Fields and Galois Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

Equations and Groups

- Solution by Radicals
- Cyclotomic Polynomials
- Cyclic Extensions

Subsection 1

Solution by Radicals

- The roots of a polynomial equation

$$
X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}=0
$$

with rational coefficients are functions of those coefficients.

- For the linear equation $X+a_{0}=0$, the unique solution $-a_{0}$ is a rational function of the coefficients.
- In the case of a quadratic equation $X^{2}+a_{1} X+a_{0}=0$

$$
\alpha=\frac{1}{2}\left(-a_{1}+\sqrt{\Delta}\right), \quad \beta=\frac{1}{2}\left(-a_{1}-\sqrt{\Delta}\right),
$$

where $\Delta=a_{1}^{2}-4 a_{0}$.
The number Δ is called the discriminant of the equation.
The roots, in general, belong not to \mathbb{Q}, but to the extension $\mathbb{Q}(\sqrt{\Delta})$.
The sum and product of the roots are $\alpha+\beta=-a_{1}$ and $\alpha \beta=a_{0}$.

- Consider the cubic equation $X^{3}+a_{2} X^{2}+a_{1} X+a_{0}=0$. If we make the substitution $X=Y-\frac{1}{3} a_{2}$, we obtain $Y^{3}-a_{2} Y^{2}+\frac{1}{3} a_{2}^{2} Y-\frac{1}{27} a_{2}^{3}+a_{2} Y^{2}-\frac{2}{3} a_{2}^{2} Y+\frac{1}{9} a_{2}^{3}+a_{1} Y-\frac{1}{3} a_{1} a_{2}+a_{0}=0$. We can rewrite as $Y^{3}+a Y+b=0$. We may thus confine our attention to cubic equations in which there is no quadratic term.
To avoid some fractions we write the standard cubic equation as

$$
X^{3}+3 a X+b=0
$$

Let p be a root. Find q and r, such that $q+r=p$ and $q r=-a$. These are the roots of the quadratic equation $X^{2}-p X-a=0$ (and will in general be complex numbers). Then

$$
\begin{gathered}
(q+r)^{3}=q^{3}+r^{3}+3\left(q^{2} r+q r^{2}\right)=q^{3}+r^{3}+3 p q r \\
0=p^{3}+3 a p+b=q^{3}+r^{3}+3 p(a+q r)+b=q^{3}+r^{3}+b .
\end{gathered}
$$

- From $q^{3}+r^{3}=-b$ and $q^{3} r^{3}=-a^{3}$, we deduce that q^{3} and r^{3} are the roots of the equation $Z^{2}+b Z-a^{3}=0$. Hence we may write

$$
q^{3}=\frac{1}{2}(-b+\sqrt{\Delta}), \quad r^{3}=\frac{1}{2}(-b-\sqrt{\Delta}), \quad \Delta=b^{2}+4 a^{3} .
$$

We find q and r, and hence p, by taking cube roots:
Let q_{1}, r_{1} be cube roots (respectively) of q^{3}, r^{3}, such that $q_{1} r_{1}=-a$. If $\omega=e^{2 \pi i / 3}$ and $\omega^{2}=e^{4 \pi i / 3}$ are the complex cube roots of unity, we also have $\left(q_{1} \omega\right)\left(r_{1} \omega^{2}\right)=-a$ and $\left(q_{1} \omega^{2}\right)\left(r_{1} \omega\right)=-a$. Hence we have three possible values for p :

$$
q_{1}+r_{1}, \quad q_{1} \omega+r_{1} \omega^{2}, \quad q_{1} \omega^{2}+r_{1} \omega,
$$

where

$$
q_{1}=\left[\frac{1}{2}\left(-b+\sqrt{b^{2}+4 a^{3}}\right)\right]^{1 / 3}, \quad r_{1}=\left[\frac{1}{2}\left(-b-\sqrt{b^{2}+4 a^{3}}\right)\right]^{1 / 3} .
$$

- Find the three roots of $X^{3}+6 X+2=0$.

Here $a=b=2$.
q^{3} and r^{3} satisfy $q^{3}+r^{3}=-b=-2$ and $q^{3} r^{3}=-a^{3}=-8$.
So they are solutions of $Z^{2}+2 Z-8=0$.
We find $q^{3}=-4$ and $r^{3}=2$.
So $q=2^{1 / 3}$ and $r=-4^{1 / 3}=-2^{2 / 3}$ (with $q r=-a=-2$).
Now the three solutions of the cubic are

$$
q+r \quad q \omega+r \omega^{2}, \quad q \omega^{2}+r \omega
$$

- That example, in which the discriminant of $Z^{2}+2 Z-8=0$ has a rational square root, is perhaps a little contrived, for the discriminant may well be a complex number.
- Find the three roots of $X^{3}-6 X+2=0$.

Here $a=-2$ and $b=2$.
q^{3} and r^{3} satisfy $q^{3}+r^{3}=-b=-2$ and $q^{3} r^{3}=-a^{3}=8$.
So they are solutions of $Z^{2}+2 Z+8=0$.
We find $q^{3}=-1-\sqrt{7} i=\sqrt{8} e^{-i \theta}$ and $r^{3}=-1+\sqrt{7} i=\sqrt{8} e^{i \theta}$.
Here θ is such that $\cos \theta=-\frac{1}{\sqrt{8}}, \sin \theta=\frac{\sqrt{7}}{\sqrt{8}}$.
So $q=\sqrt{2} e^{-i \theta / 3}$ and $r=\sqrt{2} e^{i \theta / 3}$ (with $q r=-a=2$).
Now the three solutions of the cubic are

$$
q+r=2 \sqrt{2} \cos \left(\frac{\theta}{3}\right) \quad q \omega+r \omega^{2}, \quad q \omega^{2}+r \omega .
$$

Solution By Radicals

- The solution of the cubic is what is called a solution by radicals.
- This means that the function

$$
(a, b) \mapsto\left[\frac{1}{2}\left(-b+\sqrt{b^{2}+4 a^{3}}\right)\right]^{1 / 3}+\left[\frac{1}{2}\left(-b-\sqrt{b^{2}+4 a^{3}}\right)\right]^{1 / 3}
$$

from the coefficients to the solution involves, in addition to rational operations, only the taking of square roots and cube roots.

