Fields and Galois Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 🛛 🕹 🖊 8

The Galois Group

- Monomorphisms between Fields
- Automorphisms, Groups and Subfields
- Normal Extensions
- Separable Extensions
- The Galois Correspondence
- The Fundamental Theorem
- An Example

Subsection 1

Monomorphisms between Fields

The Vector Space ${\mathscr M}$

- Let K be a field and let S be a non-empty set.
- Let *M* be the set of mappings from *S* into *K*.
- If $\theta, \varphi \in \mathcal{M}$, then $\theta + \varphi$, defined by

$$(\theta + \varphi)(s) = \theta(s) + \varphi(s), \quad s \in S,$$

is a mapping from S into K, and so belongs to \mathcal{M} . • If $\theta \in \mathcal{M}$ and $a \in K$, then $a\theta$, defined by

$$(a\theta)(s) = a\theta(s), \quad s \in S,$$

belongs to \mathcal{M} .

- *M* is a vector space with respect to these two operations.
- The zero vector in $\mathcal M$ is the mapping ζ given by

$$\zeta(s)=0, \quad s\in S.$$

 We denote the mapping ζ simply by 0, since the context makes it clear whether we mean the zero element of K or the mapping ζ.

George Voutsadakis (LSSU)

Linear Independence in ${\mathscr M}$

A set {θ₁, θ₂,...,θ_n} of elements of *M* is linearly independent if, for all a₁, a₂,..., a_n in K,

$$a_1\theta_1(s) + a_2\theta_2(s) + \cdots + a_n\theta_n(s) = 0,$$

for all s in S, if and only if $a_1 = a_2 = \cdots = a_n = 0$.

• More compactly, we can write the condition as

 $a_1\theta_1 + a_2\theta_2 + \dots + a_n\theta_n = 0$ (strictly, ζ) iff $a_1 = a_2 = \dots = a_n = 0$.

Linear Independence of Field Monomorphisms

Theorem

Let K and L be fields, and let $\theta_1, \theta_2, \dots, \theta_n$ be distinct monomorphisms from K into L. Then $\{\theta_1, \theta_2, \dots, \theta_n\}$ is a linearly independent set in the vector space \mathcal{M} of all mappings from K into L.

• We prove the theorem by induction on *n*.

For n = 1: By hypothesis, θ_1 is a monomorphism. Thus, it maps the identity 1 of K to the identity 1 of L. So it is not the zero mapping. Assume that we have established that every set of fewer than n distinct monomorphisms of K into L is linearly independent.

Suppose, for a contradiction, that there exist $a_1, a_2, ..., a_n$ in L, not all zero, such that $a_1\theta_1 + a_2\theta_2 + \cdots + a_n\theta_n = 0$. We may assume that all a_i are non-zero: If, e.g., $a_n = 0$, then $\{\theta_1, \theta_2, ..., \theta_{n-1}\}$ is linearly dependent, contradicting the induction hypothesis.

Linear Independence of Field Monomorphisms (Cont'd)

Dividing by a_n, gives

$$b_1\theta_1+\cdots+b_{n-1}\theta_{n-1}+\theta_n=0,$$

where $b_i = \frac{a_i}{a_n}$ (i = 1, 2, ..., n-1). The monomorphisms θ_1 and θ_n are by assumption distinct. So there exists u in K, with $\theta_1(u) \neq \theta_n(u)$. The element u is certainly non-zero, as are both $\theta_1(u)$ and $\theta_n(u)$. For every z in K, $b_1\theta_1(uz) + \dots + b_{n-1}\theta_{n-1}(uz) + \theta_n(uz) = 0$. But $\theta_1, \theta_2, \dots, \theta_n$ are monomorphisms. So $b_1\theta_1(u)\theta_1(z) + \dots + b_{n-1}\theta_{n-1}(u)\theta_{n-1}(z) + \theta_n(u)\theta_n(z) = 0$. Dividing this by $\theta_n(u)$, we get, for all z in K,

$$b_1\frac{\theta_1(u)}{\theta_n(u)}\theta_1(z)+\cdots+b_{n-1}\frac{\theta_{n-1}(u)}{\theta_n(u)}\theta_{n-1}(z)+\theta_n(z)=0.$$

Rewriting as an equation concerning mappings gives

$$b_1\frac{\theta_1(u)}{\theta_n(u)}\theta_1+\cdots+b_{n-1}\frac{\theta_{n-1}(u)}{\theta_n(u)}\theta_{n-1}+\theta_n=0.$$

Linear Independence of Field Monomorphisms (Conclusion)

• Subtracting the bottom from he top equation, we obtain

$$b_1\left(1-\frac{\theta_1(u)}{\theta_n(u)}\right)\theta_1+\cdots+b_{n-1}\left(1-\frac{\theta_{n-1}(u)}{\theta_n(u)}\right)\theta_{n-1}=0.$$

Our choice of u as an element such that $\theta_1(u) \neq \theta_n(u)$ means that the coefficient of θ_1 is non-zero. Thus, the set $\{\theta_1, \theta_2, \dots, \theta_{n-1}\}$ is linearly dependent. This contradicts the induction hypothesis.

• The set of monomorphisms from K into L is not a subspace of the vector space \mathcal{M} .

Suppose θ_1 and θ_2 are monomorphisms.

Let 1_K and 1_L be the identities of K and L.

 $(\theta_1 + \theta_2)(1_K) = \theta_1(1_K) + \theta_2(1_K) = 1_L + 1_L \neq 1_L.$

So $\theta_1 + \theta_2$ is not a monomorphism.

Subsection 2

Automorphisms, Groups and Subfields

The Group of Automorphisms of a Field

Theorem

Let K be a field. Then the set AutK of automorphisms of K forms a group under composition of mappings.

• Composition of mappings is always associative. For all x in K and all α , β and γ in AutK,

$$[(\alpha \circ \beta) \circ \gamma](x) = (\alpha \circ \beta)[\gamma(x)] = \alpha(\beta(\gamma(x)));$$

$$[\alpha \circ (\beta \circ \gamma)](x) = \alpha([\beta \circ \gamma](x)) = \alpha(\beta(\gamma(x))).$$

There exists an identity automorphism ι in Aut*K*, defined by the property that $\iota(x) = x$, for all x in K.

Clearly $\iota \circ \alpha = \alpha \circ \iota = \alpha$, for all α in Aut*K*.

The Group of Automorphisms of a Field (Cont'd)

• Finally, for every automorphism α in AutK, there is an inverse mapping α^{-1} defined by the property that

 $\alpha^{-1}(x)$ is the unique z in K such that $\alpha(z) = x$.

This map is also an automorphism.

Let $x, y \in K$, and let $\alpha^{-1}(x) = z$, $\alpha^{-1}(y) = t$. Then $\alpha(z) = x$, $\alpha(t) = y$. So $\alpha(z+t) = x+y$ and $\alpha(zt) = xy$. Hence,

$$\begin{array}{rcl} \alpha^{-1}(x) + \alpha^{-1}(y) &=& z + t = \alpha^{-1}(\alpha(z+t)) = \alpha^{-1}(x+y);\\ \alpha^{-1}(x)\alpha^{-1}(y) &=& zt = \alpha^{-1}(\alpha(zt)) = \alpha^{-1}(xy). \end{array}$$

Thus, $\alpha^{-1} \in G$. Clearly, $\alpha \circ \alpha^{-1} = \alpha^{-1} \circ \alpha = \iota$. Hence *G* is a group.

• AutK is called the group of automorphisms of K.

Fields and Galois Theory

The Galois Group of an Extension

- Let L be an extension of a field K.
- An automorphism α of L is called a K-automorphism if α(x) = x, for every x in K.
- The set of all *K*-automorphisms of *L* is denoted by Gal(*L*:*K*) and is called the **Galois group of** *L* **over** *K*.
- The **Galois group** Gal(f) of a polynomial f in K[X] is defined as Gal(L:K), where L is a splitting field of f over K.

The Galois Group in the Automorphisms of the Extension

• Let L be an extension of a field K.

- We have seen that AutL is a group.
- We show that Gal(L: K) is a subgroup of AutL.

Theorem

Let L: K be a field extension. The set Gal(L:K) of all K-automorphisms of L is a subgroup of AutL.

• Certainly $\iota \in Gal(L:K)$.

Let $\alpha, \beta \in Gal(L:K)$. Then, for all x in K,

$$\beta^{-1}(x) = \beta^{-1}(\beta(x)) = x;$$

$$\alpha(\beta(x)) = \alpha(x) = x.$$

Thus, Gal(L:K) is a subgroup of AutL.

The Maps Γ and Φ

• We now connect the following objects:

- The subfields *E* of *L* containing *K*;
- The subgroups *H* of the group Gal(*L*:*K*).

• For every subfield E of L containing K, we define

 $\Gamma(E) = \{ \alpha \in \operatorname{Aut} L : \alpha(z) = z, \text{ for all } z \text{ in } E \}.$

• For every subgroup H of Gal(L:K), we define

$$\Phi(H) = \{x \in L : \alpha(x) = x, \text{ for all } \alpha \text{ in } H\}.$$

• We establish conditions on the extension L: K under which Γ and Φ are mutually inverse.

