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Some Group Theory

o It is traditional to write abelian groups in additive notation, writing
a+b,0,—-a,na, nez,
rather than
ab,1,a7%,a".

o We shall be concerned here solely with finite abelian groups.

o An abelian group A with subgroups Uy, Us,..., Uy is said to be the
direct sum of Uy, Us,..., Uy, if every element a of A has a unique
expression

a=u+u+---+u, uel, i=12... k.

o Clearly, Uin U; = {04, if 1#].
If 0#we U;nU;, we would have distinct expressions w+0=0+ w.
o We write A=U;8---& Uy.
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Some Group Theory

o It follows from the definition that, for all u;e U;, i=1,2,...,k,
up+up+---+u=0 implies wuy=ur=---=u,=0.

Otherwise we would have two distinct expressions for the element 0,
the other being 0+0+---+0.
o This condition is actually equivalent to the uniqueness condition in
a=uy+---+Ug, U € U,', | = 1,...,/(.
Let a=uy+up+- -+ up=uy +uy+---+uy, with u;,u € Uj, for all i.
Then
(uy—uy)+ (w2 —uh)+-+ (ug —u) =0,

By the hypothesis, we get u; = u, for all i.
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Some Group Theory

Let a be an element of a finite abelian group A, and suppose that the order
of ais mn, where gcd(m,n) =1. Then a can be written in exactly one way
as b+ ¢, where o(b) =m and o(c) = n.

o Let b'=na and ¢’ =ma. Then certainly o(b')=m and o(c’) =n.
Since m and n are coprime, there exist s,t in Z, such that sm+tn=1.
Hence, a= (sm+tn)a=tb' +sc’.

Since sm+tn=1, we must have gcd(t,m)=1 and gcd(s,n) =1.
Hence, o(tb’) = m and o(sc’)=n. So b=tb" and ¢ =sc’ are such that
a=b+c, with o(b) =m and o(c) = n.

Let a=b+c = by +c1, where o(b) =o(b1) =m and o(c) =o(c1) = n.
So b—by=c1—c=d (say). Then md =mb—mb; =0 and

nd = nc; —nc =0. So o(d) divides both m and n. Hence, o(d) =1.
Sob-bi=c1—c=0. l.e.,, b=b; and c=¢.
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Some Group Theory

Corollary

Let a be an element of a finite abelian group A, and suppose that
o(a) = mymy---m,, where gcd(m;, m;) =1, whenever i # j.
Then a can be written in exactly one way as

aytax+---+ar,

where o(a;)=m;, i=1,2,...,r.

o By hypothesis, gcd(my---m,_1,m,)=1.
By the theorem we can write a uniquely as a’ + a,, with
o(a)y=my---m,_1 and o(a,) = m,.
The result then follows by induction on r.
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Some Group Theory

Every finite abelian group is expressible as the direct sum of abelian
p-groups.

o Suppose A is an abelian group of order n=p;*p3?---p;".

Let U; be the set of elements of A whose order is a power of p;.
: U; is a subgroup of A.
max{k, [}( _y) =0.

So it is a power of p;.

Let x,y € U;, with orders pk p:, respectively. Then p;

So the order of x—y is a divisor of p"™! thott,

Thus, x—y € U;.

Let a be an element of A. Then the order of a divides n. So a has
order p1 p2 ~pﬁ1’. By the corollary, a can be expressed uniquely as
ai+ax+---+a,, with o(a;) :pf/", i=1,2,...,r. Thus, we have
A=UeUro---0 U,.
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Every finite abelian group is expressible as a direct sum of cyclic groups.

o In view of the preceding theorem, we need only consider an abelian

p-group A, of order p™.
Let a; be an element of maximal order pt in A.
Let A; =(ay), the cyclic subgroup of A generated by a;.
If 1 =m, then (a;) = A. Thus, the group A is cyclic.
So suppose that r; < m. We prove the result by induction.
Suppose that we have found k elements ay, a»,...,ax of orders
p"™,p,...,p" (respectively) such that:

n=rnz--2rg,

The subgroup P, ={(a1,ap,...,ax) is the direct sum

(a1) ®(a2) &+ @ (a);
No element of A\P, has order exceeding p'k.
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Some Group Theory

o If P,=A, then we are done.

