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The Galois Group

Let K be a field and let S be a non-empty set.
Let .4 be the set of mappings from S into K.
If 0, € .4, then 6 + ¢, defined by

(@+¢)(s)=0(s)+¢(s), seS,
is a mapping from S into K, and so belongs to ..
If 0 e 4 and a€ K, then af, defined by

(a0)(s)=ab(s), seS,

¢ © ¢

©

belongs to .
A is a vector space with respect to these two operations.
The zero vector in ./ is the mapping { given by

{(s)=0, seS.

o We denote the mapping ¢ simply by 0, since the context makes it clear
whether we mean the zero element of K or the mapping (.
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The Galois Group

o A set {01,0,,...,0,} of elements of .4 is linearly independent if, for
all a1, as,...,a, in K,

a101(s) + ax02(s) + ---+apfn(s) =0,

forall sin S, ifand only if 3 =ap=---=a,=0.

o More compactly, we can write the condition as

3101 + @202 + -+ ap0, =0 (strictly, ) iff ay=ap=---=a, =0.
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The Galois Group

Let K and L be fields, and let 64,65,...,0, be distinct monomorphisms
from K into L. Then {61,0,,...,0,} is a linearly independent set in the
vector space . of all mappings from K into L.

o We prove the theorem by induction on n.
For n=1: By hypothesis, 671 is a monomorphism. Thus, it maps the
identity 1 of K to the identity 1 of L. So it is not the zero mapping.
Assume that we have established that every set of fewer than n
distinct monomorphisms of K into L is linearly independent.
Suppose, for a contradiction, that there exist aj,ap,...,a, in L, not all
zero, such that a101 + a0, +---+ a0, =0. We may assume that all a;
are non-zero: If, e.g., a, =0, then {81,0,...,0,,_1} is linearly
dependent, contradicting the induction hypothesis.
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The Galois Group

o Dividing by a,, gives
bi1601+---+b,_10,-1+60,=0,
where b; = j—; (71=1,2,...,n—1). The monomorphisms 6; and 6, are
by assumption distinct. So there exists u in K, with 61(u) #0,(u).
The element v is certainly non-zero, as are both 61(u) and 6,(u).
For every z in K, b101(uz)+---+ bp-160,-1(uz) +6,(uz) =0.
But 01,0,,...,0, are monomorphisms.
So b191(u)91(z) TP eco P bn_lﬂn_l(u)ﬂn_l(z) + Hn(u)Hn(z) =0.
Dividing this by 6,(u), we get, for all z in K,
by g 0u(2) -+ by 2,1 (2) 0,(2) -
Rewriting as an equation concerning mappings gives

0, ., Ol
6o(u) T ) O
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The Galois Group

o Subtracting the bottom from he top equation, we obtain

01(u) _ Ona(v)
On(u) 6n(v)
Our choice of u as an element such that 01 (u) #0,(u) means that the

coefficient of 0 is non-zero. Thus, the set {01,05,...,0,_1} is linearly
dependent. This contradicts the induction hypothesis.

bl(l— )91+---+bn_1(1 )9,,_120.

o The set of monomorphisms from K into L is not a subspace of the
vector space /.

Suppose 07 and 6> are monomorphisms.
Let 1x and 1; be the identities of K and L.

(91 +92)(1K) = Bl(lK)+92(1K) =1, +1; #1;.

So 61 + 65 is not a monomorphism.

George Voutsadakis (LSSU)



The Galois Group

Subsection 2

George Voutsadakis (LSSU) Fields and Galois Theory



The Galois Group

Let K be a field. Then the set AutK of automorphisms of K forms a group
under composition of mappings.

o Composition of mappings is always associative. For all x in K and all
@, B and vy in AutK,

[(@e B)oy](x) = (ae B)[y(x)] = a(B(y(x))):
[ae(Boy)](x) =a([Bor](x)) = a(B(y(x)))-

There exists an identity automorphism ¢ in AutK, defined by the
property that ((x) = x, for all x in K.

Clearly toa=aot=a, for all & in AutK.
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o Finally, for every automorphism a in AutK, there is an inverse
mapping a~! defined by the property that

a~(x) is the unique z in K such that a(z) = x.

This map is also an automorphism.

Let x,y € K, and let a™'(x) =z, a”i(y)=t. Then a(z)=x, a(t)=y.
So a(z+t)=x+y and a(zt)=xy. Hence,

al(x)+aty) = z+t=al(a(z+t))=a(x+y);
al(x)a(y) = zt=al(a(zt))=a" (xy).

1 1

Thus, 1€ G. Clearly, acal=a toa=1.
Hence G is a group.

o AutK is called the group of automorphisms of K.
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The Galois Group

Let L be an extension of a field K.

©

©

An automorphism a of L is called a K-automorphism if a(x) = x, for
every x in K.

The set of all K-automorphisms of L is denoted by Gal(L: K) and is
called the Galois group of L over K.

©

o The Galois group Gal(f) of a polynomial f in K[X] is defined as
Gal(L: K), where L is a splitting field of f over K.
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The Galois Group

o Let L be an extension of a field K.

o> We have seen that AutL is a group.
o We show that Gal(L: K) is a subgroup of AutL.

Let L: K be a field extension. The set Gal(L: K) of all K-automorphisms
of L is a subgroup of AutL.

o Certainly 1€ Gal(L: K).
Let a,f e Gal(L: K). Then, for all x in K,

BHx) = BHB(X))=x;
a(B(x)) a(x) =x.

Thus, Gal(L: K) is a subgroup of AutL.
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o We now connect the following objects:

o The subfields E of L containing K;
o The subgroups H of the group Gal(L: K).

o For every subfield E of L containing K, we define
I'(E)={acAutl:a(z) =z, for all z in E}.
o For every subgroup H of Gal(L: K), we define
®(H)={xeL:a(x)=x, for all @ in H}.

o We establish conditions on the extension L: K under which T and ®
are mutually inverse.
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The Galois Group

Let L: K be a field extension.
For every subfield E of L containing K, the set T(E) is a subgroup of
Gal(L: K).
For every subgroup H of Gal(L: K), the set ®(H) is a subfield of L,
containing K.

Certainly T'(E) is non-empty, since it contains ¢, the identity
automorphism. Since K € E, every automorphism fixing all elements
of E automatically fixes all elements of K. Hence, I'(E) < Gal(L: K).

Let a,f€T(E). Then, for all z in E,
a(p(2)) = a(B(B(2) = a(2) =z
So aB~eT(E). Hence, I'(E) is a subgroup.