Γ and Φ are Well-Defined

Theorem

- Let L: K be a field extension.
 - (i) For every subfield E of L containing K, the set Γ(E) is a subgroup of Gal(L: K).
- (ii) For every subgroup H of Gal(L:K), the set $\Phi(H)$ is a subfield of L, containing K.
- (i) Certainly Γ(E) is non-empty, since it contains ι, the identity automorphism. Since K ⊆ E, every automorphism fixing all elements of E automatically fixes all elements of K. Hence, Γ(E) ⊆ Gal(L:K). Let α, β ∈ Γ(E). Then, for all z in E,

$$\alpha(\beta^{-1}(z)) = \alpha(\beta^{-1}(\beta(z))) = \alpha(z) = z.$$

So $\alpha\beta^{-1} \in \Gamma(E)$. Hence, $\Gamma(E)$ is a subgroup.

Γ and Φ are Well-Defined

(ii) Every automorphism in Gal(L: K) fixes the elements of K. Hence, K ⊆ Φ(H).
Let x, y ∈ Φ(H). Then, for all α in H,

$$\alpha(x-y) = \alpha(x) - \alpha(y) = x - y.$$

So $x - y \in \Phi(H)$. If $y \neq 0$, then, for all α in H,

$$\alpha(xy^{-1}) = \alpha(x)\alpha(y^{-1}) = \alpha(x)(\alpha(y))^{-1} = xy^{-1}.$$

So $xy^{-1} \in \Phi(H)$. Thus, $\Phi(H)$ is a subfield of *L*.

Γ and Φ are Order-Reversing

Theorem

- Let L: K be a field extension.
 - (i) If E_1 and E_2 are subfields of L containing K, then

 $E_1 \subseteq E_2$ implies $\Gamma(E_1) \supseteq \Gamma(E_2)$.

(ii) If H_1 and H_2 are subgroups of Gal(L:K), then

 $H_1 \subseteq H_2$ implies $\Phi(H_1) \supseteq \Phi(H_2)$.

- (i) Suppose that $E_1 \subseteq E_2$, and let $\alpha \in \Gamma(E_2)$. Then α fixes every element of E_2 . So it fixes every element of E_1 . Hence, $\alpha \in \Gamma(E_1)$.
- (ii) Suppose that $H_1 \subseteq H_2$, and let $z \in \Phi(H_2)$. Then $\alpha(z) = z$, for every α in H_2 . So, $\alpha(z) = z$, for every α in H_1 . Hence $z \in \Phi(H_1)$.

Γ and Φ May Not Be Inverse Mappings

 Consider the extension Q(u) of Q, where u = ³√2. Suppose α ∈ Gal(Q(u): Q). Then

$$(\alpha(u))^3 = \alpha(u^3) = \alpha(2) = 2.$$

So, being real, $\alpha(u)$ must be equal to u. Hence, $Gal(\mathbb{Q}(u):\mathbb{Q})$ is the trivial group $\{u\}$. Two mappings are mutually inverse only if they are both bijections. Here, however, we have

$$\Gamma(\mathbb{Q}(u)) = \Gamma(\mathbb{Q}) = \{\iota\}.$$

To look at it another way, we have

$$\Phi(\Gamma(\mathbb{Q})) = \Phi({\iota}) = \mathbb{Q}(u).$$

Γ and Φ May Be Inverse Mappings

 $C (0 \mathbf{D})$

MAR describes the

Galois Group and Roots of Polynomials

Theorem

Let K be a field, let L be an extension of K, and let $z \in L \setminus K$. If z is a root of a polynomial f with coefficients in K, and if $\alpha \in Gal(L:K)$, then $\alpha(z)$ is also a root of f.

• Let
$$f = a_0 + a_1X + \dots + a_nX^n$$
, where $a_0, a_1, \dots, a_n \in K$.
Suppose that $f(z) = 0$. Then

$$f(\alpha(z)) = a_0 + a_1\alpha(z) + \dots + a_n(\alpha(z))^n$$

= $\alpha(a_0) + \alpha(a_1)\alpha(z) + \dots + \alpha(a_n)\alpha(z^n)$
= $\alpha(a_0 + a_1z + \dots + a_nz^n)$
= $\alpha(0)$
= 0.

Example

• We describe the group Gal($\mathbb{Q}(\sqrt{2}, i\sqrt{3}) : \mathbb{Q}$) and, for each of its subgroups H, we determine $\Phi(H)$. The elements of $\mathbb{Q}(\sqrt{2}, i\sqrt{3})$ are of the form $a + b\sqrt{2} + ci\sqrt{3} + di\sqrt{6}$. By the theorem, if $\alpha \in \text{Gal}(\mathbb{Q}(\sqrt{2}, i\sqrt{3}):\mathbb{Q})$, then $\alpha(\sqrt{2}) = \pm\sqrt{2}$, $\alpha(i\sqrt{3}) = \pm i\sqrt{3}$. There are four elements in Gal($\mathbb{Q}(\sqrt{2}, i\sqrt{3}) : \mathbb{Q}$), namely, ι, τ, θ and β , where ι is the identity map, and: • $\tau(a+b\sqrt{2}+ci\sqrt{3}+di\sqrt{6}) = a-b\sqrt{2}+ci\sqrt{3}-di\sqrt{6};$ • $\theta(a+b\sqrt{2}+ci\sqrt{3}+di\sqrt{6})=a+b\sqrt{2}-ci\sqrt{3}-di\sqrt{6};$ • $\beta(a + b\sqrt{2} + ci\sqrt{3} + di\sqrt{6}) = a - b\sqrt{2} - ci\sqrt{3} + di\sqrt{6}$. All four are Q-automorphisms of $\mathbb{Q}(\sqrt{2}, i\sqrt{3})$. θ The multiplication table is on the right. ι τ θ The proper subgroups of this group are $H_1 = \{\iota, \tau\}$, τιβθ θβιτ βθτι τ θ $H_2 = \{\iota, \theta\}$ and $H_3 = \{\iota, \beta\}$. We have $\Phi(H_1) = \mathbb{Q}(i\sqrt{3}), \quad \Phi(H_2) = \mathbb{Q}(\sqrt{2}),$ $\Phi(H_3) = \mathbb{Q}(i\sqrt{6}).$

Inflationarity of $\Phi\Gamma$ and $\Gamma\Phi$

 The pair Φ and Γ, known as the Galois correspondence, need not be mutually inverse, but they do have a weaker property.

Theorem

Let L be an extension of a field K, let E be a subfield of L containing K, and let H be a subgroup of Gal(L:K). Then

 $E \subseteq \Phi(\Gamma(E)), \qquad H \subseteq \Gamma(\Phi(H)).$

Let z ∈ E. The group Γ(E) is the set of all automorphisms fixing each element of E. So z is fixed by all the automorphisms in Γ(E). That is, z ∈ Φ(Γ(E)). Hence, E ⊆ Φ(Γ(E)).
Let α ∈ H. The field Φ(H) is the set of elements of L fixed by every element of H. So α fixes every element of Φ(H). That is, α ∈ Γ(Φ(H)). Hence, H ⊆ Γ(Φ(H)).

Linear Algebraic Deviation: Rank and Nullity

- Let V and W be finite-dimensional vector spaces over a field K, with dimensions m, n, respectively, and let $T: V \rightarrow W$ be a linear mapping.
- The image im T of T is the set {T(v): v ∈ V}. The image im T is a subspace of W.
 Its dimension dim(im T) is called the rank ρ(T) of T.
- The kernel kerT of T is the set {v ∈ V : T(v) = 0}.
 The kernel kerT is a subspace of V.
 Its dimension dim(kerT) is called the nullity v(T) of T.
- A standard result in linear algebra states that

$$\rho(T) + \nu(T) = \dim V = m.$$

Linear Algebraic Deviation: Translation into Matrices

- We know $\rho(T) + v(T) = \dim V = m$.
 - So, if n < m, then certainly $\rho(T) \le n < m$. So $\nu(T) > 0$.

Thus, there exists a non-zero vector v in V, such that T(v) = 0.

- If we have an n×m matrix A = [a_{ij}]_{n×m}, with entries in K, and an m-dimensional column vector v, the map v → Av is a linear mapping from the vector space K^m into the vector space Kⁿ.
 - So if n < m, then there exists a non-zero vector v such that Av = 0.
 - That is, there exist v_1, v_2, \ldots, v_m in K, not all zero, such that

$$a_{1j}v_1 + a_{2j}v_2 + \dots + a_{mj}v_m = 0, \quad j = 1, 2, \dots, n.$$

Degree of Extension and Order of a Group

Theorem

Let *L* be a finite extension of a field *K*, and let *G* be a finite subgroup of Gal(L:K). Then $[L:\Phi(G)] = |G|$.

