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Splitting Fields

A Polynomial and its Splitting Field

Consider a polynomial such as X 2+2.

Extend the field Q to Q[i
p

2] by adjoining one of the complex roots of
the polynomial.

We obtain a “bonus”, in that the other root −i
p

2 is also in the
extended field.

Over Q[i
p

2] we have that X 2+2= (X − i
p

2)(X + i
p

2).

We say that the polynomial splits completely (into linear factors)
over Q[i

p
2].

It is indeed clear that this must happen for a polynomial of degree 2,
since the “other” factor must also be linear.
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Splitting Fields

Another Polynomial and its Splitting Field

Consider the cubic polynomial X 3−2, which is irreducible over Q (by
Eisenstein’s Criterion).

Extend Q to Q[α], where α= 3
p

2.

We obtain the factorization X 3−2= (X −α)(X 2 +αX +α2),

The quadratic factor is irreducible over Q[α] (it is irreducible over R,
since the discriminant is −3α2).

Over the complex field we have the factorization

X 3−2= (X −α)(X −αe2πi/3)(X −αe−2πi/3).

Since e±2πi/3 = 1
2
(−1± i

p
3), we can say that X 3−2 splits completely

over Q( 3
p

2, i
p

3).

The degree of the extension is 6.
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Splitting Fields

The Splitting Field

Consider a field K and a polynomial f in K [X ].

We say that an extension L of K is a splitting field for f over K , or
that L :K is a splitting field extension, if

(i) f splits completely over L;
(ii) f does not split completely over any proper subfield E of L.

Example: Q[i
p

2] is a splitting field for X 2+2 over Q.

Q( 3
p

2, i
p

3) is a splitting field of X 3−2 over Q.
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Splitting Fields

Existence of a Splitting Field

Theorem

Let K be a field and let f ∈K [X ] have degree n. Then there exists a
splitting field L for f over K , and [L :K ]≤ n!.

f has at least one irreducible factor g (which may be f itself).

Form the field E1 =K [X ]/〈g〉 and denote the element X +〈g〉 by α.

Then α has minimum polynomial g , and so g(α)= 0.

Hence g has a linear factor Y −α in the polynomial ring E1[Y ].

Moreover [E1 :K ]= ∂g ≤ n.

We proceed inductively: Suppose that, for each r in {1, . . . ,n−1}, we
have constructed an extension Er of K , such that f has at least r
linear factors in Er [X ], and [Er :K ]≤ n(n−1) · · ·(n− r +1). Thus, in
Er [X ],

f = (X −α1)(X −α2) · · ·(X −αr )fr ,

and ∂fr = n− r .
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Splitting Fields

Existence of a Splitting Field (Cont’d)

Now repeat the argument in the previous paragraph.

Construct an extension Er+1 of Er in which fr has a linear factor
X −αr+1 and [Er+1 :Er ]≤ n− r .

We conclude that

[Er+1 :K ]= [Er+1 :Er ][Er :K ]≤ n(n−1) · · ·(n− r).

Hence, by induction, there exists a field En, such that f splits
completely over En, and [En :K ]≤ n!.

Let L=Q(α1,α2, . . . ,αn)⊆En, where α1,α2, . . . ,αn (not necessarily all
distinct) are the roots of f in En. Then:

f splits completely over L;
f cannot split completely over any proper subfield of L.

So L is a splitting for f over K , and [L :K ]≤ [En :K ]≤ n!.
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Splitting Fields

Example

Consider f =X 5+X 4−X 3−3X 2−3X +3 in Q[X ].

It has two irreducible factors f = (X 3−3)(X 2 +X −1).

Let α= 3
p

3, and let γ= −1+
p

5
2

, δ= −1−
p

5
2

be the roots of X 2+X −1.

We following the procedure in the proof of the theorem.

Adding the root α of f , E1 =Q(α).
Then f = (X −α)(X 2 +αX +α2)(X 2 +X −1).

Adding the root αe2πi/3 of X 2+αX +α2, E2 =E1(αe
2πi/3).

