Fields and Galois Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 1 / 1

A Polynomial and its Splitting Field

- Consider a polynomial such as $X^2 + 2$.
- Extend the field Q to Q[i√2] by adjoining one of the complex roots of the polynomial.
- We obtain a "bonus", in that the other root $-i\sqrt{2}$ is also in the extended field.
- Over $\mathbb{Q}[i\sqrt{2}]$ we have that $X^2 + 2 = (X i\sqrt{2})(X + i\sqrt{2})$.
- We say that the polynomial splits completely (into linear factors) over Q[i√2].
- It is indeed clear that this must happen for a polynomial of degree 2, since the "other" factor must also be linear.

Another Polynomial and its Splitting Field

- Consider the cubic polynomial $X^3 2$, which is irreducible over \mathbb{Q} (by Eisenstein's Criterion).
- Extend \mathbb{Q} to $\mathbb{Q}[\alpha]$, where $\alpha = \sqrt[3]{2}$.
- We obtain the factorization $X^3 2 = (X \alpha)(X^2 + \alpha X + \alpha^2)$,
- The quadratic factor is irreducible over Q[α] (it is irreducible over R, since the discriminant is -3α²).
- Over the complex field we have the factorization

$$X^{3}-2=(X-\alpha)(X-\alpha e^{2\pi i/3})(X-\alpha e^{-2\pi i/3}).$$

- Since $e^{\pm 2\pi i/3} = \frac{1}{2}(-1\pm i\sqrt{3})$, we can say that $X^3 2$ splits completely over $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$.
- The degree of the extension is 6.

The Splitting Field

- Consider a field K and a polynomial f in K[X].
- We say that an extension L of K is a splitting field for f over K, or that L: K is a splitting field extension, if
 - (i) f splits completely over L;
 - (ii) f does not split completely over any proper subfield E of L.
 - Example: $\mathbb{Q}[i\sqrt{2}]$ is a splitting field for $X^2 + 2$ over \mathbb{Q} .
 - $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$ is a splitting field of $X^3 2$ over \mathbb{Q} .

Existence of a Splitting Field

Theorem

Let K be a field and let $f \in K[X]$ have degree n. Then there exists a splitting field L for f over K, and $[L:K] \leq n!$.

- f has at least one irreducible factor g (which may be f itself). Form the field E₁ = K[X]/⟨g⟩ and denote the element X + ⟨g⟩ by α. Then α has minimum polynomial g, and so g(α) = 0. Hence g has a linear factor Y - α in the polynomial ring E₁[Y]. Moreover [E₁ : K] = ∂g ≤ n. We proceed inductively: Suppose that, for each r in {1,...,n-1}, we have constructed an extension E_r of K, such that f has at least r
 - linear factors in $E_r[X]$, and $[E_r:K] \le n(n-1)\cdots(n-r+1)$. Thus, in $E_r[X]$,

$$f = (X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_r) f_r,$$

and $\partial f_r = n - r$.

George Voutsadakis (LSSU)

Existence of a Splitting Field (Cont'd)

• Now repeat the argument in the previous paragraph.

Construct an extension E_{r+1} of E_r in which f_r has a linear factor $X - \alpha_{r+1}$ and $[E_{r+1} : E_r] \le n - r$.

We conclude that

$$[E_{r+1}:K] = [E_{r+1}:E_r][E_r:K] \le n(n-1)\cdots(n-r).$$

Hence, by induction, there exists a field E_n , such that f splits completely over E_n , and $[E_n : K] \le n!$.

Let $L = \mathbb{Q}(\alpha_1, \alpha_2, ..., \alpha_n) \subseteq E_n$, where $\alpha_1, \alpha_2, ..., \alpha_n$ (not necessarily all distinct) are the roots of f in E_n . Then:

- *f* splits completely over *L*;
- f cannot split completely over any proper subfield of L.
- So L is a splitting for f over K, and $[L:K] \leq [E_n:K] \leq n!$.

Splitting Fields

Example

• Consider $f = X^5 + X^4 - X^3 - 3X^2 - 3X + 3$ in $\mathbb{Q}[X]$. It has two irreducible factors $f = (X^3 - 3)(X^2 + X - 1)$. Let $\alpha = \sqrt[3]{3}$, and let $\gamma = \frac{-1+\sqrt{5}}{2}$, $\delta = \frac{-1-\sqrt{5}}{2}$ be the roots of $X^2 + X - 1$. We following the procedure in the proof of the theorem. • Adding the root α of f, $E_1 = \mathbb{Q}(\alpha)$. Then $f = (X - \alpha)(X^2 + \alpha X + \alpha^2)(X^2 + X - 1)$. • Adding the root $\alpha e^{2\pi i/3}$ of $X^2 + \alpha X + \alpha^2$, $E_2 = E_1(\alpha e^{2\pi i/3})$. Then $f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X^2 + X - 1).$ • Adding the root $\alpha e^{-2\pi i/3}$ of $X - \alpha e^{-2\pi i/3}$, $E_3 = E_2(\alpha e^{-2\pi i/3})$. Then $f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X^2 + X - 1)$. • Adding the root γ of $X^2 + X - 1$, $E_4 = E_3(\gamma)$. Then $f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X - \gamma)(X - \delta)$. • Adding the root δ of $X - \delta$, $E_5 = E_4(\delta)$. Then $f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X - \gamma)(X - \delta)$.