• Let |G| = m and $[L: \Phi(G)] = n$. We show m > n leads to a contradiction. Write $G = \{\alpha_1 = \iota, \alpha_2, ..., \alpha_m\}$, where ι is the identity map. Suppose that $\{z_1, z_2, ..., z_n\}$ is a basis for L over $\Phi(G)$. Consider the $n \times m$ matrix $\begin{bmatrix} \alpha_1(z_1) & \alpha_2(z_1) & \cdots & \alpha_m(z_1) \\ \alpha_1(z_2) & \alpha_2(z_2) & \cdots & \alpha_m(z_2) \\ \vdots & \vdots & & \vdots \\ \alpha_1(z_n) & \alpha_2(z_n) & \cdots & \alpha_m(z_n) \end{bmatrix}$ Since m > n, there exist v_1, v_2, \ldots, v_m in L, not all zero, such that $\alpha_1(z_i)v_1 + \alpha_2(z_i)v_2 + \dots + \alpha_m(z_i)v_m = 0, \quad j = 1, 2, \dots, n.$

Degree of Extension ≮ Order of a Group

Let b∈ L. The set {z₁, z₂,..., z_n} is a basis for L over Φ(G). So there exist b₁, b₂,..., b_n in Φ(G) such that b = b₁z₁ + b₂z₂ + ··· + b_nz_n. Multiplying the n preceding equations by b₁, b₂,..., b_n, respectively,

$$b_j \alpha_1(z_j) v_1 + b_j \alpha_2(z_j) v_2 + \dots + b_j \alpha_m(z_j) v_m = 0, \quad j = 1, 2, \dots, n.$$

The b_j all lie in $\Phi(G)$. The α_i all lie in G. So $b_j = \alpha_i(b_j)$ for all i, j. Thus, we may rewrite the equations as

$$\alpha_1(b_j z_j)v_1 + \alpha_2(b_j z_j)v_2 + \dots + \alpha_m(b_j z_j)v_m = 0, \ j = 1, 2, \dots, n.$$

If we add these n equations together, we obtain

$$v_1\alpha_1(b)+v_2\alpha_2(b)+\cdots+v_m\alpha_m(b)=0.$$

This holds for all *b* in *L*. So the automorphisms $\alpha_1, \alpha_2, ..., \alpha_m$ are linearly dependent. This is impossible.

George Voutsadakis (LSSU)

Fields and Galois Theory

• Suppose that $n = [L: \Phi(G)] > m$. Take a subset $\{z_1, z_2, \dots, z_{m+1}\}$ of L which is linearly independent over $\Phi(G)$. Consider the $m \times (m+1)$

matrix $\begin{bmatrix} \alpha_1(z_1) & \alpha_1(z_2) & \cdots & \alpha_1(z_{m+1}) \\ \alpha_2(z_1) & \alpha_2(z_2) & \cdots & \alpha_2(z_{m+1}) \\ \vdots & \vdots & & \vdots \\ \alpha_m(z_1) & \alpha_m(z_2) & \cdots & \alpha_m(z_{m+1}) \end{bmatrix}$. There exist u_1, u_2, \dots, u_{m+1} in L, not all zero, such that

$$\alpha_j(z_1)u_1 + \alpha_j(z_2)u_2 + \cdots + \alpha_j(z_{m+1})u_{m+1} = 0, \quad j = 1, 2, \dots, m.$$

Suppose that the elements $u_1, u_2, \ldots, u_{m+1}$ are chosen so that as few as possible are non-zero. Relabel the elements so that u_1, u_2, \ldots, u_r are non-zero, and $u_{r+1} = \cdots = u_{m+1} = 0$. So now we have

$$\alpha_j(z_1)u_1 + \alpha_j(z_2)u_2 + \cdots + \alpha_j(z_r)u_r = 0, \ j = 1, 2, \dots, m.$$

Degree of Extension eq Order of a Group (Cont'd)

• We have $\alpha_j(z_1)u_1 + \alpha_j(z_2)u_2 + \dots + \alpha_j(z_r)u_r = 0, j = 1, 2, \dots, m$. Dividing by u_r and setting $u'_i = \frac{u_i}{u_r}$, $i = 1, 2, \dots, r-1$, we get

$$\alpha_j(z_1)u'_1 + \cdots + \alpha_j(z_{r-1})u'_{r-1} + \alpha_j(z_r) = 0, \ j = 1, 2, \dots, m.$$

Since $\alpha_1 = \iota$, the first of these equations is

$$z_1u'_1 + \cdots + z_{r-1}u'_{r-1} + z_r = 0.$$

The set $\{z_1, z_2, ..., z_r\}$ is not linearly dependent over $\Phi(G)$. So not all of the elements $u'_1, ..., u'_{r-1}$ belong to $\Phi(G)$. As at least one of $u'_1, ..., u'_{r-1}$ is not in $\Phi(G)$, assume $u'_1 \notin \Phi(G)$. That is, u'_1 is not fixed by every automorphism in G. So there is an automorphism in G, say α_2 , such that $\alpha_2(u'_1) \neq u'_1$. Applying α_2 to the preceding equations, for j = 1, 2, ..., m,

 $(\alpha_{2}\alpha_{j})(z_{1})\alpha_{2}(u'_{1}) + \cdots + (\alpha_{2}\alpha_{j})(z_{r-1})\alpha_{2}(u'_{r-1}) + (\alpha_{2}\alpha_{j})(z_{r}) = 0.$

Degree of Extension ≯ Order of a Group (Cont'd)

We obtained

 $(\alpha_{2}\alpha_{j})(z_{1})\alpha_{2}(u_{1}')+\cdots+(\alpha_{2}\alpha_{j})(z_{r-1})\alpha_{2}(u_{r-1}')+(\alpha_{2}\alpha_{j})(z_{r})=0.$

G is a group.

So the set $\{\alpha_2\alpha_1, \alpha_2\alpha_2, ..., \alpha_2\alpha_m\}$ is the same as the set $\{\alpha_1, \alpha_2, ..., \alpha_m\}$ except for the order of the elements.

Hence, we may change the order of the listed equations and obtain

$$\alpha_j(z_1)\alpha_2(u'_1) + \cdots + \alpha_j(z_{r-1})\alpha_2(u'_{r-1}) + \alpha_j(z_r) = 0, \quad j = 1, 2, \dots, m.$$

Subtracting these from the original gives, for j = 1, 2, ..., m,

$$\alpha_j(z_1)(u'_1 - \alpha_2(u'_1)) + \dots + \alpha_j(z_{r-1})(u'_{r-1} - \alpha_2(u'_{r-1})) = 0.$$

Degree of Extension \neq Order of a Group (Conclusion)

We obtained

$$\alpha_j(z_1)(u'_1 - \alpha_2(u'_1)) + \dots + \alpha_j(z_{r-1})(u'_{r-1} - \alpha_2(u'_{r-1})) = 0.$$

Let $v_i = u'_i - \alpha_2(u'_i)$, $i = 1, 2, \dots, r-1$, and $v_i = 0$, $i = r, r+1, \dots, m+1$.
Then

$$\alpha_j(z_1)v_1 + \alpha_j(z_2)v_2 + \cdots + \alpha_j(z_{m+1})v_{m+1} = 0, \quad j = 1, 2, \dots, m.$$

We know that the elements v_i are not all zero. In this arrangement, no more than r-1 of the v_i are non-zero. This contradicts the minimality of r in the choice of the elements $u_1, u_2, \ldots, u_{m+1}$.

We conclude that it is not possible to have $[L: \Phi(G)] > m$.

George Voutsadakis (LSSU)

Fields and Galois Theory

Subsection 3

Normal Extensions

Normal Extensions

- We considered the two extensions of \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt[3]{2})$.
 - In the first case X²−2, the minimum polynomial of √2, splits completely over Q(√2).
 - In the second case we see that X³ − 2, the minimum polynomial of ³√2, does not split completely over Q(³√2).

This is an important difference.

- Although it is convenient to consider arbitrary extensions *L* : *K*, our primary interest is with Galois groups of polynomials, when *L* is a splitting field over *K* for some polynomial.
- We call *L*: *K* a **normal extension** if every irreducible polynomial in *K*[*X*] having at least one root in *L* splits completely over *L*.

Characterization of Normality

Theorem

A finite extension L of a field K is normal if and only if it is a splitting field for some polynomial in K[X].

• Suppose that *L* is a finite normal extension.

Let $\{z_1, z_2, \ldots, z_n\}$ be a basis for *L* over *K*.

For i = 1, 2, ..., n, let m_i be the minimum polynomial of z_i , and let $m = m_1 m_2 \cdots m_n$.

- Each *m_i* has at least one root *z_i* in *L*. So, by hypothesis, it splits completely over *L*. Hence, *m* splits completely over *L*.
- But *L* is generated by $z_1, z_2, ..., z_n$. So it is not possible for *m* to split completely over any proper subfield of *L*.

Thus, L is a splitting field for m over K.

Characterization of Normality (Converse)

Suppose that E is a splitting field for some polynomial g over K.
 Let f, with degree at least 2, be an irreducible polynomial in K[X], having a root α in E. We must show that f splits completely over E.

The polynomial fg certainly lies in E[X]. It has a splitting field L containing E. Suppose that β is another root of f in L. We have subfields of Las indicated in the diagram, in which the arrows denote inclusion. We have

$$\begin{split} [E(\alpha):E][E:K] &= [E(\alpha):K] = [E(\alpha):K(\alpha)][K(\alpha):K];\\ [E(\beta):E][E:K] &= [E(\beta):K] = [E(\beta):K(\beta)][K(\beta):K]. \end{split}$$

But α and β are roots of the same irreducible polynomial f. So there is a K-isomorphism φ from $K(\alpha)$ onto $K(\beta)$. Certainly $[K(\alpha):K] = [K(\beta):K]$.