- Consider, next the quartic equation

$$
X^{4}+a_{3} X^{3}+a_{2} X^{2}+a_{1} X+a_{0}=0
$$

Again substituting $X=Y-\frac{a_{3}}{4}$ means that we may consider only equations $X^{4}+a X^{2}+b X+c=0$ in which the cubic term is absent. Suppose that, over some extension of \mathbb{Q}, the polynomial factorizes into quadratic factors (which, due to the absence of X^{3}, should be)

$$
X^{4}+a X^{2}+b X+c=\left(X^{2}+p X+q\right)\left(X^{2}-p X+r\right)
$$

Multiplying out, we get

$$
X^{4}+a X^{2}+b X+c=X^{4}+\left(q+r-p^{2}\right) X^{2}+(p r-p q) X+q r .
$$

Equating coefficients, we get

$$
q+r-p^{2}=a, \quad p(r-q)=b, \quad q r=c .
$$

- We got

$$
q+r-p^{2}=a, \quad p(r-q)=b, \quad q r=c .
$$

Now we have

$$
\begin{aligned}
& \left\{\begin{array}{r}
q+r-p^{2}= \\
p r-p q=b
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
p q+p r=p^{3}+a p \\
p r-p q=b
\end{array}\right\} \\
& \Rightarrow\left\{\begin{array}{c}
2 p r=p^{3}+a p+b \\
2 p q=p^{3}+a p-b
\end{array}\right\} \\
& 4 p^{2} c=4 p^{2} q r=(2 p r)(2 p q)=\left(p^{3}+a p+b\right)\left(p^{3}+a p-b\right) \\
& =p^{6}+2 a p^{4}+a^{2} p^{2}-b^{2} \\
& p^{6}+2 a p^{4}+\left(a^{2}-4 c\right) p^{2}-b^{2}=0 .
\end{aligned}
$$

This is a cubic in p^{2}.
So it can be solved by taking square and cube roots.
Then p can be found by taking square roots.

- We determine p^{2} (and hence p) using the procedure of a cubic on $p^{6}+2 a p^{4}+\left(a^{2}-4 c\right) p^{2}-b^{2}=0$.
Then, we determine q and r, using

$$
q+r-p^{2}=a, \quad p(r-q)=b, \quad q r=c .
$$

Finally we solve the two quadratic equations

$$
X^{2}+p X+q=0 \quad \text { and } \quad X^{2}-p X+r=0
$$

Again this is a solution by radicals:

- The determination of p involves square and cube roots;
- The finding of q and r involves only rational operations;
- The solving of the quadratic equations involves square roots.
- All fields will be of characteristic 0 .
- Let K be a field.
- A field L containing K is called an extension by radicals, or a radical extension, if there is a sequence

$$
K=L_{0}, L_{1}, \ldots, L_{m}=L
$$

with the property that, for all $j=0,1, \ldots, m-1$,
$L_{j+1}=L_{j}\left(\alpha_{j}\right)$, where α_{j} is a root of an irreducible polynomial in $L_{j}[X]$ of the form $X^{n_{j}}-c_{j}$.

- This formalizes the notion that the elements of L can be obtained from those of K by means of rational operations together with the taking of n_{j}-th roots $(j=1,2, \ldots, m)$.
- Example: If $K=\mathbb{Q}$, the element

$$
(3+\sqrt{2})^{1 / 7}+5 \sqrt[5]{2}(8-\sqrt[3]{4})^{1 / 11}
$$

lies in a field L_{5}, where:

$$
\begin{array}{ll}
L_{1}=\mathbb{Q}\left(\alpha_{0}\right), & \alpha_{0}^{2}=2 \in \mathbb{Q} \\
L_{2}=L_{1}\left(\alpha_{1}\right), & \alpha_{1}^{7}=3+\sqrt{2} \in L_{1}, \\
L_{3}=L_{2}\left(\alpha_{2}\right), & \alpha_{2}^{3}=4 \in L_{2}, \\
L_{4}=L_{3}\left(\alpha_{3}\right), & \alpha_{3}^{11}=8-\sqrt[3]{4} \in L_{3}, \\
L_{5}=L_{4}\left(\alpha_{4}\right), & \alpha_{4}^{5}=2 \in L_{4}
\end{array}
$$

- A polynomial f in $K[X]$ is said to be soluble by radicals if there is a splitting field for f contained in a radical extension of K.
- We saw that all linear, quadratic, cubic and quartic equations are soluble by radicals.

Normal Closure of Radical Extensions

Theorem

Let L be a radical extension of K, and let M be a normal closure of L. Then M is also a radical extension of K.

- By a preceding theorem, $M=L_{1} \vee L_{2} \vee \cdots \vee L_{k}$, where the extensions $L_{1}, L_{2}, \ldots, L_{k}$ are all isomorphic to L, and so all radical.
It suffices to show the join of two radical extensions is radical.
Let $M_{1}=K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right), M_{2}=K\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$, where:
- $\alpha_{i}^{k_{i}} \in K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}\right), i=1, \ldots, m$;
- $\beta_{j}^{\ell_{j}} \in K\left(\beta_{1}, \beta_{2}, \ldots, \beta_{j-1}\right), j=1, \ldots, n$.

Then $M_{1} \vee M_{2}=K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$, with:

- $\alpha_{i}^{k_{i}} \in K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}\right), i=1, \ldots, m$;
- $\beta_{j}^{\ell_{j}} \in K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, \beta_{1}, \beta_{2}, \ldots, \beta_{j-1}\right), j=1, \ldots, n$.

