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The Galois Group Monomorphisms between Fields

Subsection 1

Monomorphisms between Fields

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 3 / 86



The Galois Group Monomorphisms between Fields

The Vector Space M

Let K be a field and let S be a non-empty set.

Let M be the set of mappings from S into K .

If θ,ϕ ∈M , then θ+ϕ, defined by

(θ+ϕ)(s)= θ(s)+ϕ(s), s ∈ S ,

is a mapping from S into K , and so belongs to M .

If θ ∈M and a ∈K , then aθ, defined by

(aθ)(s)= aθ(s), s ∈ S ,

belongs to M .

M is a vector space with respect to these two operations.

The zero vector in M is the mapping ζ given by

ζ(s)= 0, s ∈ S .

We denote the mapping ζ simply by 0, since the context makes it clear
whether we mean the zero element of K or the mapping ζ.
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The Galois Group Monomorphisms between Fields

Linear Independence in M

A set {θ1,θ2, . . . ,θn} of elements of M is linearly independent if, for
all a1,a2, . . . ,an in K ,

a1θ1(s)+a2θ2(s)+ ·· ·+anθn(s)= 0,

for all s in S , if and only if a1 = a2 = ·· · = an = 0.

More compactly, we can write the condition as

a1θ1+a2θ2+·· ·+anθn = 0 (strictly, ζ) iff a1 = a2 = ·· · = an = 0.
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The Galois Group Monomorphisms between Fields

Linear Independence of Field Monomorphisms

Theorem

Let K and L be fields, and let θ1,θ2, . . . ,θn be distinct monomorphisms
from K into L. Then {θ1,θ2, . . . ,θn} is a linearly independent set in the
vector space M of all mappings from K into L.

We prove the theorem by induction on n.

For n= 1: By hypothesis, θ1 is a monomorphism. Thus, it maps the
identity 1 of K to the identity 1 of L. So it is not the zero mapping.

Assume that we have established that every set of fewer than n

distinct monomorphisms of K into L is linearly independent.

Suppose, for a contradiction, that there exist a1,a2, . . . ,an in L, not all
zero, such that a1θ1+a2θ2+·· ·+anθn = 0. We may assume that all ai
are non-zero: If, e.g., an = 0, then {θ1,θ2, . . . ,θn−1} is linearly
dependent, contradicting the induction hypothesis.
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The Galois Group Monomorphisms between Fields

Linear Independence of Field Monomorphisms (Cont’d)

Dividing by an, gives

b1θ1+·· ·+bn−1θn−1+θn = 0,

where bi = ai
an

(i = 1,2, . . . ,n−1). The monomorphisms θ1 and θn are
by assumption distinct. So there exists u in K , with θ1(u) 6= θn(u).

The element u is certainly non-zero, as are both θ1(u) and θn(u).

For every z in K , b1θ1(uz)+·· ·+bn−1θn−1(uz)+θn(uz)= 0.

But θ1,θ2, . . . ,θn are monomorphisms.

So b1θ1(u)θ1(z)+·· ·+bn−1θn−1(u)θn−1(z)+θn(u)θn(z)= 0.

Dividing this by θn(u), we get, for all z in K ,

b1

θ1(u)

θn(u)
θ1(z)+·· ·+bn−1

θn−1(u)

θn(u)
θn−1(z)+θn(z)= 0.

Rewriting as an equation concerning mappings gives

b1

θ1(u)

θn(u)
θ1+·· ·+bn−1

θn−1(u)

θn(u)
θn−1+θn = 0.
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The Galois Group Monomorphisms between Fields

Linear Independence of Field Monomorphisms (Conclusion)

Subtracting the bottom from he top equation, we obtain

b1

(
1−

θ1(u)

θn(u)

)
θ1+·· ·+bn−1

(
1−

θn−1(u)

θn(u)

)
θn−1 = 0.

Our choice of u as an element such that θ1(u) 6= θn(u) means that the
coefficient of θ1 is non-zero. Thus, the set {θ1,θ2, . . . ,θn−1} is linearly
dependent. This contradicts the induction hypothesis.

The set of monomorphisms from K into L is not a subspace of the
vector space M .

Suppose θ1 and θ2 are monomorphisms.

Let 1K and 1L be the identities of K and L.

(θ1+θ2)(1K )= θ1(1K )+θ2(1K )= 1L+1L 6= 1L.

So θ1+θ2 is not a monomorphism.
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The Galois Group Automorphisms, Groups and Subfields

Subsection 2

Automorphisms, Groups and Subfields
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The Galois Group Automorphisms, Groups and Subfields

The Group of Automorphisms of a Field

Theorem

Let K be a field. Then the set AutK of automorphisms of K forms a group
under composition of mappings.

Composition of mappings is always associative. For all x in K and all
α, β and γ in AutK ,

[(α◦β)◦γ] (x)= (α◦β)[γ(x)]=α(β(γ(x)));
[α◦ (β◦γ)](x)=α([β◦γ](x))=α(β(γ(x))).

There exists an identity automorphism ι in AutK , defined by the
property that ι(x)= x , for all x in K .

Clearly ι◦α=α◦ ι=α, for all α in AutK .
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The Galois Group Automorphisms, Groups and Subfields

The Group of Automorphisms of a Field (Cont’d)

Finally, for every automorphism α in AutK , there is an inverse
mapping α−1 defined by the property that

α−1(x) is the unique z in K such that α(z)= x .

This map is also an automorphism.

Let x ,y ∈K , and let α−1(x)= z , α−1(y)= t. Then α(z)= x , α(t)= y .
So α(z + t)= x +y and α(zt)= xy . Hence,

α−1(x)+α−1(y) = z + t =α−1(α(z + t))=α−1(x +y);
α−1(x)α−1(y) = zt =α−1(α(zt))=α−1(xy).

Thus, α−1 ∈G . Clearly, α◦α−1 =α−1 ◦α= ι.

Hence G is a group.

AutK is called the group of automorphisms of K .
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The Galois Group Automorphisms, Groups and Subfields

The Galois Group of an Extension

Let L be an extension of a field K .

An automorphism α of L is called a K -automorphism if α(x)= x , for
every x in K .

The set of all K -automorphisms of L is denoted by Gal(L :K ) and is
called the Galois group of L over K .

The Galois group Gal(f ) of a polynomial f in K [X ] is defined as
Gal(L :K ), where L is a splitting field of f over K .
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The Galois Group Automorphisms, Groups and Subfields

The Galois Group in the Automorphisms of the Extension

Let L be an extension of a field K .

We have seen that AutL is a group.
We show that Gal(L :K ) is a subgroup of AutL.

Theorem

Let L :K be a field extension. The set Gal(L :K ) of all K -automorphisms
of L is a subgroup of AutL.

Certainly ι ∈Gal(L :K ).

Let α,β ∈Gal(L :K ). Then, for all x in K ,

β−1(x) = β−1(β(x))= x ;
α(β(x)) = α(x)= x .

Thus, Gal(L :K ) is a subgroup of AutL.
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The Galois Group Automorphisms, Groups and Subfields

The Maps Γ and Φ

We now connect the following objects:

The subfields E of L containing K ;
The subgroups H of the group Gal(L :K ).

For every subfield E of L containing K , we define

Γ(E )= {α ∈AutL :α(z)= z , for all z in E }.

For every subgroup H of Gal(L :K ), we define

Φ(H)= {x ∈ L :α(x)= x , for all α in H}.

We establish conditions on the extension L :K under which Γ and Φ

are mutually inverse.
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The Galois Group Automorphisms, Groups and Subfields

Γ and Φ are Well-Defined

Theorem

Let L :K be a field extension.

(i) For every subfield E of L containing K , the set Γ(E ) is a subgroup of
Gal(L :K ).

(ii) For every subgroup H of Gal(L :K ), the set Φ(H) is a subfield of L,
containing K .

(i) Certainly Γ(E ) is non-empty, since it contains ι, the identity
automorphism. Since K ⊆E , every automorphism fixing all elements
of E automatically fixes all elements of K . Hence, Γ(E )⊆Gal(L :K ).

Let α,β ∈Γ(E ). Then, for all z in E ,

α(β−1(z))=α(β−1(β(z)))=α(z)= z .