Characterization of Normality (Converse Cont'd)

E is a splitting field for g over K.
So
$$E(\alpha)$$
 is a splitting field for g over $K(\alpha)$ E
and $E(\beta)$ is a splitting field for g over $K(\beta)$.
Hence, there is an isomorphism φ^* from $E(\alpha)$
onto $E(\beta)$, extending the K-isomorphism φ
from $K(\alpha)$ onto $K(\beta)$. It follows in particular
that $[E(\alpha) : K(\alpha)] = [E(\beta) : K(\beta)]$.
Now $[E(\alpha) : E] = 1$, since $\alpha \in E$ by assumption. Hence,

$$E(\alpha) | E(\beta)$$

$$E(\beta) | E(\beta)$$

$$K(\alpha) | K(\beta)$$

$$K(\beta)$$

 $[E(\beta):E][E:K] = [E(\beta):K(\beta)][K(\beta):K]$ = $[E(\alpha):K(\alpha)][K(\alpha):K]$ = $[E(\alpha):E][E:K]$ = [E:K].

Thus $[E(\beta): E] = 1$. So $\beta \in E$, as required.

Extension of *K*-Monomorphisms

Corollary

Let *L* be a normal extension of finite degree over a field *K*, and let *E* be a subfield of *L* containing *K*. Then every *K*-monomorphism from *E* into *L* can be extended to a *K*-automorphism of *L*.

- Let φ be a K-monomorphism from E into L.
 By the theorem, there exists a polynomial f such that L is a splitting
 - field for f over K.
 - L is also a splitting field for f over each of the fields E and $\varphi(E)$.
 - By a preceding theorem, we deduce that there is a K-automorphism φ^* of L extending $\varphi.$
Example

• Let
$$K = \mathbb{Q}$$
, $E = \mathbb{Q}(\sqrt{2})$, $L = \mathbb{Q}(\sqrt{2}, \sqrt{5})$.
Let $\varphi : E \to L$ be defined by

$$\varphi(a+b\sqrt{2})=a-b\sqrt{2}.$$

Then φ is a *K*-monomorphism. So φ extends to a Q-automorphism φ^* of *L*. φ^* is defined by

$$\varphi^*(a+b\sqrt{2}+c\sqrt{5}+d\sqrt{10})=a-b\sqrt{2}+c\sqrt{5}-d\sqrt{10}.$$

K-Automorphisms Mapping Roots

Corollary

Let *L* be a normal extension of finite degree over a field *K*. If z_1 and z_2 are roots in *L* of an irreducible polynomial in K[X], then there exists a *K*-automorphism θ of *L*, such that $\theta(z_1) = z_2$.

• By a preceding theorem, there is a K-isomorphism from $K(z_1)$ onto $K(z_2)$. By the corollary, this extends to a K-automorphism θ of L.

Example

- Let $K = \mathbb{Q}$ and let $L = \mathbb{Q}(u, i\sqrt{3})$, where $u = \sqrt[3]{2}$.
 - *L* is the splitting field over \mathbb{Q} of $X^3 2$ (has complex roots $\sqrt[3]{2}$, $-\frac{1}{2} \pm i\frac{\sqrt{3}}{2}$).
 - So it is a normal extension of \mathbb{Q} .
 - The set $\{1, u, u^2, i\sqrt{3}, ui\sqrt{3}, u^2i\sqrt{3}\}$ is a basis for L over Q.
 - The polynomial $X^3 2$ is irreducible over \mathbb{Q}
 - Consider the two roots u and $ue^{2\pi i/3} = -\frac{1}{2}u + ui\frac{\sqrt{3}}{2}$.
 - There is a Q-isomorphism $\theta : \mathbb{Q}(u) \to \mathbb{Q}(ue^{2\pi i/3})$.
 - By the corollary, this extends to a Q-automorphism θ^* of L.

Example (Cont'd)

• Any Q-automorphism of L maps $i\sqrt{3}$ to $\pm i\sqrt{3}$. Let us choose $\theta^*(i\sqrt{3}) = i\sqrt{3}$. Then, recalling that $e^{2\pi i/3} = \frac{1}{2}(-1+i\sqrt{3})$, we deduce that:

$$\begin{array}{rcl} \theta^*(u^2) &=& u^2 e^{4\pi i/3} = \frac{1}{2}(-u^2 - u^2 i\sqrt{3});\\ \theta^*(ui\sqrt{3}) &=& (-\frac{1}{2}u + ui\frac{\sqrt{2}}{3})i\sqrt{3} = \frac{1}{2}(-ui\sqrt{3} - 3u);\\ \theta^*(u^2 i\sqrt{3}) &=& (-\frac{1}{2}u^2 - u^2 i\frac{\sqrt{2}}{3})i\sqrt{3} = \frac{1}{2}(-u^2 i\sqrt{3} + 3u^2). \end{array}$$

So the required extension is defined by

$$\begin{aligned} \theta^* & (a_1 + a_2 u + a_3 u^2 + a_4 i \sqrt{3} + a_5 u i \sqrt{3} + a_6 u^2 i \sqrt{3}) \\ &= a_1 + a_2 \frac{1}{2} (-u + u i \sqrt{3}) + a_3 \frac{1}{2} (-u^2 - u^2 i \sqrt{3}) \\ &+ a_4 i \sqrt{3} + a_5 \frac{1}{2} (-u i \sqrt{3} - 3u) + a_6 \frac{1}{2} (-u^2 i \sqrt{3} + 3u^2) \\ &= a_1 + (-\frac{1}{2}a_2 - \frac{3}{2}a_5)u + (-\frac{1}{2}a_3 + \frac{3}{2}a_6)u^2 + a_4 i \sqrt{3} \\ &+ (\frac{1}{2}a_2 - \frac{1}{2}a_5)u i \sqrt{3} + (-\frac{1}{2}a_3 - \frac{1}{2}a_6)u^2 i \sqrt{3}. \end{aligned}$$

Normal Closure

- If *L* is a finite extension of a field *K*, a field *N* containing *L* is said to be a **normal closure of** *L* **over** *K* if:
 - (i) It is a normal extension of K;
 - ii) If E is a proper subfield of N containing L, then E is not a normal extension of K.

Theorem

- Let L be a finite extension of a field K. Then:
 - (i) There exists a normal closure N of L over K;
- (ii) If L' is a finite extension over K, such that there is a K-isomorphism $\varphi: L \to L'$, and if N' is a normal closure of L' over K, then there is a K-isomorphism $\psi: N \to N'$, such that the diagram (in which ι is the identity map and unmarked maps are inclusions) commutes. $K \longrightarrow L' \longrightarrow N'$

Proof of Existence of Normal Closure

(i) Let $\{z_1, z_2, \dots, z_n\}$ be a basis for L over K.

Each z_i is algebraic over K.

Let m_i be the minimum polynomial of z_i .

Set $m = m_1 m_2 \cdots m_n$, and let N be a splitting field for m over K.

- By the proof of the previous theorem, N is a normal extension of K.
- N contains all the roots of each of the polynomials m_i.
 So it certainly contains z₁, z₂,..., z_n.
 Hence, N contains L.
- Let E be a subfield of N containing L. Suppose that E is normal.
 For each i = 1,..., n, the field E contains one root of m_i, namely z_i.
 By normality, E contains all the roots of all the m_i.
 So E = N.

Thus, N is a normal closure.

Proof of Uniqueness of Normal Closure

- (ii) Let N' be a normal closure of L' over K. Every element of L has a unique expression a₁z₁ + a₂z₂ + ··· + a_nz_n, where a₁, a₂,..., a_n ∈ K. Let u' = φ(u) be an arbitrary element of L'. There is a unique *n*-tuple (a₁, a₂,..., a_n) of elements of K, such that u' = φ(u) = φ(a₁z₁ + a₂z₂ + ··· + a_nz_n) = a₁φ(z₁) + a₂φ(z₂) + ··· + a_nφ(z_n).
 - It is easy to see that $\{\varphi(z_1), \varphi(z_2), \dots, \varphi(z_n)\}$ is a basis for L' over K. The isomorphism φ also ensures that, for $i = 1, 2, \dots, n$, the minimum polynomial of $\varphi(z_i)$ is $\widehat{\varphi}(m_i)$ (where $\widehat{\varphi}$ is the canonical extension of φ to the polynomial ring L[X]).

Now N' is, by assumption, a normal extension of L'.

So it must contain all the roots of all of the $\widehat{\varphi}(m_i)$.

So it must be a splitting field of $\widehat{\varphi}(m) = \widehat{\varphi}(m_1)\widehat{\varphi}(m_2)\cdots \widehat{\varphi}(m_n)$.

The existence of the isomorphism ψ now follows from a previous theorem.

George Voutsadakis (LSSU)

Alternative Expression for Normal Closure

Corollary

Let *L* be a finite extension of *K* and let *N* be a normal closure of *L*. Then $N = L_1 \vee L_2 \vee \cdots \vee L_k$, where L_1, L_2, \ldots, L_k are subfields containing *K*, each of them isomorphic to *L*.

• By the theorem just proved, we may suppose that:

• $L = K(z_1, z_2, \ldots, z_n);$

- m_1, m_2, \ldots, m_n are the minimum polynomials of z_1, z_2, \ldots, z_n ;
- N is a splitting field over K for the polynomial $m_1m_2\cdots m_n$.

Let $i \in \{1, 2, \dots, n\}$ and let z'_i be a root of m_i .

Then, for all *i* and z'_i , the field $K(z_1,...,z'_i,...,z_n)$ is isomorphic to *L*.