Thus, $M_{1} \vee M_{2}$ is a radical extension.

Subsection 2

Cyclotomic Polynomials

- Consider the polynomial $f=X^{m}-1$.
- Since we are working in fields K of characteristic 0 , the splitting field L of f over K is both normal and separable.
- The set R consisting of the roots in L of $X^{m}-1$ is easily seen to be an (abelian) multiplicative subgroup of L.

Lemma

(R, \cdot) is a cyclic group.

- Denote the exponent of R by e. Then $a^{e}=1$, for all a in R.
- Now $X^{e}-1$ has at most e roots. So we must have $|R| \leq e$.
- However, the exponent of a group can never exceed the order of the group. So $e \leq|R|$.
Thus, $e=|R|=m$. So R is cyclic.
- A primitive m-th root of unity ω is a generator of the cyclic group R of the roots of $X^{m}-1$.
- Then $R=\left\{1, \omega, \omega^{2}, \ldots, \omega^{m-1}\right\}$.
- ω^{j} is a primitive m-th root of unity if and only if j and m are coprime.
- Let P_{m} be the set of primitive m-th roots of unity.
- The cyclotomic polynomial Φ_{m} is defined by

$$
\Phi_{m}=\prod_{\epsilon \in P_{m}}(X-\epsilon) .
$$

- Let K be a field of characteristic 0 .

Let $L \subseteq \mathbb{C}$ be the splitting field for $X^{p}-1$, where p is prime. Then, except for 1 , all of the roots of $X^{p}-1$ are primitive. So

$$
\Phi_{p}=\frac{X^{p}-1}{X-1}=X^{p}+X^{p-1}+\cdots+X+1 .
$$

- Let $K=\mathbb{Q}$ and let $L \subseteq \mathbb{C}$ be the splitting field of $X^{12}-1$.

One of the primitive 12-th roots of unity is $\omega=e^{\pi i / 6}$.
The elements of R are

$$
\begin{gathered}
1, \omega, \omega^{2}=e^{\pi i / 3}, \omega^{3}=i, \omega^{4}=e^{2 \pi i / 3}, \omega^{5}=e^{5 \pi i / 6}, \omega^{6}=-1 \\
\omega^{7}=e^{7 \pi i / 6}, \omega^{8}=e^{4 \pi i / 3}, \omega^{9}=-i, \omega^{10}=e^{5 \pi i / 3}, \omega^{11}=e^{11 \pi i / 6}
\end{gathered}
$$

The group R contains the set P_{d} of primitive d-th roots of unity, for each of the divisors $d=12,6,4,3,2,1$ of 12 . Let $\Phi_{d}=\prod_{\epsilon \in P_{d}}(X-\epsilon)$. The set P_{12} is $\left\{\omega, \omega^{5}, \omega^{7}=\bar{\omega}^{5}, \omega^{11}=\bar{\omega}\right\}$. So we have

$$
\begin{aligned}
\Phi_{12} & =\left(X-e^{\pi i / 6}\right)\left(X-e^{-\pi i / 6}\right)\left(X-e^{5 \pi i / 6}\right)\left(X-e^{-5 \pi i / 6}\right) \\
& =\left(X^{2}-2 \cos \frac{\pi}{6}+1\right)\left(X^{2}-2 \cos \frac{5 \pi}{6}+1\right) \\
& =\left(X^{2}-\sqrt{3} X+1\right)\left(X^{2}+\sqrt{3} X+1\right) \\
& =X^{4}-X^{2}+1
\end{aligned}
$$

- The set P_{6} is $\left\{\omega^{2}, \omega^{10}=\bar{\omega}^{2}\right\}$, and $\Phi_{6}=X^{2}-X+1$.

The set P_{4} is $\{i,-i\}$, and $\Phi_{4}=X^{2}+1$.
The set P_{3} is $\left\{\omega^{4}, \omega^{8}=\bar{\omega}^{4}\right\}$, and $\Phi_{3}=X^{2}+X+1$.
The set P_{2} is $\left\{\omega^{6}\right\}$, and $\Phi_{2}=X+1$.
Finally, $P_{1}=\{1\}$, and $\Phi_{1}=X-1$.
Observe that, for $d \mid 12, \Phi_{d}$ has rational coefficients.
Moreover

$$
\begin{aligned}
& X^{12}-1=\prod_{d \mid 12} \Phi_{d} \\
& =(X-1)(X+1)\left(X^{2}+X+1\right)\left(X^{2}+1\right)\left(X^{2}-X+1\right)\left(X^{4}-X^{2}+1\right)
\end{aligned}
$$

- Let K be a field of characteristic 0 .
- Let $m \geq 1$.
- Let L a splitting field over K for $X^{m}-1$.
- Then

$$
X^{m}-1=\prod_{d \mid m} \Phi_{d}
$$

where we are including both 1 and m among the divisors of m.

- Note that, for $0 \leq k<m, X-\omega^{k}$ is a factor of Φ_{d}, where
- $(k, d)=1$;
- $d=\frac{m}{\operatorname{GCD}(k, m)}$.

Therefore, we have

$$
\begin{aligned}
X^{m}-1 & =\prod_{0 \leq k<m}\left(X-\omega^{k}\right)=\prod_{d=\frac{m}{\operatorname{CD}(k, m)}} \prod_{(k, d)=1}\left(X-\omega^{k}\right) \\
& =\prod_{d \mid m(k, d)=1}\left(X-\omega^{k}\right)=\prod_{d \mid m} \Phi_{d} .
\end{aligned}
$$

The Coefficient Lemma

Lemma

Let K, L be fields, with $K \subseteq L$. Let f, g be polynomials in $L[X]$, such that $f, f g \in K[X]$. Then $g \in K[X]$.