So αβ−1 ∈Γ(E ). Hence, Γ(E ) is a subgroup.
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The Galois Group Automorphisms, Groups and Subfields

Γ and Φ are Well-Defined

(ii) Every automorphism in Gal(L :K ) fixes the elements of K .

Hence, K ⊆Φ(H).

Let x ,y ∈Φ(H). Then, for all α in H,

α(x −y)=α(x)−α(y)= x −y .

So x −y ∈Φ(H).

If y 6= 0, then, for all α in H,

α(xy−1)=α(x)α(y−1)=α(x)(α(y))−1 = xy−1
.

So xy−1 ∈Φ(H).

Thus, Φ(H) is a subfield of L.
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The Galois Group Automorphisms, Groups and Subfields

Γ and Φ are Order-Reversing

Theorem

Let L :K be a field extension.

(i) If E1 and E2 are subfields of L containing K , then

E1 ⊆E2 implies Γ(E1)⊇Γ(E2).

(ii) If H1 and H2 are subgroups of Gal(L :K ), then

H1 ⊆H2 implies Φ(H1)⊇Φ(H2).

(i) Suppose that E1 ⊆E2, and let α ∈Γ(E2). Then α fixes every element
of E2. So it fixes every element of E1. Hence, α ∈ Γ(E1).

(ii) Suppose that H1 ⊆H2, and let z ∈Φ(H2). Then α(z)= z , for every α

in H2. So, α(z)= z , for every α in H1. Hence z ∈Φ(H1).
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The Galois Group Automorphisms, Groups and Subfields

Γ and Φ May Not Be Inverse Mappings

Consider the extension Q(u) of Q, where u = 3
p

2.

Suppose α ∈Gal(Q(u) :Q).

Then
(α(u))3 =α(u3)=α(2)= 2.

So, being real, α(u) must be equal to u.

Hence, Gal(Q(u) :Q) is the trivial group {ι}.

Two mappings are mutually inverse only if they are both bijections.

Here, however, we have

Γ(Q(u))= Γ(Q)= {ι}.

To look at it another way, we have

Φ(Γ(Q))=Φ({ι})=Q(u).
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The Galois Group Automorphisms, Groups and Subfields

Γ and Φ May Be Inverse Mappings

We describe the group Gal(C :R).
If α ∈Gal(C :R), then α(x)= x , for all x in R . Let α(i)= j . Then
j2 = (α(i))2 =α(i2)=α(−1)= −1. So j =±i .

Suppose j = i . For all x +yi in C (with x ,y in R),
α(x +yi)=α(x)+α(y)α(i) = x +yi . So α= ι.
Suppose j =−i . Then α(x +yi)= x −yi . This mapping fixes the
elements of R. We check that it is an automorphism.

α((x +yi)+ (u+vi))=α((x +u)+ (y +v)i)= (x +u)− (y +v)i
= (x −yi)+ (u−vi)=α(x +yi)+α(u+vi);
α((x +yi)(u+vi))=α((xu−yv)+ (xv +yu)i)= (xu−yv)− (xv +yu)i
= (x −yi)(u−vi)= (α(x +yi))(α(u+vi)).

We deduce that Gal(C :R) is the group {ι,κ} of order 2, where κ is the
complex conjugation mapping sending x +yi to x −yi .

Moreover, [C :R]= 2, a prime number.

So there cannot be any subfields of C lying between C and R.

We conclude that Φ({ι})=C and Φ({ι,κ})=R.
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The Galois Group Automorphisms, Groups and Subfields

Galois Group and Roots of Polynomials

Theorem

Let K be a field, let L be an extension of K , and let z ∈ L\K . If z is a root
of a polynomial f with coefficients in K , and if α ∈Gal(L :K ), then α(z) is
also a root of f .

Let f = a0+a1X +·· ·+anX
n, where a0,a1, . . . ,an ∈K .

Suppose that f (z)= 0. Then

f (α(z)) = a0+a1α(z)+·· ·+an(α(z))
n

= α(a0)+α(a1)α(z)+·· ·+α(an)α(z
n)

= α(a0+a1z +·· ·+anz
n)

= α(0)
= 0.
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The Galois Group Automorphisms, Groups and Subfields

Example

We describe the group Gal(Q(
p

2, i
p

3) :Q) and, for each of its
subgroups H, we determine Φ(H).

The elements of Q(
p

2, i
p

3) are of the form a+b
p

2+ci
p

3+di
p

6.

By the theorem, if α ∈Gal(Q(
p

2, i
p

3) :Q), then α(
p

2)=±
p

2,

α(i
p

3)=±i
p

3. There are four elements in Gal(Q(
p

2, i
p

3) :Q),
namely, ι,τ,θ and β, where ι is the identity map, and:

τ(a+b
p

2+ci
p

3+di
p

6)= a−b
p

2+ci
p

3−di
p

6;
θ(a+b

p
2+ci

p
3+di

p
6)= a+b

p
2−ci

p
3−di

p
6;

β(a+b
p

2+ci
p

3+di
p

6)= a−b
p

2−ci
p

3+di
p

6.

All four are Q-automorphisms of Q(
p

2, i
p

3).
The multiplication table is on the right.
The proper subgroups of this group are H1 = {ι,τ},
H2 = {ι,θ} and H3 = {ι,β}.
We have Φ(H1) = Q(i

p
3), Φ(H2) = Q(

p
2),

Φ(H3)=Q(i
p

6).

ι τ θ β

ι ι τ θ β

τ τ ι β θ

θ θ β ι τ

β β θ τ ι
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The Galois Group Automorphisms, Groups and Subfields

Inflationarity of ΦΓ and ΓΦ

The pair Φ and Γ, known as the Galois correspondence, need not be
mutually inverse, but they do have a weaker property.

Theorem

Let L be an extension of a field K , let E be a subfield of L containing K ,
and let H be a subgroup of Gal(L :K ). Then

E ⊆Φ(Γ(E )), H ⊆ Γ(Φ(H)).

Let z ∈E . The group Γ(E ) is the set of all automorphisms fixing each
element of E . So z is fixed by all the automorphisms in Γ(E ). That is,
z ∈Φ(Γ(E )). Hence, E ⊆Φ(Γ(E )).

Let α ∈H. The field Φ(H) is the set of elements of L fixed by every
element of H. So α fixes every element of Φ(H). That is,
α ∈Γ(Φ(H)). Hence, H ⊆ Γ(Φ(H)).
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The Galois Group Automorphisms, Groups and Subfields

Linear Algebraic Deviation: Rank and Nullity

Let V and W be finite-dimensional vector spaces over a field K , with
dimensions m,n, respectively, and let T :V →W be a linear mapping.

The image imT of T is the set {T (v) : v ∈V }.

The image imT is a subspace of W .

Its dimension dim(imT ) is called the rank ρ(T ) of T .

The kernel kerT of T is the set {v ∈V :T (v)= 0}.

The kernel kerT is a subspace of V .

Its dimension dim(kerT ) is called the nullity ν(T ) of T .

A standard result in linear algebra states that

ρ(T )+ν(T )= dimV =m.
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The Galois Group Automorphisms, Groups and Subfields

Linear Algebraic Deviation: Translation into Matrices

We know ρ(T )+ν(T )= dimV =m.

So, if n<m, then certainly ρ(T )≤ n<m. So ν(T )> 0.

Thus, there exists a non-zero vector v in V , such that T (v)= 0.

If we have an n×m matrix A= [aij ]n×m, with entries in K , and an
m-dimensional column vector v , the map v 7→Av is a linear mapping
from the vector space Km into the vector space Kn.

So if n<m, then there exists a non-zero vector v such that Av = 0.

That is, there exist v1,v2, . . . ,vm in K , not all zero, such that

a1jv1+a2jv2+ ·· ·+amjvm = 0, j = 1,2, . . . ,n.
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The Galois Group Automorphisms, Groups and Subfields

Degree of Extension and Order of a Group

Theorem

Let L be a finite extension of a field K , and let G be a finite subgroup of
Gal(L :K ). Then [L :Φ(G )]= |G |.