The field N is generated over K by the set $\{\alpha_1, \alpha_2, ..., \alpha_k\}$ of all the roots of all the polynomials $m_1, m_2, ..., m_n$.

So N is generated by the fields of type $K(z_1,...,z'_i,...,z_n)$.

Example

- We determine the normal closure of $K = \mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} . A basis for K over \mathbb{Q} is $\{1, u, u^2\}$, where $u = \sqrt[3]{2}$.
 - 1 has a minimum polynomial X 1;
 - *u* has minimum polynomial $X^3 2$;
 - u^2 has minimum polynomial $X^3 4$.

We must find the splitting field of $(X-1)(X^3-2)(X^3-4)$. Obviously the factor X-1 is irrelevant, since it already splits over \mathbb{Q} . We know that, over the field $\mathbb{Q}(u, i\sqrt{3})$,

$$X^{3}-2=(X-u)(X-ue^{2\pi i/3})(X-ue^{-2\pi i/3}).$$

Over the same field,

$$(X - u^{2})(X - u^{2}e^{2\pi i/3})(X - u^{2}e^{-2\pi i/3})$$

= $(X - u^{2})(X^{2} + u^{2}X + u^{4})$
= $X^{3} + u^{2}X^{2} + 2uX - u^{2}X^{2} - 2uX - 4$
= $X^{3} - 4$.

The conclusion is that the normal closure is $\mathbb{Q}(u, i\sqrt{3})$.

Normal Extensions and K-Automorphisms

Theorem

Let L be a finite normal extension of a field K, and let E be a subfield of L containing K. Then E is a normal extension of K if and only if every K-monomorphism of E into L is a K-automorphism of E.

• Suppose E is a normal extension. So E is its own normal closure. Let φ be a K-monomorphism from E into L, and let $z \in E$. Let $m = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$ be the minimum polynomial of *z* over *K*. Then $z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0 = 0$. Applying φ , $(\varphi(z))^n + a_{n-1}(\varphi(z))^{n-1} + \dots + a_1\varphi(z) + a_0 = 0$. Thus, $\varphi(z)$ is also a root of *m* in *L*. But z, an element of E, is a root of the irreducible polynomial m. Since *E* is normal, *m* splits completely over *E*. So $\varphi(z) \in E$. Thus, $\varphi(E)$ is a field contained in E.

Normal Extensions and *K*-Automorphisms (Converse)

• We showed that $\phi(E) \subseteq E$. Now,

 $[\varphi(E):K] = [\varphi(E):\varphi(K)] = [E:K] = [E:\varphi(E)][\varphi(E):K].$

So $\varphi(E) = E$. Thus, φ is a *K*-automorphism of *E*.

• Conversely, suppose that every *K*-monomorphism from *E* into *L* is a *K*-automorphism of *E*.

Let f be an irreducible polynomial in K[X] having a root z in E.

To establish that E is normal, we must show that f splits over E.

Certainly, since L is normal, f splits completely over L.

Let z' be another root of f in L. By a previous corollary, there is a K-automorphism ψ of L, such that $\psi(z) = z'$. Let ψ^* be the restriction of ψ to E. Then ψ^* is a K-monomorphism from E into L. By hypothesis, ψ^* is a K-automorphism of E. Thus, we get $z' = \psi(z) = \psi^*(z) \in E$. Thus, E is normal.

Extensions Over Intermediate Fields

Theorem

Let L be a normal extension of a field K, and let E be a subfield of L containing K. Then L is a normal extension of E.

Let f(X) be an irreducible polynomial in E[X]. Suppose f(X) has a root α in L. Let m_K(X) be the minimal polynomial of α over K. m_K(X) in K[X] has root α in L and L: K is normal. Therefore, m_K(X) splits over L. Since m_K(X) is in E[X] and m_K(α) = 0, f(X) | m_K(X). Since m_K(X) splits over L and f(X) | m_K(X), f(X) also splits over L. Hence, L: E is a normal extension.

Subsection 4

Separable Extensions

Separable Polynomials and Separable Extensions

 An irreducible polynomial f with coefficients in a field K is said to be separable over K if it has no repeated roots in a splitting field. That is, in a splitting field L of f,

$$f = k(X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n),$$

where the roots $\alpha_1, \alpha_2, ..., \alpha_n$ are all distinct.

- An arbitrary polynomial g in K[X] is called **separable over** K if all its irreducible factors are separable over K.
- An algebraic element in an extension *L* of *K* is called **separable over** *K* if its minimum polynomial is separable over *K*.
- An algebraic extension *L* of *K* is called **separable** if every *α* in *L* is separable over *K*.
- A field *K* is called **perfect** if every polynomial in *K*[*X*] is separable over *K*.
- Separability is the second property (after normality) that will ensure that the maps Φ and Γ are mutually inverse.

George Voutsadakis (LSSU)

Fields and Galois Theory

Separability of Polynomials

• We know that the irreducible polynomial *f* has repeated roots in its splitting field if and only if *f* and *Df* have a non-trivial common factor.

Theorem

Let f be an irreducible polynomial with coefficients in a field K.

- (i) If K has characteristic 0, then f is separable over K.
- (ii) If K has finite characteristic p, then f is separable unless it is of the form $b_0 + b_1 X^p + b_2 X^{2p} + \dots + b_m X^{mp}$.
 - Suppose f = a₀ + a₁X + ··· + a_nXⁿ, with ∂f = n ≥ 1, is not separable. Then f and Df have a common factor d of degree at least 1. Since f is irreducible, d must be a constant multiple (associate) of f. This divides Df only if Df = a₁ + 2a₂X + ··· + na_nXⁿ⁻¹ is the zero polynomial. Hence, a₁ = 2a₂ = ··· = na_n = 0.

Separability of Polynomials (Cont'd)

Suppose K has characteristic 0. The preceding equations give a₁ = a₂ = ··· = a_n = 0. Thus, f is the constant polynomial a₀. This contradicts the hypothesis. So f must be separable.
Suppose charK = p.

Then $ra_r = 0$ implies that $a_r = 0$ if and only if $p \nmid r$.

So the only non-zero terms in f are of the form $a_{kp}X^{kp}$, k = 0, 1, ...

Writing a_{kp} as b_k gives the required conclusion.

Corollary

Every field of characteristic 0 is perfect.

Irreducibility in Characteristic p

Theorem

Let K be a field with finite characteristic p, and let

$$f(X) = g(X^{p}) = b_0 + b_1 X^{p} + b_2 X^{2p} + \dots + b_m X^{mp}$$

Then the following statements are equivalent:

- (i) f is irreducible in K[X];
- ii) g is irreducible in K[X], and not all of the coefficients b_i are p-th powers of elements of K.

(i) \Rightarrow (ii): Suppose g has a non-trivial factorization g(X) = u(X)v(X). Then f factors $f(X) = g(X^p) = u(X^p)v(X^p)$. This is a contradiction. Hence g is irreducible.

Suppose $b_i = c_i^p$, for i = 1, 2, ..., m. Then, by a previous theorem,

$$f(X) = g(X^{p}) = c_{0}^{p} + (c_{1}X)^{p} + \dots + (c_{m}X^{m})^{p}$$

= $(c_{0} + c_{1}X + \dots + c_{m}X^{m})^{p}.$

Again a contradiction. Hence, not all of the b_i 's are p-th powers.

Irreducibility in Characteristic p (Converse Case 1)

(ii) \Rightarrow (i): Suppose that f is reducible. We must prove either that g is reducible, or that all the coefficients of f are p-th powers. We have two cases:

- 1. $f = u^r$, where r > 1 and u is irreducible;
- 2. f = vw, where $\partial v, \partial w > 0$, and v and w are coprime.

Case 1:

• Suppose first that p | r. Then $f = (u^{r/p})^p = h^p$ (say). Let $h = d_0 + d_1 X + \dots + d_s X^s$. Then, using the same theorem,

$$f = h^p = (d_0 + d_1 X + \dots + d_s X^s)^p = d_0^p + d_1^p X^p + \dots + d_s^p X^{sp}.$$

So all the coefficients of f are p-th powers.

• Suppose that $p \nmid r$. By the definition of f, Df = 0. Thus, $0 = Df = r(Du)u^{r-1}$. So Du = 0. Thus, we may write

$$u(X) = e_0 + e_1 X^p + \dots + e_t X^{tp} = v(X^p).$$

Now we get $g(X^p) = f(X) = (u(X))^r = (v(X^p))^r$. Thus, $g(X) = (v(X))^r$. So g is not irreducible.

Irreducibility in Characteristic p (Converse Case 2)

Case 2: f = vw, ∂v , $\partial w > 0$, v, w are coprime. K[X] is a Euclidean domain. So there exist s, t in K[X], such that sv + tw = 1. By hypothesis, Df = 0. So (Dv)w + v(Dw) = 0. We now get

$$0 = (Dv)tw + tv(Dw) = (Dv)(1 - sv) + tv(Dw).$$

So Dv = sv(Dv) - tv(Dw). Hence v | Dv. But $\partial(Dv) < \partial v$. Hence, Dv = 0. Similarly, Dw = 0. We may write

$$\begin{array}{lll} v(X) &=& d_0 + d_1 X^p + \dots + d_s X^{sp}, \\ w(X) &=& e_0 + e_1 X^p + \dots + e_t X^{tp}. \end{array}$$

Define $\overline{v}(X) = d_0 + d_1X + \dots + d_sX^s$ and $\overline{w}(X) = e_0 + e_1X + \dots + e_tX^t$. Then

$$g(X^p) = f(X) = v(X)w(X) = \overline{v}(X^p)\overline{w}(X^p).$$

So $g(X) = \overline{v}(X)\overline{w}(X)$. Thus g is not irreducible.

