Fields and Galois Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

Outline

O Splitting Fields

- Consider a polynomial such as $X^{2}+2$.
- Extend the field \mathbb{Q} to $\mathbb{Q}[i \sqrt{2}]$ by adjoining one of the complex roots of the polynomial.
- We obtain a "bonus", in that the other root $-i \sqrt{2}$ is also in the extended field.
- Over $\mathbb{Q}[i \sqrt{2}]$ we have that $X^{2}+2=(X-i \sqrt{2})(X+i \sqrt{2})$.
- We say that the polynomial splits completely (into linear factors) over $\mathbb{Q}[i \sqrt{2}]$.
- It is indeed clear that this must happen for a polynomial of degree 2, since the "other" factor must also be linear.
- Consider the cubic polynomial $X^{3}-2$, which is irreducible over \mathbb{Q} (by Eisenstein's Criterion).
- Extend \mathbb{Q} to $\mathbb{Q}[\alpha]$, where $\alpha=\sqrt[3]{2}$.
- We obtain the factorization $X^{3}-2=(X-\alpha)\left(X^{2}+\alpha X+\alpha^{2}\right)$,
- The quadratic factor is irreducible over $\mathbb{Q}[\alpha]$ (it is irreducible over \mathbb{R}, since the discriminant is $-3 \alpha^{2}$).
- Over the complex field we have the factorization

$$
X^{3}-2=(X-\alpha)\left(X-\alpha e^{2 \pi i / 3}\right)\left(X-\alpha e^{-2 \pi i / 3}\right)
$$

- Since $e^{ \pm 2 \pi i / 3}=\frac{1}{2}(-1 \pm i \sqrt{3})$, we can say that $X^{3}-2$ splits completely over $\mathbb{Q}(\sqrt[3]{2}, i \sqrt{3})$.
- The degree of the extension is 6 .
- Consider a field K and a polynomial f in $K[X]$.
- We say that an extension L of K is a splitting field for f over K, or that $L: K$ is a splitting field extension, if
f splits completely over L;
f does not split completely over any proper subfield E of L.
Example: $\mathbb{Q}[i \sqrt{2}]$ is a splitting field for $X^{2}+2$ over \mathbb{Q}.
$\mathbb{Q}(\sqrt[3]{2}, i \sqrt{3})$ is a splitting field of $X^{3}-2$ over \mathbb{Q}.

Existence of a Splitting Field

Theorem

Let K be a field and let $f \in K[X]$ have degree n. Then there exists a splitting field L for f over K, and $[L: K] \leq n!$.

- f has at least one irreducible factor g (which may be f itself).

Form the field $E_{1}=K[X] /\langle g\rangle$ and denote the element $X+\langle g\rangle$ by α.
Then α has minimum polynomial g, and so $g(\alpha)=0$.
Hence g has a linear factor $Y-\alpha$ in the polynomial ring $E_{1}[Y]$.
Moreover $\left[E_{1}: K\right]=\partial g \leq n$.
We proceed inductively: Suppose that, for each r in $\{1, \ldots, n-1\}$, we have constructed an extension E_{r} of K, such that f has at least r linear factors in $E_{r}[X]$, and $\left[E_{r}: K\right] \leq n(n-1) \cdots(n-r+1)$. Thus, in $E_{r}[X]$,

$$
f=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \cdots\left(X-\alpha_{r}\right) f_{r},
$$

and $\partial f_{r}=n-r$.

- Now repeat the argument in the previous paragraph.

Construct an extension E_{r+1} of E_{r} in which f_{r} has a linear factor $X-\alpha_{r+1}$ and $\left[E_{r+1}: E_{r}\right] \leq n-r$.
We conclude that

$$
\left[E_{r+1}: K\right]=\left[E_{r+1}: E_{r}\right]\left[E_{r}: K\right] \leq n(n-1) \cdots(n-r) .
$$

Hence, by induction, there exists a field E_{n}, such that f splits completely over E_{n}, and $\left[E_{n}: K\right] \leq n!$.
Let $L=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \subseteq E_{n}$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ (not necessarily all distinct) are the roots of f in E_{n}. Then:

- f splits completely over L;
- f cannot split completely over any proper subfield of L.

So L is a splitting for f over K, and $[L: K] \leq\left[E_{n}: K\right] \leq n!$.