Let |G | =m and [L :Φ(G )]= n.

We show m> n leads to a contradiction.

Write G = {α1 = ι,α2, . . . ,αm}, where ι is the identity map.

Suppose that {z1,z2, . . . ,zn} is a basis for L over Φ(G ).

Consider the n×m matrix





α1(z1) α2(z1) · · · αm(z1)
α1(z2) α2(z2) · · · αm(z2)

.

.

.

.

.

.

.

.

.

α1(zn) α2(zn) · · · αm(zn)




.

Since m> n, there exist v1,v2, . . . ,vm in L, not all zero, such that

α1(zj)v1+α2(zj)v2+·· ·+αm(zj)vm = 0, j = 1,2, . . . ,n.
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The Galois Group Automorphisms, Groups and Subfields

Degree of Extension ≮ Order of a Group

Let b ∈ L. The set {z1,z2, . . . ,zn} is a basis for L over Φ(G ). So there
exist b1,b2, . . . ,bn in Φ(G ) such that b = b1z1+b2z2+·· ·+bnzn.

Multiplying the n preceding equations by b1,b2, . . . ,bn, respectively,

bjα1(zj)v1+bjα2(zj)v2+·· ·+bjαm(zj)vm = 0, j = 1,2, . . . ,n.

The bj all lie in Φ(G ). The αi all lie in G . So bj =αi (bj) for all i , j .

Thus, we may rewrite the equations as

α1(bjzj)v1+α2(bjzj)v2+·· ·+αm(bjzj)vm = 0, j = 1,2, . . . ,n.

If we add these n equations together, we obtain

v1α1(b)+v2α2(b)+·· ·+vmαm(b)= 0.

This holds for all b in L. So the automorphisms α1,α2, . . . ,αm are
linearly dependent. This is impossible.
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The Galois Group Automorphisms, Groups and Subfields

Degree of Extension ≯ Order of a Group

Suppose that n= [L :Φ(G )]>m. Take a subset {z1,z2, . . . ,zm+1} of L
which is linearly independent over Φ(G ). Consider the m× (m+1)

matrix





α1(z1) α1(z2) · · · α1(zm+1)
α2(z1) α2(z2) · · · α2(zm+1)

.

.

.

.

.

.

.

.

.

αm(z1) αm(z2) · · · αm(zm+1)




.

There exist u1,u2, . . . ,um+1 in L, not all zero, such that

αj (z1)u1+αj (z2)u2+·· ·+αj (zm+1)um+1 = 0, j = 1,2, . . . ,m.

Suppose that the elements u1,u2, . . . ,um+1 are chosen so that as few

as possible are non-zero. Relabel the elements so that u1,u2, . . . ,ur are
non-zero, and ur+1 = ·· · = um+1 = 0.

So now we have

αj (z1)u1+αj (z2)u2+·· ·+αj(zr )ur = 0, j = 1,2, . . . ,m.

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 27 / 86



The Galois Group Automorphisms, Groups and Subfields

Degree of Extension ≯ Order of a Group (Cont’d)

We have αj(z1)u1+αj (z2)u2+·· ·+αj (zr )ur = 0, j = 1,2, . . . ,m.

Dividing by ur and setting u′
i
= ui

ur
, i = 1,2, . . . ,r −1, we get

αj(z1)u
′
1+·· ·+αj (zr−1)u

′
r−1+αj(zr )= 0, j = 1,2, . . . ,m.

Since α1 = ι, the first of these equations is

z1u
′
1+·· ·+zr−1u

′
r−1+zr = 0.

The set {z1,z2, . . . ,zr } is not linearly dependent over Φ(G ).

So not all of the elements u′
1, . . . ,u′

r−1 belong to Φ(G ).

As at least one of u′
1, . . . ,u′

r−1 is not in Φ(G ), assume u′
1 6∈Φ(G ).

That is, u′
1 is not fixed by every automorphism in G .

So there is an automorphism in G , say α2, such that α2(u
′
1) 6= u′

1.

Applying α2 to the preceding equations, for j = 1,2, . . . ,m,

(α2αj )(z1)α2(u
′
1)+·· ·+ (α2αj)(zr−1)α2(u

′
r−1)+ (α2αj)(zr )= 0.
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The Galois Group Automorphisms, Groups and Subfields

Degree of Extension ≯ Order of a Group (Cont’d)

We obtained

(α2αj )(z1)α2(u
′
1)+·· ·+ (α2αj)(zr−1)α2(u

′
r−1)+ (α2αj)(zr )= 0.

G is a group.

So the set {α2α1,α2α2, . . . ,α2αm} is the same as the set
{α1,α2, . . . ,αm} except for the order of the elements.

Hence, we may change the order of the listed equations and obtain

αj(z1)α2(u
′
1)+ ·· ·+αj (zr−1)α2(u

′
r−1)+αj (zr )= 0, j = 1,2, . . . ,m.

Subtracting these from the original gives, for j = 1,2, ...,m,

αj (z1)(u
′
1−α2(u

′
1))+·· ·+αj (zr−1)(u

′
r−1−α2(u

′
r−1))= 0.
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The Galois Group Automorphisms, Groups and Subfields

Degree of Extension ≯ Order of a Group (Conclusion)

We obtained

αj (z1)(u
′
1−α2(u

′
1))+·· ·+αj (zr−1)(u

′
r−1−α2(u

′
r−1))= 0.

Let vi = u′
i
−α2(u

′
i
), i = 1,2, . . . ,r −1, and vi = 0, i = r ,r +1, . . . ,m+1.

Then

αj(z1)v1+αj (z2)v2+ ·· ·+αj (zm+1)vm+1 = 0, j = 1,2, . . . ,m.

We know that the elements vi are not all zero.

In this arrangement, no more than r −1 of the vi are non-zero.

This contradicts the minimality of r in the choice of the elements
u1,u2, . . . ,um+1.

We conclude that it is not possible to have [L :Φ(G )]>m.
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The Galois Group Normal Extensions

Subsection 3

Normal Extensions
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The Galois Group Normal Extensions

Normal Extensions

We considered the two extensions of Q, Q(
p

2) and Q( 3
p

2).

In the first case X 2−2, the minimum polynomial of
p

2, splits
completely over Q(

p
2).

In the second case we see that X 3−2, the minimum polynomial of 3
p

2,
does not split completely over Q( 3

p
2).

This is an important difference.

Although it is convenient to consider arbitrary extensions L :K , our
primary interest is with Galois groups of polynomials, when L is a
splitting field over K for some polynomial.

We call L :K a normal extension if every irreducible polynomial in
K [X ] having at least one root in L splits completely over L.
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The Galois Group Normal Extensions

Characterization of Normality

Theorem

A finite extension L of a field K is normal if and only if it is a splitting field
for some polynomial in K [X ].

Suppose that L is a finite normal extension.

Let {z1,z2, . . . ,zn} be a basis for L over K .

For i = 1,2, . . . ,n, let mi be the minimum polynomial of zi , and let
m=m1m2 · · ·mn.

Each mi has at least one root zi in L. So, by hypothesis, it splits
completely over L. Hence, m splits completely over L.
But L is generated by z1,z2, . . . ,zn. So it is not possible for m to split
completely over any proper subfield of L.

Thus, L is a splitting field for m over K .
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The Galois Group Normal Extensions

Characterization of Normality (Converse)

Suppose that E is a splitting field for some polynomial g over K .

Let f , with degree at least 2, be an irreducible polynomial in K [X ],
having a root α in E . We must show that f splits completely over E .

The polynomial fg certainly lies in E [X ]. It has
a splitting field L containing E . Suppose that β
is another root of f in L. We have subfields of L
as indicated in the diagram, in which the arrows
denote inclusion. We have

[E (α) : E ][E :K ]= [E (α) :K ]= [E (α) :K (α)][K (α) :K ];
[E (β) : E ][E :K ]= [E (β) :K ]= [E (β) :K (β)][K (β) :K ].

L

E (α)

>

E (β)

<

E

∧

><

K (α)

∧

K (β)

∧

K

∧

><

But α and β are roots of the same irreducible polynomial f .

So there is a K -isomorphism ϕ from K (α) onto K (β).