- Let $f=a_{0}+a_{1} X+\cdots+a_{m} X^{m}, g=b_{0}+b_{1} X+\cdots+b_{n} X^{n}$, where $a_{0}, a_{1}, \ldots, a_{m} \in K, b_{0}, b_{1}, \ldots, b_{n} \in L, a_{m} \neq 0$ and $b_{n} \neq 0$. Suppose that

$$
f g=c_{0}+c_{1} X+\cdots+c_{m+n} X^{m+n} \in K[X] .
$$

Then $b_{n}=\frac{c_{m+n}}{a_{m}} \in K$. Suppose inductively that $b_{j} \in K$, for all $j>r$. Then

$$
c_{m+r}=a_{m} b_{r}+a_{m-1} b_{r+1}+\cdots+a_{m-n+r} b_{n}
$$

where $a_{i}=0$ if $i<0$. Hence,

$$
b_{r}=\frac{c_{m+r}-a_{m-1} b_{r+1}-\cdots-a_{m-n+r} b_{n}}{a_{m}} \in K .
$$

It follows that $b_{j} \in K$, for all j. So $g \in K[X]$.

Theorem

Let K be a field of characteristic 0 , containing m-th roots of unity for each m, and let $K_{0}(\cong \mathbb{Q})$ be the prime subfield of K. Then, for every divisor d of m (including m itself), the cyclotomic polynomial Φ_{d} lies in $K_{0}[X]$.

- It is clear that $\Phi_{1}=X-1$ belongs to $K_{0}[X]$.

Let $d(\neq 1)$ be a divisor of m, and suppose inductively that $\Phi_{r} \in K_{0}[X]$, for all proper divisors r of d.
Then, if Δ_{d} is the set of all divisors of d,

$$
X^{d}-1=\left(\prod_{r \in \Delta_{d} \backslash\{d\}} \Phi_{r}\right) \Phi_{d} .
$$

It follows from the lemma that $\Phi_{d} \in K_{0}[X]$.

- We consider Φ_{14}, and show that $\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7}=\frac{1}{2}$.

Let $\omega=e^{\pi i / 7}$. Then the primitive roots of $X^{14}-1$ are $\omega, \omega^{3}, \omega^{5}, \omega^{9}, \omega^{11}, \omega^{13}$. So $\partial\left(\Phi_{14}\right)=6$. We have

$$
\begin{aligned}
X^{14}-1= & \left(X^{7}-1\right)\left(X^{7}+1\right) \\
= & (X-1)\left(X^{6}+X^{5}+X^{4}+X^{3}+X^{2}+X+1\right) \\
& \cdot(X+1)\left(X^{6}-X^{5}+X^{4}-X^{3}+X^{2}-X+1\right)
\end{aligned}
$$

By the preceding example, the second factor is Φ_{7}. Hence, we get

$$
\Phi_{14}=X^{6}-X^{5}+X^{4}-X^{3}+X^{2}-X+1
$$

The primitive roots are conjugate in pairs. So Φ_{14} factorizes in $\mathbb{R}[X]$ as

$$
\left(X^{2}-2 X \cos \frac{\pi}{7}+1\right)\left(X^{2}-2 X \cos \frac{3 \pi}{7}+1\right)\left(X^{2}-2 X \cos \frac{5 \pi}{7}+1\right)
$$

Comparing the coefficients of X, gives the required identity.

Irreducibility of the Cyclotomic Polynomial

Theorem

For all $m \geq 1$, the cyclotomic polynomial Φ_{m} is irreducible over \mathbb{Q}.

- Suppose, for a contradiction, that Φ_{m} is not irreducible over \mathbb{Q}. We know that $\Phi_{m} \in \mathbb{Z}[X]$. By Gauss's Lemma, we may suppose that $\Phi_{m}=f g$, where $f, g \in \mathbb{Z}[X]$ and f is an irreducible monic polynomial such that $1 \leq \partial f<\partial \Phi_{m}$.
Let K be a splitting field for Φ_{m} over \mathbb{Q}. At least one of the primitive m-th roots of unity ϵ in K must be a root of f. Now f is monic and irreducible and $f(\epsilon)=0$. So f is the minimum polynomial of ϵ over \mathbb{Q}. If p is a prime, $p \nmid m$, then ϵ^{p} is also a primitive m-th root of unity. We show that ϵ^{p} is a root of f.
- Suppose not. Then $g\left(\epsilon^{p}\right)=0$. Define $h(X) \in \mathbb{Z}[X]$ by $h(X)=g\left(X^{p}\right)$. Then $h(\epsilon)=g\left(\epsilon^{p}\right)=0$. But f is the minimum polynomial of ϵ over \mathbb{Q}. So $f \mid h$, i.e., $h=f u$, where $u \in \mathbb{Z}[X]$.
Consider the map $n \mapsto \bar{n}$ from \mathbb{Z} onto \mathbb{Z}_{p}, where \bar{n} is the residue class $\{m \in \mathbb{Z}: m \equiv n(\bmod p)\}$. This map extends to a map $v \mapsto v^{\dagger}$ from $\mathbb{Z}[X]$ onto $\mathbb{Z}_{p}[X]$, in the obvious way:

$$
\left(a_{0}+a_{1} X+\cdots+a_{n} X^{n}\right)^{\dagger}=\bar{a}_{0}+\bar{a}_{1} X+\cdots+\bar{a}_{n} X^{n}
$$

It is clear that $f^{\dagger} u^{\dagger}=h^{\dagger}$. Note in $\mathbb{Z}_{p}[X],(a x+b y)^{p}=a^{p} x^{p}+b^{p} y^{p}=$ $a x^{p}+$ by p. So $[h(X)]^{\dagger}=\left[g\left(X^{p}\right)\right]^{\dagger}=\left[(g(X))^{\dagger}\right]^{p}$. Thus, $f^{\dagger} u^{\dagger}=\left(g^{\dagger}\right)^{p}$. Let q^{\dagger} be an arbitrarily chosen irreducible factor of f^{\dagger} in $\mathbb{Z}_{p}[X]$. Then $q^{\dagger} \mid\left(g^{\dagger}\right)^{p}$. So $q^{\dagger} \mid g^{\dagger}$. Thus, q^{\dagger} divides both f^{\dagger} and g^{\dagger}. Hence, $\left(q^{\dagger}\right)^{2} \mid \Phi_{m}^{\dagger}$. It follows that Φ_{m}^{\dagger} and hence also $X^{m}-1$, has a repeated root in a splitting field over \mathbb{Z}_{p}. By a previous theorem, this cannot happen, since p does not divide m. Thus, ϵ^{p} is a root of f.

