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Equations and Groups Solution by Radicals

Linear and Quadratic Equations

The roots of a polynomial equation

X n+an−1X
n−1+·· ·+a1X +a0 = 0

with rational coefficients are functions of those coefficients.

For the linear equation X +a0 = 0, the unique solution −a0 is a rational
function of the coefficients.

In the case of a quadratic equation X 2+a1X +a0 = 0

α=
1

2
(−a1+

p
∆), β=

1

2
(−a1−

p
∆),

where ∆= a2
1−4a0.

The number ∆ is called the discriminant of the equation.

The roots, in general, belong not to Q, but to the extension Q(
p
∆).

The sum and product of the roots are α+β=−a1 and αβ= a0.
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Equations and Groups Solution by Radicals

The Cubic Equation

Consider the cubic equation X 3+a2X
2+a1X +a0 = 0.

If we make the substitution X =Y − 1
3
a2, we obtain

Y 3−a2Y
2+

1

3
a2
2Y −

1

27
a3
2+a2Y

2−
2

3
a2
2Y +

1

9
a3
2+a1Y −

1

3
a1a2+a0 = 0.

We can rewrite as Y 3+aY +b = 0. We may thus confine our attention
to cubic equations in which there is no quadratic term.

To avoid some fractions we write the standard cubic equation as

X 3+3aX +b = 0.

Let p be a root. Find q and r , such that q+ r = p and qr =−a.
These are the roots of the quadratic equation X 2−pX −a= 0 (and will
in general be complex numbers). Then

(q+ r)3 = q3+ r3+3(q2r +qr2)= q3+ r3+3pqr

0= p3+3ap+b = q3+ r3+3p(a+qr)+b = q3+ r3+b.
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Equations and Groups Solution by Radicals

The Cubic Equation (Cont’d)

From q3+ r3 =−b and q3r3 =−a3, we deduce that q3 and r3 are the
roots of the equation Z 2+bZ −a3 = 0. Hence we may write

q3 =
1

2
(−b+

p
∆), r3 =

1

2
(−b−

p
∆), ∆= b2+4a3

.

We find q and r , and hence p, by taking cube roots:

Let q1, r1 be cube roots (respectively) of q3, r3, such that q1r1 =−a.
If ω= e2πi/3 and ω2 = e4πi/3 are the complex cube roots of unity, we
also have (q1ω)(r1ω

2)=−a and (q1ω
2)(r1ω)=−a.

Hence we have three possible values for p:

q1+ r1, q1ω+ r1ω
2

, q1ω
2+ r1ω,

where

q1 =
[

1

2
(−b+

√

b2+4a3)

]1/3

, r1 =
[

1

2
(−b−

√

b2+4a3)

]1/3

.
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Equations and Groups Solution by Radicals

Example

Find the three roots of X 3+6X +2= 0.

Here a= b = 2.

q3 and r3 satisfy q3+ r3 =−b =−2 and q3r3 =−a3 =−8.

So they are solutions of Z 2+2Z −8= 0.

We find q3 =−4 and r3 = 2.

So q = 21/3 and r =−41/3 =−22/3 (with qr =−a=−2).

Now the three solutions of the cubic are

q+ r qω+ rω2
, qω2+ rω.

That example, in which the discriminant of Z 2+2Z −8= 0 has a
rational square root, is perhaps a little contrived, for the discriminant
may well be a complex number.
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Equations and Groups Solution by Radicals

Example

Find the three roots of X 3−6X +2= 0.

Here a=−2 and b = 2.

q3 and r3 satisfy q3+ r3 =−b =−2 and q3r3 =−a3 = 8.

So they are solutions of Z 2+2Z +8= 0.

We find q3 =−1−
p

7i =
p

8e−iθ and r3 =−1+
p

7i =
p

8e iθ .

Here θ is such that cosθ =− 1p
8
, sinθ =

p
7p
8
.

So q =
p

2e−iθ/3 and r =
p

2e iθ/3 (with qr =−a= 2).

Now the three solutions of the cubic are

q+ r = 2
p

2cos

(

θ

3

)

qω+ rω2
, qω2+ rω.
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Equations and Groups Solution by Radicals

Solution By Radicals

The solution of the cubic is what is called a solution by radicals.

