor would be either X −0 or X −1, and neither 0 nor 1
is a root of m.

We form the field L=Z2[X ]/〈m〉.
It has 4 elements, namely,

0+〈m〉, 1+〈m〉, X +〈m〉, 1+X +〈m〉.

We write them as 0,1,α and 1+α, where α2+α+1= 0.
The addition and multiplication in L are given by

+ 0 1 α 1+α

0 0 1 α 1+α

1 1 0 1+α α

α α 1+α 0 1
1+α 1+α α 1 0

· 0 1 α 1+α

0 0 0 0 0
1 0 1 α 1+α

α 0 α 1+α 1
1+α 0 1+α 1 α
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Example

We show that ϕ :Q[i +
p

2]→Q[X ]/〈X 4−2X 2+9〉, defined by

ϕ(a)= a+〈X 4−2X 2+9〉, a ∈Q, ϕ(i +
p

2)=X +〈X 4−2X 2+9〉,

is an isomorphism. Then, we determine ϕ(i).

It is clear that [Q[i +
p

2] :Q]= 4.

We compute

(i +
p

2)2 = i2+2i
p

2+2= 1+2i
p

2;

(i +
p

2)4 = (1+2i
p

2)2 = 1+4i
p

2−8= −7+4i
p

2.

We verify

(i +
p

2)4−2(i +
p

2)2+9= −7+4i
p

2−2−4i
p

2+9= 0.

So the minimum polynomial of i +
p

2 over Q is X 4−2X 2+9.

By uniqueness ϕ is an isomorphism.
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Example (Cont’d)

Let a0, . . . ,a3 ∈Q.

Observe that

a0+a1(i +
p

2)+a2(i +
p

2)2+a3(i +
p

2)3

= a0+a1(i +
p

2)+a2(1+2i
p

2)+a3(5i −
p

2)

= (a0+a2)+ (a1 +5a3)i + (a1−a3)
p

2+ (2a2)i
p

2.

Since {1, i ,
p

2, i
p

2} is linearly independent over Q, this equals i if and
only if 





a0+a2 = 0
a1+5a3 = 1
a1−a3 = 0

a2 = 0





⇒






a0 = 0
a1 = 1

6

a2 = 0
a3 = 1

6

Thus, i = 1
6
((i +

p
2)+ (i +

p
2)3).

So ϕ(i)= 1
6
(X +X 3)+〈X 4−2X 2+9〉.
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