The Galois Group

Every automorphism in Gal(L: K) fixes the elements of K.
Hence, K < ®(H).
Let x,y € ®(H). Then, for all & in H,

a(x—y)=a(x)-a(y)=x—-y.

So x—y e ®(H).
If y #0, then, for all a in H,
a(y ™) =a(x)a(y ™) =a(x)(aly) " =0
So xy~l e ®(H).
Thus, ®(H) is a subfield of L.
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The Galois Group

Let L: K be a field extension.
If E1 and E> are subfields of L containing K, then

E1§E2 implies F(El)Qr(Eg).
If Hy and H, are subgroups of Gal(L: K), then
H1§H2 implies (I)(Hl)Q(I)(HQ).

Suppose that E; € E, and let a € T(E). Then a fixes every element
of Ep. So it fixes every element of E;. Hence, a e T(Ey).

Suppose that H; € Hp, and let ze ®(H,). Then a(z) =z, for every a
in Ha. So, a(z) =z, for every a in H;. Hence ze ®(H,).
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The Galois Group

o Consider the extension Q(u) of Q, where u= V2.

Suppose a € Gal(Q(v): Q).
Then
(a(u))*=a(v’)=a(2) =2.

So, being real, a(u) must be equal to wu.

Hence, Gal(Q(u): Q) is the trivial group {i}.

Two mappings are mutually inverse only if they are both bijections.
Here, however, we have

I(Q(u)) =T(Q) = 4.
To look at it another way, we have

o(T(Q)) = @({}) = Q(u).
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The Galois Group

o We describe the group Gal(C: R).
If @ €Gal(C:R), then a(x) =x, for all x in R. Let a(i)=j. Then
i2=(a()?=a(i?)=a(-1)=-1. So j = i,
o Suppose j=1i. For all x+yi in C (with x,y in R),
a(x+yi)=a(x)+a(y)a(i) =x+yi. So a=1.
o Suppose j=—i. Then a(x+yi) =x—yi. This mapping fixes the
elements of R. We check that it is an automorphism.
a((x+yD)+(u+vi))=a((x+u)+(y+v)i)=(x+u)=(y+v)i
=(x=yi)+(u=—vi)=a(x+yi)+a(u+vi);
a((x+y)(u+vi))=a((xu—yv)+(xv+yu)i)=(xu—yv)—(xv + yu)i
=(x—yi)(u—vi)=(a(x+yi))(a(u+vi)).
We deduce that Gal(C: R) is the group {i,x} of order 2, where « is the
complex conjugation mapping sending x + yi to x —yi.
Moreover, [C:R] =2, a prime number.
So there cannot be any subfields of C lying between C and R.

We conclude that ®({1}) = C and ®({,x}) = R.



The Galois Group

Theorem

Let K be a field, let L be an extension of K, and let ze€ L\K. If z is a root
of a polynomial f with coefficients in K, and if a € Gal(L: K), then a(z) is
also a root of f.

o Let f=ag+a1 X +---+apX", where ag,a,...,an€ K.
Suppose that f(z)=0. Then

f(a(z)) = ap+aia(z)+---+ap(a(z))”
= a(ag)+a(ar)a(z)+---+a(an)a(z")
= a(ag+aiz+---+apz")
= a(0)
= 0.
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o We describe the group Gal(Q(v2,iv3): Q) and, for each of its
subgroups H, we determine ®(H).
The elements of Q(v'2,iv/3) are of the form a+bv2 +civ3+diV6.
By the theorem, if a € Gal(Q(v2,iv3):Q), then a(v2)=+v?2,
a(iv3) = +iv3. There are four elements in Gal(Q(Vv2,iv3):Q),

namely, (,7,0 and B, where ¢ is the identity map, and:
o 7(a+bV2+civV3+dive)=a—bv2+civ3-diVve;
o 0(a+bV2+civV3+dive)=a+bv2-civV3-diVe;
o B(a+bv2+civV3+dive)=a-bv2-ciV3+divb.

All four are Q-automorphisms of Q(v/2,iv/3). ‘ LT 0 B
The multiplication table is on the right. it 7 6 B
The proper subgroups of this group are Hy = {1, 7}, ;| ; B 0
HQZ{L,Q} and H3={L,,B}. 016 ﬁ LT
We have ®(H;) = Q(iV3), ®(H,) = Q(V2), glB o v 4

®(Hsz) = Q(iVb).



The Galois Group

o The pair ® and T', known as the Galois correspondence, need not be
mutually inverse, but they do have a weaker property.

Let L be an extension of a field K, let E be a subfield of L containing K,
and let H be a subgroup of Gal(L: K). Then

Eco(T(E)),  HcT(o(H)).

o Let ze E. The group I'(E) is the set of all automorphisms fixing each
element of E. So z is fixed by all the automorphisms in T'(E). That is,
ze®(T(E)). Hence, E<®(I'(E)).

Let a € H. The field ®(H) is the set of elements of L fixed by every
element of H. So a fixes every element of ®(H). That is,
a eT(®(H)). Hence, H<=T(®(H)).
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The Galois Group

o Let V and W be finite-dimensional vector spaces over a field K, with
dimensions m, n, respectively, and let T:V — W be a linear mapping.

o The image imT of T is the set {T(v):ve V}.
The image imT is a subspace of W.
Its dimension dim(imT) is called the rank p(T) of T.
o The kernel ker T of T is the set {ve V: T(v)=0}.
The kernel ker T is a subspace of V.
Its dimension dim(ker T) is called the nullity v(T) of T.

o A standard result in linear algebra states that

p(T)+v(T)=dimV =m.
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The Galois Group

o We know p(T)+v(T)=dimV =m.
So, if n<m, then certainly p(T)<n<m. So v(T)>0.
Thus, there exists a non-zero vector v in V/, such that T(v)=0.

o If we have an nx m matrix A =[ajj]nxm, with entries in K, and an
m-dimensional column vector v, the map v — Av is a linear mapping
from the vector space K into the vector space K".

So if n< m, then there exists a non-zero vector v such that Av =0.

