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Finite Fields

Some Facts About Finite Fields

A finite field K has characteristic p, a prime number.

Its minimal subfield, known as its prime subfield, is

{

0K ,1K ,2(1K ), . . . ,(p−1)(1K )
}

.

The prime subfield is isomorphic to Zp, the field of integers modulo p.

For all x ,y in a field K of characteristic p, and for all n≥ 1,

(x ±y)p
n

= xp
n

±yp
n

.
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Finite Fields

The Formal Derivative

Let
f = a0+a1X +·· ·+anX

n

be a polynomial with coefficients in a field K .

The formal derivative Df of f is defined by

Df = a1+2a2X +·· ·+nanX
n−1

.

The familiar formulas from analysis hold.

For all f ,g ∈K [X ] and k ∈K :

D(kf )= k(Df );
D(f +g)=Df +Dg ;

D(fg)= (Df )g + f (Dg).
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Finite Fields

Roots of a Polynomial in a Splitting Field

Theorem

Let f be a polynomial with coefficients in a field K , and let L be a splitting
field for f over K . Then the roots of f in L are all distinct if and only if f
and Df have no non-constant common factor.

Suppose first that f has a repeated root α in L.

So we have f = (X −α)rg , where r ≥ 2. Then

Df = (X −α)r (Dg)+ r(X −α)r−1g .

So f and Df have the common factor X −α.

Conversely, suppose that f has no repeated roots.

Then, for each root α of f in L, we have f = (X −α)g , where g(α) 6= 0.
Hence, Df = g + (X −α)(Dg). So (Df )(α)= g(α) 6= 0.

Thus, by the remainder theorem, (X −α) ∤Df .

This holds for every factor of f in L[X ].

So f and Df must be coprime.
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Finite Fields

Classification of Finite Fields

Theorem

(i) Let K be a finite field. Then |K | = pn, for some prime p and some
integer n≥ 1. Every element of K is a root of the polynomial X pn

−X ,
and K is a splitting field of this polynomial over the prime subfield Zp.

(ii) Let p be a prime, and let n≥ 1 be an integer. There exists, up to
isomorphism, exactly one field of order pn.

(i) Let K have characteristic p. Then K is a finite extension of Zp, of
degree n, say. Suppose {δ1,δ2, . . . ,δn} is a basis of K over Zp.

Every element of K is uniquely expressible as a linear combination

a1δ1+a2δ2+·· ·+anδn,

with coefficients in Zp. For each coefficient ai there are p choices,
namely 0,1, . . . ,p−1. So there are pn linear combinations in all.

Thus, |K | = pn.
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Finite Fields

Classification of Finite Fields (Cont’d)

The group K∗ is of order pn−1. Let α ∈K∗. By Lagrange’s theorem,
the order of α, which is the order of the subgroup 〈α〉 generated by α,
divides pn−1. Certainly α

pn−1 = 1. Thus α
pn

−α= 0. But we also
have 0p

n

−0= 0. So every element of K is a root of X pn

−X .

Thus, X −α is a linear factor for each of the pn elements α of K .

It follows that the polynomial X pn

−X splits completely over K .

It clearly cannot split completely over any proper subfield of K .

So K must be the splitting field of X pn

−X over Zp.
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Finite Fields

Classification of Finite Fields (Part (ii))

(ii) Let p and n be given. Let L be the splitting field of f =X pn

−X over
Zp. Since the field is of characteristic p, Df = pnX pn−1−1=−1.
Thus, f and Df are coprime. So X pn

−X has pn distinct roots in L.

Let K be the set of those roots. We show that K is a subfield of L.
The elements 0,1 are clearly in K . Suppose that a,b ∈K .

(a−b)p
n
= ap

n
−bp

n
= a−b. So a−b ∈K .

If b 6= 0, (ab−1)p
n
= ap

n
(bp

n
)−1 = ab−1. So ab−1 ∈K .

K contains (indeed consists of) all the roots of X pn

−X . Clearly no
proper subfield of K has this property. So K is the splitting field.

Thus, for all primes p and all integers n≥ 1, there exists a field of
order pn. Moreover, any field of order pn is the splitting field of
X pn

−X over Zp. We know all such fields are isomorphic.

Only fields of prime-power order exist.