- Consider $f=X^{5}+X^{4}-X^{3}-3 X^{2}-3 X+3$ in $\mathbb{Q}[X]$.

It has two irreducible factors $f=\left(X^{3}-3\right)\left(X^{2}+X-1\right)$.
Let $\alpha=\sqrt[3]{3}$, and let $\gamma=\frac{-1+\sqrt{5}}{2}, \delta=\frac{-1-\sqrt{5}}{2}$ be the roots of $X^{2}+X-1$.
We following the procedure in the proof of the theorem.

- Adding the root α of $f, E_{1}=\mathrm{Q}(\alpha)$.

Then $f=(X-\alpha)\left(X^{2}+\alpha X+\alpha^{2}\right)\left(X^{2}+X-1\right)$.

- Adding the root $\alpha e^{2 \pi i / 3}$ of $X^{2}+\alpha X+\alpha^{2}, E_{2}=E_{1}\left(\alpha e^{2 \pi i / 3}\right)$.

Then $f=(X-\alpha)\left(X-\alpha e^{2 \pi i / 3}\right)\left(X-\alpha e^{-2 \pi i / 3}\right)\left(X^{2}+X-1\right)$.

- Adding the root $\alpha e^{-2 \pi i / 3}$ of $X-\alpha e^{-2 \pi i / 3}, E_{3}=E_{2}\left(\alpha e^{-2 \pi i / 3}\right)$.

Then $f=(X-\alpha)\left(X-\alpha e^{2 \pi i / 3}\right)\left(X-\alpha e^{-2 \pi i / 3}\right)\left(X^{2}+X-1\right)$.

- Adding the root γ of $X^{2}+X-1, E_{4}=E_{3}(\gamma)$.

Then $f=(X-\alpha)\left(X-\alpha e^{2 \pi i / 3}\right)\left(X-\alpha e^{-2 \pi i / 3}\right)(X-\gamma)(X-\delta)$.

- Adding the root δ of $X-\delta, E_{5}=E_{4}(\delta)$.

Then $f=(X-\alpha)\left(X-\alpha e^{2 \pi i / 3}\right)\left(X-\alpha e^{-2 \pi i / 3}\right)(X-\gamma)(X-\delta)$.

- We constructed the tower of extensions

$$
\begin{aligned}
\mathbb{Q} \subseteq E_{1}= & \mathbb{Q}(\alpha) \subseteq E_{2}=E_{1}\left(\alpha e^{2 \pi i / 3}\right) \\
& \subseteq E_{3}=E_{2}\left(\alpha e^{-2 \pi i / 3}\right) \subseteq E_{4}=E_{3}(\gamma) \subseteq E_{5}=E_{4}(\delta) .
\end{aligned}
$$

We have

$$
\left[E_{1}: \mathbb{Q}\right]=3,\left[E_{2}: E_{1}\right]=2,\left[E_{3}: E_{2}\right]=1,\left[E_{4}: E_{3}\right]=2,\left[E_{5}: E_{4}\right]=1
$$

So $\left[E_{5}: \mathbb{Q}\right]=12$.
The field $E_{5}=\mathbb{Q}\left(\alpha, \alpha e^{\frac{2 \pi i}{3}}, \alpha e^{\frac{-2 \pi i}{3}}, \gamma, \delta\right)$ is a splitting field for f.

- Note that, once we know the roots of f in \mathbb{C}, it is easy to see that a splitting field for f over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{3}, i \sqrt{3}, \sqrt{5})$.

Uniqueness of Splitting Field

Theorem

Let K and K^{\prime} be fields, and let $\varphi: K \rightarrow K^{\prime}$ be an isomorphism, extending to an isomorphism $\widehat{\varphi}: K[X] \rightarrow K^{\prime}[X]$. Let $f \in K[X]$, and let L, L^{\prime} be (respectively) splitting fields of f over K and $\widehat{\varphi}(f)$ over K^{\prime}. Then there is an isomorphism $\varphi^{*}: L \rightarrow L^{\prime}$ extending φ.

- Suppose that $\partial f=n$ and that in $L[X]$ we have the factorization

$$
f=\alpha\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \cdots\left(X-\alpha_{n}\right)
$$

where α, the leading coefficient of f, lies in K, and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in L$.
We may suppose that, for some $m \in\{0,1, \ldots, n\}$:

- The roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are not in K;
- The roots $\alpha_{m+1}, \ldots, \alpha_{n} \in K$.

