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Equations and Groups

o The roots of a polynomial equation
X"+a, 1 X" 4 ra;X+ay=0

with rational coefficients are functions of those coefficients.

o For the linear equation X +ag =0, the unique solution —aq is a rational
function of the coefficients.

o In the case of a quadratic equation X?+a; X +ap=0

a:%(—alJr\/K), ﬁ=%(—al—\/5),

where A = a% —4ag.
The number A is called the discriminant of the equation.

The roots, in general, belong not to @, but to the extension Q(v/A).
The sum and product of the roots are @+ =—-a; and aff = ap.
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Equations and Groups

o Consider the cubic equation X3 +ap X2+ a1 X +ag =0.
If we make the substitution X = Y — %82, we obtain

1 1 2 1 1
Y3—32Y2+gaSY—Eag+agY2—gagY+§ag+alY—§alag+ao=0.

We can rewrite as Y3+aY + b=0. We may thus confine our attention
to cubic equations in which there is no quadratic term.
To avoid some fractions we write the standard cubic equation as

X3+3aX+b=0.

Let p be a root. Find g and r, such that g+r=p and gr =—a.
These are the roots of the quadratic equation X2 —pX —a=0 (and will
in general be complex numbers). Then

(g+r)¥=q3+r3+3(q’r+qr?)=q*>+r3+3pqr
0=p3+3ap+b=q3+r3+3p(a+qr)+b=qg3+r3+b.
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3,3__.3

o From ¢®+r3=-band ¢3r3 = —a3, we deduce that g and r3 are the
roots of the equation Z?+bZ —a®=0. Hence we may write

1
==(-b+VA), Pl -b—VA), A=b*+42°
1 2

We find g and r, and hence p, by taking cube roots:

Let g1, r1 be cube roots (respectively) of g3, r3, such that gir; = —a.
If w=e?/3 and w? = e*"/3 are the complex cube roots of unity, we
also have (q10)(nw?)=-a and (q10?)(now) = -a.

Hence we have three possible values for p:

2 2
qgitn, qqQWtnw:, qo +no,

where

1
q1= 5(—b+ V b% +43a3)

1/3

1/3
, n= [%(—b— V b? +4a3)
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o Find the three roots of X3+6X +2=0.
Here a=b=2.
q> and r3 satisfy ¢*+r*=—b=-2 and ¢*r°*=—a°= 8.
So they are solutions of Z2+2Z-8=0.
We find ¢3=-4 and r3=2.
So g =23 and r=—41/3 = —22/3 (with gr = —a=-2).

Now the three solutions of the cubic are

g+r quw+re®, qu’+ro.

o That example, in which the discriminant of Z2+2Z-8=0 has a
rational square root, is perhaps a little contrived, for the discriminant
may well be a complex number.
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o Find the three roots of X3-6X+2=0.
Here a=-2 and b=2.
g% and r3 satisfy g +r =—-b=-2and g
So they are solutions of Z?+2Z +8=0.
We find ¢3=-1-v7i=v8e " and r3=-1+v7i=8e".

3 —_1 sopg_ V7
Here 0 is such that cos0 = 75 sin@ = 78"

So g=v2e7%/3 and r = v2e/3 (with gr = —a=2).

Now the three solutions of the cubic are

8/8= 3¢l

g+r= 2\/§cos(§) qu+rw®, qw’+ro.
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o The solution of the cubic is what is called a solution by radicals.

o This means that the function

(a,b) — %(—b+ VB2 +423)

1/3
_+_

1/3
%(—b—\/b2+4a3)

from the coefficients to the solution involves, in addition to rational
operations, only the taking of square roots and cube roots.
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o Consider, next the quartic equation
X*+a3X3+apX?+ a1 X +a9=0.