That is, there exist vq,vs,...,Vm in K, not all zero, such that

ayjvit+azivo t "'+amij:0’ Jj=12,...,n.
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The Galois Group

Let L be a finite extension of a field K, and let G be a finite subgroup of
Gal(L: K). Then [L: ®(G)] =IG].

o Let |Gl=m and [L:®(G)] =n.
We show m > n leads to a contradiction.
Write G ={a1 =1, a»,...,am}, where ¢ is the identity map.
Suppose that {z1,2,...,2,} is a basis for L over ®(G).

ai(z1) az(z1) - am(z)
Consider the nx m matrix al(_22) az(_22) am.(zz)
al(-zn) “2(.Zn) “m.(zn)

Since m > n, there exist v1,vs,...,vy in L, not all zero, such that

a1(2j)v1 +a2(2j)v2 +---+am(2j)vm =0, j= 1,2,...,n.
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The Galois Group

o Let be L. The set {z1,2,...,2,} is a basis for L over ®(G). So there
exist by, bo,..., b, in (I)(G) such that b=b1z1 + bozo + -+ + by zp.
Multiplying the n preceding equations by by, by,..., b,, respectively,

bjal(Zj)Vl + bja’g(Zj)Vg AF oo e bjam(Zj)Vm =0, j= 1,2,...,n

The b; all lie in ®(G). The a; all lie in G. So b; = a;(b;) for all i, j.
Thus, we may rewrite the equations as

al(ijj)Vl + ag(ijj)VQ qrooop am(ijj)Vm =0, jZ 1,2,...,n
If we add these n equations together, we obtain
vlal(b) aF v2a2(b) qroooqp vmam(b) =0.

This holds for all b in L. So the automorphisms a1, ay,...,a, are
linearly dependent. This is impossible.
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The Galois Group

o Suppose that n=[L:®(G)] > m. Take a subset {z1,23,...,Zm+1} of L
which is linearly independent over ®(G). Consider the mx (m+1)

a1(z1) a1(z) - a1(zmse1)

. az(z1)  ax(z) - a2(zms1)
matrix . .

“mtzl) “m(22) am(Z-m+1)

There exist uy, us,...,um+1 in L, not all zero, such that
aj(z1)u +aj()ur+ -+ @j(Zmi1)Ume1 =0, j=1,2,...,m.

Suppose that the elements vy, us,...,un+1 are chosen so that as few
as possible are non-zero. Relabel the elements so that vy, u»,..., u, are
non-zero, and uUp41 == Ums1 =0.

So now we have

aj(zl)ul +aj(22)u2 +---+aj(z,)u, = 0, jZ 1,2,...,”’7.
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The Galois Group

o We have aj(z1)ur + aj(z2)uo +---+aj(z-)ur =0, j=1,2,...,m.
Dividing by u, and setting u! = % i=1,2,...,r—1, we get
aj(z)uy +-+aj(z—1)u,_ +aj(z) =0, j=1,2,...,m.
Since a7 =1, the first of these equations is
zlu:'l+~~~+zr_1u;_1 +2z,=0.

The set {z1,2y,...,2/} is not linearly dependent over ®(G).

So not all of the elements uj,...,u,_; belong to ®(G).

As at least one of uj,...,u’_, is not in ®(G), assume u; ¢ D(G).
That is, u] is not fixed by every automorphism in G.

So there is an automorphism in G, say ay, such that ax(u]) # uj.
Applying a; to the preceding equations, for j=1,2,...,m,

(agaj)(zl)ag(ui) +ee+ (agaj)(zr_l)ag(u:_l) + (ag(xj)(zr) =0.
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The Galois Group

o We obtained
(a2a;)(z1)az(uy) +---+ (a2a;)(zr-1)a2(u;_;) + (@20;)(2,) = 0.

G is a group.
So the set {ara1,aza9,...,a2a,} is the same as the set
{a1,as,...,am} except for the order of the elements.

Hence, we may change the order of the listed equations and obtain
aj(zi)az(uy) + -+ aj(zr-1)ao(uy 1)+ j(z) =0, j=1,2,...,m.
Subtracting these from the original gives, for j=1,2,...,m,

aj(z1)(ug —aa(uq)) + -+ aj(zr-1)(u)y — @2(u)1)) = 0.
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The Galois Group

o We obtained
aj(z1)(uy —az(uy))+--- +aj(zr—1)(u;_; — az(u;_;)) =0.

Let v,-=u,’.—a2(u,’.), i=1,2,...,r=1,and v;=0, i=r,r+1,...,m+1.
Then

aj(zl)vl +aj(22)v2 ar ~~~+aj(zm+1)vm+1 =0, j= 1,2,...,m.

We know that the elements v; are not all zero.
In this arrangement, no more than r—1 of the v; are non-zero.

This contradicts the minimality of r in the choice of the elements
up, u,...,Um+1.
We conclude that it is not possible to have [L: ®(G)] > m.
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The Galois Group

o We considered the two extensions of @, Q(v2) and Q(V/2).
o In the first case X2 -2, the minimum polynomial of v/2, splits
completely over Q(v/2).
5 In the second case we see that X3 —2, the minimum polynomial of 32,
does not split completely over Q(v2).

This is an important difference.

o Although it is convenient to consider arbitrary extensions L: K, our
primary interest is with Galois groups of polynomials, when L is a
splitting field over K for some polynomial.

o We call L: K a normal extension if every irreducible polynomial in
K[X] having at least one root in L splits completely over L.
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The Galois Group

A finite extension L of a field K is normal if and only if it is a splitting field
for some polynomial in K[X].

o Suppose that L is a finite normal extension.
Let {z1,2o,...,2z,} be a basis for L over K.

For i=1,2,...,n, let m; be the minimum polynomial of z;, and let
m=mimy:---mp.

o Each m; has at least one root z in L. So, by hypothesis, it splits
completely over L. Hence, m splits completely over L.

o But L is generated by z1,2,...,2,. So it is not possible for m to split
completely over any proper subfield of L.

Thus, L is a splitting field for m over K.
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The Galois Group

o Suppose that E is a splitting field for some polynomial g over K.

Let f, with degree at least 2, be an irreducible polynomial in K[X],
having a root @ in E. We must show that f splits completely over E.

a splitting field L containing E. Suppose that S E( ’3

The polynomial fg certainly lies in E[X]. It has Y \
E(a)
is another root of f in L. We have subfields of L T

as indicated in the diagram, in which the arrows E
denote inclusion. We have T
K

[E(a): E][E:K]=[E(a):K]=[E(a): K(a)][K(a): K]; )\
[E(B): E][E: K]=[E(B): K]=[E(B): K(B)I[K(B): KI.

But a and B are roots of the same irreducible polynomial f.
So there is a K-isomorphism ¢ from K(a) onto K(f).
Certainly [K(a): K] =[K(B): K].

George Voutsadakis (LSSU)



The Galois Group

o E is a splitting field for g over K. /L\
So E(a) is a splitting field for g over K(a) E(a) T E(B)
and E(p) is a splitting field for g over K(B). N Eﬂ
Hence, there is an isomorphism ¢* from E(a)
onto E(p), extending the K-isomorphism ¢ K(a\)\ T ﬂK(ﬁ)
from K(a) onto K(B). It follows in particular K

that [E(a) : K(a)] = [E() : K()].