Certainly [K (α) :K ]= [K (β) :K ].
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The Galois Group Normal Extensions

Characterization of Normality (Converse Cont’d)

E is a splitting field for g over K .

So E (α) is a splitting field for g over K (α)

and E (β) is a splitting field for g over K (β).

Hence, there is an isomorphism ϕ∗ from E (α)
onto E (β), extending the K -isomorphism ϕ

from K (α) onto K (β). It follows in particular
that [E (α) :K (α)]= [E (β) :K (β)].

L

E (α)

>

E (β)

<

E

∧

><

K (α)

∧

K (β)

∧

K

∧

><

Now [E (α) :E ]= 1, since α ∈E by assumption. Hence,

[E (β) :E ][E :K ] = [E (β) :K (β)][K (β) :K ]
= [E (α) :K (α)][K (α) :K ]
= [E (α) :E ][E :K ]
= [E :K ].

Thus [E (β) :E ]= 1. So β ∈ E , as required.
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The Galois Group Normal Extensions

Extension of K -Monomorphisms

Corollary

Let L be a normal extension of finite degree over a field K , and let E be a
subfield of L containing K . Then every K -monomorphism from E into L

can be extended to a K -automorphism of L.

Let ϕ be a K -monomorphism from E into L.

By the theorem, there exists a polynomial f such that L is a splitting
field for f over K .

L is also a splitting field for f over each of the fields E and ϕ(E ).

By a preceding theorem, we deduce that there is a K -automorphism
ϕ∗ of L extending ϕ.
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The Galois Group Normal Extensions

Example

Let K =Q, E =Q(
p

2), L=Q(
p

2,
p

5).

Let ϕ :E → L be defined by

ϕ(a+b
p

2)= a−b
p

2.

Then ϕ is a K -monomorphism.

So ϕ extends to a Q-automorphism ϕ∗ of L.

ϕ∗ is defined by

ϕ∗(a+b
p

2+c
p

5+d
p

10)= a−b
p

2+c
p

5−d
p

10.
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The Galois Group Normal Extensions

K -Automorphisms Mapping Roots

Corollary

Let L be a normal extension of finite degree over a field K . If z1 and z2 are
roots in L of an irreducible polynomial in K [X ], then there exists a
K -automorphism θ of L, such that θ(z1)= z2.

By a preceding theorem, there is a K -isomorphism from K (z1) onto
K (z2). By the corollary, this extends to a K -automorphism θ of L.
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The Galois Group Normal Extensions

Example

Let K =Q and let L=Q(u, i
p

3), where u = 3
p

2.

L is the splitting field over Q of X 3−2 (has complex roots 3
p

2,

−1
2
± i

p
3

2
).

So it is a normal extension of Q.

The set {1,u,u2, i
p

3,ui
p

3,u2i
p

3} is a basis for L over Q.

The polynomial X 3−2 is irreducible over Q

Consider the two roots u and ue2πi/3 =−1
2
u+ui

p
3

2
.

There is a Q-isomorphism θ :Q(u)→Q(ue2πi/3).

By the corollary, this extends to a Q-automorphism θ∗ of L.
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The Galois Group Normal Extensions

Example (Cont’d)

Any Q-automorphism of L maps i
p

3 to ±i
p

3.

Let us choose θ∗(i
p

3)= i
p

3.

Then, recalling that e2πi/3 = 1
2
(−1+ i

p
3), we deduce that:

θ∗(u2) = u2e4πi/3 = 1
2
(−u2−u2i

p
3);

θ∗(ui
p

3) = (−1
2
u+ui

p
2

3
)i
p

3= 1
2
(−ui

p
3−3u);

θ∗(u2i
p

3) = (−1
2
u2−u2i

p
2

3
)i
p

3= 1
2
(−u2i

p
3+3u2).

So the required extension is defined by

θ∗(a1+a2u+a3u
2+a4i

p
3+a5ui

p
3+a6u

2i
p

3)

= a1+a2
1
2
(−u+ui

p
3)+a3

1
2
(−u2−u2i

p
3)

+a4i
p

3+a5
1
2
(−ui

p
3−3u)+a6

1
2
(−u2i

p
3+3u2)

= a1+ (−1
2
a2− 3

2
a5)u+ (−1

2
a3+ 3

2
a6)u

2+a4i
p

3

+ (1
2
a2− 1

2
a5)ui

p
3+ (−1

2
a3− 1

2
a6)u

2i
p

3.
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The Galois Group Normal Extensions

Normal Closure

If L is a finite extension of a field K , a field N containing L is said to
be a normal closure of L over K if:

(i) It is a normal extension of K ;
(ii) If E is a proper subfield of N containing L, then E is not a normal

extension of K .

Theorem

Let L be a finite extension of a field K . Then:

(i) There exists a normal closure N of L over K ;

(ii) If L′ is a finite extension over K , such that there is a K -isomorphism
ϕ : L→ L′, and if N ′ is a normal closure of L′ over K ,

then there is a K -isomorphism ψ : N →N ′, such
that the diagram (in which ι is the identity map
and unmarked maps are inclusions) commutes.

K > L > N

K

ι∨
> L′

ϕ∨
> N ′

ψ∨
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The Galois Group Normal Extensions

Proof of Existence of Normal Closure

(i) Let {z1,z2, . . . ,zn} be a basis for L over K .

Each zi is algebraic over K .

Let mi be the minimum polynomial of zi .

Set m=m1m2 · · ·mn, and let N be a splitting field for m over K .

By the proof of the previous theorem, N is a normal extension of K .
N contains all the roots of each of the polynomials mi .
So it certainly contains z1,z2, . . . ,zn.
Hence, N contains L.
Let E be a subfield of N containing L. Suppose that E is normal.
For each i = 1, . . . ,n, the field E contains one root of mi , namely zi .
By normality, E contains all the roots of all the mi .
So E =N .

Thus, N is a normal closure.
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The Galois Group Normal Extensions

Proof of Uniqueness of Normal Closure

(ii) Let N ′ be a normal closure of L′ over K . Every element of L has a
unique expression a1z1+a2z2+·· ·+anzn, where a1,a2, . . . ,an ∈K .

Let u′ =ϕ(u) be an arbitrary element of L′.

There is a unique n-tuple (a1,a2, . . . ,an) of elements of K , such that

u′ =ϕ(u)=ϕ(a1z1+a2z2+·· ·+anzn)= a1ϕ(z1)+a2ϕ(z2)+·· ·+anϕ(zn).

It is easy to see that {ϕ(z1),ϕ(z2), . . . ,ϕ(zn)} is a basis for L′ over K .

The isomorphism ϕ also ensures that, for i = 1,2, . . . ,n, the minimum
polynomial of ϕ(zi) is ϕ̂(mi ) (where ϕ̂ is the canonical extension of ϕ
to the polynomial ring L[X ]).

Now N ′ is, by assumption, a normal extension of L′.

So it must contain all the roots of all of the ϕ̂(mi ).

So it must be a splitting field of ϕ̂(m)= ϕ̂(m1)ϕ̂(m2) · · ·ϕ̂(mn).

The existence of the isomorphism ψ now follows from a previous
theorem.
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The Galois Group Normal Extensions

Alternative Expression for Normal Closure

Corollary

Let L be a finite extension of K and let N be a normal closure of L. Then
N = L1∨L2∨·· ·∨Lk , where L1,L2, . . . ,Lk are subfields containing K , each
of them isomorphic to L.

By the theorem just proved, we may suppose that:

L=K (z1,z2, . . . ,zn);
m1,m2, . . . ,mn are the minimum polynomials of z1,z2, . . . ,zn;
N is a splitting field over K for the polynomial m1m2 · · ·mn.

Let i ∈ {1,2, . . . ,n} and let z ′
i
be a root of mi .

Then, for all i and z ′
i
, the field K (z1, . . . ,z ′

i
, . . . ,zn) is isomorphic to L.

The field N is generated over K by the set {α1,α2, . . . ,αk } of all the
roots of all the polynomials m1,m2, . . . ,mn.

So N is generated by the fields of type K (z1, . . . ,z ′
i
, . . . ,zn).
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The Galois Group Normal Extensions

Example

We determine the normal closure of K =Q( 3
p

2) over Q.