This means that the function

(a,b) 7→
[

1

2
(−b+

√

b2+4a3)

]1/3

+
[

1

2
(−b−

√

b2+4a3)

]1/3

from the coefficients to the solution involves, in addition to rational
operations, only the taking of square roots and cube roots.
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Equations and Groups Solution by Radicals

The Quartic Equation

Consider, next the quartic equation

X 4+a3X
3+a2X

2+a1X +a0 = 0.

Again substituting X =Y − a3
4

means that we may consider only
equations X 4+aX 2+bX +c = 0 in which the cubic term is absent.

Suppose that, over some extension of Q, the polynomial factorizes
into quadratic factors (which, due to the absence of X 3, should be)

X 4+aX 2+bX +c = (X 2+pX +q)(X 2−pX + r).

Multiplying out, we get

X 4+aX 2+bX +c =X 4+ (q+ r −p2)X 2+ (pr −pq)X +qr .

Equating coefficients, we get

q+ r −p2 = a, p(r −q)= b, qr = c .
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Equations and Groups Solution by Radicals

The Quartic Equation (Cont’d)

We got
q+ r −p2 = a, p(r −q)= b, qr = c .

Now we have
{

q+ r −p2 = a

pr −pq = b

}

⇒
{

pq+pr = p3+ap

pr −pq = b

}

⇒
{

2pr = p3+ap+b

2pq = p3+ap−b

}

4p2c = 4p2qr = (2pr)(2pq)= (p3+ap+b)(p3+ap−b)
= p6+2ap4+a2p2−b2

p6+2ap4+ (a2−4c)p2−b2 = 0.

This is a cubic in p2.

So it can be solved by taking square and cube roots.

Then p can be found by taking square roots.
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Equations and Groups Solution by Radicals

The Quartic Equation (Conclusion)

We determine p2 (and hence p) using the procedure of a cubic on
p6+2ap4+ (a2−4c)p2−b2 = 0.

Then, we determine q and r , using

q+ r −p2 = a, p(r −q)= b, qr = c .

Finally we solve the two quadratic equations

X 2+pX +q = 0 and X 2−pX + r = 0.

Again this is a solution by radicals:

The determination of p involves square and cube roots;
The finding of q and r involves only rational operations;
The solving of the quadratic equations involves square roots.
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Equations and Groups Solution by Radicals

Radical Extensions

All fields will be of characteristic 0.

Let K be a field.

A field L containing K is called an extension by radicals, or a
radical extension, if there is a sequence

K = L0, L1, . . . , Lm = L,

with the property that, for all j = 0,1, . . . ,m−1,

Lj+1 = Lj (αj ), where αj is a root of an irreducible polynomial in Lj [X ]
of the form X nj −cj .

This formalizes the notion that the elements of L can be obtained
from those of K by means of rational operations together with the
taking of nj -th roots (j = 1,2, . . . ,m).
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Equations and Groups Solution by Radicals

Solvability by Radicals

Example: If K =Q, the element

(3+
p

2)1/7+5
5
p

2(8− 3
p

4)1/11

lies in a field L5, where:

L1 =Q(α0), α2
0 = 2 ∈Q,

L2 = L1(α1), α7
1 = 3+

p
2 ∈ L1,

L3 = L2(α2), α3
2 = 4 ∈ L2,

L4 = L3(α3), α11
3 = 8− 3

p
4∈ L3,

L5 = L4(α4), α5
4 = 2 ∈ L4.

A polynomial f in K [X ] is said to be soluble by radicals if there is a
splitting field for f contained in a radical extension of K .

We saw that all linear, quadratic, cubic and quartic equations are
soluble by radicals.
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Equations and Groups Solution by Radicals

Normal Closure of Radical Extensions

Theorem

Let L be a radical extension of K , and let M be a normal closure of L.
Then M is also a radical extension of K .

By a preceding theorem, M = L1∨L2∨·· ·∨Lk , where the extensions
L1,L2, . . . ,Lk are all isomorphic to L, and so all radical.

It suffices to show the join of two radical extensions is radical.

Let M1 =K (α1,α2, . . . ,αm), M2 =K (β1,β2, . . . ,βn), where:

α
ki
i
∈K (α1,α2, . . . ,αi−1), i = 1, . . . ,m;

β
ℓj
j
∈K (β1,β2, . . . ,βj−1), j = 1, . . . ,n.