Again substituting X = Y’ — 2 means that we may consider only

equations X*+aX?+bX +c =0 in which the cubic term is absent.
Suppose that, over some extension of @), the polynomial factorizes
into quadratic factors (which, due to the absence of X3, should be)

X*+aX?+bX +c=(X2+pX+q)(X?—pX +r).
Multiplying out, we get
X*+aX?+bX+c=X*+(q+r—-p))X%+(pr—pqg)X +qr.
Equating coefficients, we get

g+r-p*=a, p(r-q)=b, gqr=c.
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o We got

q+r—-p*=a, p(r—-q)=b, gr=c.
Now we have

{q+r—p2 = a }3{ pg+pr = p3+ap}

pr—pq b pr—pq b
2pr = p3+ap+b
= _ 3
2pg = p>+ap—>b
4p?c = 4p>qr = (2pr)(2pq) = (p* +ap + b)(p* +ap - b)
= pb+2ap*+a’p? - b?
p®+2ap* +(a® —4c)p? - b =0.

This is a cubic in p?.

So it can be solved by taking square and cube roots.
Then p can be found by taking square roots.
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o We determine p? (and hence p) using the procedure of a cubic on
p®+2ap* +(a® —4c)p? - b* =0.
Then, we determine g and r, using
g+r-p*=a, p(r-q)=b, gqr=c.
Finally we solve the two quadratic equations
X2+pX+q=0 and X?—pX+r=0.
Again :
o The determination of p involves square and cube roots;

o The finding of g and r involves only rational operations;
o The solving of the quadratic equations involves square roots.
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o All fields will be of characteristic 0.
o Let K be a field.

o A field L containing K is called an extension by radicals, or a
radical extension, if there is a sequence

K=Ly, Ly, ..., L;m=1L,

with the property that, for all j=0,1,...,m-1,
Ljt1=Lj(a;j), where a; is a root of an irreducible polynomial in L;[X]
of the form X" —¢;.
o This formalizes the notion that the elements of L can be obtained
from those of K by means of rational operations together with the
taking of nj-th roots (j=1,2,...,m).
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o : If K=Q, the element
(3+V2)Y7 +5V2(8 - Va)t/11
lies in a field Ls, where:

Li=Q(a0), aj=2€Q,
L2=L1( 1), CKI=3+\/§€L1,
Ly=Ly(a), aj=4ely,
L4= L3(a3), aél =8- {’/ZE L3,
L5=L4(a4) a2=2€L4.

o A polynomial f in K[X] is said to be soluble by radicals if there is a
splitting field for f contained in a radical extension of K.

o We saw that all linear, quadratic, cubic and quartic equations are
soluble by radicals.
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Let L be a radical extension of K, and let M be a normal closure of L.
Then M is also a radical extension of K.

o By a preceding theorem, M =Ly v Ly Vv---v Ly, where the extensions
Lq,Lo,..., L, are all isomorphic to L, and so all radical.

It suffices to show the join of two radical extensions is radical.
Let M; = K(al,ag,...,am), Ms = K(ﬁl,ﬁg,...,ﬁn), where:
9 af.(" eK(ay,as,...,aj-1), i=1,....m;
¢; .
9 ﬁjj € K(ﬁl,ﬁg,...,ﬁj_l), j=1,...,n.
Then My v My =K(ag,az,...,am, B1,B2,...,Bn), with:
9 af.(" eK(ay,as,...,aj-1), i=1,...,m;
¢; .
9 ﬁjj € K(al,ag,...,a’m,ﬁl,ﬁg,...,ﬁj_l), j=1,...,n.
Thus, M; v M5 is a radical extension.
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Equations and Groups

o Consider the polynomial f=X"-1.
o Since we are working in fields K of characteristic 0, the splitting field
L of f over K is both normal and separable.

o The set R consisting of the roots in L of X —1 is easily seen to be an
(abelian) multiplicative subgroup of L.

(R,-) is a cyclic group.

o Denote the exponent of R by e. Then a¢ =1, for all ain R.

o Now X€—1 has at most e roots. So we must have |R| < e.
o However, the exponent of a group can never exceed the order of the
group. So e<|R].

Thus, e=|R|=m. So R is cyclic.
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©

A primitive m-th root of unity w is a generator of the cyclic group
R of the roots of X™ —1.