Suppose there exists b in A\Py. By (iii), the order of b is pf, B<r.
The set of multiples of b lying in Py is non-empty, since pPb=0¢€ Py.
Let A be the positive integer with the property that Abe Py.
Thus,

k

Ab=Y wa;, As<ph.
i=1
: The integer A must in fact be a power of p.

We divide p? by A to obtain pf =gA+r, with 0<r<A.

Suppose r#0. Then rb=pPb—gAb= —qgAbe Py. This contradicts
the definition of A as the least integer with this property. So r=0.

It follows that A divides pf. Thus, A is a power of p, say A = p/+.
By (iii), ri+1 < rk. Certainly, ri41 <.
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- By Coefficient piin Ab=YK  p;aj is divisible by A.
Multlply by pﬁ rk+1 We get 0 pﬁb Zk /,L,pp ar.

By (ii), we have &2 a, =0, for all /.

Hence, “’—p = u;ipP~"1 is divisible by o(a;) = p"i, say “’p = plp".
Now B<r;, for i=1,2,..., k.
Hence, u; = Auj.p""ﬁ = Av;, where v; =,u;.p""‘6 is an integer.
Let

k

dk4+1 = b- Ziv,-a,-.

i=
Then the order of aj 1 is A = pki,
We have daj,q = Ab—Zf.;l Avia;=0.
Assume xa,1 =0, for x> 0.
Then kb =x(ak+1 +Zf.‘:1 Avia;) = Zf.‘zl kAvia; € Pr. So x = A.
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Some Group Theory

o Let Pri1=(a1,a32,...,3k ak+1)-
We must show Py, =(a1) ®(ax) @ - ®(ax) ® (ak;1)-
We show that, if zya1 + zpar + - + zx11ak+1 =0, where 71,2, ..., 241
are integers, then z1a; = zpap = = 413441 = 0.
Let z1a1 +zpas + -+ Zxp1ak41 = 0, with z1,2,..., 2541 integers.
Then z,,1ak.1 belongs to Py. Since ap,1 = b—fozlv,-a,-, Zk+1b
belongs to P,. By the minimal property of A, A < z,1.
The division algorithm gives zx 1 =gA+r, with 0<r<A.
So rb=2z,1b—qgAbe Py, a contradiction unless r=0. Thus, A | Zzx.
Let zx11=Az , =p"+iz, . The order of axyq is A =pt.
So zxi1ak+1=0. By (ii), zja; =0, for i=1,2,... k.
So Pky1=(a1,a2,...,ak+1) =(a1) ®(a2) &+ & (ak1).
Since A is finite, the process must eventually terminate.

We find A=<(ay1,as,...,ay) =(a1) ®{(az) &--- ®{(ay).



Some Group Theory

o In multiplicative notation, a direct sum is called a direct product and
written Uj x Up x --- x Ui. We have subgroups (necessarily normal
since A is abelian)

B=Vo<xVi<---<V=A4

where Vi= Uy x U x---x U;, i=1,2,..., k.

With the above notation, V;/Vi_1 = U;.

o Let ¢: V; — U; be given by ¢(v;) = u;, where ujup---u; is the unique
expression of v; as a product of elements from Uy, Us,..., U;.
It is clear that ¢ maps onto U;.
¢ is a homomorphism. If v/ = ujuj---ul € V;, then
p(viv;) = g[(urup)(u2u3) - (U'U'-)] = uju; = o(vi)p(v;).
The kernel of ¢ is {uiup---uj:uj=1}=Vj_1. So U; = V;/Vi_1.



Some Group Theory

o A finite group is called solvable if, for some m =0, it has a finite series
1}=Goc Gic---cGp=G

of subgroups such that, for i=0,1,...,m—1:
G; < Gjy1;
Gij+1/Gj is cyclic.

o Solvability is not asserting that the subgroups G; are all normal in G.
o The representation

B=Vo<Vi<---<V=A4

where V;=U; x Uy x---x U;, i=1,2,..., k, yields:

Every finite abelian group is solvable.
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A finite group G is solvable if and only if, for some m=0, it has a finite
series

Il=GpcGic---cGn=G
of subgroups such that, for i=0,1,...,m—1:
Gi < Gji1;
Gj+1/Gj is abelian.
o Since every cyclic group is abelian, the “only if" is clear.
For the “if”, suppose that we have a series as in the statement.
For all k=0,...,m—1, G;11/G;j is finite abelian.
By the preceding theorem, there exists a series
{11=GjocGi1c--€Gij=Gi1/Gi,

such that E,"g QE,-,(H and E,-,M/E,-,g is cyclic, for all 0< ¢ < ;.