Then M1∨M2 =K (α1,α2, . . . ,αm,β1,β2, . . . ,βn), with:

α
ki
i
∈K (α1,α2, . . . ,αi−1), i = 1, . . . ,m;

β
ℓj
j
∈K (α1,α2, . . . ,αm,β1,β2, . . . ,βj−1), j = 1, . . . ,n.

Thus, M1∨M2 is a radical extension.
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Equations and Groups Cyclotomic Polynomials

Subsection 2

Cyclotomic Polynomials
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Equations and Groups Cyclotomic Polynomials

The Roots of the Polynomial Xm−1

Consider the polynomial f =Xm−1.

Since we are working in fields K of characteristic 0, the splitting field
L of f over K is both normal and separable.

The set R consisting of the roots in L of Xm−1 is easily seen to be an
(abelian) multiplicative subgroup of L.

Lemma

(R , ·) is a cyclic group.

Denote the exponent of R by e. Then ae = 1, for all a in R .

Now X e −1 has at most e roots. So we must have |R | ≤ e.
However, the exponent of a group can never exceed the order of the
group. So e ≤ |R |.

Thus, e = |R | =m. So R is cyclic.
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Equations and Groups Cyclotomic Polynomials

Primitive Roots of Unity and Cyclotomic Polynomials

A primitive m-th root of unity ω is a generator of the cyclic group
R of the roots of Xm−1.

Then R = {1,ω,ω2, . . . ,ωm−1}.

ωj is a primitive m-th root of unity if and only if j and m are coprime.

Let Pm be the set of primitive m-th roots of unity.

The cyclotomic polynomial Φm is defined by

Φm =
∏

ǫ∈Pm

(X −ǫ).
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Equations and Groups Cyclotomic Polynomials

Example

Let K be a field of characteristic 0.

Let L⊆C be the splitting field for X p−1, where p is prime.

Then, except for 1, all of the roots of X p −1 are primitive.

So

Φp =
X p −1

X −1
=X p +X p−1+·· ·+X +1.
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Equations and Groups Cyclotomic Polynomials

Example

Let K =Q and let L⊆C be the splitting field of X 12−1.

One of the primitive 12-th roots of unity is ω= eπi/6.

The elements of R are

1,ω,ω2 = eπi/3,ω3 = i ,ω4 = e2πi/3,ω5 = e5πi/6,ω6 =−1,

ω7 = e7πi/6,ω8 = e4πi/3,ω9 =−i ,ω10 = e5πi/3 ,ω11 = e11πi/6.

The group R contains the set Pd of primitive d -th roots of unity, for
each of the divisors d = 12,6,4,3,2,1 of 12. Let Φd =

∏

ǫ∈Pd
(X −ǫ).

The set P12 is {ω,ω5,ω7 =ω5
,ω11 =ω}. So we have

Φ12 = (X −eπi/6)(X −e−πi/6)(X −e5πi/6)(X −e−5πi/6)
= (X 2−2cos π

6
+1)(X 2−2cos 5π

6
+1)

= (X 2−
p

3X +1)(X 2+
p

3X +1)
= X 4−X 2+1.

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 20 / 48



Equations and Groups Cyclotomic Polynomials

Example (Cont’d)

The set P6 is {ω2,ω10 =ω2
}, and Φ6 =X 2−X +1.

The set P4 is {i ,−i }, and Φ4 =X 2+1.

The set P3 is {ω4,ω8 =ω4
}, and Φ3 =X 2+X +1.

The set P2 is {ω6}, and Φ2 =X +1.

Finally, P1 = {1}, and Φ1 =X −1.

Observe that, for d | 12, Φd has rational coefficients.

Moreover

X 12−1=
∏

d |12
Φd

= (X −1)(X +1)(X 2 +X +1)(X 2+1)(X 2 −X +1)(X 4 −X 2+1).
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Equations and Groups Cyclotomic Polynomials

Generalizing

Let K be a field of characteristic 0.

Let m≥ 1.

Let L a splitting field over K for Xm−1.

Then
Xm−1=

∏

d |m
Φd ,

where we are including both 1 and m among the divisors of m.
Note that, for 0≤ k <m, X −ωk is a factor of Φd , where

(k ,d)= 1;
d = m

GCD(k ,m)
.