Now [E(a): E] =1, since a € E by assumption. Hence,

[E(B): K(B)IIK(B): K]
[E(a): K(a)][K (@) : K]
[E(a): E][E : K]

[E: K].

Thus [E(B): E]=1. So Be E, as required.

[E(B) - E][E : K]
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The Galois Group

Let L be a normal extension of finite degree over a field K, and let E be a
subfield of L containing K. Then every K-monomorphism from E into L
can be extended to a K-automorphism of L.

o Let ¢ be a K-monomorphism from E into L.

By the theorem, there exists a polynomial f such that L is a splitting
field for f over K.
L is also a splitting field for f over each of the fields E and ¢(E).

By a preceding theorem, we deduce that there is a K-automorphism
¢@* of L extending ¢.
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The Galois Group

o Let K=Q, E=Q(v2), L=Q(V2,V5).
Let ¢ : E — L be defined by

@(a+bv2)=a-bV2.

Then ¢ is a K-monomorphism.
So ¢ extends to a Q-automorphism ¢* of L.
@* is defined by

@*(a+bV2+cvVB+dV10) = a-bvV2+cvV5-dV10.

George Voutsadakis (LSSU)



The Galois Group

Corollary

Let L be a normal extension of finite degree over a field K. If z; and 2, are
roots in L of an irreducible polynomial in K[X], then there exists a
K-automorphism 6 of L, such that 6(z;) = z,.

o By a preceding theorem, there is a K-isomorphism from K(z;) onto
K(z2). By the corollary, this extends to a K-automorphism 6 of L.
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o Let K=Q and let L=Q(u,iv3), where u= V2.
L is the spIitting field over Q of X3—2 (has complex roots V2,
_1 +I )
So it is a normal extension of Q.
The set {1,u, u?,iv/3, uiv/3,u?iV/3} is a basis for L over Q.

The polynomial X3 =2 is irreducible over Q

2mi/3 _ V3

Consider the two roots u and ve —%u+ uis.
There is a Q-isomorphism 0: Q(u) — Q(ue2ﬂf/3)_

By the corollary, this extends to a Q-automorphism 6* of L.
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o Any Q-automorphism of L maps iv/3 to +iv/3.
Let us choose 8*(iv3) =iV3.

Then, recalling that e?™//3 = $(-1+iv/3), we deduce that:

9*(u2) — 247mi/3 %( w—u I\/_)
0* (uiv3) (—%u+u1 32) =1 (-uiv3-3u);
0*(u?iV3) (-3u2-0? )\/_—%(—uzi\/g+3u2).

So the required extension is defined by

0* (a1 +apu+ azu? + agiv3+asuiv3 + agu?iv/3)
= a1+ a2 (-u+uiv3)+a33(-u? - u?iV3)
+a4iV3+ 35%(—ui\/§—3u)+a6%(—u2i\/§+3u2)
=a1+(-3ax—3as)u+(-3az+ 336)u +a4iV3

+(132——a5)u1\/_+( Las—Lag)u?iV3.
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o If L is a finite extension of a field K, a field N containing L is said to
be a normal closure of L over K if:
It is a normal extension of K;
If E is a proper subfield of N containing L, then E is not a normal
extension of K.

Let L be a finite extension of a field K. Then:
There exists a normal closure N of L over K;
If L' is a finite extension over K, such that there is a K-isomorphism

@:L— L', and if N' is a normal closure of L' over K,
— L —=N

then there is a K-isomorphism v : N — N’, such
that the diagram (in which ¢ is the identity map li ‘PJ, J,U/
and unmarked maps are inclusions) commutes. K—1[ —s N

George Voutsadakis (LSSU)



The Galois Group

Let {z1,2o,...,2,} be a basis for L over K.
Each z; is algebraic over K.

Let m; be the minimum polynomial of z;.
Set m=mymy---m,, and let N be a splitting field for m over K.

o By the proof of the previous theorem, N is a normal extension of K.
o N contains all the roots of each of the polynomials m;.

So it certainly contains z1,2,...,z,.

Hence, N contains L.

o Let E be a subfield of N containing L. Suppose that E is normal.
For each i =1,...,n, the field E contains one root of m;, namely z;.
By normality, E contains all the roots of all the m;.

So E=N.

Thus, N is a normal closure.
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Let N be a normal closure of L' over K. Every element of L has a
unique expression aizi +asz + -+ + apz,, where ay,as,...,an € K.
Let v’ =¢(u) be an arbitrary element of L'

There is a unique n-tuple (a3,a,...,a,) of elements of K, such that

U=p(u)=p(arz1+arzo+++anzy) = a1p(z1) + a2p(z2) + -+ + anp(zn).

It is easy to see that {¢(z1),¢(22),...,9(z,)} is a basis for L' over K.
The isomorphism ¢ also ensures that, for i =1,2,...,n, the minimum
polynomial of ¢(z;) is ¢(m;) (where @ is the canonical extension of ¢
to the polynomial ring L[X]).

Now N’ is, by assumption, a normal extension of L'.

So it must contain all the roots of all of the $(m;).

So it must be a splitting field of @(m) = @(m1)P(m2)---P(mp).

The existence of the isomorphism 1 now follows from a previous
theorem.
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Let L be a finite extension of K and let N be a normal closure of L. Then
N=Liviyv---vL, where L, Ly,..., L are subfields containing K, each
of them isomorphic to L.

o By the theorem just proved, we may suppose that:

o L= K(Z]_,Z2,...,Zn);
o mi,my,...,my, are the minimum polynomials of z1,2p,...,2p;
o N is a splitting field over K for the polynomial myms---m,.

Let i€{1,2,...,n} and let zlf be a root of m;.
Then, for all i and zlf, the field K(zl,...,z;,...,zn) is isomorphic to L.

The field N is generated over K by the set {a1,as,...,a,} of all the
roots of all the polynomials my, ms,...,m,.