A basis for K over Q is {1,u,u2}, where u = 3
p

2.
1 has a minimum polynomial X −1;
u has minimum polynomial X 3−2;
u2 has minimum polynomial X 3 −4.

We must find the splitting field of (X −1)(X 3−2)(X 3 −4).
Obviously the factor X −1 is irrelevant, since it already splits over Q.

We know that, over the field Q(u, i
p

3),

X 3−2= (X −u)(X −ue2πi/3)(X −ue−2πi/3).

Over the same field,

(X −u2)(X −u2e2πi/3)(X −u2e−2πi/3)
= (X −u2)(X 2+u2X +u4)
=X 3+u2X 2+2uX −u2X 2−2uX −4
=X 3−4.

The conclusion is that the normal closure is Q(u, i
p

3).
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The Galois Group Normal Extensions

Normal Extensions and K -Automorphisms

Theorem

Let L be a finite normal extension of a field K , and let E be a subfield of L
containing K . Then E is a normal extension of K if and only if every
K -monomorphism of E into L is a K -automorphism of E .

Suppose E is a normal extension. So E is its own normal closure.

Let ϕ be a K -monomorphism from E into L, and let z ∈E .

Let m=X n+an−1X
n−1+·· ·+a1X +a0 be the minimum polynomial of

z over K . Then zn+an−1z
n−1+ ·· ·+a1z +a0 = 0.

Applying ϕ, (ϕ(z))n +an−1(ϕ(z))
n−1+·· ·+a1ϕ(z)+a0 = 0.

Thus, ϕ(z) is also a root of m in L.

But z , an element of E , is a root of the irreducible polynomial m.

Since E is normal, m splits completely over E . So ϕ(z) ∈E .

Thus, ϕ(E ) is a field contained in E .
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The Galois Group Normal Extensions

Normal Extensions and K -Automorphisms (Converse)

We showed that φ(E )⊆E . Now,

[ϕ(E ) :K ]= [ϕ(E ) :ϕ(K )]= [E :K ]= [E :ϕ(E )][ϕ(E ) :K ].

So ϕ(E )=E . Thus, ϕ is a K -automorphism of E .

Conversely, suppose that every K -monomorphism from E into L is a
K -automorphism of E .

Let f be an irreducible polynomial in K [X ] having a root z in E .

To establish that E is normal, we must show that f splits over E .

Certainly, since L is normal, f splits completely over L.

Let z ′ be another root of f in L. By a previous corollary, there is a
K -automorphism ψ of L, such that ψ(z)= z ′. Let ψ∗ be the
restriction of ψ to E . Then ψ∗ is a K -monomorphism from E into L.
By hypothesis, ψ∗ is a K -automorphism of E . Thus, we get
z ′ =ψ(z)=ψ∗(z) ∈E . Thus, E is normal.
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The Galois Group Normal Extensions

Extensions Over Intermediate Fields

Theorem

Let L be a normal extension of a field K , and let E be a subfield of L
containing K . Then L is a normal extension of E .

Let f (X ) be an irreducible polynomial in E [X ].

Suppose f (X ) has a root α in L.

Let mK (X ) be the minimal polynomial of α over K .

mK (X ) in K [X ] has root α in L and L :K is normal.

Therefore, mK (X ) splits over L.

Since mK (X ) is in E [X ] and mK (α)= 0, f (X ) |mK (X ).

Since mK (X ) splits over L and f (X ) |mK (X ), f (X ) also splits over L.

Hence, L :E is a normal extension.
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The Galois Group Separable Extensions

Subsection 4

Separable Extensions
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The Galois Group Separable Extensions

Separable Polynomials and Separable Extensions

An irreducible polynomial f with coefficients in a field K is said to be
separable over K if it has no repeated roots in a splitting field.

That is, in a splitting field L of f ,

f = k(X −α1)(X −α2) · · ·(X −αn),

where the roots α1,α2, . . . ,αn are all distinct.

An arbitrary polynomial g in K [X ] is called separable over K if all its
irreducible factors are separable over K .
An algebraic element in an extension L of K is called separable over

K if its minimum polynomial is separable over K .

An algebraic extension L of K is called separable if every α in L is
separable over K .

A field K is called perfect if every polynomial in K [X ] is separable
over K .
Separability is the second property (after normality) that will ensure
that the maps Φ and Γ are mutually inverse.
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The Galois Group Separable Extensions

Separability of Polynomials

We know that the irreducible polynomial f has repeated roots in its
splitting field if and only if f and Df have a non-trivial common factor.

Theorem

Let f be an irreducible polynomial with coefficients in a field K .

(i) If K has characteristic 0, then f is separable over K .

(ii) If K has finite characteristic p, then f is separable unless it is of the form

b0+b1X
p +b2X

2p + ·· ·+bmX
mp

.

Suppose f = a0+a1X +·· ·+anX
n, with ∂f = n≥ 1, is not separable.

Then f and Df have a common factor d of degree at least 1.

Since f is irreducible, d must be a constant multiple (associate) of f .

This divides Df only if Df = a1+2a2X +·· ·+nanX
n−1 is the zero

polynomial. Hence, a1 = 2a2 = ·· · = nan = 0.
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The Galois Group Separable Extensions

Separability of Polynomials (Cont’d)

Suppose K has characteristic 0.

The preceding equations give a1 = a2 = ·· · = an = 0.

Thus, f is the constant polynomial a0.

This contradicts the hypothesis.

So f must be separable.

Suppose charK = p.

Then rar = 0 implies that ar = 0 if and only if p ∤ r .

So the only non-zero terms in f are of the form akpX
kp, k = 0,1, . . ..

Writing akp as bk gives the required conclusion.

Corollary

Every field of characteristic 0 is perfect.
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The Galois Group Separable Extensions

Irreducibility in Characteristic p

Theorem

Let K be a field with finite characteristic p, and let

f (X )= g(X p)= b0+b1X
p +b2X

2p +·· ·+bmX
mp

.

Then the following statements are equivalent:

(i) f is irreducible in K [X ];

(ii) g is irreducible in K [X ], and not all of the coefficients bi are p-th
powers of elements of K .

(i)⇒(ii): Suppose g has a non-trivial factorization g(X )= u(X )v(X ).

Then f factors f (X )= g(X p)= u(X p)v(X p). This is a contradiction.

Hence g is irreducible.
Suppose bi = c

p

i
, for i = 1,2, . . . ,m. Then, by a previous theorem,

f (X ) = g(X p)= c
p
0
+ (c1X )p +·· ·+ (cmX

m)p

= (c0+c1X +·· ·+cmX
m)p .

Again a contradiction. Hence, not all of the bi ’s are p-th powers.
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The Galois Group Separable Extensions

Irreducibility in Characteristic p (Converse Case 1)

(ii)⇒(i): Suppose that f is reducible. We must prove either that g is
reducible, or that all the coefficients of f are p-th powers. We have
two cases:

1. f = ur , where r > 1 and u is irreducible;
2. f = vw , where ∂v ,∂w > 0, and v and w are coprime.

Case 1:
Suppose first that p | r . Then f = (ur/p)p = hp (say).
Let h= d0+d1X +·· ·+dsX

s . Then, using the same theorem,

f = hp = (d0+d1X +·· ·+dsX
s)p = d

p

0
+d

p

1
X p +·· ·+d

p
s X

sp
.

So all the coefficients of f are p-th powers.
Suppose that p ∤ r . By the definition of f , Df = 0.
Thus, 0=Df = r(Du)ur−1. So Du = 0. Thus, we may write

u(X )= e0+e1X
p +·· ·+etX

tp = v(X p).

Now we get g(X p)= f (X )= (u(X ))r = (v(X p))r .

Thus, g(X )= (v(X ))r . So g is not irreducible.
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The Galois Group Separable Extensions

Irreducibility in Characteristic p (Converse Case 2)

Case 2: f = vw , ∂v ,∂w > 0, v , w are coprime. K [X ] is a Euclidean
domain. So there exist s ,t in K [X ], such that sv + tw = 1.

