Fields and Galois Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

Outline

Some Facts About Finite Fields

- A finite field K has characteristic p, a prime number.
- Its minimal subfield, known as its prime subfield, is

$$
\left\{0_{K}, 1_{K}, 2\left(1_{K}\right), \ldots,(p-1)\left(1_{K}\right)\right\} .
$$

- The prime subfield is isomorphic to \mathbb{Z}_{p}, the field of integers modulo p.
- For all x, y in a field K of characteristic p, and for all $n \geq 1$,

$$
(x \pm y)^{p^{n}}=x^{p^{n}} \pm y^{p^{n}} .
$$

- Let

$$
f=a_{0}+a_{1} X+\cdots+a_{n} X^{n}
$$

be a polynomial with coefficients in a field K.

- The formal derivative $D f$ of f is defined by

$$
D f=a_{1}+2 a_{2} X+\cdots+n a_{n} X^{n-1}
$$

- The familiar formulas from analysis hold.

For all $f, g \in K[X]$ and $k \in K$:

- $D(k f)=k(D f)$;
- $D(f+g)=D f+D g$;
- $D(f g)=(D f) g+f(D g)$.

Roots of a Polynomial in a Splitting Field

Theorem

Let f be a polynomial with coefficients in a field K, and let L be a splitting field for f over K. Then the roots of f in L are all distinct if and only if f and $D f$ have no non-constant common factor.

- Suppose first that f has a repeated root α in L. So we have $f=(X-\alpha)^{r} g$, where $r \geq 2$. Then

$$
D f=(X-\alpha)^{r}(D g)+r(X-\alpha)^{r-1} g
$$

So f and Df have the common factor $X-\alpha$.
Conversely, suppose that f has no repeated roots.
Then, for each root α of f in L, we have $f=(X-\alpha) g$, where $g(\alpha) \neq 0$.
Hence, $D f=g+(X-\alpha)(D g)$. So $(D f)(\alpha)=g(\alpha) \neq 0$.
Thus, by the remainder theorem, $(X-\alpha) \nmid D f$.
This holds for every factor of f in $L[X]$.
So f and Df must be coprime.

Classification of Finite Fields

Theorem

Let K be a finite field. Then $|K|=p^{n}$, for some prime p and some integer $n \geq 1$. Every element of K is a root of the polynomial $X^{p^{n}}-X$, and K is a splitting field of this polynomial over the prime subfield \mathbb{Z}_{p}. Let p be a prime, and let $n \geq 1$ be an integer. There exists, up to isomorphism, exactly one field of order p^{n}.

Let K have characteristic p. Then K is a finite extension of \mathbb{Z}_{p}, of degree n, say. Suppose $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right\}$ is a basis of K over \mathbb{Z}_{p}. Every element of K is uniquely expressible as a linear combination

$$
a_{1} \delta_{1}+a_{2} \delta_{2}+\cdots+a_{n} \delta_{n}
$$

with coefficients in \mathbb{Z}_{p}. For each coefficient a_{i} there are p choices, namely $0,1, \ldots, p-1$. So there are p^{n} linear combinations in all. Thus, $|K|=p^{n}$.

- The group K^{*} is of order $p^{n}-1$. Let $\alpha \in K^{*}$. By Lagrange's theorem, the order of α, which is the order of the subgroup $\langle\alpha\rangle$ generated by α, divides $p^{n}-1$. Certainly $\alpha^{p^{n}-1}=1$. Thus $\alpha^{p^{n}}-\alpha=0$. But we also have $0^{p^{n}}-0=0$. So every element of K is a root of $X^{p^{n}}-X$.
Thus, $X-\alpha$ is a linear factor for each of the p^{n} elements α of K. It follows that the polynomial $X^{p^{n}}-X$ splits completely over K. It clearly cannot split completely over any proper subfield of K. So K must be the splitting field of $X^{p^{n}}-X$ over \mathbb{Z}_{p}.

Let p and n be given. Let L be the splitting field of $f=X^{p^{n}}-X$ over \mathbb{Z}_{p}. Since the field is of characteristic $p, D f=p^{n} X^{p^{n}-1}-1=-1$. Thus, f and $D f$ are coprime. So $X^{p^{n}}-X$ has p^{n} distinct roots in L. Let K be the set of those roots. We show that K is a subfield of L. The elements 0,1 are clearly in K. Suppose that $a, b \in K$.

- $(a-b)^{p^{n}}=a^{p^{n}}-b^{p^{n}}=a-b$. So $a-b \in K$.
- If $b \neq 0,\left(a b^{-1}\right)^{p^{n}}=a^{p^{n}}\left(b^{p^{n}}\right)^{-1}=a b^{-1}$. So $a b^{-1} \in K$.
K contains (indeed consists of) all the roots of $X^{p^{n}}-X$. Clearly no proper subfield of K has this property. So K is the splitting field. Thus, for all primes p and all integers $n \geq 1$, there exists a field of order p^{n}. Moreover, any field of order p^{n} is the splitting field of $X^{p^{n}}-X$ over \mathbb{Z}_{p}. We know all such fields are isomorphic.
- Only fields of prime-power order exist.
- Moreover, for a given p and n there is essentially exactly one field of order p^{n}, called the Galois field of order p^{n}, and denoted $\operatorname{GF}\left(p^{n}\right)$.
- Let G be a finite group.
- The order $o(a)$ of an element a in G is the least positive integer k, such that $a^{k}=1$. We know $a^{m}=1$ if and only if $o(a)$ divides m.
- The exponent $e=e(G)$ of G is the smallest positive integer $e=e(G)$ with the property that $a^{e}=1$, for all a in G.
- The exponent always exists (in a finite group): It is the least common multiple of the orders of the elements of G.
- Since $o(a)$ divides $|G|$, for every a, we have $e(G)$ divides $|G|$.
- In a non-abelian group G it is possible that $o(a)<e(G)$, for all a in G.
Consider the smallest non-abelian group $S_{3}=\{1, a, b, x, y, z\}$ (table on the right).
We have $o(1)=1, o(x)=o(y)=o(z)=2$, $o(a)=o(b)=3$, and $e\left(S_{3}\right)=6$.