Therefore, we have

Xm−1 =
∏

0≤k<m
(X −ωk)=

∏

d= m
GCD(k ,m)

∏

(k ,d)=1

(X −ωk)

=
∏

d |m

∏

(k ,d)=1

(X −ωk )=
∏

d |m
Φd .
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Equations and Groups Cyclotomic Polynomials

The Coefficient Lemma

Lemma

Let K ,L be fields, with K ⊆ L. Let f ,g be polynomials in L[X ], such that
f , fg ∈K [X ]. Then g ∈K [X ].

Let f = a0+a1X +·· ·+amX
m, g = b0+b1X +·· ·+bnX

n, where
a0,a1, . . . ,am ∈K , b0,b1, . . . ,bn ∈ L, am 6= 0 and bn 6= 0. Suppose that

fg = c0+c1X +·· ·+cm+nX
m+n ∈K [X ].

Then bn = cm+n
am

∈K . Suppose inductively that bj ∈K , for all j > r .
Then

cm+r = ambr +am−1br+1+·· ·+am−n+rbn,

where ai = 0 if i < 0. Hence,

br =
cm+r −am−1br+1−·· ·−am−n+rbn

am
∈K .

It follows that bj ∈K , for all j . So g ∈K [X ].
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Equations and Groups Cyclotomic Polynomials

Home of the Cyclotomic Polynomials

Theorem

Let K be a field of characteristic 0, containing m-th roots of unity for each
m, and let K0(∼=Q) be the prime subfield of K . Then, for every divisor d of
m (including m itself), the cyclotomic polynomial Φd lies in K0[X ].

It is clear that Φ1 =X −1 belongs to K0[X ].

Let d(6= 1) be a divisor of m, and suppose inductively that Φr ∈K0[X ],
for all proper divisors r of d .

Then, if ∆d is the set of all divisors of d ,

X d −1=
(

∏

r∈∆d\{d}

Φr

)

Φd .

It follows from the lemma that Φd ∈K0[X ].
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Equations and Groups Cyclotomic Polynomials

Example

We consider Φ14, and show that cos π
7
+cos 3π

7
+cos 5π

7
= 1

2
.

Let ω= eπi/7. Then the primitive roots of X 14−1 are
ω,ω3,ω5,ω9,ω11,ω13. So ∂(Φ14)= 6. We have

X 14−1 = (X 7−1)(X 7 +1)
= (X −1)(X 6+X 5+X 4+X 3+X 2+X +1)

· (X +1)(X 6 −X 5+X 4−X 3+X 2−X +1).

By the preceding example, the second factor is Φ7. Hence, we get

Φ14 =X 6−X 5+X 4−X 3+X 2−X +1.

The primitive roots are conjugate in pairs. So Φ14 factorizes in R[X ]
as

(

X 2−2X cos
π

7
+1

)

(

X 2−2X cos
3π

7
+1

)(

X 2−2X cos
5π

7
+1

)

.

Comparing the coefficients of X , gives the required identity.
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Equations and Groups Cyclotomic Polynomials

Irreducibility of the Cyclotomic Polynomial

Theorem

For all m≥ 1, the cyclotomic polynomial Φm is irreducible over Q.

Suppose, for a contradiction, that Φm is not irreducible over Q. We
know that Φm ∈Z[X ]. By Gauss’s Lemma, we may suppose that
Φm = fg , where f ,g ∈Z[X ] and f is an irreducible monic polynomial
such that 1≤ ∂f < ∂Φm.

Let K be a splitting field for Φm over Q. At least one of the primitive
m-th roots of unity ǫ in K must be a root of f . Now f is monic and
irreducible and f (ǫ)= 0. So f is the minimum polynomial of ǫ over Q.

If p is a prime, p ∤m, then ǫp is also a primitive m-th root of unity.

We show that ǫp is a root of f .
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Equations and Groups Cyclotomic Polynomials

ǫp is a Root of f

Suppose not. Then g(ǫp)= 0. Define h(X ) ∈Z[X ] by h(X )= g(X p).
Then h(ǫ)= g(ǫp)= 0. But f is the minimum polynomial of ǫ over Q.
So f | h, i.e., h= fu, where u ∈Z[X ].

Consider the map n 7→ n from Z onto Zp, where n is the residue class
{m ∈Z :m≡ n (mod p)}. This map extends to a map v 7→ v † from
Z[X ] onto Zp[X ], in the obvious way:

(a0+a1X +·· ·+anX
n)† = a0+a1X +·· ·+anX

n
.