- Let ζ be a root of f and η a root of g.

Then both ζ and η are primitive m-th roots of unity.
So $\eta=\zeta^{r}$, for some r, such that r and m are coprime.
Let $r=p_{1} p_{2} \cdots p_{k}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are (not necessarily distinct) primes not dividing m.
By what was proven in the preceding slide,

$$
\zeta^{p_{1}},\left(\zeta^{p_{1}}\right)^{p_{2}}=\zeta^{p_{1} p_{2}}, \ldots, \zeta^{p_{1} p_{2} \cdots p_{k}}=\zeta^{r}
$$

are all roots of f.
Thus η is a root of f as well as g.
It follows that η is a repeated root of Φ_{m}.
So η is also a repeated root of $X^{m}-1$.
This contradiction proves that Φ_{m} is irreducible.

Theorem

Let K be a field of characteristic zero, and let L be a splitting field over K of the polynomial $X^{m}-1$. Then $\operatorname{Gal}(L: K)$ is isomorphic to R_{m}, the multiplicative group of residue classes $\bar{r}(\bmod m)$, such that $(r, m)=1$.

- Let ω be a primitive m-th root of unity in L. Let $\sigma \in \operatorname{Gal}(L: K)$. Then $L=K(\omega)$. We know that $\sigma(\omega)$ must also be a primitive m-th root of unity. So $\sigma \in \operatorname{Gal}(L: K)$ if and only if $\sigma(\omega)=\omega^{r_{\sigma}}$, where $\left(r_{\sigma}, m\right)=1$. Now

$$
\omega^{r}=\omega^{s} \quad \text { if and only if } r \equiv s \quad(\bmod m)
$$

So we have a one-to-one mapping

$$
\sigma \mapsto \bar{r}_{\sigma}
$$

from $\operatorname{Gal}(L: K)$ onto R_{m}, the multiplicative group of residue classes \bar{r} $\bmod m$, such that $(r, m)=1$.

- We defined

$$
\operatorname{Gal}(L: K) \rightarrow R_{m} ; \quad \sigma \mapsto \bar{r}_{\sigma} .
$$

Let $\sigma, \tau \in \operatorname{Gal}(L: K)$. Then

$$
(\sigma \tau)(\omega)=\sigma\left(\omega^{r_{\tau}}\right)=\left(\omega^{r_{\tau}}\right)^{r_{\sigma}}=\omega^{r_{\sigma} r_{\tau}}=\left(\omega^{r_{\sigma}}\right)^{r_{\tau}}=(\tau \sigma)(\omega) .
$$

So $\operatorname{Gal}(L: K)$ is abelian.
The other consequence is that the map $\sigma \mapsto \bar{r}_{\sigma}$ is a homomorphism, since $\sigma \tau$ maps to $\bar{r}_{\sigma} \bar{r}_{\tau}$.
It is clear that the map is one-one.
The irreducibility of $X^{m}-1$ gives that the map is also onto.

Corollary

Let K be a field of characteristic zero, and let L be a splitting field over K of the polynomial $X^{p}-1$, where p is prime. Then $\operatorname{Gal}(L: K)$ is cyclic.

- Suppose the exponent is prime. Then, the Galois group is isomorphic to the multiplicative group \mathbb{Z}_{p}^{*} of non-zero integers modulo p. We know this is a cyclic group.
Example: The splitting field in \mathbb{C} of $X^{8}-1$ contains the primitive root $\omega=e^{\pi i / 4}$. The Galois group has four elements

$$
\omega \mapsto \omega, \omega \mapsto \omega^{3}, \omega \mapsto \omega^{5}, \omega \mapsto \omega^{7} .
$$

It is isomorphic to $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$, with multiplication table shown on the right.

Subsection 3

Cyclic Extensions

- Let K be a field of characteristic 0 .
- Let $L: K$ be a field extension.
- We say that L is a cyclic extension of K if:
- It is normal (and separable);
- $\mathrm{Gal}(L: K)$ is a cyclic group.

Example: By the preceding theorem, if p is prime, the splitting field over K of $X^{p}-1$ is a cyclic extension of K.

- Let K be a field of characteristic 0 .
- Let L be an extension of K of finite degree n.
- Let N be a normal closure of L.
- By a previous theorem, there are exactly n distinct K-monomorphisms $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ from L into N.
- For each element x of L, we define the norm $N_{L / K}(x)$ of x by

$$
\mathrm{N}_{L / K}(x)=\prod_{i=1}^{n} \tau_{i}(x)
$$

- For each element x of L, we define the trace $\operatorname{Tr}_{L / K}(x)$ of x by

$$
\operatorname{Tr}_{L / K}(x)=\sum_{i=1}^{n} \tau_{i}(x)
$$

Properties of Norm and Trace

Theorem

The mapping $N_{L / K}$ is a group homomorphism from $\left(L^{*}, \cdot\right)$ into $\left(K^{*}, \cdot\right)$. The mapping $\operatorname{Tr}_{L / K}$ is a non-zero group homomorphism from $(L,+)$ into $(K,+)$.