So N is generated by the fields of type K(z,...,2},...,2p).
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o We determine the normal closure of K = Q(v/2) over Q.
A basis for K over Q is {1, u,u?}, where u= V2.
o 1 has a minimum polynomial X —1;
o u has minimum polynomial X3 -2;
> u? has minimum polynomial X3 —4.
We must find the splitting field of (X —1)(X3-2)(X3-4).
Obviously the factor X —1 is irrelevant, since it already splits over Q.
We know that, over the field Q(u,iVv3),

X3-2=(X—u)(X —ue®™/3)(X — ue~2"/3),
Over the same field,
(X— u2)(X— u2e2ni/3)(X_ u2e—2ni/3)
= (X —u?)( X%+ X +u?)
= X3+ 2 X?+2uX — P X?-2uX -4
=X3-4.
The conclusion is that the normal closure is Q(u,iv/3).
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Let L be a finite normal extension of a field K, and let E be a subfield of L
containing K. Then E is a normal extension of K if and only if every
K-monomorphism of E into L is a K-automorphism of E.

o Suppose E is a normal extension. So E is its own normal closure.
Let ¢ be a K-monomorphism from E into L, and let z€ E.
Let m=X"+a,1X" 1 +---+ a1 X +ap be the minimum polynomial of
zover K. Then z"+a,_1z" 1+ ---+a;z+ag=0.
ABPlying @, (0(2))"+ 3n-1((2))" L+ -+ a1(2) + 20 =0,
Thus, ¢(z) is also a root of m in L.
But z, an element of E, is a root of the irreducible polynomial m.
Since E is normal, m splits completely over E. So ¢(z) € E.
Thus, @(E) is a field contained in E.
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o We showed that ¢(E) < E. Now,
[p(E): K] =[p(E) - o(K)] = [E: K] = [E : p(E)][¢(E) : K].

So ¢(E)=E. Thus, ¢ is a K-automorphism of E.

o Conversely, suppose that every K-monomorphism from E into L is a
K-automorphism of E.

Let f be an irreducible polynomial in K[X] having a root z in E.
To establish that E is normal, we must show that f splits over E.
Certainly, since L is normal, f splits completely over L.

Let Z’ be another root of f in L. By a previous corollary, there is a
K-automorphism y of L, such that ¢(z) =Zz'. Let w* be the
restriction of y to E. Then yw* is a K-monomorphism from E into L.
By hypothesis, w* is a K-automorphism of E. Thus, we get
Z'=y(z)=y*(z) € E. Thus, E is normal.

George Voutsadakis (LSSU)



The Galois Group

Let L be a normal extension of a field K, and let E be a subfield of L
containing K. Then L is a normal extension of E.

o Let f(X) be an irreducible polynomial in E[X].
Suppose f(X) has a root a in L.
Let mk(X) be the minimal polynomial of a over K.
mg(X) in K[X] has root a in L and L: K is normal.
Therefore, my (X) splits over L.
Since mi(X) is in E[X] and mk(a) =0, f(X) | mk(X).
Since my (X) splits over L and f(X) | mx(X), f(X) also splits over L.

Hence, L: E is a normal extension.

George Voutsadakis (LSSU)



The Galois Group

Subsection 4

George Voutsadakis (LSSU) Fields and Galois Theory



The Galois Group

o An irreducible polynomial f with coefficients in a field K is said to be
separable over K if it has no repeated roots in a splitting field.
That is, in a splitting field L of f,

f=k(X-a1)(X-az)-(X-an),

where the roots a1, a»,...,a, are all distinct.

o An arbitrary polynomial g in K[X] is called separable over K if all its
irreducible factors are separable over K.

o An algebraic element in an extension L of K is called separable over
K if its minimum polynomial is separable over K.

o An algebraic extension L of K is called separable if every a in L is
separable over K.

o A field K is called perfect if every polynomial in K[X] is separable
over K.

o Separability is the second property (after normality) that will ensure
that the maps ® and T are mutually inverse.

George Voutsadakis (LSSU)



The Galois Group

o We know that the irreducible polynomial f has repeated roots in its
splitting field if and only if £ and Df have a non-trivial common factor.

Let f be an irreducible polynomial with coefficients in a field K.
If K has characteristic 0, then f is separable over K.

If K has finite characteristic p, then f is separable unless it is of the form
bo+ b1 XP + by X%P + -+ + by X™P.

o Suppose f =ag+a1 X +---+a,X", with 0f = n=1, is not separable.
Then f and Df have a common factor d of degree at least 1.
Since f is irreducible, d must be a constant multiple (associate) of f.

This divides Df only if Df = a; +2a,X +---+na,X" 1 is the zero
polynomial. Hence, a; =2a,=---=na,=0.
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o Suppose K has characteristic 0.
The preceding equations give a; =ay=---=a,=0.
Thus, f is the constant polynomial ag.
This contradicts the hypothesis.
So f must be separable.
o Suppose charK =p.
Then ra, =0 implies that a, =0 if and only if p{r.

So the only non-zero terms in f are of the form akpXkP, k=0,1,....

Writing ay, as by gives the required conclusion.

Every field of characteristic 0 is perfect.
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Let K be a field with finite characteristic p, and let
F(X)=g(XP)=bg+b1 XP+byX?P +-- 4 by X™P.
Then the following statements are equivalent:
f is irreducible in K[X];
g is irreducible in K[X], and not all of the coefficients b; are p-th
powers of elements of K.
(i)=(ii): Suppose g has a non-trivial factorization g(X) = u(X)v(X).
Then f factors (X) = g(XP)=u(XP)v(XP). This is a contradiction.
Hence g is irreducible.
Suppose b; = cf, for i=1,2,...,m. Then, by a previous theorem,
f(X) g(XP):c(';+(c1X)p+~~~+(cme)p
= (q+aX+--+cpXT)P.

Again a contradiction. Hence, not all of the b;'s are p-th powers.
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(i))=(i): Suppose that f is reducible. We must prove either that g is
reducible, or that all the coefficients of f are p-th powers. We have
two cases:

f=u", where r>1 and u is irreducible;

f = vw, where dv,0w >0, and v and w are coprime.
Case 1:

o> Suppose first that p|r. Then f = (u'/P)P = hP (say).
Let h=dp+di X +---+dsX®. Then, using the same theorem,

f=hP=(do+di X+ +dsX*)P = df +d) XP +... + dEX*P.

So all the coefficients of f are p-th powers.
o Suppose that ptr. By the definition of f, Df =0.
Thus, 0= Df = r(Du)ur‘l. So Du=0. Thus, we may write

u(X)=eg+er XP+--+ e X = v(XP).

Now we get g(XP) = f(X) = (u(X))" = (v(XP))".
Thus, g(X) = (v(X))". So g is not irreducible.
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Case 2: f=vw, dv,0w >0, v, w are coprime. K[X] is a Euclidean
domain. So there exist s,t in K[X], such that sv+tw =1.

By hypothesis, Df =0. So (Dv)w + v(Dw) =0. We now get
0=(Dv)tw + tv(Dw) = (Dv)(1-sv) + tv(Dw).

So Dv =sv(Dv) - tv(Dw). Hence v | Dv.

But d(Dv) <dv. Hence, Dv =0. Similarly, Dw =0. We may write
v(X) = do+di XP+---+ds X*P,
w(X) = e+eXP+--+eXP.