Finite Fields are Perfect

Theorem

Every finite field is perfect.

Let K be a finite field of characteristic p.
 The Frobenius mapping a → a^p is an automorphism of K.
 So every element of K is a p-th power.
 By a previous theorem, the only candidate for an inseparable irreducible polynomial is something of the form

$$f = b_0 + b_1 X^p + \dots + b_m X^{mp}.$$

But all the coefficients are *p*-th powers.

By the last theorem, even polynomials of this form are reducible. Hence K is perfect.

George Voutsadakis (LSSU)

An Example of an Imperfect Field

- An "imperfect" field has to be infinite and of finite characteristic.
- The most obvious example is K = Z_p(X), the field of all rational forms with coefficients in Z_p.
- For polynomials with coefficients in *K* we must use a different letter, such as *Y*, for the indeterminate.
- We look at the polynomial $f(Y) = Y^p X$ in K[Y].
- We show f(Y) is irreducible in K and inseparable.
 - Suppose f is reducible. By the theorem, -X is a p-th power in K. So there exists $\frac{u(X)}{v(X)}$ in K, such that $\left[\frac{u(X)}{v(X)}\right]^p = -X$. Thus, $-X[v(X)]^p = [u(X)]^p$. But $p \mid \partial([u(X)]^p)$ and $p \nmid \partial(X[v(X)]^p)$. This is a contradiction.
 - Let L be a splitting field for f over K. Let α be a root of f in L. Thus, α^p = X. The factorization of f in L is

$$f(Y) = Y^p - X = Y^p - \alpha^p = (Y - \alpha)^p.$$

The polynomial f is as inseparable as it is possible to be!

George Voutsadakis (LSSU)

Fields and Galois Theory

Separability of Intermediate Fields

Theorem

Let L be a finite separable extension of a field K, and let E be a subfield of L containing K. Then L is a separable extension of E.

• Let $\alpha \in L$, and let m_K, m_F be the minimum polynomials of α over K and E, respectively. Suppose that $m_{\mathcal{K}}$ is separable. Within E[X] we can use the division algorithm $m_K = qm_F + r$, $\partial r < \partial m_F$. We get $r(\alpha) = m_K(\alpha) - q(\alpha)m_F(\alpha) = 0 - 0 = 0$. This contradicts the minimality of m_F unless r = 0. Hence $m_K = qm_F$ in the ring E[X]. Suppose m_F is not separable. Then there is a non-constant polynomial g dividing m_F and Dm_F . But $Dm_K = qDm_F + m_FDq$. So g divides m_K and Dm_K . This can happen only if m_K has at least one repeated root in a splitting field. So we have a contradiction. Hence, m_F is separable.

Subsection 5

The Galois Correspondence

The Galois Extension

- A finite extension of a field K that is both normal and separable is called a **Galois extension**.
- We look again at $\mathbb{Q}(\sqrt{2}, i\sqrt{3})$ and $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$.
 - Q(√2, i√3) is normal, since it is the splitting field of (X²-2)(X²+3). Q(√2, i√3) is separable, since Q is perfect. The order of the Galois group is equal to the degree over Q of the extension.
 - Q(³√2, i√3) is normal, since it is the splitting field of X³ − 2. Q(³√2, i√3) is separable, since Q is perfect. The order of the Galois group is equal to the degree over Q of the extension.
- We will prove that, if L: K is a normal, separable extension of degree n, and G is the Galois group of L over K, then |G| = [L: K].

Monomorphisms into a Normal Closure

Theorem

Let L: K be a separable extension of finite degree n. Then there are precisely n distinct K-monomorphisms of L into a normal closure N of L over K.

- By induction on the degree [L : K].
- Suppose [L: K] = 1. Then L = K = N. Hence, the only K-monomorphism of K into N is the identity mapping l.
- Assume now that the result is established for all n≤k-1. Suppose that [L:K] = k > 1. Let z₁ ∈ L\K. Let m (with ∂m = r ≥ 2) be the minimum polynomial of z₁ over K. Thus, K ⊂ K(z₁) ⊆ L, and [K(z₁):K] = r. But m is irreducible and has one root z₁ in the normal extension N. So m splits completely over N. Since L is separable, the roots of m are all distinct. Suppose the roots are z₁, z₂,..., z_r. Let [L:K(z₁)] = s. Then 1≤s < k, and rs = k.

Monomorphisms into a Normal Closure (Cont'd)

• The field N is a normal closure of L over $K(z_1)$.

So, by the induction hypothesis, the number of $K(z_1)$ -monomorphisms from L into N is precisely s. Denote them by $\mu_1, \mu_2, \dots, \mu_s$. Let $\lambda_1, \lambda_2, \dots, \lambda_r$ be r distinct K-automorphisms of N, with $\lambda_i(z_1) = z_i$. Define maps $\varphi_{ii}: L \to N$, by

$$\varphi_{ij}(x) = \lambda_i(\mu_j(x)), \quad x \in L, \ i = 1, 2, ..., r, \ j = 1, 2, ..., s.$$

The maps are all *K*-monomorphisms.

Claim: The maps φ_{ij} are all distinct.

First, $\varphi_{ij}(z_1) = \lambda_i(\mu_j(z_1)) = \lambda_i(z_1) = z_i$. So $\varphi_{ij} = \varphi_{pq}$ implies i = p. Let $\varphi_{ij} = \varphi_{iq}$. Then, for all x in L, $\lambda_i(\mu_j(x)) = \lambda_i(\mu_q(x))$. But λ_i is one-one. So $\mu_j(x) = \mu_q(x)$, for all x in L. That is, j = q.

Thus, there are at least k distinct K-monomorphisms from L into N.

Monomorphisms into a Normal Closure (Conclusion)

Claim: There are no more than k distinct K-monomorphisms from L into N.

We show that every K-monomorphism ψ from L into N coincides with one of the maps φ_{ij} .

The map ψ must map z_1 to another root z_i of m in N.

Let
$$\chi: L \to N$$
 be defined by $\chi(x) = \lambda_i^{-1}(\psi(x))$.

This is certainly a K-monomorphism.

Moreover,
$$\chi(z_1) = \lambda_i^{-1}(\psi(z_1)) = \lambda_i^{-1}(z_i) = z_1.$$

So ψ is a $K(z_1)$ -monomorphism.

So it must coincide with one of $\mu_1, \mu_2, ..., \mu_s$, say μ_j . Thus, for all x in L, $\mu_j(x) = \lambda_i^{-1}(\psi(x))$. So $\psi(x) = \lambda_i(\mu_j(x)) = \varphi_{ij}(x)$. Thus, $\psi = \varphi_{ij}$.

Cardinality of the Galois Group of a Galois Extension

Corollary

Let L be a Galois extension of K, and let G be the Galois group of L over K. Then |G| = [L : K].

 Let L be a Galois extension of K. Then L is both normal as well as separable. Thus, L is its own normal closure. By the theorem, |G| = [L : K].

Galois Automorphisms and Roots

Lemma

Let *L* be a finite extension of *K*. Suppose $Gal(L:K) = \{\varphi_1 = \iota, \varphi_2, ..., \varphi_n\}$. Let *f* be an irreducible polynomial in *K*[*X*], having a root *z* in *L* and set $\varphi_i(z) = z_i$, with the $z_1, ..., z_r$ distinct. Then, for all $\varphi_i \in Gal(L:K)$,

$$\{z_1, z_2, \ldots, z_r\} = \{\varphi_j(z_1), \varphi_j(z_2), \ldots, \varphi_j(z_r)\}.$$

 We note that φ_j(z_i) is equal to (φ_jφ_i)(z). This is equal to φ_k(z) = z_k, for some k, since φ_jφ_i ∈ Gal(L:K). But φ_j is one-one. So it merely permutes the elements z₁, z₂,..., z_r.

Form of the Minimum Polynomial

Lemma

Let *L* be a finite extension of *K*. Suppose $Gal(L:K) = \{\varphi_1 = \iota, \varphi_2, ..., \varphi_n\}$. Let *f* be an irreducible polynomial in *K*[*X*], having a root *z* in *L* and set $\varphi_i(z) = z_i$, with the $z_1, ..., z_r$ distinct. The polynomial

$$g(X) = (X - z_1)(X - z_2) \cdots (X - z_r)$$

is the minimum polynomial of z over K.

• We must show that every polynomial in K[X] having z as a root is divisible by g. Suppose that

$$h = a_0 + a_1 X + \dots + a_m X^m,$$

with coefficients in K, is such that $a_0 + a_1z + \cdots + a_mz^m = 0$. Apply φ_j (which fixes all the a_i 's) to obtain

$$a_0 + a_1 z_j + \dots + a_m z_j^m = 0, \quad j = 1, 2, \dots, r.$$

So *h* is divisible by $X - z_1, X - z_2, ..., X - z_r$. Thus, it is divisible by *g*.

i / 86

Separability and Normality and the Map Φ

Theorem

Let L be a finite extension of K. Then $\Phi(Gal(L:K)) = K$ if and only if L is a separable normal extension of K.