Some Group Theory

o Thus, there exist Gj,, £=0,...,jj, such that
Gi=Gjo<S Gj1 S+ € Gjj = Gjy,

and Gj¢ < Gjgi1 and Gjpi1/Giy EE,-,(H/EM is cyclic, for all
0<?¢<y.

The proof is finished by interjecting these series between the G;'s in
the series provided by the hypothesis to obtain

{1} = Go = Goo < Go1 S S Goj = G1
= Gl,O < G1,1 c...C Gl,jl = G2
= G2y0 < G2,1 c..-C Gg,jz = G3

=Gm-10SGm-11S" S Gm-1,j,,., = Gm-
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Some Group Theory

o If H and K are subgroups of a group G, then the subgroup Hv K, the
smallest subgroup of G containing H and K, consists of all finite
products

y =hikihaka- - hmkm,
where h1,h2,...,hm€ H and kl,kg,...,km e K.

o If at least one of the subgroups, say H, is normal, then we can rewrite
kiho as hhky, where by = kyhokte H.

o By repeating this argument, we can obtain an expression h*k* for y.
o It is then natural to write Hv K as HK (or equivalently as KH).
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Let G be a group, let N <1 G and let H be a subgroup of G.

NnH< H and
H/(NnH)=NH/N.

If N<H and H< G, then N<H, H/N< G/N, and

(G/N)/(H/N)=G/N.

Let xe NnH and he H. Then h"lxhe NnH. So NnH < H.
Let ¢: g— Ng be the natural mapping from G onto G/N.

Let 1: H— G be the inclusion mapping.
Consider the homomorphism ¢ot: H— G/N.
o lts image is NH/N;
o Its kernel is Nn H.
By the Homomorphism Theorem, H/(NnH)= NH/N.
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Let xe N and he H. Since N<1 G, h™lxhe N. So N <1 H.
Define a mapping 6: G/N — G/H by
0(Ng) = Hg.
o This is well defined: Suppose Ngi = Ngo. Then g1g2‘1 e NcH. So
Hg1 = Hgo.

o It clearly maps onto G/H.
o It is a homomorphism:

6((Na)(Nb)) = O(N(ab)) = H(ab) = (Ha)(Hb) = [0(Na)][6(Nb)].
o lts kernel is {Ng: Hg=H}={Ng:ge H}=H/N.
By the Homomorphism Theorem, (G/N)/(H/N) = G/H.
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Some Group Theory

Let A be a finite abelian group and let p be a prime such that p divides
|Al. Then A contains an element of order p.

o We use induction on |A|. The result is trivial if |A| = p.
Let |Al = p¥n, where k=1 and ptn. Let M be a maximal proper
subgroup of A, with order m.
o Suppose p|m. By induction, M (and hence, of course, A) contains an
element of order p.
o Suppose ptm. Let ve A\M. Suppose that the cyclic subgroup V =(v)
is of order r. Now MV is a subgroup of A properly containing M. So
MV = A. By the theorem, A/M=MV/M=zV/(MnV). So

_ IM|| V| _mr
MV IMaV|

pkn=1Al

Hence p|r. So the element v'/P has order p.

George Voutsadakis (LSSU)



Some Group Theory

©

Let G be a finite group, and let a,b€ G.

©

We say that a is conjugate to b if there exists x in G such that

1

X “ax=bh.

©

Conjugacy is an equivalence relation.

©

Hence G is partitioned into k equivalence classes C;, i=1,2,...,k.
o Within each C;, every element is conjugate to every other.
o The only element conjugate to the identity element e is e itself.
o We suppose that C; = {e}.