- It is clear that, for all x, y in L^{*},

$$
\begin{aligned}
\mathrm{N}_{L / K}(x y) & =\prod_{i=1}^{n} \tau_{i}(x y) \\
& =\prod_{i=1}^{n} \tau_{i}(x) \tau_{i}(y) \\
& =\left(\prod_{i=1}^{n} \tau_{i}(x)\right)\left(\prod_{i=1}^{n} \tau_{i}(y)\right) \\
& =N_{L / K}(x) N_{L / K}(y) .
\end{aligned}
$$

Similarly, $\operatorname{Tr}_{L / K}(x+y)=\operatorname{Tr}_{L / K}(x)+\operatorname{Tr}_{L / K}(y)$.
Thus, $\mathrm{N}_{L / K}$ and $\operatorname{Tr}_{L / K}$ are homomorphisms into ($\left.L^{*}, \cdot\right)$ and $(L,+)$.
It remains to show that the images are contained in K.

- Let τ be a K-automorphism of N. Then $\tau \tau_{1}, \tau \tau_{2}, \ldots, \tau \tau_{n}$ are n distinct K-monomorphisms from L into N. So the list is simply the list $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ in a different order. Hence, for all x in L and all τ in $\operatorname{Gal}(N: K)$,

$$
\tau\left(\mathrm{N}_{L / K}(x)\right)=\tau\left(\prod_{i=1}^{n} \tau_{i}(x)\right)=\prod_{i=1}^{n} \tau\left(\tau_{i}(x)\right)=\prod_{i=1}^{n} \tau_{i}(x)=\mathrm{N}_{L / K}(x)
$$

Similarly, $\tau\left(\operatorname{Tr}_{L / K}(x)\right)=\operatorname{Tr}_{L / K}(x)$. Hence, both $\mathrm{N}_{L / K}(x)$ and $\operatorname{Tr}_{L / K}(x)$ lie in $\Phi(\operatorname{Gal}(N: K))=K$.
It remains to show that $\operatorname{Tr}_{L / K}$ is not the zero homomorphism. Suppose, for all x in $L, \operatorname{Tr}_{L / K}(x)=\tau_{1}(x)+\tau_{2}(x)+\cdots+\tau_{n}(x)=0$. It follows that the set $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$ is linearly dependent over L. This contradicts a preceding result.

Theorem (Hilbert)

Let L be a cyclic extension of a field K, and let τ be a generator of the (cyclic) group Gal(L:K). Suppose $x \in L$.

- $\mathrm{N}_{L / K}(x)=1$ if and only if, there exists y in L, such that $x=\frac{y}{\tau(y)}$.
- $\operatorname{Tr}_{L / K}(x)=0$ if and only if, there exists z in L, such that $x=z-\tau(z)$.
- Let $[L: K]=n$. Then $\tau^{n}=\iota$. Suppose that $x=\frac{y}{\tau(y)}$. Then

$$
\mathrm{N}_{L / K}(x)=\iota(x) \tau(x) \cdots \tau^{n-1}(x)=\frac{y}{\tau(y)} \frac{\tau(y)}{\tau^{2}(y)} \frac{\tau^{2}(y)}{\tau^{3}(y)} \cdots \frac{\tau^{n-1}(y)}{\tau^{n}(y)}=1
$$

Conversely, suppose $\mathrm{N}_{L / K}(x)=1$. Then $x^{-1}=\tau(x) \tau^{2}(x) \cdots \tau^{n-1}(x)$. The set $\left\{\iota, \tau, \tau^{2}, \ldots, \tau^{n-1}\right\}$ is linearly independent over L. So the map

$$
\iota+x \tau+x \tau(x) \tau^{2}+\cdots+x \tau(x) \tau^{2}(x) \cdots \tau^{n-2}(x) \tau^{n-1}
$$

is non-zero.

- Thus, for some t in L, the element

$$
y=t+x \tau(t)+x \tau(x) \tau^{2}(t)+\cdots+x \tau(x) \tau^{2}(x) \cdots \tau^{n-2}(x) \tau^{n-1}(t) \neq 0
$$

Applying the automorphism τ gives

$$
\begin{aligned}
\tau(y)= & \tau(t)+\tau(x) \tau^{2}(t)+\tau(x) \tau^{2}(x) \tau^{3}(t)+\cdots \\
& \cdots+\tau(x) \tau^{2}(x) \tau^{3}(x) \cdots \tau^{n-1}(x) \tau^{n}(t)
\end{aligned}
$$

Now note that

$$
\begin{aligned}
x^{-1} y= & x^{-1} t+\tau(t)+\tau(x) \tau^{2}(t)+\tau(x) \tau^{2}(x) \tau^{3}(t)+\cdots \\
& \cdots+\tau(x) \tau^{2}(x) \cdots \tau^{n-2}(x) \tau^{n-1}(t) \\
= & \tau(t)+\tau(x) \tau^{2}(t)+\tau(x) \tau^{2}(x) \tau^{3}(t)+\cdots \\
& \cdots+\tau(x) \tau^{2}(x) \cdots \tau^{n-2}(x) \tau^{n-1}(t)+x^{-1} \tau^{n}(t)
\end{aligned}
$$

Comparing the two equations, we get

$$
\tau(y)=\tau(x) \tau^{2}(x) \cdots \tau^{n-1}(x) \tau^{n}(t)+x^{-1} y-x^{-1} \tau^{n}(t)=x^{-1} y .
$$

The proof concerning $\operatorname{Tr}_{L / K}$ is similar.

The Intermediate Field K(ω)

Theorem

Let $f=X^{m}-a \in K[X]$, where K is a field of characteristic 0 . Let L be a splitting field of f over K.