It is clear that f †u† = h†. Note in Zp[X ], (ax +by)p = apxp +bpyp =
axp +byp . So [h(X )]† = [g(X p)]† = [(g(X ))†]p . Thus, f †u† = (g†)p.

Let q† be an arbitrarily chosen irreducible factor of f † in Zp[X ]. Then
q† | (g†)p. So q† | g†. Thus, q† divides both f † and g†. Hence,
(q†)2 |Φ†

m. It follows that Φ
†
m and hence also Xm−1, has a repeated

root in a splitting field over Zp. By a previous theorem, this cannot
happen, since p does not divide m. Thus, ǫp is a root of f .
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Equations and Groups Cyclotomic Polynomials

Irreducibility of the Cyclotomic Polynomial (Conclusion)

Let ζ be a root of f and η a root of g .

Then both ζ and η are primitive m-th roots of unity.

So η= ζr , for some r , such that r and m are coprime.

Let r = p1p2 · · ·pk , where p1,p2, . . . ,pk are (not necessarily distinct)
primes not dividing m.

By what was proven in the preceding slide,

ζp1 ,(ζp1)p2 = ζp1p2 , . . . ,ζp1p2···pk = ζr

are all roots of f .

Thus η is a root of f as well as g .

It follows that η is a repeated root of Φm.

So η is also a repeated root of Xm−1.

This contradiction proves that Φm is irreducible.
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Equations and Groups Cyclotomic Polynomials

The Galois group of Xm−1

Theorem

Let K be a field of characteristic zero, and let L be a splitting field over K
of the polynomial Xm−1. Then Gal(L :K ) is isomorphic to Rm, the
multiplicative group of residue classes r (mod m), such that (r ,m)= 1.

Let ω be a primitive m-th root of unity in L. Let σ ∈Gal(L :K ).

Then L=K (ω). We know that σ(ω) must also be a primitive m-th
root of unity. So σ∈Gal(L :K ) if and only if σ(ω)=ωrσ , where
(rσ,m)= 1. Now

ωr =ωs if and only if r ≡ s (mod m).

So we have a one-to-one mapping

σ 7→ rσ

from Gal(L :K ) onto Rm, the multiplicative group of residue classes r
mod m, such that (r ,m)= 1.

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 29 / 48



Equations and Groups Cyclotomic Polynomials

The Galois group of Xm−1 (Cont’d)

We defined
Gal(L :K )→Rm; σ 7→ rσ.

Let σ,τ∈Gal(L :K ). Then

(στ)(ω)=σ(ωrτ)= (ωrτ)rσ =ωrσrτ = (ωrσ)rτ = (τσ)(ω).

So Gal(L :K ) is abelian.

The other consequence is that the map σ 7→ rσ is a homomorphism,
since στ maps to rσrτ.

It is clear that the map is one-one.

The irreducibility of Xm−1 gives that the map is also onto.
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Equations and Groups Cyclotomic Polynomials

Consequence and Example

Corollary

Let K be a field of characteristic zero, and let L be a splitting field over K
of the polynomial X p −1, where p is prime. Then Gal(L :K ) is cyclic.

Suppose the exponent is prime. Then, the Galois group is isomorphic
to the multiplicative group Z∗

p of non-zero integers modulo p. We
know this is a cyclic group.

Example: The splitting field in C of X 8−1
contains the primitive root ω= eπi/4.
The Galois group has four elements

ω 7→ω, ω 7→ω3
, ω 7→ω5

, ω 7→ω7
.

It is isomorphic to {1,3,5,7}, with multiplica-
tion table shown on the right.

× 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 31 / 48



Equations and Groups Cyclic Extensions

Subsection 3

Cyclic Extensions

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 32 / 48



Equations and Groups Cyclic Extensions

Cyclic Extensions

Let K be a field of characteristic 0.

Let L :K be a field extension.

We say that L is a cyclic extension of K if:

It is normal (and separable);
Gal(L :K ) is a cyclic group.

Example: By the preceding theorem, if p is prime, the splitting field
over K of X p −1 is a cyclic extension of K .
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Equations and Groups Cyclic Extensions

Norm and Trace

Let K be a field of characteristic 0.

Let L be an extension of K of finite degree n.