Example (Cont'd)

We constructed the tower of extensions

$$\begin{aligned} \mathbb{Q} &\subseteq E_1 = \mathbb{Q}(\alpha) \subseteq E_2 = E_1(\alpha e^{2\pi i/3}) \\ &\subseteq E_3 = E_2(\alpha e^{-2\pi i/3}) \subseteq E_4 = E_3(\gamma) \subseteq E_5 = E_4(\delta). \end{aligned}$$

We have

 $[E_1:\mathbb{Q}] = 3, \ [E_2:E_1] = 2, \ [E_3:E_2] = 1, \ [E_4:E_3] = 2, \ [E_5:E_4] = 1.$

So $[E_5 : \mathbb{Q}] = 12$.

The field $E_5 = \mathbb{Q}(\alpha, \alpha e^{\frac{2\pi i}{3}}, \alpha e^{\frac{-2\pi i}{3}}, \gamma, \delta)$ is a splitting field for f.

• Note that, once we know the roots of f in \mathbb{C} , it is easy to see that a splitting field for f over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{3}, i\sqrt{3}, \sqrt{5})$.

Uniqueness of Splitting Field

Theorem

Let K and K' be fields, and let $\varphi: K \to K'$ be an isomorphism, extending to an isomorphism $\widehat{\varphi}: K[X] \to K'[X]$. Let $f \in K[X]$, and let L, L' be (respectively) splitting fields of f over K and $\widehat{\varphi}(f)$ over K'. Then there is an isomorphism $\varphi^*: L \to L'$ extending φ .

• Suppose that $\partial f = n$ and that in L[X] we have the factorization

$$f = \alpha(X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n),$$

where α , the leading coefficient of f, lies in K, and $\alpha_1, \alpha_2, ..., \alpha_n \in L$. We may suppose that, for some $m \in \{0, 1, ..., n\}$:

- The roots $\alpha_1, \alpha_2, ..., \alpha_m$ are not in K;
- The roots $\alpha_{m+1}, \ldots, \alpha_n \in K$.

We prove the theorem by induction on m.

Uniqueness of Splitting Field (Cont'd)

 If m = 0, then all the roots are in K. So K is a splitting field for f. Hence, in K'[X],

$$\widehat{\varphi}(f) = \varphi(\alpha)(X - \varphi(\alpha_1))(X - \varphi(\alpha_2)) \cdots (X - \varphi(\alpha_n)).$$

Thus, K' is a splitting field for $\widehat{\varphi}(f)$. So $\varphi^* = \varphi$.

Suppose now that m > 0. We make the inductive hypothesis that, for every field E and every polynomial g in E[X] having fewer than m roots outside E in a splitting field L of g, every isomorphism of E can be extended to an isomorphism of L.

Our assumption that m > 0 implies that the irreducible factors of f in K[X] are not all linear.

Uniqueness of Splitting Field (Conclusion)

- Let f₁ be a non-linear irreducible factor of f. Then φ̂(f₁) is an irreducible factor of φ(f) in K'. The roots of f₁ in the splitting field L are among α₁, α₂, ..., α_n. Suppose, without loss of generality, that α₁ is a root of f₁. Similarly, the list φ(α₁), φ(α₂), ..., φ(α_n) of roots of φ̂(f) includes a root β₁ = φ(α_i) of φ̂(f₁) (we cannot assume that i = 1). By the theorem, there is an isomorphism φ': K(α₁) → K'(β₁) extending φ.
 - Since f now has fewer than m roots outside $K(\alpha_1)$, we can use the inductive hypothesis to assert the existence of an isomorphism $\varphi^* : L \to L'$ extending $\varphi' : K(\alpha_1) \to K'(\beta_1)$.
 - Since φ' extends ϕ , $\varphi^* : L \to L'$ also extends $\varphi : K \to K'$.

Example

 We determine the splitting field over Q of the polynomial X⁴−2, and find its degree over Q.

The polynomial X^4-2 is irreducible over \mathbb{Q} by Eisenstein's Criterion. Over the complex field we have the factorization

$$X^4-2=(X-\alpha)(X+\alpha)(X-i\alpha)(X+i\alpha),$$

where $\alpha = \sqrt[4]{2}$. So the splitting field of $X^4 - 2$ is $\mathbb{Q}(\alpha, i)$.