We prove the theorem by induction on m.

- If $m=0$, then all the roots are in K. So K is a splitting field for f. Hence, in $K^{\prime}[X]$,

$$
\widehat{\varphi}(f)=\varphi(\alpha)\left(X-\varphi\left(\alpha_{1}\right)\right)\left(X-\varphi\left(\alpha_{2}\right)\right) \cdots\left(X-\varphi\left(\alpha_{n}\right)\right)
$$

Thus, K^{\prime} is a splitting field for $\widehat{\varphi}(f)$. So $\varphi^{*}=\varphi$.
Suppose now that $m>0$. We make the inductive hypothesis that, for every field E and every polynomial g in $E[X]$ having fewer than m roots outside E in a splitting field L of g, every isomorphism of E can be extended to an isomorphism of L.
Our assumption that $m>0$ implies that the irreducible factors of f in $K[X]$ are not all linear.

- Let f_{1} be a non-linear irreducible factor of f. Then $\widehat{\varphi}\left(f_{1}\right)$ is an irreducible factor of $\varphi(f)$ in K^{\prime}. The roots of f_{1} in the splitting field L are among $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Suppose, without loss of generality, that α_{1} is a root of f_{1}. Similarly, the list $\varphi\left(\alpha_{1}\right), \varphi\left(\alpha_{2}\right), \ldots, \varphi\left(\alpha_{n}\right)$ of roots of $\widehat{\varphi}(f)$ includes a root $\beta_{1}=\varphi\left(\alpha_{i}\right)$ of $\widehat{\varphi}\left(f_{1}\right)$ (we cannot assume that $i=1$). By the theorem, there is an isomorphism $\varphi^{\prime}: K\left(\alpha_{1}\right) \rightarrow K^{\prime}\left(\beta_{1}\right)$ extending φ.
Since f now has fewer than m roots outside $K\left(\alpha_{1}\right)$, we can use the inductive hypothesis to assert the existence of an isomorphism $\varphi^{*}: L \rightarrow L^{\prime}$ extending $\varphi^{\prime}: K\left(\alpha_{1}\right) \rightarrow K^{\prime}\left(\beta_{1}\right)$.
Since φ^{\prime} extends $\phi, \varphi^{*}: L \rightarrow L^{\prime}$ also extends $\varphi: K \rightarrow K^{\prime}$.
- We determine the splitting field over \mathbb{Q} of the polynomial $X^{4}-2$, and find its degree over \mathbb{Q}.
The polynomial $X^{4}-2$ is irreducible over \mathbb{Q} by Eisenstein's Criterion. Over the complex field we have the factorization

$$
X^{4}-2=(X-\alpha)(X+\alpha)(X-i \alpha)(X+i \alpha)
$$

where $\alpha=\sqrt[4]{2}$. So the splitting field of $X^{4}-2$ is $\mathbb{Q}(\alpha, i)$.

- The minimum polynomial of α over \mathbb{Q} certainly divides $X^{4}-2$. As $X^{4}-2$ is irreducible, there are no proper divisors of $X^{4}-2$ in $\mathbb{Q}[X]$. So the minimum polynomial is $X^{4}-2$. Thus, $[\mathrm{Q}(\alpha): \mathbb{Q}]=4$.
- Also, $i \notin \mathbb{Q}(\alpha)$, since $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$.

Since i is a root of $X^{2}+1,[Q(\alpha, i): Q(\alpha)]=2$.
Hence $[\mathrm{Q}(\alpha, i): \mathbb{Q}]=8$.

- We know that every polynomial in \mathbb{Q} splits completely over \mathbb{C}. So the splitting field can always be presented as a subfield of \mathbb{C}.
- In the polynomial ring $\mathbb{Z}_{3}[X]$ there are 9 quadratic monic polynomials. Taking \mathbb{Z}_{3} as $\{0,1,-1\}$, we can write these down as

$$
\begin{array}{lll}
x^{2}, & x^{2}+1, & X^{2}-1 \\
X^{2}+X, & X^{2}+X+1, & X^{2}+X-1 \\
X^{2}-X, & X^{2}-X+1, & X^{2}-X-1
\end{array}
$$

We can test for irreducibility of these polynomials by determining whether they have roots in \mathbb{Z}_{3}.