©

The class equation of G is the arithmetical equality deriving from the
partition:
|Gl=1+|C|+--+|Cgl.

o In an abelian group the notion of conjugacy is not useful, since
elements are conjugate only if they are equal.
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Some Group Theory

o Let G be a group and a an element of G.
o The centralizer Z(a) is defined to be the set of all g in G such that

ga=ag.

Let G be a group and a€ G. Z(a) is a subgroup of G.
o Let g,g’' € Z(a). By definition, ga=ag and g'a=ag’.
The second gives g’ 1a=ag’™. So g'~te Z(a).
Finally, we obtain

(gg')a=g(g'a)=g(ag’) = (ga)g' = (ag)g’ = a(gg’).

So gg' € Z(a). It follows that Z(a) is a subgroup of G.



Some Group Theory

o For ae G, C(a)=1{x"tax:x€ G}, the conjugacy class of a.

Lemma

Let G be a group and a€ G. The number of elements in C(a) is equal to
the index of Z(a) in G.

o By definition, C(a) = {x"tax:x € G}. For x,y € G, we have
xlax=ylay iff axy l=xyla
iff xy~leZ(a)
iff Z(a)x=Z(a)y.
Thus, the number of distinct elements in C(a) is equal to the number
of distinct cosets of Z(a).

Corollary
Let G be a group. Then |C(a)| divides |G], for all a€ G.




Some Group Theory

o The center of a group G is the set
Z=7(G)={ze G:(V g€ G) zg =gz}

o Alternatively, Z is the set of elements z of G for which Z(z) = G.

Let G be a group. Every subgroup U of G contained in Z(G) (including
Z(G) itself) is normal.

o Suppose ue U and g€ G. Then, since ue Z(G), we have
g lug=glgu=ueU.

So U is a normal subgroup of G.
o Note that a€ Z if and only if C(a)=1{a}.
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If G is a group of order p™, where p is prime and m is a positive integer,
then Z(G) is non-trivial.

o The class equation gives p™ =1+ |G|+ -+ +|Cyl.
So 1+|Go| +---+|Cyl is divisible by p.
But, by a previous corollary, each |C;| divides p™.
So |Cij| =1, for at least p—1 values of j in {2,...,k}.
Hence, |Z(G)| = p.
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Let G be a finite group of order p‘r, where p is prime and pfr. Then G
has at least one subgroup of order p’.

o We use induction on |G|, the result being clear if |G| =1 or 2.
Consider the class equation

plr=1Gl=ci+c+---+ck
where ¢; =|C;|,i=1,2,...,k.

By a previous coroIIary, ¢ is equal to Ilgll' where Z; is the centralizer in
G of a typical element of C;.
l
Writing z; for the order of Z;, we get z; = Tr i=1,2,..., k.
o Suppose, first, that there exists ¢; > 1 such that pJ(c,-.
Then zj < p’r and is divisible by p’.
By the induction hypothesis, Z; contains a subgroup of order p’



Some Group Theory

o Now assume, for all /i in {1,2,...,k}, either ¢; =1 or p divides c;.
The union of the classes C;, with ¢; =1, is the center Z of G.
So pér: |Z| + vp, for some integer v.
Hence Z is non-trivial, with order divisible by p.
But Z is abelian. So, it contains an element a of order p.
Since Z is normal, the cyclic subgroup (a) is certainly normal.
Moreover, |G /(a)| = p‘~Lr.
By induction, G/(a) contains a subgroup U/(a) of order o
So G contains a subgroup U of order p’.

o The subgroup U is called a Sylow subgroup.
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Corollary (Cauchy)

Let G be a finite group and let p be a prime such that p divides |G|. Then
G contains an element of order p.

o We have seen that G has a subgroup H of order p’.
A typical element v of H has order pX, where k < ¢.
It is then clear that v has order p.

o The preceding theorem is, actually, only part of Sylow's Theorem.
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Let G be a group of order p™, where p is prime and m is a positive integer.
Then there exist normal subgroups

{e}zHocch---ch_chsz
of G such that |H;| = p', for i=0,1,...,m.

o G must contain an element of order p. The order of any a# e in G is
E r=1 .
p" for some r in {1,2,...,m}. So aP " is of order p.
For m =1, there is nothing to prove. Let m=2. Suppose inductively
that the result holds for all k <m. Let |G|=p™.
By a previous theorem, we may suppose that there is a subgroup P of
order p contained in the center Z(G).
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o Consider a subgroup P of order p contained in the center Z(G).
Then P is normal and we have |G/P| = g/

Every normal subgroup N of G/P may be written as N/P, where N is
a normal subgroup of G containing P.