Define V(X)=do+ d1 X + .-+ ds X® and w(X) =g+ ey X + --- + e, X .
Then

g(XP) = f(X) = v(X)w(X) = v(XP)w(XP).
So g(X)=v(X)w(X). Thus g is not irreducible.
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Every finite field is perfect.

o Let K be a finite field of characteristic p.
The Frobenius mapping a+— aP is an automorphism of K.
So every element of K is a p-th power.

By a previous theorem, the only candidate for an inseparable
irreducible polynomial is something of the form

f=by+by XP+---+ by X™P.

But all the coefficients are p-th powers.
By the last theorem, even polynomials of this form are reducible.

Hence K is perfect.
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©

An “imperfect” field has to be infinite and of finite characteristic.
The most obvious example is K =Z,(X), the field of all rational forms
with coefficients in Z,.
For polynomials with coefficients in K we must use a different letter,
such as Y, for the indeterminate.
We look at the polynomial f(Y)=YP—-X in K[Y].
We show 7(Y) is irreducible in K and inseparable.
o Suppose f is reducible. By the theorem, —X is a p-th power in K.
So there exists u(x) in K, such that [U(X)]p =-X.
v(X) ’ v(X)
Thus, =X[v(X)]? = [u(X)]?. But p|d([u(X)]P) and pta(X[v(X)]P).
This is a contradiction.
o Let L be a splitting field for f over K. Let a be a root of f in L.
Thus, aP = X. The factorization of f in L is

f(Y)=YP-X=YP-aP=(Y-a)P.
The polynomial f is as inseparable as it is possible to bel!

George Voutsadakis (LSSU)
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Let L be a finite separable extension of a field K, and let E be a subfield of
L containing K. Then L is a separable extension of E.

o Let a €L, and let my, mg be the minimum polynomials of @ over K
and E, respectively. Suppose that my is separable. Within E[X] we
can use the division algorithm myx = gmg+r, 0r <dmg. We get
r(a)=mg(a)—q(a)me(a) =0-0=0. This contradicts the
minimality of mg unless r =0. Hence my = gmg in the ring E[X].
Suppose mg is not separable. Then there is a non-constant
polynomial g dividing mg and Dmg. But Dmyk = gDmg + mgDq.

So g divides mi and Dmy. This can happen only if my has at least
one repeated root in a splitting field. So we have a contradiction.

Hence, mg is separable.
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o A finite extension of a field K that is both normal and separable is
called a Galois extension.
o We look again at Q(v2,iv3) and Q(V2,iV3).
> Q(v2,iV3) is normal, since it is the splitting field of (X2 —2)(X?+3).
Q(Vv2,iV3) is separable, since Q is perfect.
The order of the Galois group is equal to the degree over Q of the
extension.
> Q(¥2,iv/3) is normal, since it is the splitting field of X3 2.
Q(V/2,iV3) is separable, since Q is perfect.
The order of the Galois group is equal to the degree over @ of the
extension.

o We will prove that, if L: K is a normal, separable extension of degree
n, and G is the Galois group of L over K, then |G|=[L: K].
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Let L: K be a separable extension of finite degree n. Then there are
precisely n distinct K-monomorphisms of L into a normal closure N of L
over K.

o By induction on the degree [L: K].

o Suppose [L: K]=1. Then L= K = N. Hence, the only
K-monomorphism of K into N is the identity mapping t.

o Assume now that the result is established for all n< k—1. Suppose
that [L: K]=k>1. Let zy € L\K. Let m (with dm=r=2) be the
minimum polynomial of z; over K. Thus, K< K(z)< L, and
[K(z1): K] =r. But mis irreducible and has one root z; in the normal
extension N. So m splits completely over N. Since L is separable, the
roots of m are all distinct. Suppose the roots are z;,,...,z,. Let
[L:K(z1)]=s. Then 1<s<k, and rs=k.
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o The field N is a normal closure of L over K(z).

So, by the induction hypothesis, the number of K(z;)-monomorphisms
from L into N is precisely s. Denote them by u1,uo,..., ts.

Let A1,12,..., A, be r distinct K-automorphisms of N, with 1;(z1) = z;.
Define maps ¢;;: L — N, by

@ii(x)=Ai(pj(x)), xel, i=12,...,r, j=12,...,s.

The maps are all K-monomorphisms.

: The maps ¢j; are all distinct.
First, @ij(z1) = Ai(1j(z1)) = Ai(z1) = zi. So @jj = ¢pq implies i = p.
Let @jj = @iq. Then, for all x in L, Ai(uj(x)) = Ai(pg(x)). But A;is
one-one. So pj(x) = pg(x), for all x in L. Thatis, j=gq.

Thus, there are at least k distinct K-monomorphisms from L into N.
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. There are no more than k distinct K-monomorphisms from L
into .

We show that every K-monomorphism v from L into N coincides with
one of the maps ¢;;.

The map ¥ must map z; to another root z; of min N.
Let x: L— N be defined by y(x) =27 (y(x)).

This is certainly a K-monomorphism.

Moreover, x(z1) = A7 (y(z1)) =A;1(z) = z1.

So vy is a K(z1)-monomorphism.

So it must coincide with one of py, y, ..., ts, say w;.
Thus, for all x in L, uj(x) :]LI._l(u/(x)).

S0 w(x) = Ai{1(x) = @3(x). Thus, v = ;.
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Corollary

Let L be a Galois extension of K, and let G be the Galois group of L over
K. Then |G|=[L: K].

o Let L be a Galois extension of K.
Then L is both normal as well as separable.
Thus, L is its own normal closure.
By the theorem, |G| =[L: K].
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Let L be a finite extension of K. Suppose Gal(L: K) ={p1=1¢2,...,¢n}
Let f be an irreducible polynomial in K[X], having a root z in L and set
¢i(z) = z;, with the z,...,z distinct. Then, for all ¢; € Gal(L: K),

{Z]_,ZQ,...,Z,«} = {(Pj(zl), (Pj(z2)»~-~»(l’j(zr)}-
o We note that ¢;(z;) is equal to (@;p;)(z2).
This is equal to ¢, (z) =z, for some k, since @;¢; € Gal(L: K).

But ¢; is one-one.