- It is clear that $X^{2}, X^{2}+X$ and $X^{2}-X$ have 0 as a root;
- $X^{2}-1$ has the root 1 .
- $X^{2}+X+1$ has the root 1 .
- $X^{2}-X+1$ has the root -1 .

The remaining polynomials $X^{2}+1, X^{2}+X-1, X^{2}-X-1$ are irreducible over \mathbb{Z}_{3}.

Example (Splitting over \mathbb{Z}_{3})

- The field $L=\mathbb{Z}_{3}[X] /\left\langle X^{2}+1\right\rangle$ contains an element $\alpha\left(=X+\left\langle X^{2}+1\right\rangle\right)$, such that $\alpha^{2}+1=0$. In the ring $L[X], X^{2}+1$ splits completely into $(X-\alpha)(X+\alpha)$. In fact L is the splitting field for $X^{2}+1$ over \mathbb{Z}_{3}.
- Similarly:
- $\mathbb{Z}_{3}[X] /\left\langle X^{2}+X-1\right\rangle$ is the splitting field for $X^{2}+X-1$;
- $\mathbb{Z}_{3}[X] /\left\langle X^{2}-X-1\right\rangle$ is the splitting field for $X^{2}-X-1$.
- We came up with the splitting fields

$$
\mathbb{Z}_{3}[X] /\left\langle X^{2}+1\right\rangle, \quad \mathbb{Z}_{3}[X] /\left\langle X^{2}+X-1\right\rangle, \quad \mathbb{Z}_{3}[X] /\left\langle X^{2}-X-1\right\rangle
$$

of the polynomials $X^{2}+1, X^{2}+X-1$ and $X^{2}-X-1$ over \mathbb{Z}_{3}.
Observe that, in L (with $\alpha^{2}=-1$),

$$
\begin{aligned}
(\alpha+1)^{2}+(\alpha+1)-1 & =\left(\alpha^{2}-\alpha+1\right)+(\alpha+1)-1 \\
& =(-1-\alpha+1)+(\alpha+1)-1=0 ; \\
(-\alpha+1)^{2}+(-\alpha+1)-1 & =(-1+\alpha+1)+(-\alpha+1)-1=0 .
\end{aligned}
$$

- In $L[X], X^{2}+X-1$ factorizes into $(X-(\alpha+1))(X-(-\alpha+1))$.

So L is also a splitting field for $X^{2}+X-1$ over \mathbb{Z}_{3}.

- In $L[X], X^{2}-X-1=(X-(\alpha-1))(X-(-\alpha-1))$.

So L is also a splitting field for $X^{2}-X-1$ over \mathbb{Z}_{3}.
By the theorem,

$$
\mathbb{Z}_{3}[X] /\left\langle X^{2}+1\right\rangle \cong \mathbb{Z}_{3}[X] /\left\langle X^{2}+X-1\right\rangle \cong \mathbb{Z}_{3}[X] /\left\langle X^{2}-X-1\right\rangle
$$

- $\mathbb{Z}_{3}[X] /\left\langle X^{2}+X-1\right\rangle$ is generated over \mathbb{Z}_{3} by an element $\beta\left(=X+\left\langle X^{2}+X-1\right\rangle\right)$, such that $\beta^{2}+\beta-1=0$.
The mapping that fixes the elements of \mathbb{Z}_{3} and sends β to $\alpha+1$ is an isomorphism from $\mathbb{Z}_{3}[X] /\left\langle X^{2}+X-1\right\rangle$ onto $\mathbb{Z}_{3}[X] /\left\langle X^{2}+1\right\rangle$.
- Similarly, $\mathbb{Z}_{3}[X] /\left\langle X^{2}-X-1\right\rangle$ is generated over $\mathbb{Z}_{3}[X]$ by an element γ, such that $\gamma^{2}-\gamma-1=0$.
The mapping that fixes \mathbb{Z}_{3} and sends γ to $\alpha-1$ is an isomorphism from $\mathbb{Z}_{3}[X] /\left\langle X^{2}-X-1\right\rangle$ onto $\mathbb{Z}_{3}[X] /\left\langle X^{2}+1\right\rangle$.