Then R={l,0,0?,...,0™1}.
«’ is a primitive m-th root of unity if and only if j and m are coprime.

Let Pp, be the set of primitive m-th roots of unity.

¢ © © ¢

The cyclotomic polynomial @, is defined by

D= [] (X-e¢).

eeP,,

George Voutsadakis (LSSU)



Equations and Groups

o Let K be a field of characteristic 0.
Let L < C be the splitting field for XP —1, where p is prime.
Then, except for 1, all of the roots of XP —1 are primitive.

So
XP-1
O,=""—— =XP+XP 1yt X+1.
ProX-1
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o Let K=Q and let L= C be the splitting field of X1 -
One of the primitive 12-th roots of unity is w = e™//6.
The elements of R are
1, 0,02 = /3,3 = j w* = e27i/3 )b = e5mif6 )6 = 1

w’ = 7711/6’ — 4711/3, =—iw 10 _ eSni/3’w11 = llmi/6

The group R contains the set Py of primitive d-th roots of unity, for
each of the divisors d =12,6,4,3,2,1 of 12. Let ®4 =[Ieep, (X —¢).
The set Py is {w, 0,0’ =©°, 0 =w}. So we have
®, = (X _ e”i/6)(X— e—ni/6)(X _ e,5ni/6)(X
= (X2—2cos%+1)(X2—2cos%”+1)
= (X?2-V3X+1)(X?+V3X+1)
PXGE= X

_ e—5ni/6)
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o The set Pg is {w?,w'® =w?}, and O =X2-X+1.
The set Pa is {i,—i}, and ®, = X% +1.
The set Ps is {w* w® =%, and O3=X2+X+1.
The set P, is {w®}, and @y = X +1.
Finally, Py ={1}, and ®; = X —1.
Observe that, for d |12, ®4 has rational coefficients.
Moreover

X2 -1=[]oq4

=(X- 1)((3?1 D(X?2+X+1)(X2+1) (X2 =X +1)(X*-X2+1).
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Let K be a field of characteristic O.

)
o Let m=1.
o Let L a splitting field over K for X™ —1.
o Then
XM-1= 1_[ Dy,
dm

where we are including both 1 and m among the divisors of m.
o Note that, for 0< k <m, X —wX is a factor of ®,, where
o (k,d)=
o d= GCDTk,m)'
Therefore, we have

xm-1 = [ X-= I ]I (X-09

O<k<m d= ey (kd)=1
= [] [l X-0*=]]®a.
dim(k,d)=1 dim
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Let K, L be fields, with K< L. Let f,g be polynomials in L[X], such that
f,fg e K[X]. Then ge K[X].

o Let f=ag+arX+--+amX™, g=by+ b1 X+---+ b, X", where
a0,ai,...,am€ K, bg,b1,...,bp€ L, a,, #0 and b, #0. Suppose that
fg=co+aX+-+cmnX™ e K[X].

Then b, = <22 € K. Suppose inductively that b; € K, for all j>r.

Then
Cm+r = ambr +am-1 br+1 +eet am—n+rbny

where a; =0 if / <0. Hence,

Cm+r—am-1br+1 ="+ —am—n+rbn
b, = eK.

dm

It follows that b; € K, for all j. So g€ K[X].



Equations and Groups

Let K be a field of characteristic 0, containing m-th roots of unity for each
m, and let Ko(= Q) be the prime subfield of K. Then, for every divisor d of
m (including m itself), the cyclotomic polynomial @4 lies in Kp[X].

o It is clear that ®; = X —1 belongs to Kp[X].
Let d(# 1) be a divisor of m, and suppose inductively that @, € Ko[X],
for all proper divisors r of d.
Then, if Ay is the set of all divisors of d,
X9-1=

[l o

reAqg\{d}

Dy

It follows from the lemma that @4 € Ko[X].

George Voutsadakis (LSSU)



Equations and Groups

o We consider @14, and show that cosZ + cos =* 3” + cos 57” = 2.