- L contains an element ω, a primitive m-th root of unity.
- The group $\operatorname{Gal}(L: K(\omega))$ is cyclic, with order dividing m.
- $|\operatorname{Gal}(L: K(\omega))|=m$ if and only if f is irreducible over $K(\omega)$.
- Let K be a field of characteristic 0 and let $X^{m}-a \in K[X]$. Let L be a splitting field for $f=X^{m}-a$ over K.
Then, f has distinct roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ in L.
So L contains the distinct roots $\alpha_{1} \alpha_{1}^{-1}, \alpha_{2} \alpha_{1}^{-1}, \ldots, \alpha_{m} \alpha_{1}^{-1}$ of the polynomial $X^{m}-1$.
In particular, it contains a primitive m-th root of unity ω.

The Intermediate Field K(ω) (Cont'd)

- Suppose, without loss of generality, that $\alpha_{2} \alpha_{1}^{-1}=\omega$ is a primitive m-th root of unity.
Then, in some order, the elements

$$
\alpha_{1} \alpha_{1}^{-1}, \alpha_{2} \alpha_{1}^{-1}, \ldots, \alpha_{m} \alpha_{1}^{-1}
$$

are $1, \omega, \ldots, \omega^{m-1}$.
So we can re-label the roots of $X^{m}-a$ in L as

$$
\alpha_{1}, \omega \alpha_{1}, \ldots, \omega^{m-1} \alpha_{1}
$$

Hence, over L,

$$
X^{m}-a=\left(X-\alpha_{1}\right)\left(X-\omega \alpha_{1}\right) \cdots\left(X-\omega^{m-1} \alpha_{1}\right)
$$

We have that $K \subseteq K(\omega) \subseteq L$.
Moreover, the intermediate field $K(\omega)$ contains all the roots of unity.

- We have seen that, if α is a root of f, then, over L,

$$
f=(x-\alpha)(x-\omega \alpha) \cdots\left(x-\omega^{m-1} \alpha\right)
$$

where ω is a primitive m-th root of unity. Thus $L=K(\omega, \alpha)$.
An automorphism σ in $\operatorname{Gal}(L: K(\omega))$ is determined by its action on α. The image must be a root of f. So $\sigma(\alpha)=\omega^{r_{\sigma}} \alpha$, for some r_{σ} in $\{0,1, \ldots, m-1\}$. For τ another element of $\operatorname{Gal}(L: K(\omega))$,

$$
(\sigma \tau)(\alpha)=\sigma\left(\omega^{r_{\tau}} \alpha\right)=\omega^{r_{\tau}} \omega^{r_{\sigma}} \alpha=\omega^{r_{\tau}+r_{\sigma}} \alpha
$$

So $\sigma \mapsto \bar{r}_{\sigma}$ is a homomorphism onto the additive group \mathbb{Z}_{m}.
$\bar{r}_{\sigma}=\overline{0}$ if and only if m divides r_{σ} if and only if $\sigma(\alpha)=\alpha$.
The kernel of $\sigma \mapsto \bar{r}_{\sigma}$ is the identity in $\operatorname{Gal}(L: K(\omega))$.
So $\operatorname{Gal}(L: K(\omega))$ is isomorphic to a subgroup of the additive group \mathbb{Z}_{m}.
We may now deduce that the group is cyclic.

- Suppose that $f=X^{m}-a$ is irreducible over $K(\omega)$. Then,

$$
|\operatorname{Gal}(L: K(\omega))|=[L: K(\omega)]=\partial f=m .
$$

So $\operatorname{Gal}(L: K(\omega)) \cong \mathbb{Z}_{m}$.
Conversely, suppose f is not irreducible over $K(\omega)$.
Then it has a monic irreducible proper factor g, with $\partial g<m$.
Let ρ be a root of g in L. Then

$$
X^{m}-a=(X-\rho)(X-\omega \rho) \cdots\left(X-\omega^{m-1} \rho\right)
$$

So $L=K(\omega, \rho)$ is a splitting field for f over $K(\omega)$. Hence,

$$
|\operatorname{Gal}(L: K(\omega))|=[L: K(\omega)]=\partial g<m
$$

So $\operatorname{Gal}(L: K(\omega))$ is isomorphic to a proper subgroup of \mathbb{Z}_{m}.

- In the notation of the theorem, although the Galois groups $\operatorname{Gal}(K(\omega): K)$ and $\operatorname{Gal}(L: K(\omega))$ are both abelian, the group $\operatorname{Gal}(L: K)$ will usually be non-abelian.

Cyclic Extension of Degree m

Theorem

Let K be a field of characteristic zero, let m be a positive integer. Suppose that $X^{m}-1$ splits completely over K.
Let L be a cyclic extension of K such that $[L: K]=m$.

- There exists a in K, such that $X^{m}-a$ is irreducible over K and L is a splitting field for $X^{m}-a$.
- Moreover, L is generated over K by a single root of $X^{m}-a$.
- Let τ be a generator of the cyclic group $G=\operatorname{Gal}(L: K)$. Let ω be a primitive m-th root of unity in K. Every m-th root of unity is left fixed by every automorphism in G. Hence, $N_{L / K}(\omega)=\omega^{m}=1$. By Hilbert's Theorem, there exists z in L, such that $\omega=\frac{z}{\tau(z)}$. Hence, $\tau(z)=\omega^{-1} z$. So $\tau^{k}(z)=\omega^{-k} z \neq z$, $k=1,2, \ldots, m-1$. Thus, $\Gamma[K(z)]=\{\iota\}$. Now L, being cyclic, is normal. By the Fundamental Theorem, $K(z)=\Phi(\Gamma[K(z)])=\Phi(\{l\})=L$.
- By $\tau(z)=\omega^{-1} z$, we get

$$
\tau\left(z^{m}\right)=[\tau(z)]^{m}=\omega^{-m} z^{m}=z^{m} .
$$

It immediately follows that $\tau^{k}\left(z^{m}\right)=z^{m}$, for $k=0,1, \ldots, m-1$.
Thus, $z^{m} \in \Phi(G)=K$. Denote z^{m} by a.
z is a root of the polynomial $X^{m}-a$ in $K[X]$.
So the minimum polynomial g of z over K is a factor of $X^{m}-a$.
But $[K(z): K]=[L: K]=m$. So $g=X^{m}-a$.
It follows that $X^{m}-a$ is irreducible over K.
Moreover, the roots of $X^{m}-a$ are $\omega^{-k} z k=0,1, \ldots, m-1$, all in L.
So L is a splitting field for $X^{m}-a$ over K.