Let N be a normal closure of L.

By a previous theorem, there are exactly n distinct K -monomorphisms
τ1,τ2, . . . ,τn from L into N.

For each element x of L, we define the norm NL/K (x) of x by

NL/K (x)=
n

∏

i=1

τi(x).

For each element x of L, we define the trace TrL/K (x) of x by

TrL/K (x)=
n
∑

i=1

τi (x).
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Equations and Groups Cyclic Extensions

Properties of Norm and Trace

Theorem

The mapping NL/K is a group homomorphism from (L∗, ·) into (K∗, ·). The
mapping TrL/K is a non-zero group homomorphism from (L,+) into (K ,+).

It is clear that, for all x ,y in L∗,

NL/K (xy) =
∏n

i=1
τi (xy)

=
∏n

i=1
τi (x)τi (y)

= (
∏n

i=1
τi(x))(

∏n
i=1

τi (y))

= NL/K (x)NL/K (y).

Similarly, TrL/K (x +y)=TrL/K (x)+TrL/K (y).

Thus, NL/K and TrL/K are homomorphisms into (L∗, ·) and (L,+).
It remains to show that the images are contained in K .
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Properties of Norm and Trace (Cont’d)

Let τ be a K -automorphism of N. Then ττ1, ττ2, . . . , ττn are n

distinct K -monomorphisms from L into N. So the list is simply the list
τ1,τ2, . . . ,τn in a different order. Hence, for all x in L and all τ in
Gal(N :K ),

τ(NL/K (x))= τ

(

n
∏

i=1

τi(x)

)

=
n

∏

i=1

τ(τi (x))=
n
∏

i=1

τi (x)=NL/K (x).

Similarly, τ(TrL/K (x))=TrL/K (x).

Hence, both NL/K (x) and TrL/K (x) lie in Φ(Gal(N :K ))=K .

It remains to show that TrL/K is not the zero homomorphism.

Suppose, for all x in L, TrL/K (x)= τ1(x)+τ2(x)+·· ·+τn(x)= 0.

It follows that the set {τ1,τ2, . . . ,τn} is linearly dependent over L.

This contradicts a preceding result.
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Hilbert’s Theorem

Theorem (Hilbert)

Let L be a cyclic extension of a field K , and let τ be a generator of the
(cyclic) group Gal(L :K ). Suppose x ∈ L.

NL/K (x)= 1 if and only if, there exists y in L, such that x = y

τ(y )
.

TrL/K (x)= 0 if and only if, there exists z in L, such that x = z −τ(z).

Let [L :K ]= n. Then τn = ι. Suppose that x = y

τ(y )
. Then

NL/K (x)= ι(x)τ(x) · · ·τn−1(x)=
y

τ(y)

τ(y)

τ2(y)

τ2(y)

τ3(y)
· · ·

τn−1(y)

τn(y)
= 1.

Conversely, suppose NL/K (x)= 1. Then x−1 = τ(x)τ2(x) · · ·τn−1(x).
The set {ι,τ,τ2, . . . ,τn−1} is linearly independent over L. So the map

ι+xτ+xτ(x)τ2 +·· ·+xτ(x)τ2(x) · · ·τn−2(x)τn−1

is non-zero.
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Hilbert’s Theorem (Cont’d)

Thus, for some t in L, the element

y = t +xτ(t)+xτ(x)τ2(t)+·· ·+xτ(x)τ2(x) · · ·τn−2(x)τn−1(t) 6= 0.

Applying the automorphism τ gives

τ(y) = τ(t)+τ(x)τ2(t)+τ(x)τ2(x)τ3(t)+·· ·
· · ·+τ(x)τ2(x)τ3(x) · · ·τn−1(x)τn(t).

Now note that

x−1y = x−1t+τ(t)+τ(x)τ2(t)+τ(x)τ2(x)τ3(t)+·· ·
· · ·+τ(x)τ2(x) · · ·τn−2(x)τn−1(t)

= τ(t)+τ(x)τ2(t)+τ(x)τ2(x)τ3(t)+·· ·
· · ·+τ(x)τ2(x) · · ·τn−2(x)τn−1(t)+x−1τn(t).

Comparing the two equations, we get

τ(y)= τ(x)τ2(x) · · ·τn−1(x)τn(t)+x−1y −x−1τn(t)= x−1y .