So it merely permutes the elements z, 2, ..., z;.
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Let L be a finite extension of K. Suppose Gal(L: K) ={p1=1¢2,...,¢n}
Let f be an irreducible polynomial in K[X], having a root z in L and set
¢i(z) = z;, with the z,...,z distinct. The polynomial

g(X)=(X-z1)(X-2)-(X-z)
is the minimum polynomial of z over K.
o We must show that every polynomial in K[X] having z as a root is
divisible by g. Suppose that
h=ag+aiX+--+apXT,

with coefficients in K, is such that ag+ajz+---+a,z™=0.
Apply ¢; (which fixes all the a;'s) to obtain

ao+alzj+~~~+amzj’" =0, j=12,...,r.
So h is divisible by X —z;,X — z5,...,X —z,. Thus, it is divisible by g.
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Let L be a finite extension of K. Then ®(Gal(L: K)) =K if and only if L is
a separable normal extension of K.

o Let L be a separable and normal extension of K, with [L: K] =n.

By the preceding corollary, |Gal(L: K)| = n.
Denote ®(Gal(L: K)) by K'.

o We know that K < K.

o By a preceding theorem, we have that

[L:K']=[L:®(Gal(L: K))]=1Gal(L: K)|=n.
Now K< K’ and [L: K] =[L: K'].

It follows that K = K'.
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o Suppose K = K' = ®(Gal(L: K)).
Let Gal(L: K)={p1=1,¢2,...,0n}.
Let f be an irreducible polynomial in K[X] having a root z in L.

We must show that:

o f splits completely over L;
o f has distinct roots in L.

The images of z under the K-automorphisms ¢1,@o,...,¢, need not
all be distinct.

We have ¢1(z) =(z) = z, and re-label the elements of Gal(L: K) so
that ¢2(2),...,¢.(z) are the remaining distinct images of z under the
automorphisms in Gal(L: K). Write ¢;(z) = z,.
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o Let g be the polynomial
(X=z)(X=2)(X=2z)=X"—eeX1+...4(-1) e,

where the coefficients ey, e,..., e, are the elementary symmetric
functions ey =Y.7_; zj,e2 = ¥4 ZiZj,..., &, = 2122 2.

These coefficients are unchanged by any permutation of z1, 2, ..., z.
By a previous lemma, they are unchanged by each ¢; in Gal(L: K).
Thus, g is a polynomial with coefficients in ®(Gal(L: K)) =K.

z is assumed to be a root in L of the irreducible polynomial 7 in K[X].
By the preceding lemma, f is divisible by g.

By the irreducibility of £, f is a constant multiple of g.

Since g splits completely over L, so does f.

Moreover, all its roots are distinct.

So L is a separable normal extension of K.
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Let L be a Galois extension of a field K, and let E be a subfield of L
containing K. If § € Gal(L: K), then T(§(E)) =6T(E)5~*.

o Write 5(E)=E', T(E)=H and T(E') = H'. We show H'=6H57 1.
Let 6 € H. We shall show that 6606 e H'.
Let z' € E' and z be the unique element of E, such that §(z)=2Z'.
Since § €T'(E), 0 fixes all the elements of E. Thus, we get

(60571 (2') = (606716)(2) = 6(0(z)) =6(z) = Z'.
So 606 € H'. Therefore, SH6 1 c H'.
Let 0'e H', and let ze E. Then §(z) € E'. So 6'(6(z)) =6(z).
Hence, (6710'6)(z) = (6716)(z) = z. So 6710’6 e T(E) = H.
We have shown that 6 1H'§ < H.
It follows immediately that H' < §H& L.
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Let L be a separable normal extension of a field K, with finite degree n.

For all subfields E of L containing K, and for all subgroups H of the
Galois group Gal(L: K), ®(T'(E)) =E, T(®(H)) =H.

Gal(L:K
We also have |T'(E)|=[L: E] and | IF((E)| i [E: K].

A subfield E is a normal extension of K if and only if T(E) is a normal
subgroup of Gal(L: K). If E is a normal extension, then Gal(E : K) is
isomorphic to the quotient group Gal(L: K)/T(E).

Let E be a subfield of L containing K. By previous theorems, L is
both normal and separable over E. Hence, IT(E)|=[L: E]. So

L:K Gal(L:K
[E: K= 1£e} = SiEr. But T(E) = Gal(L: E).

So we get ®(T'(E)) =®(Gal(L: E))=E.
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o Now let H be any subgroup of the finite group Gal(L: K).
We know that H =T (®(H)). Denote T'(®(H)) by H'.
We have ®(H) = ®(T(®(H))) = d(H").

We now obtain |H|=[L: ®(H)]=[L: ®(H")]=IH'|.

This, and the finiteness of Gal(L, K), imply that H' = H.
Suppose now that E is a normal extension.

Let 6 € Gal(L: K) and &’ the restriction of § to E.

Then 6’ is a monomorphism from E into L.

So, by a previous theorem, &’ is a K-automorphism of E.
By the last theorem, T'(E) =T'(6(E)) = 6T(E)5~1.

Thus, T(E) is a normal subgroup of Gal(L: K).
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o Suppose that T'(E) is a normal subgroup of Gal(L: K).
Let 61 be a K-monomorphism from E into L.
By a previous corollary, this extends to a K-automorphism & of L.
The normality of T(E) within Gal(L: K) means that 6T(E)§~! =T(E).
Hence, by the preceding theorem, T'(6(E)) =T'(E).
Since T is one-one, it follows that §(E)=61(E)=E.
Thus, 61 is a K-automorphism of E.

We have shown that every K-monomorphism of E into L is a
K-automorphism of E.

By a preceding theorem, E is a normal extension of K.
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o It remains to show that, if E is a normal extension, then
Gal(E:K)=Gal(L: K)/T(E).
So suppose that E is normal. As above, let 6’ be the restriction to E
of the K-automorphism & of L. We have seen that §’ € Gal(E : K).
Let ©: Gal(L: K)— Gal(E : K) be defined by ©(5) =4¢'.
Then © is a group homomorphism. For all §1,82 in Gal(L: K), with
©(61) =67 and ©(62) =65, and all z in E,

([8(81)1[©(82)])(2) (6105)(2) = 61(02(2))

61(62(2)) = (6102)(2)
(©(6162))(2)-

Hence [0(61)][©(82)] = ©(6162). The kernel of © is the set of all § in
Gal(L: K), such that ¢ is the identity map on E, i.e., T(E).

The Homomorphism Theorem yields Gal(E : K) = Gal(L: K)/T(E).
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o Let U and V be subgroups of a group G.

o Then UnV is a subgroup of G.

o In general, UU V is not a subgroup, but there is always a smallest
subgroup containing U and V/, consisting of all products
upviupvp -~ upvy (for all n) with ug,up,...€ U, vi,vo,...€ V.

