Fields and Galois Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 1 / 1

Some Facts About Finite Fields

- A finite field K has characteristic p, a prime number.
- Its minimal subfield, known as its prime subfield, is

 $\{0_K, 1_K, 2(1_K), \dots, (p-1)(1_K)\}.$

The prime subfield is isomorphic to Z_p, the field of integers modulo p.
For all x, y in a field K of characteristic p, and for all n≥1,

$$(x\pm y)^{p^n}=x^{p^n}\pm y^{p^n}.$$

The Formal Derivative

Let

$$f = a_0 + a_1 X + \dots + a_n X^n$$

be a polynomial with coefficients in a field K.

• The formal derivative Df of f is defined by

$$Df = a_1 + 2a_2X + \dots + na_nX^{n-1}.$$

Roots of a Polynomial in a Splitting Field

Theorem

Let f be a polynomial with coefficients in a field K, and let L be a splitting field for f over K. Then the roots of f in L are all distinct if and only if f and Df have no non-constant common factor.

• Suppose first that f has a repeated root α in L. So we have $f = (X - \alpha)^r g$, where $r \ge 2$. Then

$$Df = (X - \alpha)^r (Dg) + r(X - \alpha)^{r-1}g.$$

So f and Df have the common factor $X - \alpha$. Conversely, suppose that f has no repeated roots. Then, for each root α of f in L, we have $f = (X - \alpha)g$, where $g(\alpha) \neq 0$. Hence, $Df = g + (X - \alpha)(Dg)$. So $(Df)(\alpha) = g(\alpha) \neq 0$. Thus, by the remainder theorem, $(X - \alpha) \nmid Df$. This holds for every factor of f in L[X]. So f and Df must be coprime.

George Voutsadakis (LSSU)

Classification of Finite Fields

Theorem

- (i) Let K be a finite field. Then |K| = pⁿ, for some prime p and some integer n≥1. Every element of K is a root of the polynomial X^{pⁿ} X, and K is a splitting field of this polynomial over the prime subfield Z_p.
 (ii) Let p be a prime, and let n≥1 be an integer. There exists, up to isomorphism, exactly one field of order pⁿ.
- (i) Let K have characteristic p. Then K is a finite extension of Z_p, of degree n, say. Suppose {δ₁, δ₂,...,δ_n} is a basis of K over Z_p. Every element of K is uniquely expressible as a linear combination

$$a_1\delta_1 + a_2\delta_2 + \dots + a_n\delta_n$$
,

with coefficients in \mathbb{Z}_p . For each coefficient a_i there are p choices, namely $0, 1, \ldots, p-1$. So there are p^n linear combinations in all. Thus, $|\mathcal{K}| = p^n$.

Classification of Finite Fields (Cont'd)

The group K* is of order pⁿ-1. Let α ∈ K*. By Lagrange's theorem, the order of α, which is the order of the subgroup ⟨α⟩ generated by α, divides pⁿ-1. Certainly α^{pⁿ-1} = 1. Thus α^{pⁿ} - α = 0. But we also have 0^{pⁿ} - 0 = 0. So every element of K is a root of X^{pⁿ} - X. Thus, X - α is a linear factor for each of the pⁿ elements α of K. It follows that the polynomial X^{pⁿ} - X splits completely over K. It clearly cannot split completely over any proper subfield of K. So K must be the splitting field of X^{pⁿ} - X over Z_p.

Finite Fields

Classification of Finite Fields (Part (ii))

(ii) Let p and n be given. Let L be the splitting field of f = X^{pⁿ} - X over Z_p. Since the field is of characteristic p, Df = pⁿX^{pⁿ-1} - 1 = -1. Thus, f and Df are coprime. So X^{pⁿ} - X has pⁿ distinct roots in L. Let K be the set of those roots. We show that K is a subfield of L. The elements 0,1 are clearly in K. Suppose that a, b ∈ K.

•
$$(a-b)^{p^n} = a^{p^n} - b^{p^n} = a - b$$
. So $a - b \in K$.

• If
$$b \neq 0$$
, $(ab^{-1})^{p^n} = a^{p^n} (b^{p^n})^{-1} = ab^{-1}$. So $ab^{-1} \in K$.

K contains (indeed consists of) all the roots of $X^{p^n} - X$. Clearly no proper subfield of K has this property. So K is the splitting field. Thus, for all primes p and all integers $n \ge 1$, there exists a field of order p^n . Moreover, any field of order p^n is the splitting field of $X^{p^n} - X$ over \mathbb{Z}_p . We know all such fields are isomorphic.