The proof concerning TrL/K is similar.
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The Intermediate Field K (ω)

Theorem

Let f =Xm−a ∈K [X ], where K is a field of characteristic 0. Let L be a
splitting field of f over K .

L contains an element ω, a primitive m-th root of unity.

The group Gal(L :K (ω)) is cyclic, with order dividing m.

|Gal(L :K (ω))| =m if and only if f is irreducible over K (ω).

Let K be a field of characteristic 0 and let Xm−a ∈K [X ].

Let L be a splitting field for f =Xm−a over K .

Then, f has distinct roots α1,α2, . . . ,αm in L.

So L contains the distinct roots α1α
−1
1 ,α2α

−1
1 , . . . ,αmα−1

1 of the
polynomial Xm−1.

In particular, it contains a primitive m-th root of unity ω.
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The Intermediate Field K (ω) (Cont’d)

Suppose, without loss of generality, that α2α
−1
1 =ω is a primitive m-th

root of unity.

Then, in some order, the elements

α1α
−1
1 ,α2α

−1
1 , . . . ,αmα−1

1

are 1,ω, . . . ,ωm−1.

So we can re-label the roots of Xm−a in L as

α1,ωα1, . . . ,ωm−1α1.

Hence, over L,

Xm−a= (X −α1)(X −ωα1) · · ·(X −ωm−1α1).

We have that K ⊆K (ω)⊆ L.

Moreover, the intermediate field K (ω) contains all the roots of unity.
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The Intermediate Field K (ω) (Cont’d)

We have seen that, if α is a root of f , then, over L,

f = (x −α)(x −ωα) · · ·(x −ωm−1α),

where ω is a primitive m-th root of unity. Thus L=K (ω,α).

An automorphism σ in Gal(L :K (ω)) is determined by its action on α.

The image must be a root of f . So σ(α)=ωrσα, for some rσ in
{0,1, . . . ,m−1}. For τ another element of Gal(L :K (ω)),

(στ)(α)=σ(ωrτα)=ωrτωrσα=ωrτ+rσα.

So σ 7→ rσ is a homomorphism onto the additive group Zm.

rσ = 0 if and only if m divides rσ if and only if σ(α)=α.

The kernel of σ 7→ rσ is the identity in Gal(L :K (ω)).

So Gal(L :K (ω)) is isomorphic to a subgroup of the additive group
Zm.

We may now deduce that the group is cyclic.

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 41 / 48



Equations and Groups Cyclic Extensions

The Intermediate Field K (ω) (Conclusion)

Suppose that f =Xm−a is irreducible over K (ω). Then,

|Gal(L :K (ω))| = [L :K (ω)]= ∂f =m.

So Gal(L :K (ω))∼=Zm.

Conversely, suppose f is not irreducible over K (ω).

Then it has a monic irreducible proper factor g , with ∂g <m.

Let ρ be a root of g in L. Then

Xm−a= (X −ρ)(X −ωρ) · · ·(X −ωm−1ρ).

So L=K (ω,ρ) is a splitting field for f over K (ω). Hence,

|Gal(L :K (ω))| = [L :K (ω)]= ∂g <m.

So Gal(L :K (ω)) is isomorphic to a proper subgroup of Zm.

In the notation of the theorem, although the Galois groups
Gal(K (ω) :K ) and Gal(L :K (ω)) are both abelian, the group
Gal(L :K ) will usually be non-abelian.
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Cyclic Extension of Degree m

Theorem

Let K be a field of characteristic zero, let m be a positive integer.
Suppose that Xm−1 splits completely over K .
Let L be a cyclic extension of K such that [L :K ]=m.

There exists a in K , such that Xm−a is irreducible over K and L is a
splitting field for Xm−a.

Moreover, L is generated over K by a single root of Xm−a.

Let τ be a generator of the cyclic group G =Gal(L :K ).

Let ω be a primitive m-th root of unity in K .

Every m-th root of unity is left fixed by every automorphism in G .

Hence, NL/K (ω)=ωm = 1. By Hilbert’s Theorem, there exists z in L,

such that ω= z
τ(z)

. Hence, τ(z)=ω−1z . So τk(z)=ω−kz 6= z ,

k = 1,2, . . . ,m−1. Thus, Γ[K (z)]= {ι}. Now L, being cyclic, is normal.
By the Fundamental Theorem, K (z)=Φ(Γ[K (z)])=Φ({ι})= L.
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Cyclic Extension of Degree m (Cont’d)

By τ(z)=ω−1z , we get

τ(zm)= [τ(z)]m =ω−mzm = zm.