Moreover, for a given p and n there is essentially exactly one field of
order pn, called the Galois field of order pn, and denoted GF(pn).
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Finite Fields

Group Theory: Order and Exponent

Let G be a finite group.

The order o(a) of an element a in G is the least positive integer k ,
such that ak = 1. We know am = 1 if and only if o(a) divides m.
The exponent e = e(G ) of G is the smallest positive integer e = e(G )
with the property that ae = 1, for all a in G .

The exponent always exists (in a finite group): It is the least common
multiple of the orders of the elements of G .
Since o(a) divides |G |, for every a, we have e(G ) divides |G |.

In a non-abelian group G it is possible that
o(a)< e(G ), for all a in G .
Consider the smallest non-abelian group
S3 = {1,a,b,x ,y ,z } (table on the right).
We have o(1)= 1, o(x) = o(y)= o(z)= 2,
o(a)= o(b)= 3, and e(S3)= 6.

1 a b x y z

1 1 a b x y z

a a b 1 z x y

b b 1 a y z x

x x y z 1 a b

y y z x b 1 a

z z x y a b 1

This cannot happen, however, if the group is abelian.
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Finite Fields

The Exponent in the Abelian Case

Theorem

Let G be a finite abelian group with exponent e. Then there exists an
element a in G , such that o(a)= e.

Suppose that e = p
α1

1
p
α2

2
· · ·p

αk

k
, where:

p1,p2, . . . ,pk are distinct primes;

α1,α2, . . . ,αk ≥ 1.

e is the least common multiple of the orders of the elements of G .

So there exists an element h1 whose order is divisible by p
α1

1
.

Thus, o(h1)= p
α1

1
q1, where q1 divides p

α2

2
· · ·p

αk

k
.

Let g1 = h
q1

1
. Then, for all m≥ 1, gm

1 = h
mq1

1
. And we have

gm
1 = h

mq1

1
= 1 iff p

α1

1
q1 |mq1 iff p

α1

1
|m.

Thus, o(g1)= p
α1

1 .

Similarly, for i = 2, . . . ,k , we can find an element gi of order pαi

i
.
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Finite Fields

The Exponent in the Abelian Case (Cont’d)

We found, for i = 1,2, . . . ,k , an element gi of order pαi

i
.

Let a= g1g2 · · ·gk , and let n= o(a).

Thus, an = gn
1 g

n
2 · · ·gn

k
= 1 (using the abelian property).

So gn
1 = g−n

2 · · ·g−n
k

.

Let r = p
α2

2 · · ·p
αk

k
.

Now o(gi )= p
αi

i
. So g−nr

i
= 1, i = 2, . . . ,k . Hence, gnr

1 = 1.

Thus, pα1

1
divides nr . So, since p1 and r are coprime, pα1

1
divides n.

Similarly, pαi

i
divides n, for i = 2, . . . ,k . We deduce that e | n.

By the definition of the exponent, n | e. Therefore, o(a)= e.

Corollary

If G is a finite abelian group such that e(G )= |G |, then G is cyclic.
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Finite Fields

Multiplicative Structure of GF(pn)

Theorem

The group of non-zero elements of the Galois field GF(pn) is cyclic.

Denote GF(pn) by K and, as usual, denote the abelian group of
non-zero elements of K by K∗. Let e be the exponent of K∗.

Then ae = 1, for all a in K∗. So every element of K∗ is a root of the

polynomial X e −1. This polynomial has at most e roots. So |K∗| ≤ e.

But we also have e ≤ |K∗|.

Hence, e = |K∗|. So, by the corollary, K∗ is cyclic.

All fields of order pn are isomorphic.

So we can construct GF(pn) by:

Finding an irreducible polynomial f of degree n in Zp [X ];
Taking GF(pn)=Zp [X ]/〈f 〉.

There will, however, normally be may choices for f .
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Finite Fields

Example

Recall that the non-zero elements of the field GF(9) are

1,−1,α,1+α,−1+α,−α,1−α,−1−α,

where α
2 =−1.

The orders of the elements of the group are easily computed:

o(1)= 1, o(−1)= 2, o(±α)= 4, o(±1±α)= 8.

Any one of the four elements ±1±α is a generator of the group.

E.g., the powers of 1+α are

n 1 2 3 4 5 6 7 8

(1+α)n 1+α −α 1−α −1 −1−α α −1+α 1
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