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Finite Fields

o A finite field K has characteristic p, a prime number.

o Its minimal subfield, known as its prime subfield, is

{0k, 1k,2(1k), ..., (P=1)(1k)}-

o The prime subfield is isomorphic to Z,, the field of integers modulo p.

o For all x,y in a field K of characteristic p, and for all n>1,

n n n

(xxy)P =xP +yP.
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Finite Fields

o Let
f=ap+a1 X+---+apX"
be a polynomial with coefficients in a field K.
o The formal derivative Df of f is defined by

Df = a1 +2a,X +-+-+na, X" L.

o The familiar formulas from analysis hold.
For all f,ge K[X] and ke K:
o D(kf) = k(DF);
o D(f+g)=Df+Dg;
> D(fg) = (Df)g +f(Dg).
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Finite Fields

Let f be a polynomial with coefficients in a field K, and let L be a splitting
field for f over K. Then the roots of f in L are all distinct if and only if f
and Df have no non-constant common factor.

o Suppose first that f has a repeated root a in L.
So we have f = (X —a)"g, where r=2. Then

Df =(X -a) (Dg)+r(X -a)g.

So f and Df have the common factor X —a.

Conversely, suppose that f has no repeated roots.

Then, for each root a of f in L, we have f =(X—-a)g, where g(a) #0.
Hence, Df =g+ (X —a)(Dg). So (Df)(a) =g(a) #0.

Thus, by the remainder theorem, (X —a) 1 Df.

This holds for every factor of f in L[X].

So f and Df must be coprime.
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Finite Fields

Let K be a finite field. Then |K|=p", for some prime p and some
integer n=1. Every element of K is a root of the polynomial XP" - X,
and K is a splitting field of this polynomial over the prime subfield Z,.
Let p be a prime, and let n=1 be an integer. There exists, up to
isomorphism, exactly one field of order p".

Let K have characteristic p. Then K is a finite extension of Z,, of
degree n, say. Suppose {§1,02,...,8,} is a basis of K over Z,.
Every element of K is uniquely expressible as a linear combination

8151 +8252 +---+an5n,

with coefficients in Z,. For each coefficient a; there are p choices,
namely 0,1,...,p—1. So there are p” linear combinations in all.
Thus, |K|=p".
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Finite Fields

o The group K* is of order p" —1. Let a € K*. By Lagrange's theorem,
the order of a, which is the order of the subgroup (@) generated by «,
divides p" —1. Certainly a1 =1. Thus aP" —a =0. But we also
have 0P" —0=0. So every element of K is a root of XP" — X,

Thus, X —a is a linear factor for each of the p" elements a of K.
It follows that the polynomial XP" — X splits completely over K.
It clearly cannot split completely over any proper subfield of K.
So K must be the splitting field of XP" — X over Zp.
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Finite Fields

Let p and n be given. Let L be the splitting field of f = XP" - X over
Zp. Since the field is of characteristic p, Df = P T = il
Thus, f and Df are coprime. So XP" — X has p" distinct roots in L.
Let K be the set of those roots. We show that K is a subfield of L.
The elements 0,1 are clearly in K. Suppose that a,be K.
o (a—b)P"'=aP" —bP"=a—b.So a~beK.
o If b#0, (ab1)P" =aP"(bP") L =ab~1. So ab L e K.
K contains (indeed consists of) all the roots of XP" — X. Clearly no
proper subfield of K has this property. So K is the splitting field.
Thus, for all primes p and all integers n= 1, there exists a field of
order p". Moreover, any field of order p" is the splitting field of
XP" — X over Zp. We know all such fields are isomorphic.
o Only fields of prime-power order exist.
o Moreover, for a given p and n there is essentially exactly one field of
order p", called the Galois field of order p”, and denoted GF(p").
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Finite Fields

o Let G be a finite group.

o The order o(a) of an element a in G is the least positive integer k,
such that ak =1. We know a™ =1 if and only if o(a) divides m.

o The exponent e =¢(G) of G is the smallest positive integer e = e(G)
with the property that a¢=1, for all a2 in G.

o The exponent always exists (in a finite group): It is the least common
multiple of the orders of the elements of G.

o Since o(a) divides |G|, for every a, we have e(G) divides |G|.

o In a non-abelian group G it is possible that

1 a b x y =z
o(a) <e(G), forall ain G. 11 a b x y z
Consider the smallest non-abelian group a|a b 1 z x y
S3=1{1,a,b,x,y,z} (table on the right). byb 1 a y z x
We have o(1)=1, o(x)=o(y)=o(z)=2, *|X ¥ Z 11) 2 9
o(a)=o(b) =3, and e(S3) =6. Yz ; o

o This cannot happen, however, if the group is abelian.

George Voutsadakis (LSSU)



Finite Fields

Let G be a finite abelian group with exponent e. Then there exists an
element a in G, such that o(a) =e.

a1 a2

o Suppose that e = p;*p,?- pZ“, where:
o p1,p2,..., Pk are distinct primes;
O A1,A2,..., Q) = 1.
e is the least common multiple of the orders of the elements of G.

So there exists an element h; whose order is divisible by pfl.

Thus, o(h1) = pi*q1, where gy divides py?---p*.

Let g1 = hi*. Then, for all m=1, g/" = h"". And we have
g =h{""=1 iff p{*qiImg, iff p{*|m.

Thus, o(g1) = pfl.
Similarly, for i=2,...,k, we can find an element g; of order p; e

George Voutsadakis (LSSU)



Finite Fields

o We found, for i=1,2,...,k, an element g; of order pf”'.
Let a=g18>--- gk, and let n=o0(a).
Thus, a" = g{'gy---g; =1 (using the abelian property).
Sogi'=g,"g."
Let r:pgz~~~p;fk.
Now o(g;) zplfx". Sog ™ =1,i=2,...,k. Hence, g/"=1.
Thus, p;* divides nr. So, since p; and r are coprime, p;* divides n.
Similarly, p"’ divides n, for i=2,...,k. We deduce that e|n.

By the definition of the exponent, n|e. Therefore, o(a)=e.

If G is a finite abelian group such that e(G) =|G]|, then G is cyclic.
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Finite Fields

The group of non-zero elements of the Galois field GF(p") is cyclic.

o Denote GF(p") by K and, as usual, denote the abelian group of
non-zero elements of K by K*. Let e be the exponent of K*.

o Then a® =1, for all ain K*. So every element of K* is a root of the
polynomial X€ —1. This polynomial has at most e roots. So |[K*|<e.
o But we also have e < |K*|.

Hence, e =|K*|. So, by the corollary, K* is cyclic.
o All fields of order p” are isomorphic.

So we can construct GF(p") by:

> Finding an irreducible polynomial f of degree n in Z,[X];
> Taking GF(p") = Zp[X]/(f).

There will, however, normally be may choices for f.
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Finite Fields

o Recall that the non-zero elements of the field GF(9) are
1,-1,a,1+a,-1+a,-a,1-a,-1-a,

where a? = —1.
The orders of the elements of the group are easily computed:

o(1)=1, o(-1)=2, o(+a)=4, o(xl+a)=8.

Any one of the four elements +1+ a is a generator of the group.

E.g., the powers of 1+« are

n| 1 2 3 4 5 6 71 8

(1+a)”‘1+a -a l-a -1 -1-a a -1l+a 1

George Voutsadakis (LSSU)



	Finite Fields