It immediately follows that τk(zm)= zm, for k = 0,1, . . . ,m−1.

Thus, zm ∈Φ(G )=K . Denote zm by a.

z is a root of the polynomial Xm−a in K [X ].

So the minimum polynomial g of z over K is a factor of Xm−a.

But [K (z) :K ]= [L :K ]=m. So g =Xm−a.

It follows that Xm−a is irreducible over K .

Moreover, the roots of Xm−a are ω−kz k = 0,1, . . . ,m−1, all in L.

So L is a splitting field for Xm−a over K .

The theorem tells us that, provided the base field K has “enough”
roots of unity, a cyclic extension of K is a radical extension.
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Abel’s Theorem

Abel’s Theorem helps us determine whether the polynomial Xm−a is
irreducible over Q(ω) when m is prime.

Theorem (Abel’s Theorem)

Let K be a field of characteristic 0, p be a prime and a ∈K . If X p −a is
reducible over K , then it has a linear factor X −c in K [X ].

Suppose that f =X p−a is reducible over K .

Let g ∈K [X ] be a monic irreducible factor of f of degree d .

If d = 1, there is nothing to prove.

Suppose that 1< d < p. Let L be a splitting field for f over K .

Let β be a root of f in L. Then g factorizes in L[X ] as

g = (X −ωn1β)(X −ωn2β) · · ·(X −ωndβ),

where ω is a primitive p-th root of unity and 0≤ n1 < n2 < ·· · < nd < p.
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Abel’s Theorem (Cont’d)

We have g = (X −ωn1β)(X −ωn2β) · · ·(X −ωndβ).

Suppose that

g =X d −bd−1X
d−1+·· ·+ (−1)db0.

Comparing and setting n= n1+·· ·+nd , we get

b0 =ωn1+n2+···+ndβd =ωnβd
.

Hence, since βp = a,

b
p
0
=ωnpβdp =βdp = ad .

Since p is prime, d and p have greatest common divisor 1.

So there exist integers s and t, such that sd + tp = 1. Hence,

a= asdatp = b
sp
0
atp = (bs0a

t)p .

So X −c , where c = bs0a
t ∈K , is a linear factor of f .
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Example

We determine the Galois group over Q of X 5−7.

By the Eisenstein criterion, X 5−7 is irreducible over Q.

The primitive root ω= e2πi/5 has minimum polynomial
X 4+X 3+X 2+X +1. So [Q(ω) :Q]= 4.

The polynomial X 5−7 is irreducible even over Q(ω).

If not, by Abel’s Theorem, there exists b in Q(ω), with b = 71/5.

But [Q(b) :Q]≤ [Q(ω) :Q]= 4 and [Q(71/5) :Q]≥ 5.

So no such b can exist.

The roots of X 5−7 in C are v ,vω,vω2,vω3,vω4, where v = 71/5 and
ω= e2πi/5. The Galois group consists of elements σp,q (p = 0,1,2,3,4,
q = 1,2,3,4), where

σp,q : v 7→ vωp ,

ω 7→ ωq .

The identity of the group is σ0,1.
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Example (Cont’d)

Also,
σp,qσr ,s(v)=σp,q(vω

r )= (vωp)ωqr = vωp+qr ;
σp,qσr ,s(ω)=σp,q(ω

s)=ωqs .

So σp,qσr ,s =σp+qr ,qs, with addition and multiplication mod 5.

If p ∈ {1,2,3,4,5} and q ∈ {1,2,3,4}, then

σ
p
1,1

=σp,1, σ
q
0,2

=σ0,2q , σp,1σ0,2q =σp,2q .

Hence, the Galois group is generated by β=σ1,1 and γ=σ0,2, where
β5 = 1, γ4 = 1, and

γβ=σ0,2σ1,1 =σ0+2·1,2·1 =σ2,2 =σ2+1·0,1·2 =σ2,1σ0,2 = (σ1,1)
2σ0,2 =β2γ.

The group, with presentation

〈β,γ :β5 = γ4 =β2γβ−1γ−1 = 1〉

is of order 20.
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