By hypothesis, Df = 0. So (Dv)w +v(Dw)= 0. We now get

0= (Dv)tw + tv(Dw)= (Dv)(1− sv)+ tv(Dw).

So Dv = sv(Dv)− tv(Dw). Hence v |Dv .

But ∂(Dv)< ∂v . Hence, Dv = 0. Similarly, Dw = 0. We may write

v(X ) = d0+d1X
p +·· ·+dsX

sp ,

w(X ) = e0+e1X
p +·· ·+etX

tp .

Define v(X )= d0+d1X + ·· ·+dsX
s and w(X )= e0+e1X + ·· ·+etX

t .

Then
g(X p)= f (X )= v(X )w(X )= v(X p)w(X p).

So g(X )= v(X )w(X ). Thus g is not irreducible.
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The Galois Group Separable Extensions

Finite Fields are Perfect

Theorem

Every finite field is perfect.

Let K be a finite field of characteristic p.

The Frobenius mapping a 7→ ap is an automorphism of K .

So every element of K is a p-th power.

By a previous theorem, the only candidate for an inseparable
irreducible polynomial is something of the form

f = b0+b1X
p+·· ·+bmX

mp
.

But all the coefficients are p-th powers.

By the last theorem, even polynomials of this form are reducible.

Hence K is perfect.
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The Galois Group Separable Extensions

An Example of an Imperfect Field

An “imperfect” field has to be infinite and of finite characteristic.

The most obvious example is K =Zp(X ), the field of all rational forms
with coefficients in Zp.

For polynomials with coefficients in K we must use a different letter,
such as Y , for the indeterminate.

We look at the polynomial f (Y )=Y p −X in K [Y ].
We show f (Y ) is irreducible in K and inseparable.

Suppose f is reducible. By the theorem, −X is a p-th power in K .

So there exists
u(X )
v(X )

in K , such that
[
u(X )
v(X )

]p
=−X .

Thus, −X [v(X )]p = [u(X )]p . But p | ∂([u(X )]p) and p ∤ ∂(X [v(X )]p).
This is a contradiction.
Let L be a splitting field for f over K . Let α be a root of f in L.
Thus, αp =X . The factorization of f in L is

f (Y )=Y p −X =Y p −αp = (Y −α)p .

The polynomial f is as inseparable as it is possible to be!
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The Galois Group Separable Extensions

Separability of Intermediate Fields

Theorem

Let L be a finite separable extension of a field K , and let E be a subfield of
L containing K . Then L is a separable extension of E .

Let α ∈ L, and let mK ,mE be the minimum polynomials of α over K
and E , respectively. Suppose that mK is separable. Within E [X ] we
can use the division algorithm mK = qmE + r , ∂r < ∂mE . We get
r(α)=mK (α)−q(α)mE (α)= 0−0= 0. This contradicts the
minimality of mE unless r = 0. Hence mK = qmE in the ring E [X ].

Suppose mE is not separable. Then there is a non-constant
polynomial g dividing mE and DmE . But DmK = qDmE +mEDq.

So g divides mK and DmK . This can happen only if mK has at least
one repeated root in a splitting field. So we have a contradiction.

Hence, mE is separable.
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The Galois Group The Galois Correspondence

Subsection 5

The Galois Correspondence
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The Galois Group The Galois Correspondence

The Galois Extension

A finite extension of a field K that is both normal and separable is
called a Galois extension.

We look again at Q(
p

2, i
p

3) and Q( 3
p

2, i
p

3).

Q(
p

2, i
p

3) is normal, since it is the splitting field of (X 2−2)(X 2+3).
Q(

p
2, i

p
3) is separable, since Q is perfect.

The order of the Galois group is equal to the degree over Q of the
extension.
Q( 3

p
2, i

p
3) is normal, since it is the splitting field of X 3−2.

Q(
3
p

2, i
p

3) is separable, since Q is perfect.
The order of the Galois group is equal to the degree over Q of the
extension.

We will prove that, if L :K is a normal, separable extension of degree
n, and G is the Galois group of L over K , then |G | = [L :K ].
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The Galois Group The Galois Correspondence

Monomorphisms into a Normal Closure

Theorem

Let L :K be a separable extension of finite degree n. Then there are
precisely n distinct K -monomorphisms of L into a normal closure N of L
over K .

By induction on the degree [L :K ].

Suppose [L :K ]= 1. Then L=K =N. Hence, the only
K -monomorphism of K into N is the identity mapping ι.

Assume now that the result is established for all n≤ k −1. Suppose
that [L :K ]= k > 1. Let z1 ∈ L\K . Let m (with ∂m= r ≥ 2) be the
minimum polynomial of z1 over K . Thus, K ⊂K (z1)⊆ L, and
[K (z1) :K ]= r . But m is irreducible and has one root z1 in the normal
extension N. So m splits completely over N. Since L is separable, the
roots of m are all distinct. Suppose the roots are z1,z2, . . . ,zr . Let
[L :K (z1)]= s. Then 1≤ s < k , and rs = k .
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Monomorphisms into a Normal Closure (Cont’d)

The field N is a normal closure of L over K (z1).

So, by the induction hypothesis, the number of K (z1)-monomorphisms
from L into N is precisely s. Denote them by µ1,µ2, . . . ,µs .

Let λ1,λ2, . . . ,λr be r distinct K -automorphisms of N, with λi (z1)= zi .

Define maps ϕij : L→N, by

ϕij(x)=λi(µj(x)), x ∈ L, i = 1,2, . . . ,r , j = 1,2, . . . ,s .

The maps are all K -monomorphisms.

Claim: The maps ϕij are all distinct.

First, ϕij(z1)=λi (µj(z1))=λi (z1)= zi . So ϕij =ϕpq implies i = p.

Let ϕij =ϕiq . Then, for all x in L, λi(µj(x))=λi(µq(x)). But λi is
one-one. So µj(x)=µq(x), for all x in L. That is, j = q.

Thus, there are at least k distinct K -monomorphisms from L into N.
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Monomorphisms into a Normal Closure (Conclusion)

Claim: There are no more than k distinct K -monomorphisms from L

into N.

We show that every K -monomorphism ψ from L into N coincides with
one of the maps ϕij .

The map ψ must map z1 to another root zi of m in N.

Let χ : L→N be defined by χ(x)=λ−1
i
(ψ(x)).

This is certainly a K -monomorphism.

Moreover, χ(z1)=λ−1
i
(ψ(z1))=λ−1

i
(zi)= z1.

So ψ is a K (z1)-monomorphism.

So it must coincide with one of µ1,µ2, . . . ,µs , say µj .

Thus, for all x in L, µj(x)=λ−1
i
(ψ(x)).

So ψ(x)=λi(µj(x))=ϕij(x). Thus, ψ=ϕij .
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Cardinality of the Galois Group of a Galois Extension

Corollary

Let L be a Galois extension of K , and let G be the Galois group of L over
K . Then |G | = [L :K ].

Let L be a Galois extension of K .

Then L is both normal as well as separable.

Thus, L is its own normal closure.

By the theorem, |G | = [L :K ].

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 64 / 86



The Galois Group The Galois Correspondence

Galois Automorphisms and Roots

Lemma

Let L be a finite extension of K . Suppose Gal(L :K )= {ϕ1 = ι,ϕ2, . . . ,ϕn}.
Let f be an irreducible polynomial in K [X ], having a root z in L and set
ϕi(z)= zi , with the z1, . . . ,zr distinct. Then, for all ϕj ∈Gal(L :K ),

{z1,z2, . . . ,zr } = {ϕj (z1),ϕj (z2), . . . ,ϕj (zr )}.

We note that ϕj(zi) is equal to (ϕjϕi)(z).

This is equal to ϕk(z)= zk , for some k , since ϕjϕi ∈Gal(L :K ).

But ϕj is one-one.

So it merely permutes the elements z1,z2, . . . ,zr .
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Form of the Minimum Polynomial

Lemma

Let L be a finite extension of K . Suppose Gal(L :K )= {ϕ1 = ι,ϕ2, . . . ,ϕn}.
Let f be an irreducible polynomial in K [X ], having a root z in L and set
ϕi(z)= zi , with the z1, . . . ,zr distinct. The polynomial

g(X )= (X −z1)(X −z2) · · ·(X −zr )

is the minimum polynomial of z over K .