Then f = (X −α)(X −αe2πi/3)(X −αe−2πi/3)(X 2+X −1).

Adding the root αe−2πi/3 of X −αe−2πi/3, E3 =E2(αe
−2πi/3).

Then f = (X −α)(X −αe2πi/3)(X −αe−2πi/3)(X 2+X −1).
Adding the root γ of X 2+X −1, E4 =E3(γ).

Then f = (X −α)(X −αe2πi/3)(X −αe−2πi/3)(X −γ)(X −δ).
Adding the root δ of X −δ, E5 =E4(δ).

Then f = (X −α)(X −αe2πi/3)(X −αe−2πi/3)(X −γ)(X −δ).
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Splitting Fields

Example (Cont’d)

We constructed the tower of extensions

Q⊆E1 =Q(α)⊆E2 =E1(αe
2πi/3)

⊆E3 =E2(αe
−2πi/3)⊆E4 =E3(γ)⊆E5 =E4(δ).

We have

[E1 :Q]= 3, [E2 :E1]= 2, [E3 :E2]= 1, [E4 :E3]= 2, [E5 :E4]= 1.

So [E5 :Q]= 12.

The field E5 =Q(α,αe
2πi
3 ,αe

−2πi
3 ,γ,δ) is a splitting field for f .

Note that, once we know the roots of f in C, it is easy to see that a
splitting field for f over Q is Q( 3

p
3, i

p
3,
p

5).
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Splitting Fields

Uniqueness of Splitting Field

Theorem

Let K and K ′ be fields, and let ϕ :K →K ′ be an isomorphism, extending
to an isomorphism ϕ̂ :K [X ]→K ′[X ]. Let f ∈K [X ], and let L,L′ be
(respectively) splitting fields of f over K and ϕ̂(f ) over K ′. Then there is
an isomorphism ϕ∗ : L→ L′ extending ϕ.

Suppose that ∂f = n and that in L[X ] we have the factorization

f =α(X −α1)(X −α2) · · ·(X −αn),

where α, the leading coefficient of f , lies in K , and α1,α2, . . . ,αn ∈ L.

We may suppose that, for some m ∈ {0,1, . . . ,n}:

The roots α1,α2, . . . ,αm are not in K ;
The roots αm+1, . . . ,αn ∈K .

We prove the theorem by induction on m.
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Splitting Fields

Uniqueness of Splitting Field (Cont’d)

If m= 0, then all the roots are in K . So K is a splitting field for f .

Hence, in K ′[X ],

ϕ̂(f )=ϕ(α)(X −ϕ(α1))(X −ϕ(α2)) · · ·(X −ϕ(αn)).

Thus, K ′ is a splitting field for ϕ̂(f ). So ϕ∗ =ϕ.

Suppose now that m> 0. We make the inductive hypothesis that, for
every field E and every polynomial g in E [X ] having fewer than m

roots outside E in a splitting field L of g , every isomorphism of E can
be extended to an isomorphism of L.

Our assumption that m> 0 implies that the irreducible factors of f in
K [X ] are not all linear.
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Splitting Fields

Uniqueness of Splitting Field (Conclusion)

Let f1 be a non-linear irreducible factor of f .

Then ϕ̂(f1) is an irreducible factor of ϕ(f ) in K ′.

The roots of f1 in the splitting field L are among α1, α2, . . ., αn.

Suppose, without loss of generality, that α1 is a root of f1.

Similarly, the list ϕ(α1), ϕ(α2), . . ., ϕ(αn) of roots of ϕ̂(f ) includes a
root β1 =ϕ(αi ) of ϕ̂(f1) (we cannot assume that i = 1).

By the theorem, there is an isomorphism ϕ′ :K (α1)→K ′(β1)
extending ϕ.

Since f now has fewer than m roots outside K (α1), we can use the
inductive hypothesis to assert the existence of an isomorphism
ϕ∗ : L→ L′ extending ϕ′ :K (α1)→K ′(β1).