- The minimum polynomial of α over Q certainly divides X⁴-2. As X⁴-2 is irreducible, there are no proper divisors of X⁴-2 in Q[X]. So the minimum polynomial is X⁴-2. Thus, [Q(α):Q] = 4.
- Also, i ∉ Q(α), since Q(α) ⊆ ℝ.
 Since i is a root of X² + 1, [Q(α,i): Q(α)] = 2.

Hence $[\mathbb{Q}(\alpha, i) : \mathbb{Q}] = 8$.

• We know that every polynomial in Q splits completely over C. So the splitting field can always be presented as a subfield of C.

George Voutsadakis (LSSU)

Fields and Galois Theory

Example (Irreducibility in $\mathbb{Z}_3)$

 In the polynomial ring Z₃[X] there are 9 quadratic monic polynomials. Taking Z₃ as {0,1,−1}, we can write these down as

We can test for irreducibility of these polynomials by determining whether they have roots in \mathbb{Z}_3 .

- It is clear that $X^2, X^2 + X$ and $X^2 X$ have 0 as a root;
- $X^2 1$ has the root 1.
- $X^2 + X + 1$ has the root 1.
- $X^2 X + 1$ has the root -1.

The remaining polynomials $X^2 + 1, X^2 + X - 1, X^2 - X - 1$ are irreducible over \mathbb{Z}_3 .

George Voutsadakis (LSSU)

Example (Splitting over \mathbb{Z}_3)

• The field $L = \mathbb{Z}_3[X]/\langle X^2 + 1 \rangle$ contains an element $\alpha(= X + \langle X^2 + 1 \rangle)$, such that $\alpha^2 + 1 = 0$.

In the ring L[X], $X^2 + 1$ splits completely into $(X - \alpha)(X + \alpha)$. In fact L is the splitting field for $X^2 + 1$ over \mathbb{Z}_3 .

Similarly:

Z₃[X]/(X²+X-1) is the splitting field for X²+X-1;
Z₃[X]/(X²-X-1) is the splitting field for X²-X-1.

Example (Identification of Splitting Fields)

• We came up with the splitting fields

 $\mathbb{Z}_{3}[X]/\langle X^{2}+1\rangle, \quad \mathbb{Z}_{3}[X]/\langle X^{2}+X-1\rangle, \quad \mathbb{Z}_{3}[X]/\langle X^{2}-X-1\rangle$ of the polynomials $X^{2}+1, X^{2}+X-1$ and $X^{2}-X-1$ over \mathbb{Z}_{3} . Observe that, in *L* (with $\alpha^{2} = -1$), $(\alpha+1)^{2}+(\alpha+1)-1 = (\alpha^{2}-\alpha+1)+(\alpha+1)-1$ $= (-1-\alpha+1)+(\alpha+1)-1=0;$ $(-\alpha+1)^{2}+(-\alpha+1)-1 = (-1+\alpha+1)+(-\alpha+1)-1=0.$

- In L[X], $X^2 + X 1$ factorizes into $(X (\alpha + 1))(X (-\alpha + 1))$. So L is also a splitting field for $X^2 + X - 1$ over \mathbb{Z}_3 .
- In L[X], $X^2 X 1 = (X (\alpha 1))(X (-\alpha 1))$. So *L* is also a splitting field for $X^2 - X - 1$ over \mathbb{Z}_3 .

By the theorem,

$$\mathbb{Z}_3[X]/\langle X^2+1\rangle \cong \mathbb{Z}_3[X]/\langle X^2+X-1\rangle \cong \mathbb{Z}_3[X]/\langle X^2-X-1\rangle.$$

Example (Isomorphisms Between Splitting Fields)

• $\mathbb{Z}_3[X]/\langle X^2 + X - 1 \rangle$ is generated over \mathbb{Z}_3 by an element $\beta(=X + \langle X^2 + X - 1 \rangle)$, such that $\beta^2 + \beta - 1 = 0$.

The mapping that fixes the elements of \mathbb{Z}_3 and sends β to $\alpha + 1$ is an isomorphism from $\mathbb{Z}_3[X]/\langle X^2 + X - 1 \rangle$ onto $\mathbb{Z}_3[X]/\langle X^2 + 1 \rangle$.

• Similarly, $\mathbb{Z}_3[X]/\langle X^2 - X - 1 \rangle$ is generated over $\mathbb{Z}_3[X]$ by an element γ , such that $\gamma^2 - \gamma - 1 = 0$.

The mapping that fixes \mathbb{Z}_3 and sends γ to $\alpha - 1$ is an isomorphism from $\mathbb{Z}_3[X]/\langle X^2 - X - 1 \rangle$ onto $\mathbb{Z}_3[X]/\langle X^2 + 1 \rangle$.