We must show that every polynomial in K [X ] having z as a root is
divisible by g . Suppose that

h= a0+a1X +·· ·+amX
m

,

with coefficients in K , is such that a0+a1z +·· ·+amz
m = 0.

Apply ϕj (which fixes all the ai ’s) to obtain

a0+a1zj +·· ·+amz
m
j = 0, j = 1,2, . . . ,r .

So h is divisible by X −z1,X −z2, . . . ,X −zr . Thus, it is divisible by g .
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Separability and Normality and the Map Φ

Theorem

Let L be a finite extension of K . Then Φ(Gal(L :K ))=K if and only if L is
a separable normal extension of K .

Let L be a separable and normal extension of K , with [L :K ]= n.

By the preceding corollary, |Gal(L :K )| = n.

Denote Φ(Gal(L :K )) by K ′.

We know that K ⊆K ′.
By a preceding theorem, we have that

[L :K ′]= [L :Φ(Gal(L :K ))]= |Gal(L :K )| = n.

Now K ⊆K ′ and [L :K ]= [L :K ′].

It follows that K =K ′.
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Separability and Normality and the Map Φ (Converse)

Suppose K =K ′ =Φ(Gal(L :K )).

Let Gal(L :K )= {ϕ1 = ι,ϕ2, . . . ,ϕn}.

Let f be an irreducible polynomial in K [X ] having a root z in L.

We must show that:

f splits completely over L;
f has distinct roots in L.

The images of z under the K -automorphisms ϕ1,ϕ2, . . . ,ϕn need not
all be distinct.

We have ϕ1(z)= ι(z)= z , and re-label the elements of Gal(L :K ) so
that ϕ2(z), . . . ,ϕr (z) are the remaining distinct images of z under the
automorphisms in Gal(L :K ). Write ϕi(z)= zi .
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Separability and Normality and the Map Φ (Converse)

Let g be the polynomial

(X −z1)(X −z2) · · ·(X −zr )=X r −e1X
r−1+·· ·+ (−1)r er ,

where the coefficients e1,e2, . . . ,er are the elementary symmetric
functions e1 =

∑r
i=1

zi ,e2 =
∑

i 6=j zizj , . . . ,er = z1z2 · · ·zr .
These coefficients are unchanged by any permutation of z1,z2, . . . ,zr .

By a previous lemma, they are unchanged by each ϕj in Gal(L :K ).

Thus, g is a polynomial with coefficients in Φ(Gal(L :K ))=K .

z is assumed to be a root in L of the irreducible polynomial f in K [X ].

By the preceding lemma, f is divisible by g .

By the irreducibility of f , f is a constant multiple of g .

Since g splits completely over L, so does f .

Moreover, all its roots are distinct.

So L is a separable normal extension of K .

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 69 / 86



The Galois Group The Galois Correspondence

Galois Automorphisms and Intermediate Fields

Theorem

Let L be a Galois extension of a field K , and let E be a subfield of L
containing K . If δ ∈Gal(L :K ), then Γ(δ(E ))= δΓ(E )δ−1.

Write δ(E )=E ′, Γ(E )=H and Γ(E ′)=H ′. We show H ′ = δHδ−1.

Let θ ∈H. We shall show that δθδ−1 ∈H ′.

Let z ′ ∈ E ′ and z be the unique element of E , such that δ(z)= z ′.

Since θ ∈Γ(E ), θ fixes all the elements of E . Thus, we get

(δθδ−1)(z ′)= (δθδ−1δ)(z)= δ(θ(z))= δ(z)= z ′.

So δθδ−1 ∈H ′. Therefore, δHδ−1 ⊆H ′.

Let θ′ ∈H ′, and let z ∈E . Then δ(z) ∈E ′. So θ′(δ(z))= δ(z).

Hence, (δ−1θ′δ)(z)= (δ−1δ)(z)= z . So δ−1θ′δ ∈Γ(E )=H.

We have shown that δ−1H ′δ⊆H.

It follows immediately that H ′ ⊆ δHδ−1.
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Subsection 6

The Fundamental Theorem
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The Galois Group The Fundamental Theorem

Fundamental Theorem of Galois Theory

Theorem (The Fundamental Theorem of Galois Theory)

Let L be a separable normal extension of a field K , with finite degree n.

(i) For all subfields E of L containing K , and for all subgroups H of the
Galois group Gal(L :K ), Φ(Γ(E ))=E , Γ(Φ(H))=H.

We also have |Γ(E )| = [L :E ] and
|Gal(L:K)|
|Γ(E)| = [E :K ].

(ii) A subfield E is a normal extension of K if and only if Γ(E ) is a normal
subgroup of Gal(L :K ). If E is a normal extension, then Gal(E :K ) is
isomorphic to the quotient group Gal(L :K )/Γ(E ).

(i) Let E be a subfield of L containing K . By previous theorems, L is
both normal and separable over E . Hence, |Γ(E )| = [L :E ]. So

[E :K ]= [L:K ]
[L:E ]

= |Gal(L:K)|
|Γ(E)| . But Γ(E )=Gal(L :E ).

So we get Φ(Γ(E ))=Φ(Gal(L :E ))=E .
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The Galois Group The Fundamental Theorem

Fundamental Theorem of Galois Theory (Cont’d)

Now let H be any subgroup of the finite group Gal(L :K ).

We know that H ⊆ Γ(Φ(H)). Denote Γ(Φ(H)) by H ′.

We have Φ(H)=Φ(Γ(Φ(H))) =Φ(H ′).

We now obtain |H| = [L :Φ(H)]= [L :Φ(H ′)]= |H ′|.
This, and the finiteness of Gal(L,K ), imply that H ′ =H.

(ii) Suppose now that E is a normal extension.

Let δ ∈Gal(L :K ) and δ′ the restriction of δ to E .

Then δ′ is a monomorphism from E into L.

So, by a previous theorem, δ′ is a K -automorphism of E .

By the last theorem, Γ(E )=Γ(δ(E ))= δΓ(E )δ−1.

Thus, Γ(E ) is a normal subgroup of Gal(L :K ).
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The Galois Group The Fundamental Theorem

Fundamental Theorem of Galois Theory (Cont’d)

Suppose that Γ(E ) is a normal subgroup of Gal(L :K ).

Let δ1 be a K -monomorphism from E into L.

By a previous corollary, this extends to a K -automorphism δ of L.

The normality of Γ(E ) within Gal(L :K ) means that δΓ(E )δ−1 = Γ(E ).

Hence, by the preceding theorem, Γ(δ(E ))=Γ(E ).

Since Γ is one-one, it follows that δ(E )= δ1(E )=E .

Thus, δ1 is a K -automorphism of E .

We have shown that every K -monomorphism of E into L is a
K -automorphism of E .

By a preceding theorem, E is a normal extension of K .
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Fundamental Theorem of Galois Theory (Conclusion)

It remains to show that, if E is a normal extension, then
Gal(E :K )∼=Gal(L :K )/Γ(E ).

So suppose that E is normal. As above, let δ′ be the restriction to E

of the K -automorphism δ of L. We have seen that δ′ ∈Gal(E :K ).

Let Θ :Gal(L :K )→Gal(E :K ) be defined by Θ(δ)= δ′.

Then Θ is a group homomorphism. For all δ1,δ2 in Gal(L :K ), with
Θ(δ1)= δ′1 and Θ(δ2)=δ′2, and all z in E ,

([Θ(δ1)][Θ(δ2)])(z) = (δ′1δ
′
2)(z)= δ′1(δ2(z))

= δ1(δ2(z))= (δ1δ2)(z)
= (Θ(δ1δ2))(z).

Hence [Θ(δ1)][Θ(δ2)]=Θ(δ1δ2). The kernel of Θ is the set of all δ in
Gal(L :K ), such that δ′ is the identity map on E , i.e., Γ(E ).

The Homomorphism Theorem yields Gal(E :K )∼=Gal(L :K )/Γ(E ).
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The Join of Two Subfields

Let U and V be subgroups of a group G .