We denote this by UV V, and call it the join of U and V.
o Similarly, if E and F are subfields of a field K, then:
o ENF is also a subfield;
o There is a subfield Ev F=E(F)=F(E).
It is called the join of E and F.
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Let L be a Galois extension of finite degree over K, with Galois group G,
and let E;, E; be subfields of L containing K. If T'(E;) = H; and
F(Eg) = H,, then F(El N E2) =Hi v H, F(El Y, E2) =HinH>.

o Ey € Ey v Ey. Since the Galois correspondence is order-reversing,
['(E1v Ey)<T(E1) = Hy. Similarly, T(E; v Ex) €T (Ez) = Ha. Hence,
F(El \% E2) c HinH,.

Let a in HynH>. Since a € H; =T(E1), a(x) =x, for all x in E.
Similarly, a(y) =y, for all y in E;. By a previous theorem, the
elements of E; v E; = E1(Ey) are quotients of finite linear combinations
(with coefficients in E;) of finite products of elements of Ej.

So a(z)=z, forall zin E; v Ey. Thus, aeT(E1V Ep).

So the first assertion of the theorem is proved.
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The Galois Group

o From E;nE; € E; it follows that H; =T(E;) <T(E1 N Ey). Similarly,
H> < F(El N E2). So HivH, S F(El N E2).
Let x be an element of L not in EynE,. Say x¢ E;.
We know Ej = ®(Hs).
So there exists y in H; < H; v Hy, such that y(x) # x.
Thus, x ¢ E; N E implies x ¢ ®(H; v Ha).
This shows that ®(H; v Hy) € E; n E;.
Now, the Galois correspondence gives I'(E; N Ey) <€ Hy v Hs.
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The Galois Group

Let K be a field of characteristic zero, and let f € K[X]. N

Let L=K(a1,az,...,an) be a splitting field for f over K. M 7N L
Let M be a field containing K, and let N be a splitting NS
field of f over M. Then, up to isomorphism, L is a MOL
subfield of N, and Gal(N: M) = Gal(L: MnL). K

o The field N is an extension of M, and hence of K, such that f splits
completely in N[X]. Hence, by the definition of a splitting field, L is,
up to isomorphism, a subfield of N. Write N as M(a1,az,...,ap).

Let H=Gal(N: M), and let y € H. Then the restriction y' of y to L is
a monomorphism from L into N. Since y fixes the elements of M, it
certainly fixes the elements of K. Hence, so does y’. Also, y maps
each root a; of f to another root of . Thus, so does y'.

So y' is a monomorphism of L into itself.
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The Galois Group

o ¥ is an automorphism of N = M(ay,az,...,a,). So every root a; of f
is the image of some root of f under y. Hence, also under y’.
Thus y' maps onto L= K(ai,as,...,a,). So it is a K-automorphism.
We have a mapping 6 from H into G = Gal(L: K), given by 6(y) =v'.
o 0 is one-one. Let 6 € H such that y'=6". Then y' and §' act identically

on the roots a1, a»,...,a,. So y=4.
2 0 is a group homomorphism. The restriction of y& to L is y'é’.

Thus, H=0(H). We show 6(H) is the subgroup Gal(L: MnL) of G.
Each y in H fixes the elements of M. So each y’ fixes those of M L.
Thus MNnL<c®(6(H)). By the Galois Theorem, 8(H) < Gal(L: MnL).

Let x be in L but not in MnL. Thus, xg M. But M is the field whose
elements are fixed by H. So there is a f in H for which B(x) # x.
Then (0(B))(x) #x. So x¢®(6(H)). Thus, Gal(L: MnL)<6(H).
Now Gal(L: ML) =0(H)=H =Gal(N: M).
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Subsection 7
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The Galois Group

o Consider the Galois group G = Gal(Q(v,i): Q), where v = V2.
The field Q(v,i) is the splitting field of X* -2 over Q.
If £€ G, then, {(i) =+i and &(v) €{v,iv,—v,—iv}.
There are 8 elements in the group G:
L:V— V,[—I; Avev,i——i;
Q:ve—iv,i—i; Wive—iv,i——i
B:ve—v,i—i; Viv——Vv,i——I;
o

Yive —iv,i—i; Ve =iV, — —.
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The Galois Group

o The multiplication in G is given by:

L a By A pvop
Lt a By A p v op
ala B v ¢t p v p A
BB v vt a v p A p
Yy t a p p A p v
AlA p v gt v B a
plp A p v oa t y B
viv g A p B a t vy
plp v p Ay B a
Examples of the computation:
o a(Mv))=a(v)=iv; a(A(i))=a(-i)=—i. So al=pu.
o Ma(v))=A(iv) = A()A(v) = —iv; Ma(i))=A(i)=—i; So Aa=p.

George Voutsadakis (LSSU)



The Galois Group

o The group G =Gal(Q(v,/i): Q) has three subgroups of order 4:
Hi={,a,B,vh, Ha={,6,Av}, H3=1{,B,p,p}

It has five subgroups of order 2:

H4 = {L) ﬁ}) H5 = {L) /1}) H6 = {l') l'l'}) H7 = {L) V}) H8 = {L) P}-

We can compute the corresponding subfields of Q(v, /).
o ©(H1)=Q(i);
> ®(H2)=Q(v?) = Q(v2);
o ©(H3)=Q(iV2).

We also find the ones corresponding to the order 2 subgroups.

o ®(Ha)=Q(i,v2);
> ®(Hs) =Q(v);

o ©(He) = Q((1+1)v);
2 ®(H7)=Q(iv);

> ®(Hg) =Q((1-/)v).
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The Galois Group

o The lattice of subgroups of G is shown on the left

Hy

G

Hy

Hy

{}

Hyg

Hg

Fy

Q

) Fs
Fy I 6
I3 Fy

and the lattice of subfields E, such that Q < E < Q(v,i), an upside
down version of it, is shown on the right, with F;:= ®(H;).
o We look at normal subgroups and extensions.

Normal Subgroups Hq H, H; H,
Normal Extensions Q> | Q(V2) | Q(iv2) Q(i,v2)
Polynomials Splitting | X?+1 | X?-2 | X?2+2 | (X?2+1)(X?-2)

George Voutsadakis (LSSU)




The Galois Group

o Note that Gal(Q(v,i),Q) is not abelian, although both

Gal(Q(v, 1), Q(/)) = ., B,}

and

Gal(Q(i), Q) = Gal(Q(v, 1), Q)/Gal(Q(v, 1), Q())

are abelian.

o The example is easier than most, since we can easily factorize X* -2
over the complex field.

On the other hand, If we start with an irreducible polynomial such as
f=2X°-4X*+8X3+14X?+7,

then it is by no means a trivial matter to determine the Galois group.
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