Let w=e™/7. Then the primitive roots of X14 1 are
w,03,0% 0% 0,03, So d(®14)=6. We have

XH¥-1 = (XT-1)(X"+1)
= (X-1)(XO+ X5+ X4+ X3+ X2+ X+1)
(X +1)(XC=X5+ X4 = X3+ X2 - X +1).

By the preceding example, the second factor is ®;. Hence, we get
D= X0 - X5+ X - X3+ X2 - X +1.

The primitive roots are conjugate in pairs. So @14 factorizes in R[X]
as

3 5
(X2—2Xcos§+1) (X2—2Xcos7n+1) (X2—2Xcos7n+l .

Comparing the coefficients of X, gives the required identity.



Equations and Groups

For all m=1, the cyclotomic polynomial ®,, is irreducible over Q.

o Suppose, for a contradiction, that ®,, is not irreducible over Q. We
know that @, € Z[X]. By Gauss's Lemma, we may suppose that
@, = fg, where f,g € Z[X] and f is an irreducible monic polynomial
such that 1 <0f <0®,,.
Let K be a splitting field for @, over Q). At least one of the primitive
m-th roots of unity € in K must be a root of f. Now f is monic and
irreducible and f(e) =0. So f is the minimum polynomial of € over Q.
If pis a prime, ptm, then €P is also a primitive m-th root of unity.

We show that €P is a root of f.
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o Suppose not. Then g(eP)=0. Define h(X) € Z[X] by h(X)=g(XP).
Then h(e) = g(eP) =0. But f is the minimum polynomial of € over Q.
So f | h, i.e., h=fu, where ueZ[X].

Consider the map n— 7 from Z onto Z,, where 7 is the residue class
{meZ:m=n (mod p)}. This map extends to a map v~ v’ from
Z[X] onto Z,[X], in the obvious way:

(ag+ar X+ +a XD =3 +3 X +--+3,X".

It is clear that fTu = h'. Note in Z,[X], (ax+ by)P = aPxP + bPyP =
axP + byP. So [h(X)]" = [g(XP)]" = [(g(X))"]P. Thus, fu =(g")P.
Let ¢ be an arbitrarily chosen irreducible factor of ' in Z,[X]. Then
q'1(g")P. So q' | g'. Thus, g divides both ™ and g'. Hence,

(g")?| ®! . It follows that @/ and hence also X™—1, has a repeated
root in a splitting field over Z,. By a previous theorem, this cannot
happen, since p does not divide m. Thus, €P is a root of f.
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o Let ¢ be a root of f and 7 a root of g.
Then both ¢ and 7 are primitive m-th roots of unity.
So n={", for some r, such that r and m are coprime.

Let r=pip2--- pk, where p1,p2,..., px are (not necessarily distinct)
primes not dividing m.

By what was proven in the preceding slide,

Py (QPY)P2 = (PIP2, | (PP Pk = ("

are all roots of 7.

Thus 7 is a root of f as well as g.

It follows that 71 is a repeated root of ®@,.
So 7 is also a repeated root of X™—1.

This contradiction proves that @, is irreducible.
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Let K be a field of characteristic zero, and let L be a splitting field over K
of the polynomial X" —1. Then Gal(L: K) is isomorphic to Rp,, the
multiplicative group of residue classes ¥ (mod m), such that (r,m)=1.

o Let w be a primitive m-th root of unity in L. Let o € Gal(L: K).
Then L= K(w). We know that o(w) must also be a primitive m-th
root of unity. So o € Gal(L: K) if and only if o(w) =™, where
(rg,m)=1. Now

w"=w® ifandonly if r=s (mod m).
So we have a one-to-one mapping
oO— Ty

from Gal(L: K) onto Ry, the multiplicative group of residue classes 7
mod m, such that (r,m)=1.
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o We defined
Gal(L:K)— Rm; 0—T7q.

Let o,7€ Gal(L: K). Then
(7)) = o(w) = (") =0 = (@) = (r0)(@).