Then U ∩V is a subgroup of G .
In general, U ∪V is not a subgroup, but there is always a smallest
subgroup containing U and V , consisting of all products
u1v1u2v2 · · ·unvn (for all n) with u1,u2, . . . ∈U , v1,v2, . . . ∈V .
We denote this by U ∨V , and call it the join of U and V .

Similarly, if E and F are subfields of a field K , then:

E ∩F is also a subfield;
There is a subfield E ∨F =E (F )=F (E ).
It is called the join of E and F .
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Γ, Meets and Joins

Theorem

Let L be a Galois extension of finite degree over K , with Galois group G ,
and let E1,E2 be subfields of L containing K . If Γ(E1)=H1 and
Γ(E2)=H2, then Γ(E1 ∩E2)=H1∨H2, Γ(E1∨E2)=H1∩H2.

E1 ⊆E1∨E2. Since the Galois correspondence is order-reversing,
Γ(E1∨E2)⊆ Γ(E1)=H1. Similarly, Γ(E1∨E2)⊆ Γ(E2)=H2. Hence,
Γ(E1∨E2)⊆H1∩H2.

Let α in H1∩H2. Since α ∈H1 = Γ(E1), α(x)= x , for all x in E1.
Similarly, α(y)= y , for all y in E2. By a previous theorem, the
elements of E1∨E2 =E1(E2) are quotients of finite linear combinations
(with coefficients in E1) of finite products of elements of E2.

So α(z)= z , for all z in E1∨E2. Thus, α ∈Γ(E1∨E2).

So the first assertion of the theorem is proved.
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The Galois Group The Fundamental Theorem

Γ, Meets and Joins

From E1∩E2 ⊆E1 it follows that H1 = Γ(E1)⊆Γ(E1 ∩E2). Similarly,
H2 ⊆ Γ(E1∩E2). So H1∨H2 ⊆ Γ(E1∩E2).

Let x be an element of L not in E1∩E2. Say x 6∈E1.

We know E1 =Φ(H1).

So there exists γ in H1 ⊆H1∨H2, such that γ(x) 6= x .

Thus, x 6∈E1∩E2 implies x 6∈Φ(H1∨H2).

This shows that Φ(H1∨H2)⊆E1∩E2.

Now, the Galois correspondence gives Γ(E1∩E2)⊆H1∨H2.
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Splitting Fields of Extensions

Theorem

Let K be a field of characteristic zero, and let f ∈K [X ].
Let L=K (α1,α2, . . . ,αn) be a splitting field for f over K .
Let M be a field containing K , and let N be a splitting
field of f over M. Then, up to isomorphism, L is a
subfield of N, and Gal(N :M)∼=Gal(L :M ∩L).

N

M L

M ∩L

K

The field N is an extension of M, and hence of K , such that f splits
completely in N[X ]. Hence, by the definition of a splitting field, L is,
up to isomorphism, a subfield of N. Write N as M(α1,α2, . . . ,αn).

Let H =Gal(N :M), and let γ ∈H. Then the restriction γ′ of γ to L is
a monomorphism from L into N. Since γ fixes the elements of M, it
certainly fixes the elements of K . Hence, so does γ′. Also, γ maps
each root αi of f to another root of f . Thus, so does γ′.

So γ′ is a monomorphism of L into itself.
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The Galois Group The Fundamental Theorem

Splitting Fields of Extensions (Cont’d)

γ is an automorphism of N =M(α1,α2, . . . ,αn). So every root αi of f
is the image of some root of f under γ. Hence, also under γ′.

Thus γ′ maps onto L=K (α1,α2, . . . ,αn). So it is a K -automorphism.

We have a mapping θ from H into G =Gal(L :K ), given by θ(γ)= γ′.

θ is one-one. Let δ ∈H such that γ′ = δ′. Then γ′ and δ′ act identically
on the roots α1,α2, . . . ,αn. So γ= δ.
θ is a group homomorphism. The restriction of γδ to L is γ′δ′.

Thus, H ∼= θ(H). We show θ(H) is the subgroup Gal(L :M ∩L) of G .

Each γ in H fixes the elements of M. So each γ′ fixes those of M ∩L.

Thus M∩L⊆Φ(θ(H)). By the Galois Theorem, θ(H)⊆Gal(L :M∩L).

Let x be in L but not in M∩L. Thus, x 6∈M. But M is the field whose
elements are fixed by H. So there is a β in H for which β(x) 6= x .
Then (θ(β))(x) 6= x . So x 6∈Φ(θ(H)). Thus, Gal(L :M ∩L)⊆ θ(H).

Now Gal(L :M ∩L)= θ(H)∼=H =Gal(N :M).
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Subsection 7

An Example
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The Galois Group An Example

Example

Consider the Galois group G =Gal(Q(v , i) :Q), where v = 4
p

2.

The field Q(v , i) is the splitting field of X 4−2 over Q.

If ξ ∈G , then, ξ(i)=±i and ξ(v) ∈ {v , iv ,−v ,−iv }.

There are 8 elements in the group G :

ι : v 7→ v , i 7→ i ; λ : v 7→ v , i 7→ −i ;
α : v 7→ iv , i 7→ i ; µ : v 7→ iv , i 7→ −i ;
β : v 7→ −v , i 7→ i ; ν : v 7→ −v , i 7→ −i ;
γ : v 7→ −iv , i 7→ i ; ρ : v 7→ −iv , i 7→ −i .
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The Galois Group An Example

The Multiplication Table of G

The multiplication in G is given by:

ι α β γ λ µ ν ρ

ι ι α β γ λ µ ν ρ

α α β γ ι µ ν ρ λ

β β γ ι α ν ρ λ µ

γ γ ι α β ρ λ µ ν

λ λ ρ ν µ ι γ β α

µ µ λ ρ ν α ι γ β

ν ν µ λ ρ β α ι γ

ρ ρ ν µ λ γ β α ι

Examples of the computation:

α(λ(v))=α(v)= iv ; α(λ(i))=α(−i)= − i . So αλ= µ.
λ(α(v))=λ(iv)= λ(i)λ(v)= − iv ; λ(α(i))=λ(i)= − i ; So λα= ρ.
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Subgroups of G and Corresponding Subfields

The group G =Gal(Q(v , i) :Q) has three subgroups of order 4:

H1 = {ι,α,β,γ}, H2 = {ι,β,λ,ν}, H3 = {ι,β,µ,ρ}.

It has five subgroups of order 2:

H4 = {ι,β}, H5 = {ι,λ}, H6 = {ι,µ}, H7 = {ι,ν}, H8 = {ι,ρ}.

We can compute the corresponding subfields of Q(v , i).
Φ(H1)=Q(i);
Φ(H2)=Q(v2)=Q(

p
2);

Φ(H3)=Q(i
p

2).

We also find the ones corresponding to the order 2 subgroups.
Φ(H4)=Q(i ,

p
2);

Φ(H5)=Q(v);
Φ(H6)=Q((1+ i)v);
Φ(H7)=Q(iv);
Φ(H8)=Q((1− i)v).
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The Galois Group An Example

Lattice of Subgroups and Lattice of Subfields

The lattice of subgroups of G is shown on the left

and the lattice of subfields E , such that Q⊆E ⊆Q(v , i), an upside
down version of it, is shown on the right, with Fi :=Φ(Hi ).
We look at normal subgroups and extensions.

Normal Subgroups H1 H2 H3 H4

Normal Extensions Q(i) Q(
p

2) Q(i
p

2) Q(i ,
p

2)

Polynomials Splitting X 2+1 X 2−2 X 2+2 (X 2+1)(X 2−2)
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Remarks

Note that Gal(Q(v , i),Q) is not abelian, although both

Gal(Q(v , i),Q(i))= {ι,α,β,γ}

and
Gal(Q(i),Q)∼=Gal(Q(v , i),Q)/Gal(Q(v , i),Q(i))

are abelian.

The example is easier than most, since we can easily factorize X 4−2
over the complex field.

On the other hand, If we start with an irreducible polynomial such as

f = 2X 5−4X 4+8X 3+14X 2+7,

then it is by no means a trivial matter to determine the Galois group.
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