Since ϕ′ extends φ, ϕ∗ : L→ L′ also extends ϕ :K →K ′.
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Splitting Fields

Example

We determine the splitting field over Q of the polynomial X 4−2, and
find its degree over Q.

The polynomial X 4−2 is irreducible over Q by Eisenstein’s Criterion.
Over the complex field we have the factorization

X 4−2= (X −α)(X +α)(X − iα)(X + iα),

where α= 4
p

2. So the splitting field of X 4−2 is Q(α, i).
The minimum polynomial of α over Q certainly divides X 4−2.
As X 4−2 is irreducible, there are no proper divisors of X 4−2 in Q[X ].
So the minimum polynomial is X 4−2. Thus, [Q(α) :Q]= 4.
Also, i 6∈Q(α), since Q(α)⊆R.
Since i is a root of X 2+1, [Q(α, i) :Q(α)]= 2.

Hence [Q(α, i) :Q]= 8.

We know that every polynomial in Q splits completely over C.

So the splitting field can always be presented as a subfield of C.
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Splitting Fields

Example (Irreducibility in Z3)

In the polynomial ring Z3[X ] there are 9 quadratic monic polynomials.
Taking Z3 as {0,1,−1}, we can write these down as

X 2, X 2+1, X 2−1,

X 2+X , X 2+X +1, X 2+X −1,

X 2−X , X 2−X +1, X 2−X −1.

We can test for irreducibility of these polynomials by determining
whether they have roots in Z3.

It is clear that X 2,X 2+X and X 2−X have 0 as a root;
X 2−1 has the root 1.
X 2+X +1 has the root 1.
X 2−X +1 has the root −1.

The remaining polynomials X 2+1,X 2+X −1,X 2−X −1 are
irreducible over Z3.
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Splitting Fields

Example (Splitting over Z3)

The field L=Z3[X ]/〈X 2+1〉 contains an element α(=X +〈X 2+1〉),
such that α2+1= 0.

In the ring L[X ], X 2+1 splits completely into (X −α)(X +α).

In fact L is the splitting field for X 2+1 over Z3.

Similarly:

Z3[X ]/〈X 2+X −1〉 is the splitting field for X 2+X −1;
Z3[X ]/〈X 2−X −1〉 is the splitting field for X 2−X −1.
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Splitting Fields

Example (Identification of Splitting Fields)

We came up with the splitting fields

Z3[X ]/〈X 2+1〉, Z3[X ]/〈X 2+X −1〉, Z3[X ]/〈X 2−X −1〉

of the polynomials X 2+1, X 2+X −1 and X 2−X −1 over Z3.

Observe that, in L (with α2 =−1),

(α+1)2 + (α+1)−1 = (α2−α+1)+ (α+1)−1
= (−1−α+1)+ (α+1)−1 = 0;

(−α+1)2 + (−α+1)−1 = (−1+α+1)+ (−α+1)−1 = 0.

In L[X ], X 2+X −1 factorizes into (X − (α+1))(X − (−α+1)).
So L is also a splitting field for X 2+X −1 over Z3.
In L[X ], X 2−X −1= (X − (α−1))(X − (−α−1)).
So L is also a splitting field for X 2−X −1 over Z3.

By the theorem,

Z3[X ]/〈X 2+1〉 ∼=Z3[X ]/〈X 2+X −1〉 ∼=Z3[X ]/〈X 2−X −1〉.
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Splitting Fields

Example (Isomorphisms Between Splitting Fields)

Z3[X ]/〈X 2+X −1〉 is generated over Z3 by an element
β(=X +〈X 2+X −1〉), such that β2+β−1= 0.

The mapping that fixes the elements of Z3 and sends β to α+1 is an
isomorphism from Z3[X ]/〈X 2+X −1〉 onto Z3[X ]/〈X 2+1〉.
Similarly, Z3[X ]/〈X 2−X −1〉 is generated over Z3[X ] by an element
γ, such that γ2−γ−1= 0.

The mapping that fixes Z3 and sends γ to α−1 is an isomorphism
from Z3[X ]/〈X 2−X −1〉 onto Z3[X ]/〈X 2+1〉.
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