- Let L be a separable and normal extension of K, with [L:K] = n. By the preceding corollary, |Gal(L:K)| = n. Denote Φ(Gal(L:K)) by K'.
 - We know that $K \subseteq K'$.
 - By a preceding theorem, we have that

 $[L:K'] = [L:\Phi(\mathsf{Gal}(L:K))] = |\mathsf{Gal}(L:K)| = n.$

Now $K \subseteq K'$ and [L:K] = [L:K']. It follows that K = K'.

Separability and Normality and the Map Φ (Converse)

• Suppose $K = K' = \Phi(Gal(L:K))$.

Let $Gal(L:K) = \{\varphi_1 = \iota, \varphi_2, \dots, \varphi_n\}.$

Let f be an irreducible polynomial in K[X] having a root z in L. We must show that:

- f splits completely over L;
- f has distinct roots in L.

The images of z under the K-automorphisms $\varphi_1, \varphi_2, \dots, \varphi_n$ need not all be distinct.

We have $\varphi_1(z) = \iota(z) = z$, and re-label the elements of Gal(L:K) so that $\varphi_2(z), \ldots, \varphi_r(z)$ are the remaining distinct images of z under the automorphisms in Gal(L:K). Write $\varphi_i(z) = z_i$.

Separability and Normality and the Map Φ (Converse)

Let g be the polynomial

$$(X-z_1)(X-z_2)\cdots(X-z_r) = X^r - e_1X^{r-1} + \cdots + (-1)^r e_r,$$

where the coefficients e_1, e_2, \ldots, e_r are the elementary symmetric functions $e_1 = \sum_{i=1}^r z_i, e_2 = \sum_{i \neq j} z_i z_j, \dots, e_r = z_1 z_2 \cdots z_r$. These coefficients are unchanged by any permutation of z_1, z_2, \ldots, z_r . By a previous lemma, they are unchanged by each φ_i in Gal(L: K). Thus, g is a polynomial with coefficients in $\Phi(Gal(L:K)) = K$. z is assumed to be a root in L of the irreducible polynomial f in K[X]. By the preceding lemma, f is divisible by g. By the irreducibility of f, f is a constant multiple of g. Since g splits completely over L, so does f. Moreover, all its roots are distinct. So L is a separable normal extension of K.

Galois Automorphisms and Intermediate Fields

Theorem

Let *L* be a Galois extension of a field *K*, and let *E* be a subfield of *L* containing *K*. If $\delta \in \text{Gal}(L:K)$, then $\Gamma(\delta(E)) = \delta \Gamma(E) \delta^{-1}$.

Write δ(E) = E', Γ(E) = H and Γ(E') = H'. We show H' = δHδ⁻¹. Let θ ∈ H. We shall show that δθδ⁻¹ ∈ H'. Let z' ∈ E' and z be the unique element of E, such that δ(z) = z'. Since θ ∈ Γ(E), θ fixes all the elements of E. Thus, we get

$$(\delta\theta\delta^{-1})(z') = (\delta\theta\delta^{-1}\delta)(z) = \delta(\theta(z)) = \delta(z) = z'.$$

So $\delta\theta\delta^{-1} \in H'$. Therefore, $\delta H\delta^{-1} \subseteq H'$. Let $\theta' \in H'$, and let $z \in E$. Then $\delta(z) \in E'$. So $\theta'(\delta(z)) = \delta(z)$. Hence, $(\delta^{-1}\theta'\delta)(z) = (\delta^{-1}\delta)(z) = z$. So $\delta^{-1}\theta'\delta \in \Gamma(E) = H$. We have shown that $\delta^{-1}H'\delta \subseteq H$. It follows immediately that $H' \subseteq \delta H\delta^{-1}$.

Subsection 6

The Fundamental Theorem

George Voutsadakis (LSSU)

Fields and Galois Theory

Fundamental Theorem of Galois Theory

Theorem (The Fundamental Theorem of Galois Theory)

Let L be a separable normal extension of a field K, with finite degree n.

- i) For all subfields E of L containing K, and for all subgroups H of the Galois group Gal(L: K), Φ(Γ(E)) = E, Γ(Φ(H)) = H.
 We also have |Γ(E)| = [L: E] and ^{|Gal(L:K)|}/_{|Γ(E)|} = [E: K].
- (ii) A subfield E is a normal extension of K if and only if Γ(E) is a normal subgroup of Gal(L: K). If E is a normal extension, then Gal(E: K) is isomorphic to the quotient group Gal(L: K)/Γ(E).
- (i) Let *E* be a subfield of *L* containing *K*. By previous theorems, *L* is both normal and separable over *E*. Hence, $|\Gamma(E)| = [L:E]$. So $[E:K] = \frac{[L:K]}{[L:E]} = \frac{|Gal(L:K)|}{|\Gamma(E)|}$. But $\Gamma(E) = Gal(L:E)$. So we get $\Phi(\Gamma(E)) = \Phi(Gal(L:E)) = E$.
Fundamental Theorem of Galois Theory (Cont'd)

Now let H be any subgroup of the finite group Gal(L:K). 0 We know that $H \subseteq \Gamma(\Phi(H))$. Denote $\Gamma(\Phi(H))$ by H'. We have $\Phi(H) = \Phi(\Gamma(\Phi(H))) = \Phi(H')$. We now obtain $|H| = [L : \Phi(H)] = [L : \Phi(H')] = |H'|$. This, and the finiteness of Gal(L, K), imply that H' = H. Suppose now that E is a normal extension. Let $\delta \in \text{Gal}(L:K)$ and δ' the restriction of δ to E. Then δ' is a monomorphism from E into L. So, by a previous theorem, δ' is a K-automorphism of E. By the last theorem, $\Gamma(E) = \Gamma(\delta(E)) = \delta \Gamma(E) \delta^{-1}$. Thus, $\Gamma(E)$ is a normal subgroup of Gal(L:K).

Fundamental Theorem of Galois Theory (Cont'd)

• Suppose that $\Gamma(E)$ is a normal subgroup of Gal(L:K).

Let δ_1 be a *K*-monomorphism from *E* into *L*.

By a previous corollary, this extends to a *K*-automorphism δ of *L*. The normality of $\Gamma(E)$ within Gal(L:K) means that $\delta\Gamma(E)\delta^{-1} = \Gamma(E)$.

Hence, by the preceding theorem, $\Gamma(\delta(E)) = \Gamma(E)$.

Since Γ is one-one, it follows that $\delta(E) = \delta_1(E) = E$.

Thus, δ_1 is a *K*-automorphism of *E*.

We have shown that every K-monomorphism of E into L is a K-automorphism of E.

By a preceding theorem, E is a normal extension of K.

Fundamental Theorem of Galois Theory (Conclusion)

• It remains to show that, if E is a normal extension, then $Gal(E:K) \cong Gal(L:K)/\Gamma(E)$.

So suppose that *E* is normal. As above, let δ' be the restriction to *E* of the *K*-automorphism δ of *L*. We have seen that $\delta' \in Gal(E:K)$.

Let Θ : Gal $(L: K) \rightarrow$ Gal(E: K) be defined by $\Theta(\delta) = \delta'$.

Then Θ is a group homomorphism. For all δ_1, δ_2 in Gal(*L*:*K*), with $\Theta(\delta_1) = \delta'_1$ and $\Theta(\delta_2) = \delta'_2$, and all *z* in *E*,

$$\begin{aligned} ([\Theta(\delta_1)][\Theta(\delta_2)])(z) &= (\delta'_1\delta'_2)(z) = \delta'_1(\delta_2(z)) \\ &= \delta_1(\delta_2(z)) = (\delta_1\delta_2)(z) \\ &= (\Theta(\delta_1\delta_2))(z). \end{aligned}$$

Hence $[\Theta(\delta_1)][\Theta(\delta_2)] = \Theta(\delta_1\delta_2)$. The kernel of Θ is the set of all δ in Gal(L:K), such that δ' is the identity map on E, i.e., $\Gamma(E)$. The Homomorphism Theorem yields $Gal(E:K) \cong Gal(L:K)/\Gamma(E)$.

The Join of Two Subfields

• Let U and V be subgroups of a group G.

- Then $U \cap V$ is a subgroup of G.
- In general, U ∪ V is not a subgroup, but there is always a smallest subgroup containing U and V, consisting of all products u₁v₁u₂v₂… u_nv_n (for all n) with u₁, u₂,... ∈ U, v₁, v₂,... ∈ V. We denote this by U ∨ V, and call it the join of U and V.
- Similarly, if *E* and *F* are subfields of a field *K*, then:
 - $E \cap F$ is also a subfield;
 - There is a subfield E v F = E(F) = F(E).
 It is called the join of E and F.

Γ , Meets and Joins

Theorem

Let *L* be a Galois extension of finite degree over *K*, with Galois group *G*, and let E_1, E_2 be subfields of *L* containing *K*. If $\Gamma(E_1) = H_1$ and $\Gamma(E_2) = H_2$, then $\Gamma(E_1 \cap E_2) = H_1 \vee H_2$, $\Gamma(E_1 \vee E_2) = H_1 \cap H_2$.