By induction, there exist normal subgroups K;, all containing P, such
that
{et=Ko/PcKi/Pc---cKn_1/P=G/P,

with |K;/P|=p',i=1,2,...,m—1.
Define Hy=1{e}, HH=P and H;=K;_1, i=2,...,m.
We obtain normal subgroups H; of G, such that

{e}zHocch---ch_chsz,

with |H;|=p',i=0,1,...,m.



Some Group Theory

Subsection 3
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Some Group Theory

©

Let S, be the symmetric group on n symbols.
o Its elements are all one-to-one mappings (permutations) of the set
{1,2,...,n} onto itself;
o The operation is composition of mappings.
o The composition of two permutations 7y and 75 is called their
product.

7175 is interpreted as “first 71, then 75"

©

A cycle of length k, written o= (a; a2 --- ax) is a permutation such
that

©

ai10 =ap, a0 =as, ..., dk—10 = agk, a0 = ai

and xo = x, for each x not in the set {a1,a»,...,ak}.

George Voutsadakis (LSSU)



Some Group Theory

Every m in S, can be expressed as a product of disjoint cycles. The order of
7 is the least common multiple of the lengths of the cycles.

o Let x; be an arbitrarily chosen element of {1,2,...,n}. If xym = xq, then
(x1) is itself a cycle. Otherwise, write x;7 as xp. We continue with a
sequence xi,Xo = X7, X3 = Xo7,.... Since the set {1,2,...,n} is finite,
there must eventually be a repetition. Suppose that the first repetition
is X, = Xj, with k> j. Suppose j# 1. Then x;_17 = x,m = x;. This
contradiction gives j = 1. So the restriction of 7 to {x1,xs,...,x,} is the
cycle (x1 x2 -+ xx).

Now choose y; not in {xi,x,...,Xx} and repeat the process. We obtain
a cycle (y1 y2 -+ y1). Eventually this process ends.

We, thus, obtain the decomposition of 7 into disjoint cycles.
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o It is clear that the order of a cycle coincides with its length.
Moreover, disjoint cycles commute with each other.
Let 7 be the product o105---0, of disjoint cycles of lengths
A, A, A

Then, for each m=1,

m_ -m_m_
n =005 0

m

o,
This is equal to the identity permutation if and only if m is a multiple
of each of the integers 11,15,...,A,.

o The decomposition into disjoint cycles is in effect unique.

o The cycles can begin with any one of their entries;
o The order of the cycles is arbitrary.
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o A cycle of length 2 is called a transposition.

Corollary

Every permutation can be expressed as a product of transpositions.

o In view of the theorem, we need only show that a cycle is a product of
transpositions.

It is easy to verify that

(31 ay - ak):(al 32)(31 33)-'-(31 ak).

ay a
9 ay ( — )32;
(a1 a;)) _ (a1 aj+1)

9 aj aji1, 1=2<k-1;
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o Consider the polynomial

AX1, .0 X)

[T (Xi-X))

1<i<j<n
(Xo = Xa) (X1 = X3) -~ (Xt = Xu)
(Xa—=X3)-+-(Xa—Xp)

(Xn-1—Xn).
of degree (n—1)+(n—2)+---+1=2n(n-1).
o For each permutation 7 in the symmetric group S,, we may define
n(8)= [I (Xa()=Xa(i)-
1<i<j<n
o The factors in (A) are the same as the factors in A, except that they
are in a different order, and some of them may be reversed.

o A permutation 7 is even or odd according as m(A) = A or m(A) = —A.
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o A permutation 7 is even [odd] if and only if it is expressible as a
composition of an even [odd] number of transpositions.

o It follows that
even -even = even, even-odd =odd-even =odd, odd-odd = even.

o Consequently the set of all even permutations is a subgroup, indeed a
normal subgroup, of S, called the alternating group, and denoted
by A,.

o For any transposition (x; x2), the coset A,(x1 x2) is precisely the set
of odd permutations.

o The coset Ap(x1 x2) consists entirely of odd permutations.
o Let 7 be an odd permutation. Then 7 can be written as
(m(x1 x2))(x1 x2), with 7(x1 x2) even. So 7 is in Ap(x1 x2).