So Gal(L: K) is abelian.

The other consequence is that the map o — 7, is a homomorphism,
since 0T maps to ryr;.

It is clear that the map is one-one.

The irreducibility of X™ —1 gives that the map is also onto.
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Let K be a field of characteristic zero, and let L be a splitting field over K
of the polynomial XP —1, where p is prime. Then Gal(L: K) is cyclic.

o Suppose the exponent is prime. Then, the Galois group is isomorphic
to the multiplicative group Zj, of non-zero integers modulo p. We
know this is a cyclic group.

. The splitting field in C of X8-1
contains the primitive root w = /4.
The Galois group has four elements

w— 0 00— 0, o— o, o—o.

~| Ol Wl | X
~l o1l Wl |
Ol NI =] Wl Wi
w| R NI o ol
| w| o1 NI NI

It is isomorphic to {1,3,5,7}, with multiplica-
tion table shown on the right.
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o Let K be a field of characteristic O.
o Let L: K be a field extension.

o We say that L is a cyclic extension of K if:

o It is normal (and separable);
o Gal(L: K) is a cyclic group.

: By the preceding theorem, if p is prime, the splitting field
over K of XP—1is a cyclic extension of K.
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¢ © © ¢

Let K be a field of characteristic 0.
Let L be an extension of K of finite degree n.
Let NV be a normal closure of L.

By a previous theorem, there are exactly n distinct K-monomorphisms
T1,72,...,Tp from L into N.

For each element x of L, we define the norm N,k (x) of x by
n
Ni/k(x) = [T7i(x).

i=1

For each element x of L, we define the trace Tr; x(x) of x by

TrL/K ZT,(X

George Voutsadakis (LSSU)
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The mapping N/ is a group homomorphism from (L*,-) into (K*,-). The
mapping Tr; /i is a non-zero group homomorphism from (L, +) into (K, +).

o It is clear that, for all x,y in L*,

New(xy) =TI 7i(xy)

i Ti()Ti(y)
(I, 7i Gy Ti(y))
Nk (XN (y)-

Similarly, TrL/K(x+y) =TrL/K(x)+TrL/K(y).
Thus, Ny /k and Try/k are homomorphisms into (L*,-) and (L, +).

It remains to show that the images are contained in K.
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o Let 7 be a K-automorphism of N. Then 7711, 775, ..., TTp are n
distinct K-monomorphisms from L into N. So the list is simply the list
T1,72,...,T in a different order. Hence, for all x in L and all 7 in
Gal(N: K),

n

T(NL/K(X)):T(lf[lT; ) UT(T (X)) = H =Ng/k(x).

=l
Similarly, 7(Try/k(x)) = Try/k(x).

Hence, both Ny k(x) and Try /i (x) lie in @(Gal(N: K)) =

It remains to show that Tr; k is not the zero homomorphism.
Suppose, for all x in L, Try /k(x) =71(x) +72(x) + - +Tp(x) = 0.
It follows that the set {r1,72,...,7,} is linearly dependent over L.

This contradicts a preceding result.
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Let L be a cyclic extension of a field K, and let 7 be a generator of the
(cyclic) group Gal(L: K). Suppose x € L.
o Ng/k(x)=1if and only if, there exists y in L, such that x = (

\_/

(y
o Try/k(x) =0 if and only if, there exists z in L, such that x = —T(Z).

o Let [L:K]=n. Then 7" =1. Suppose that x = # Then

- T2 Tn—l
Nk () = () 174 = Tz((yy)) ngi Tn(%) -

Conversely, suppose Ny /x(x) =1. Then x™* = 7(x)72(x)--- 7" }(x).
The set {1,7,7%,...,7" 1} is linearly independent over L. So the map

1+ xT +XT(X)T% + -+ x7(x) 723 (x) - 772 (x)r" !

iS non-zero.
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o Thus, for some t in L, the element

y = t+xt(t) +xT(x)T3(t) + -+ x7(x)72(x) - 72 (x) 7L (t) #O.