	1	a	b	x	y	z
1	1	a	b	x	y	z
a	a	b	1	z	x	y
b	b	1	a	y	z	x
x	x	y	z	1	a	b
y	y	z	x	b	1	a
z	z	x	y	a	b	1

- This cannot happen, however, if the group is abelian.

The Exponent in the Abelian Case

Theorem

Let G be a finite abelian group with exponent e. Then there exists an element a in G, such that $o(a)=e$.

- Suppose that $e=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where:
- $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes;
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \geq 1$.
e is the least common multiple of the orders of the elements of G.
So there exists an element h_{1} whose order is divisible by $p_{1}^{\alpha_{1}}$.
Thus, $o\left(h_{1}\right)=p_{1}^{\alpha_{1}} q_{1}$, where q_{1} divides $p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$.
Let $g_{1}=h_{1}^{q_{1}}$. Then, for all $m \geq 1, g_{1}^{m}=h_{1}^{m q_{1}}$. And we have

$$
g_{1}^{m}=h_{1}^{m q_{1}}=1 \quad \text { iff } \quad p_{1}^{\alpha_{1}} q_{1} \mid m q_{1} \quad \text { iff } \quad p_{1}^{\alpha_{1}} \mid m
$$

Thus, $o\left(g_{1}\right)=p_{1}^{\alpha_{1}}$.
Similarly, for $i=2, \ldots, k$, we can find an element g_{i} of order $p_{i}^{\alpha_{i}}$.

The Exponent in the Abelian Case (Cont'd)

- We found, for $i=1,2, \ldots, k$, an element g_{i} of order $p_{i}^{\alpha_{i}}$.

Let $a=g_{1} g_{2} \cdots g_{k}$, and let $n=o(a)$.
Thus, $a^{n}=g_{1}^{n} g_{2}^{n} \cdots g_{k}^{n}=1$ (using the abelian property).
So $g_{1}^{n}=g_{2}^{-n} \cdots g_{k}^{-n}$.
Let $r=p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$.
Now $o\left(g_{i}\right)=p_{i}^{\alpha_{i}}$. So $g_{i}^{-n r}=1, i=2, \ldots, k$. Hence, $g_{1}^{n r}=1$.
Thus, $p_{1}^{\alpha_{1}}$ divides $n r$. So, since p_{1} and r are coprime, $p_{1}^{\alpha_{1}}$ divides n.
Similarly, $p_{i}^{\alpha_{i}}$ divides n, for $i=2, \ldots, k$. We deduce that $e \mid n$.
By the definition of the exponent, $n \mid e$. Therefore, $o(a)=e$.

Corollary

If G is a finite abelian group such that $e(G)=|G|$, then G is cyclic.

Multiplicative Structure of GF(P^{n})

Theorem

The group of non-zero elements of the Galois field $\mathrm{GF}\left(p^{n}\right)$ is cyclic.

- Denote $\operatorname{GF}\left(p^{n}\right)$ by K and, as usual, denote the abelian group of non-zero elements of K by K^{*}. Let e be the exponent of K^{*}.
- Then $a^{e}=1$, for all a in K^{*}. So every element of K^{*} is a root of the polynomial $X^{e}-1$. This polynomial has at most e roots. So $\left|K^{*}\right| \leq e$.
- But we also have $e \leq\left|K^{*}\right|$.

Hence, $e=\left|K^{*}\right|$. So, by the corollary, K^{*} is cyclic.

- All fields of order p^{n} are isomorphic.

So we can construct $\operatorname{GF}\left(p^{n}\right)$ by:

- Finding an irreducible polynomial f of degree n in $\mathbb{Z}_{p}[X]$;
- Taking GF $\left(p^{n}\right)=\mathbb{Z}_{p}[X] /\langle f\rangle$.

There will, however, normally be may choices for f.

- Recall that the non-zero elements of the field GF(9) are

$$
1,-1, \alpha, 1+\alpha,-1+\alpha,-\alpha, 1-\alpha,-1-\alpha,
$$

where $\alpha^{2}=-1$.
The orders of the elements of the group are easily computed:

$$
o(1)=1, o(-1)=2, \quad o(\pm \alpha)=4, \quad o(\pm 1 \pm \alpha)=8 .
$$

Any one of the four elements $\pm 1 \pm \alpha$ is a generator of the group.
E.g., the powers of $1+\alpha$ are

n	1	2	3	4	5	6	7	8
$(1+\alpha)^{n}$	$1+\alpha$	$-\alpha$	$1-\alpha$	-1	$-1-\alpha$	α	$-1+\alpha$	1