0 So A, is of index 2 in S, and of order %n!.
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The symmetric group S3 is solvable.

o S3 consists of the permutations
e=1,a=(123), b=(132), x=(23), y=(13), z=(12).

S3 has a normal subgroup H = {e, a, b}.
Both H and S/H are cyclic.
Thus S3 is solvable.
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The symmetric group Sy is solvable.

o The alternating group A4 is a subgroup of index 2 and is normal.
The quotient S4/A4, being a group of order 2, is assuredly cyclic.
The alternating group consists of the identity, together with:

(123),(124), (132), (134), (142), (L43), (234), (243),
(12)(3 4), (13)(24), (14)23).

The set V =1{1,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} is an abelian
subgroup of A4 (the Klein 4-group). Its right and left cosets are V/,
V(123)=(123)V={(123),(134),(142),(243),
V(124)=(124)V={(124),(132),(143),(234)

So V < As. The quotient A/ V, being of order 3, is cyclic.

We thus have 1 <V <9 A; <5y, with V/1,A4/V,54/A4 cyclic.
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Lemma

For all n=3, the alternating group A, is generated by the set of all cycles
of length 3.

o It is clear that A, is generated by the set of elements of type
(a b)(c d).
o If the two transpositions are equal, their product is the identity.
o If the product is of the form (a b)(a c), where a, b, ¢ are distinct, then
we see that (a b)(a c)=(a b ¢);
o If a,b,c,d are all distinct, then

(a b)(c d)=[(a b)(a c)][(c a)(c d)] =(a b c)(c a d).
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o A non-abelian group is called simple if it has no proper normal

subgroups.
o Such a group is certainly not solvable.

For all n=5, the alternating group A, is simple.

o Let N # {1} be a normal subgroup of A,,. We shall show that N
contains every cycle of length 3. Then, by the lemma, N =A,,.

Case 1: Suppose that N contains a cycle (a b ¢) of length 3.
a b c )

Let x,y,z be distinct elements in {1,2,...,n} and a:( X y 2

Then a™Y(a b c)a=(xy z).
o If @ is even, this implies that (x y z) e N.
o If @ is odd, replace it by the even permutation f=(d e)a, where
d,ed{a,b,c} (possible since n=5). Observe B~1(a b c)B=(x y z).
Hence N contains all cycles of length 3. So N=A,.
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Case 2: Next, suppose N contains an element 7 which decomposes
into disjoint cycles as 7 =k1k5---k,. Suppose that one of the cycles,
which we may, without loss of generality, take as k1, is of length s = 4:
k1=(a1 a2 -+ as).

Let @ = (a1 a2 a3). Then a lma = (a ‘xia)xs---%,, since only k1 is
affected by the conjugation. Moreover,

alkia = (ay a3 ax)(a1 ap -+ as)(a1 a2 a3)

= (ap a3 a1 a4 as -+ as).
The element 77 'a~na belongs to N. We have

1 =1l 1

a - "na = K; a_lkl(x
= (as as-1 -+ a1)(a2 a3 a1 a4 a5 -+ as)
= (a1 a2 a4).

We are back in Case 1. So N=A,,.

George Voutsadakis (LSSU)
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o Case 3: Suppose all the elements of N have cycle decompositions
involving only cycles of length 2 and 3.
o Suppose 7 contains only one cycle (a b c) of length 3 (the other cycles
being of length 2). Then 72 =(a ¢ b) € N. We are back in Case 1.
o Suppose that 7 contains at least two disjoint cycles (a b ¢) and
(d e f) of length 3. Then N contains

7 = (edc)n(ecd)
(edc)abc)def)ecd):-
(3 b d)(c f e)

So it contains
an'=(abc)(def)--(abd)(cfe)-=(adchf)--.

We are back in Case 2. So N=A,,.
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o Case 3 (Cont'd):
o The final case is where 7 is a product of a (necessarily even) number of
transpositions.

o Suppose first that there are just two: m = (a b)(c d). Then there is at
least one other symbol e, since we are assuming that n=5. So N
contains the element

n[(a b e)_ln(a b e)]=(a b)(c d)(a e b)(a b)(c d)(a be)=(aeb).