Applying the automorphism 7 gives

1(y) = 1(t)+7(x)r2(t) + ()2 (x)73(t) + -

+7(x)72(x)73(x) - T (X)T"(1).

Now note that
xly = x_1t+‘r(t)+T(X)T2(t)+T(X)T (x)T3(
A T(x)T3(x) TR ()7
= 7(t)+ ()73 (t) +T(x) T3 ()73 (1) +

)+
t

t
(t)

e+ T(x)T2(x) T 2(X)T" 1( )+ x7LT7(¢).

Comparing the two equations, we get

7(y) =T()72(x) - 7" x)T(8) + X Ty =X T () = x Ty

The proof concerning Try /i is similar.



Equations and Groups

Let f = X" —ae K[X], where K is a field of characteristic 0. Let L be a
splitting field of f over K.

o L contains an element w, a primitive m-th root of unity.
o The group Gal(L: K(w)) is cyclic, with order dividing m.
|Gal(L: K(w))l=m if and only if f is irreducible over K(w).

©

©

Let K be a field of characteristic 0 and let X —ae K[X].
Let L be a splitting field for f = X™ —a over K.
Then, f has distinct roots a1, a,...,am in L.

So L contains the distinct roots aja;l, azail,...,ama;l of the
1 1 1
polynomial X" —1.

In particular, it contains a primitive m-th root of unity w.
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o Suppose, without loss of generality, that azoql =w is a primitive m-th

root of unity.
Then, in some order, the elements

=il -1 =il
alal ,a2a1 ,...,amal

are L,w,...,0™m 1.
So we can re-label the roots of X™—ain L as

a,way,..., 0" ta;.
Hence, over L,
XM—a=(X-a)(X-way) - (X-—0™a).

We have that K < K(w) = L.
Moreover, the intermediate field K(w) contains all the roots of unity.
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o We have seen that, if a is a root of f, then, over L,

f=(x-a)(x—wa)-(x-o"ta),

where w is a primitive m-th root of unity. Thus L= K(w,a).

An automorphism ¢ in Gal(L: K(w)) is determined by its action on a.
The image must be a root of . So g(a) =w™a, for some ry in
{0,1,...,m—1}. For 7 another element of Gal(L: K(w)),

(o07)(a) =0(w"a)=w" "W a=0"""a.
So 0 — 7, is a homomorphism onto the additive group Z,.
7o =0 if and only if m divides r, if and only if o(a) = a.
The kernel of o — 7y is the identity in Gal(L: K(w)).
So Gal(L: K(w)) is isomorphic to a subgroup of the additive group
L.
We may now deduce that the group is cyclic.
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o Suppose that f = X™—a is irreducible over K(w). Then,
|Gal(L: K(w))l=[L: K(w)] =0f =m.
So Gal(L: K(w)) = Znm.
Conversely, suppose f is not irreducible over K(w).
Then it has a monic irreducible proper factor g, with dg < m.
Let p be a root of g in L. Then
XM -a=(X-p)(X-wp)-(X-0""p).
So L=K(w,p) is a splitting field for f over K(w). Hence,
|Gal(L: K(w))l=[L: K(w)] =0g < m.

So Gal(L: K(w)) is isomorphic to a proper subgroup of Zp,.

o In the notation of the theorem, although the Galois groups
Gal(K(w): K) and Gal(L: K(w)) are both abelian, the group
Gal(L: K) will usually be non-abelian.

George Voutsadakis (LSSU)
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Let K be a field of characteristic zero, let m be a positive integer.
Suppose that X™—1 splits completely over K.
Let L be a cyclic extension of K such that [L: K]=m.

o There exists a in K, such that X™ —a is irreducible over K and L is a
splitting field for X™ — a.

o Moreover, L is generated over K by a single root of X™ —a.

o Let 7 be a generator of the cyclic group G = Gal(L: K).
Let w be a primitive m-th root of unity in K.
Every m-th root of unity is left fixed by every automorphism in G.
Hence, N /i (w) = @™ =1. By Hilbert's Theorem, there exists z in L,
such that w = % Hence, 7(z) =0 1z. So 1X(2) =w *z # z,
k=1,2,...,m—1. Thus, T'[K(z)] ={3. Now L, being cyclic, is normal.
By the Fundamental Theorem, K(z) = ®(I'[K(z)]) = ®({i}) = L.