- Only fields of prime-power order exist.
- Moreover, for a given p and n there is essentially exactly one field of order pⁿ, called the Galois field of order pⁿ, and denoted GF(pⁿ).

George Voutsadakis (LSSU)

Finite Fields

Group Theory: Order and Exponent

- Let G be a finite group.
- The order o(a) of an element a in G is the least positive integer k, such that $a^k = 1$. We know $a^m = 1$ if and only if o(a) divides m.
- The exponent e = e(G) of G is the smallest positive integer e = e(G) with the property that $a^e = 1$, for all a in G.
- The exponent always exists (in a finite group): It is the least common multiple of the orders of the elements of *G*.
- Since o(a) divides |G|, for every a, we have e(G) divides |G|.
- In a non-abelian group G it is possible that o(a) < e(G), for all a in G.

Consider the smallest non-abelian group $S_3 = \{1, a, b, x, y, z\}$ (table on the right). We have o(1) = 1, o(x) = o(y) = o(z) = 2, o(a) = o(b) = 3, and $e(S_3) = 6$.

	1	а	b	x	y	Ζ
1	1	а	b	Х	y	Ζ
а	а	b	1	Ζ	х	у
b	b	1	а	y	Ζ	X
х	х	y	Ζ	1	а	b
y	y	Ζ	x	b	1	а
Ζ	Ζ	a b 1 y z x	y	а	b	1

• This cannot happen, however, if the group is abelian.

The Exponent in the Abelian Case

Theorem

Let G be a finite abelian group with exponent e. Then there exists an element a in G, such that o(a) = e.

- Suppose that $e = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where:
 - *p*₁, *p*₂,..., *p*_k are distinct primes;
 - $\alpha_1, \alpha_2, \ldots, \alpha_k \ge 1$.

e is the least common multiple of the orders of the elements of *G*. So there exists an element h_1 whose order is divisible by $p_1^{\alpha_1}$. Thus, $o(h_1) = p_1^{\alpha_1}q_1$, where q_1 divides $p_2^{\alpha_2} \cdots p_k^{\alpha_k}$. Let $g_1 = h_1^{q_1}$. Then, for all $m \ge 1$, $g_1^m = h_1^{mq_1}$. And we have $g_1^m = h_1^{mq_1} = 1$ iff $p_1^{\alpha_1}q_1 | mq_1$ iff $p_1^{\alpha_1} | m$.

Thus, $o(g_1) = p_1^{\alpha_1}$. Similarly, for i = 2, ..., k, we can find an element g_i of order $p_i^{\alpha_i}$.

Finite Fields

The Exponent in the Abelian Case (Cont'd)

Corollary

If G is a finite abelian group such that e(G) = |G|, then G is cyclic.

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 11 / 1

Multiplicative Structure of $GF(p^n)$

Theorem

The group of non-zero elements of the Galois field $GF(p^n)$ is cyclic.

- Denote GF(pⁿ) by K and, as usual, denote the abelian group of non-zero elements of K by K*. Let e be the exponent of K*.
 - Then $a^e = 1$, for all a in K^* . So every element of K^* is a root of the polynomial $X^e 1$. This polynomial has at most e roots. So $|K^*| \le e$.

• But we also have $e \leq |K^*|$.

Hence, $e = |K^*|$. So, by the corollary, K^* is cyclic.

• All fields of order p^n are isomorphic.

So we can construct $GF(p^n)$ by:

- Finding an irreducible polynomial f of degree n in $\mathbb{Z}_p[X]$;
- Taking $GF(p^n) = \mathbb{Z}_p[X]/\langle f \rangle$.

There will, however, normally be may choices for f.

Example

• Recall that the non-zero elements of the field GF(9) are

$$1, -1, \alpha, 1+\alpha, -1+\alpha, -\alpha, 1-\alpha, -1-\alpha,$$

where $\alpha^2 = -1$.

The orders of the elements of the group are easily computed:

$$o(1) = 1$$
, $o(-1) = 2$, $o(\pm \alpha) = 4$, $o(\pm 1 \pm \alpha) = 8$.

Any one of the four elements $\pm 1 \pm \alpha$ is a generator of the group. E.g., the powers of $1 + \alpha$ are