Again we are back in Case 1.
o Suppose finally that 7= (a b)(c d)(e f)(g h)-:-. Then N contains

a[(b ¢)~1(d )~ Ln(d e)(b ¢)] (b c)(d e)n(d e)(b c)

(aed)(bcf)--.

Once again we are back in a case already considered.
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The symmetric group S, is generated by the cycles (1 2) and (12 --- n).

olLetr=(12)and {=(12 --- n).
Then (t=¢"t=(nn-1---21).
So ¢ tt{=(nn-1---1)(12)(12 - n)=(23).
cForalli=1,...,n—1, {7~ = (i i+1).
Suppose j & {i,i+1}. Then we have, modulo n,
JT = (i )r T = (=i 1) =)
On the other hand,
I'c—i+1.[ci—1 — 1Tci—1 — 2ci—1 =i+1;
(i+ 1)(—i+1Tci—1 — 2T(i—1 — 1ci—1 =1
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: For j=2,3,...,n—-1,
Gj+10-14)--(23)(12)(23)---(j+1)=(1j+1).
: Fori=1,2,...,n—-1and j=1,2,...,n—1,
LT = (),
We have

i 1)
(i+)¢ (1 j+1)¢ !

1(1 j+ 1) = (j+1)0L =i +j;
G+1)(1j+1) =101 =1

All other members of {1,2,...,n} map to themselves.
We have shown that 7 and { generate all transpositions in S,.

By a previous corollary, they generate the whole of S,,.
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Subsection 4
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o Recall that a group G is solvable if, for some m=0, it has a finite
series
}=GocGic---cGp=G

of subgroups such that, for i=0,1,...,m-1,
Gi <4 Gij1;
Gi+1/G; is cyclic.

Let G be a group.

If G is solvable, then every subgroup of G is solvable.
If G is solvable and N is a normal subgroup of G, then G/N is solvable.
Let N< G. Then G is solvable if and only if both N and G/N are solvable.
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Suppose that
1=Gy<G1<---<1 G, =G,

and that Gj;1/G;j is cyclic for i=1,2,...,m—1.
Let H be a subgroup of G. For each i, let Ki=HnG;. Then

Ki=Hn(Gis1n G))=(HNGj11)N G = Kir1 N G;.
By a preceding theorem, K; <1 K;11. We have
Ki+1/Ki = Kis1/(Kis10 G;) £ Ki11Gi/ Gj.

Since Ki;1G;/G;j is a subgroup of the cyclic group Gj;1/G;, it is cyclic
(or trivial). So the sequence

=K< Ki<---<Kn=H

has the required properties.
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With G defined as before, it is clear that G/N has a series
N/N = GyN/N < GN/N<---<1GN/N=G/N.

There may be coincidences in this series - for example, if Gy € N, then
GiN/N = N/N - but this causes no problem.

Using a previous theorem, we can transform a typical quotient:
GisiN/N _ G N _ Gi+1(GiN) Gis1 - Gi+1/G;
G,'N/N a G,'N G,'N G,'+1O(G,'N) B (G,'+1ﬁ(G,'N))/G,'.

The quotient, being isomorphic to a factor group of the cyclic group
Gi;+1/G; is certainly cyclic.

N
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From Parts (i) and (ii), if G is soluble, N and G/N are soluble.

Suppose, conversely, that N and G/N are solvable.
Then there are:

o A series
{I}=No <Ny <--- <N, =N,

in which Nj.1/N; is cyclic for i=0,1,...,p—1;
o A series

{1=N/N=Gy/N< G /N<---<1Gp/N=G/N,

such that G; < Gj;1 and Gj11/G; =(Gj41/N)/(G;/N) is cyclic, for
i=0,1,...,m—1.

Hence, there is a series
{B=No<Ny <---<Np=N=Gg <G <4+ <1Gp=6G.

So G is solvable.
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Corollary

For all n=5, the symmetric group S, is not solvable.

o If S, were solvable, then all its subgroups would be solvable.
We know that A, is simple.

So it is certainly not solvable.
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