- The theorem tells us that, provided the base field K has "enough" roots of unity, a cyclic extension of K is a radical extension.
- Abel's Theorem helps us determine whether the polynomial $X^{m}-a$ is irreducible over $\mathbb{Q}(\omega)$ when m is prime.

Theorem (Abel's Theorem)

Let K be a field of characteristic $0, p$ be a prime and $a \in K$. If $X^{p}-a$ is reducible over K, then it has a linear factor $X-c$ in $K[X]$.

- Suppose that $f=X^{p}-a$ is reducible over K.

Let $g \in K[X]$ be a monic irreducible factor of f of degree d.
If $d=1$, there is nothing to prove.
Suppose that $1<d<p$. Let L be a splitting field for f over K.
Let β be a root of f in L. Then g factorizes in $L[X]$ as

$$
g=\left(X-\omega^{n_{1}} \beta\right)\left(X-\omega^{n_{2}} \beta\right) \cdots\left(X-\omega^{n_{d}} \beta\right)
$$

where ω is a primitive p-th root of unity and $0 \leq n_{1}<n_{2}<\cdots<n_{d}<p$.

- We have $g=\left(X-\omega^{n_{1}} \beta\right)\left(X-\omega^{n_{2}} \beta\right) \cdots\left(X-\omega^{n_{d}} \beta\right)$.

Suppose that

$$
g=X^{d}-b_{d-1} X^{d-1}+\cdots+(-1)^{d} b_{0}
$$

Comparing and setting $n=n_{1}+\cdots+n_{d}$, we get

$$
b_{0}=\omega^{n_{1}+n_{2}+\cdots+n_{d}} \beta^{d}=\omega^{n} \beta^{d} .
$$

Hence, since $\beta^{p}=a$,

$$
b_{0}^{p}=\omega^{n p} \beta^{d p}=\beta^{d p}=a^{d}
$$

Since p is prime, d and p have greatest common divisor 1 . So there exist integers s and t, such that $s d+t p=1$. Hence,

$$
a=a^{s d} a^{t p}=b_{0}^{s p} a^{t p}=\left(b_{0}^{s} a^{t}\right)^{p} .
$$

So $X-c$, where $c=b_{0}^{s} a^{t} \in K$, is a linear factor of f.

- We determine the Galois group over \mathbb{Q} of $X^{5}-7$.

By the Eisenstein criterion, $X^{5}-7$ is irreducible over \mathbb{Q}.
The primitive root $\omega=e^{2 \pi i / 5}$ has minimum polynomial
$X^{4}+X^{3}+X^{2}+X+1$. So $[\mathrm{Q}(\omega): \mathrm{Q}]=4$.
The polynomial $X^{5}-7$ is irreducible even over $\mathbb{Q}(\omega)$.
If not, by Abel's Theorem, there exists b in $\mathbb{Q}(\omega)$, with $b=7^{1 / 5}$.
But $[\mathbb{Q}(b): \mathbb{Q}] \leq[Q(\omega): \mathbb{Q}]=4$ and $\left[\mathbb{Q}\left(7^{1 / 5}\right): \mathbb{Q}\right] \geq 5$.
So no such b can exist.
The roots of $X^{5}-7$ in \mathbb{C} are $v, v \omega, v \omega^{2}, v \omega^{3}, v \omega^{4}$, where $v=7^{1 / 5}$ and $\omega=e^{2 \pi i / 5}$. The Galois group consists of elements $\sigma_{p, q}(p=0,1,2,3,4$, $q=1,2,3,4$), where

$$
\begin{aligned}
\sigma_{p, q}: & v \\
& \mapsto \\
& \omega \omega^{p}, \\
& \mapsto \omega^{q} .
\end{aligned}
$$

The identity of the group is $\sigma_{0,1}$.

- Also,

$$
\begin{aligned}
& \sigma_{p, q} \sigma_{r, s}(v)=\sigma_{p, q}\left(v \omega^{r}\right)=\left(v \omega^{p}\right) \omega^{q r}=v \omega^{p+q r} ; \\
& \sigma_{p, q} \sigma_{r, s}(\omega)=\sigma_{p, q}\left(\omega^{s}\right)=\omega^{q s} .
\end{aligned}
$$

So $\sigma_{p, q} \sigma_{r, s}=\sigma_{p+q r, q s}$, with addition and multiplication $\bmod 5$. If $p \in\{1,2,3,4,5\}$ and $q \in\{1,2,3,4\}$, then

$$
\sigma_{1,1}^{p}=\sigma_{p, 1}, \quad \sigma_{0,2}^{q}=\sigma_{0,2^{q}}, \quad \sigma_{p, 1} \sigma_{0,2^{q}}=\sigma_{p, 2^{q}}
$$

Hence, the Galois group is generated by $\beta=\sigma_{1,1}$ and $\gamma=\sigma_{0,2}$, where $\beta^{5}=1, \gamma^{4}=1$, and
$\gamma \beta=\sigma_{0,2} \sigma_{1,1}=\sigma_{0+2 \cdot 1,2 \cdot 1}=\sigma_{2,2}=\sigma_{2+1 \cdot 0,1 \cdot 2}=\sigma_{2,1} \sigma_{0,2}=\left(\sigma_{1,1}\right)^{2} \sigma_{0,2}=\beta^{2} \gamma$.
The group, with presentation

$$
\left\langle\beta, \gamma: \beta^{5}=\gamma^{4}=\beta^{2} \gamma \beta^{-1} \gamma^{-1}=1\right\rangle
$$

is of order 20.