• $E_1 \subseteq E_1 \lor E_2$. Since the Galois correspondence is order-reversing, $\Gamma(E_1 \lor E_2) \subseteq \Gamma(E_1) = H_1$. Similarly, $\Gamma(E_1 \lor E_2) \subseteq \Gamma(E_2) = H_2$. Hence, $\Gamma(E_1 \lor E_2) \subseteq H_1 \cap H_2$.

Let α in $H_1 \cap H_2$. Since $\alpha \in H_1 = \Gamma(E_1)$, $\alpha(x) = x$, for all x in E_1 . Similarly, $\alpha(y) = y$, for all y in E_2 . By a previous theorem, the elements of $E_1 \lor E_2 = E_1(E_2)$ are quotients of finite linear combinations (with coefficients in E_1) of finite products of elements of E_2 . So $\alpha(z) = z$, for all z in $E_1 \lor E_2$. Thus, $\alpha \in \Gamma(E_1 \lor E_2)$.

So the first assertion of the theorem is proved.

Γ , Meets and Joins

• From $E_1 \cap E_2 \subseteq E_1$ it follows that $H_1 = \Gamma(E_1) \subseteq \Gamma(E_1 \cap E_2)$. Similarly, $H_2 \subseteq \Gamma(E_1 \cap E_2)$. So $H_1 \lor H_2 \subseteq \Gamma(E_1 \cap E_2)$.

Let x be an element of L not in $E_1 \cap E_2$. Say $x \notin E_1$.

We know
$$E_1 = \Phi(H_1)$$
.

So there exists γ in $H_1 \subseteq H_1 \lor H_2$, such that $\gamma(x) \neq x$.

Thus, $x \notin E_1 \cap E_2$ implies $x \notin \Phi(H_1 \lor H_2)$.

This shows that $\Phi(H_1 \lor H_2) \subseteq E_1 \cap E_2$.

Now, the Galois correspondence gives $\Gamma(E_1 \cap E_2) \subseteq H_1 \lor H_2$.

Splitting Fields of Extensions

Theorem

Let *K* be a field of characteristic zero, and let $f \in K[X]$. Let $L = K(\alpha_1, \alpha_2, ..., \alpha_n)$ be a splitting field for *f* over *K*. Let *M* be a field containing *K*, and let *N* be a splitting field of *f* over *M*. Then, up to isomorphism, *L* is a subfield of *N*, and $Gal(N : M) \cong Gal(L : M \cap L)$.

The field N is an extension of M, and hence of K, such that f splits completely in N[X]. Hence, by the definition of a splitting field, L is, up to isomorphism, a subfield of N. Write N as M(α₁, α₂,..., α_n). Let H = Gal(N : M), and let γ ∈ H. Then the restriction γ' of γ to L is a monomorphism from L into N. Since γ fixes the elements of M, it certainly fixes the elements of K. Hence, so does γ'. Also, γ maps each root α_i of f to another root of f. Thus, so does γ'. So γ' is a monomorphism of L into itself.

Splitting Fields of Extensions (Cont'd)

γ is an automorphism of N = M(α₁, α₂,..., α_n). So every root α_i of f is the image of some root of f under γ. Hence, also under γ'.

Thus γ' maps onto $L = K(\alpha_1, \alpha_2, ..., \alpha_n)$. So it is a *K*-automorphism. We have a mapping θ from *H* into G = Gal(L:K), given by $\theta(\gamma) = \gamma'$.

- θ is one-one. Let $\delta \in H$ such that $\gamma' = \delta'$. Then γ' and δ' act identically on the roots $\alpha_1, \alpha_2, ..., \alpha_n$. So $\gamma = \delta$.
- θ is a group homomorphism. The restriction of $\gamma\delta$ to L is $\gamma'\delta'$.

Thus, $H \cong \theta(H)$. We show $\theta(H)$ is the subgroup $\operatorname{Gal}(L: M \cap L)$ of G. Each γ in H fixes the elements of M. So each γ' fixes those of $M \cap L$. Thus $M \cap L \subseteq \Phi(\theta(H))$. By the Galois Theorem, $\theta(H) \subseteq \operatorname{Gal}(L: M \cap L)$. Let x be in L but not in $M \cap L$. Thus, $x \notin M$. But M is the field whose elements are fixed by H. So there is a β in H for which $\beta(x) \neq x$. Then $(\theta(\beta))(x) \neq x$. So $x \notin \Phi(\theta(H))$. Thus, $\operatorname{Gal}(L: M \cap L) \subseteq \theta(H)$. Now $\operatorname{Gal}(L: M \cap L) = \theta(H) \cong H = \operatorname{Gal}(N: M)$.

Subsection 7

An Example

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 🛛 81 / 80

Example

Consider the Galois group G = Gal(Q(v,i): Q), where v = ⁴√2. The field Q(v,i) is the splitting field of X⁴ - 2 over Q. If ξ ∈ G, then, ξ(i) = ±i and ξ(v) ∈ {v, iv, -v, -iv}. There are 8 elements in the group G:

$$\begin{split} \iota: v \mapsto v, i \mapsto i; & \lambda: v \mapsto v, i \mapsto -i; \\ \alpha: v \mapsto iv, i \mapsto i; & \mu: v \mapsto iv, i \mapsto -i; \\ \beta: v \mapsto -v, i \mapsto i; & v: v \mapsto -v, i \mapsto -i; \\ \gamma: v \mapsto -iv, i \mapsto i; & \rho: v \mapsto -iv, i \mapsto -i. \end{split}$$

The Multiplication Table of *G*

• The multiplication in G is given by:

	ι	α	β	γ	λ	μ	ν	ρ
ı	ι	α	β	γ	λ	μ	ν	ρ
α	α	β	γ	ι	μ	ν	ρ	λ
β	β	γ	l	α	ν	ρ	λ	μ
γ	γ	ι	α	β	ρ	λ	μ	ν
λ	λ	ρ	ν	μ	ι	γ	β	α
μ	μ	λ	ρ	ν	α	ι	γ	β
ν	ν	μ	λ	ρ	β	α	ı	γ
ρ	ρ	ν	μ	λ	γ	β	α	ι

Examples of the computation:

•
$$\alpha(\lambda(v)) = \alpha(v) = iv; \ \alpha(\lambda(i)) = \alpha(-i) = -i.$$
 So $\alpha\lambda = \mu$.
• $\lambda(\alpha(v)) = \lambda(iv) = \lambda(i)\lambda(v) = -iv; \ \lambda(\alpha(i)) = \lambda(i) = -i;$ So $\lambda\alpha = \rho$.

Subgroups of *G* and Corresponding Subfields

• The group $G = Gal(\mathbb{Q}(v, i) : \mathbb{Q})$ has three subgroups of order 4:

$$H_1 = \{\iota, \alpha, \beta, \gamma\}, \ H_2 = \{\iota, \beta, \lambda, \nu\}, \ H_3 = \{\iota, \beta, \mu, \rho\}.$$

It has five subgroups of order 2:

 $H_4=\{\iota,\beta\},\ H_5=\{\iota,\lambda\},\ H_6=\{\iota,\mu\},\ H_7=\{\iota,\nu\},\ H_8=\{\iota,\rho\}.$

We can compute the corresponding subfields of $\mathbb{Q}(v, i)$.

•
$$\Phi(H_1) = \mathbb{Q}(i);$$

• $\Phi(H_2) = \mathbb{Q}(v^2) = \mathbb{Q}(\sqrt{2});$
• $\Phi(H_3) = \mathbb{Q}(i\sqrt{2}).$

We also find the ones corresponding to the order 2 subgroups.

•
$$\Phi(H_4) = \mathbb{Q}(i, \sqrt{2});$$

• $\Phi(H_5) = \mathbb{Q}(v);$
• $\Phi(H_6) = \mathbb{Q}((1+i)v);$
• $\Phi(H_7) = \mathbb{Q}(iv);$

•
$$\Phi(H_8) = \mathbb{Q}((1-i)v).$$

attice of Subgroups and Lattice of Subfields.

• The lattice of subgroups of G is shown on the left

and the lattice of subfields E, such that $\mathbb{Q} \subseteq E \subseteq \mathbb{Q}(v, i)$, an upside down version of it, is shown on the right, with $F_i := \Phi(H_i)$.

• We look at normal subgroups and extensions.

Normal Subgroups	H_1	H_2	H ₃	H ₄
Normal Extensions	$\mathbb{Q}(i)$	$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(i\sqrt{2})$	$\mathbb{Q}(i,\sqrt{2})$
Polynomials Splitting	$X^{2} + 1$	$X^2 - 2$	$X^{2} + 2$	$(X^2+1)(X^2-2)$

Remarks

• Note that $Gal(\mathbb{Q}(v, i), \mathbb{Q})$ is not abelian, although both

 $\mathsf{Gal}(\mathbb{Q}(\nu, i), \mathbb{Q}(i)) = \{\iota, \alpha, \beta, \gamma\}$

and

$$\mathsf{Gal}(\mathbb{Q}(i),\mathbb{Q}) \cong \mathsf{Gal}(\mathbb{Q}(v,i),\mathbb{Q})/\mathsf{Gal}(\mathbb{Q}(v,i),\mathbb{Q}(i))$$

are abelian.

• The example is easier than most, since we can easily factorize $X^4 - 2$ over the complex field.

On the other hand, If we start with an irreducible polynomial such as

$$f = 2X^5 - 4X^4 + 8X^3 + 14X^2 + 7,$$

then it is by no means a trivial matter to determine the Galois group.