George Voutsadakis (LSSU)
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1

o By 1(z) =w™ "z, we get

1(z™) = [1(2)]" =0 ™2™ = 2™,

It immediately follows that Tk(z’") =zM for k=0,1,..., m—1.
Thus, z" e ®(G) = K. Denote z™ by a.

z is a root of the polynomial X™ —a in K[X].

So the minimum polynomial g of z over K is a factor of X —a.
But [K(z): K]=[L:K]=m. So g=X"-a.

It follows that X™ —a is irreducible over K.

Moreover, the roots of X™—a are w Xz k=0,1,...,m—1, all in L.
So L is a splitting field for X —a over K.

o The theorem tells us that, provided the base field K has “enough”
roots of unity, a cyclic extension of K is a radical extension.

George Voutsadakis (LSSU)
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o Abel's Theorem helps us determine whether the polynomial X™ —a is
irreducible over Q(w) when m is prime.

Let K be a field of characteristic 0, p be a prime and ae K. If XP—a is
reducible over K, then it has a linear factor X —c in K[X].

o Suppose that f = XP —a is reducible over K.
Let g € K[X] be a monic irreducible factor of f of degree d.
If d =1, there is nothing to prove.

Suppose that 1 <d < p. Let L be a splitting field for f over K.
Let B be a root of f in L. Then g factorizes in L[X] as

g=(X-0"B)(X-0w"p)---(X-w"p),

where w is a primitive p-th root of unity and 0<ny<ny <---<ny<p.
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o We have g = (X -w™B)(X—w™p)--- (X —w"p).
Suppose that

g=X9—bg_1 X9 41 (-1)9bg.
Comparing and setting n=ny +--- + ng, we get
bO = wn1+n2+~~~+ndﬁd — w”ﬁd
Hence, since BP = a,
bg = w"pﬁdp = ,de =a9.
Since p is prime, d and p have greatest common divisor 1.
So there exist integers s and t, such that sd +tp=1. Hence,
a=a*a" = bPa = (ba")P.
So X —c, where c= bgat € K, is a linear factor of f.

George Voutsadakis (LSSU)
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o We determine the Galois group over Q of X°-7.
By the Eisenstein criterion, X®—7 is irreducible over Q.
The primitive root w = e?*/> has minimum polynomial
X4+ X3+ X2+ X +1. So [Q(w): Q] = 4.
The polynomial X®—7 is irreducible even over Q(w).
If not, by Abel's Theorem, there exists b in Q(w), with b= 7L/5.
But [Q(b): Q] < [Q(w): Q] =4 and [Q(7"/%): Q] =5.
So no such b can exist.
The roots of X>—7 in C are v, v, vw?, vw3, vw*, where v =T7% and
w = e?™/5. The Galois group consists of elements 0,4 (p=0,1,2,3,4,
q=1,2,3,4), where

o — p
Opq: V vwP,
w — o9
The identity of the group is 0q,;.
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o Also,
0pq0r,s(v)=0pq(ve") =(voP)w? = vaP*d";
Op,q0r,s(@) =0pq(w®) =w®.

S0 0p,q0r,s = Op+gr,gs, With addition and multiplication mod 5.
If pe{1,2,3,4,5} and g€ {1,2,3,4}, then

P _ q _ —
0’1'1—0’py1, 0’0'2—00’217, Upylo'oygq—o'pygq.

Hence, the Galois group is generated by =011 and y = 0¢2, where
B>=1,y*=1, and

YB=002011=0042121=022=0241.0,12=021002 = (01,1)200,2 = ,32)’-
The group, with presentation
By:B=y"=pyply =1

is of order 20.
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