Fields and Galois Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 👘 1 / 53

- Abelian Groups
- Sylow Subgroups
- Permutation Groups
- Properties of Solvable Groups

Subsection 1

Abelian Groups

Direct Sums

• It is traditional to write abelian groups in additive notation, writing

$$a+b,0,-a,na, n\in\mathbb{Z},$$

rather than

$$ab, 1, a^{-1}, a^{n}.$$

- We shall be concerned here solely with *finite abelian groups*.
- An abelian group A with subgroups U₁, U₂,..., U_k is said to be the direct sum of U₁, U₂,..., U_k, if every element a of A has a unique expression

$$a = u_1 + u_2 + \dots + u_k, \quad u_i \in U_i, \ i = 1, 2, \dots, k.$$

An Equivalent Condition

• It follows from the definition that, for all $u_i \in U_i$, i = 1, 2, ..., k,

 $u_1 + u_2 + \dots + u_k = 0$ implies $u_1 = u_2 = \dots = u_k = 0$.

Otherwise we would have two distinct expressions for the element 0, the other being $0 + 0 + \dots + 0$.

• This condition is actually equivalent to the uniqueness condition in $a = u_1 + \dots + u_k$, $u_i \in U_i$, $i = 1, \dots, k$.

Let $a = u_1 + u_2 + \dots + u_k = u'_1 + u'_2 + \dots + u'_k$, with $u_i, u'_i \in U_i$, for all i. Then

$$(u_1 - u'_1) + (u_2 - u'_2) + \dots + (u_k - u'_k) = 0.$$

By the hypothesis, we get $u_i = u'_i$, for all *i*.

Order a Product of Two Coprimes

Lemma

Let *a* be an element of a finite abelian group *A*, and suppose that the order of *a* is *mn*, where gcd(m, n) = 1. Then *a* can be written in exactly one way as b + c, where o(b) = m and o(c) = n.

• Let b' = na and c' = ma. Then certainly o(b') = m and o(c') = n. Since *m* and *n* are coprime, there exist *s*, *t* in \mathbb{Z} , such that sm + tn = 1. Hence, a = (sm + tn)a = tb' + sc'. Since sm + tn = 1, we must have gcd(t, m) = 1 and gcd(s, n) = 1. Hence, o(tb') = m and o(sc') = n. So b = tb' and c = sc' are such that a = b + c, with o(b) = m and o(c) = n. Let $a = b + c = b_1 + c_1$, where $o(b) = o(b_1) = m$ and $o(c) = o(c_1) = n$. So $b - b_1 = c_1 - c = d$ (say). Then $md = mb - mb_1 = 0$ and $nd = nc_1 - nc = 0$. So o(d) divides both m and n. Hence, o(d) = 1. So $b - b_1 = c_1 - c = 0$. I.e., $b = b_1$ and $c = c_1$.

Order a Product of Finitely Many Coprimes

Corollary

Let *a* be an element of a finite abelian group *A*, and suppose that $o(a) = m_1 m_2 \cdots m_r$, where $gcd(m_i, m_j) = 1$, whenever $i \neq j$. Then *a* can be written in exactly one way as

 $a_1 + a_2 + \cdots + a_r$,

where $o(a_i) = m_i$, i = 1, 2, ..., r.

By hypothesis, gcd(m₁···m_{r-1}, m_r) = 1.
 By the theorem we can write a uniquely as a' + a_r, with o(a') = m₁···m_{r-1} and o(a_r) = m_r.
 The result then follows by induction on r.

Direct Sum Decomposition of Finite Abelian Groups

Theorem

Every finite abelian group is expressible as the direct sum of abelian p-groups.

• Suppose A is an abelian group of order $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$. Let U_i be the set of elements of A whose order is a power of p_i . Claim: U_i is a subgroup of A. Let $x, y \in U_i$, with orders p_i^k, p_i^ℓ , respectively. Then $p_i^{\max\{k,\ell\}}(x-y) = 0$. So the order of x - y is a divisor of $p_i^{\max\{k,\ell\}}$. So it is a power of p_i . Thus, $x - y \in U_i$. Let *a* be an element of *A*. Then the order of *a* divides *n*. So *a* has order $p_1^{d_1} p_2^{d_2} \cdots p_r^{d_r}$. By the corollary, *a* can be expressed uniquely as $a_1 + a_2 + \dots + a_r$, with $o(a_i) = p_i^{d_i}$, $i = 1, 2, \dots, r$. Thus, we have $A = U_1 \oplus U_2 \oplus \cdots \oplus U_r$

The Basis Theorem

Theorem (The Basis Theorem)

Every finite abelian group is expressible as a direct sum of cyclic groups.

In view of the preceding theorem, we need only consider an abelian *p*-group *A*, of order *p^m*. Let *a*₁ be an element of maximal order *p^{r₁}* in *A*. Let *A*₁ = ⟨*a*₁⟩, the cyclic subgroup of *A* generated by *a*₁. If *r*₁ = *m*, then ⟨*a*₁⟩ = *A*. Thus, the group *A* is cyclic. So suppose that *r*₁ < *m*. We prove the result by induction. Suppose that we have found *k* elements *a*₁, *a*₂,..., *a_k* of orders *p^{r₁}*, *p<sup>r₂*,..., *p^{r_k}* (respectively) such that: *r*₁ ≥ *r*₂ ≥ ··· ≥ *r_k*;
The subgroup *P_k* = ⟨*a*₁, *a*₂,..., *a_k*⟩ is the direct sum

</sup>

 $\langle a_1 \rangle \oplus \langle a_2 \rangle \oplus \cdots \oplus \langle a_k \rangle;$

iii) No element of $A \setminus P_k$ has order exceeding p^{r_k} .

The Basis Theorem (Cont'd)

• If $P_k = A$, then we are done.

Suppose there exists b in $A \setminus P_k$. By (iii), the order of b is p^{β} , $\beta \leq r_k$. The set of multiples of b lying in P_k is non-empty, since $p^{\beta}b = 0 \in P_k$. Let λ be the least positive integer with the property that $\lambda b \in P_k$. Thus,

$$\lambda b = \sum_{i=1}^{k} \mu_i a_i, \quad \lambda \leq p^{\beta}.$$

Claim: The integer λ must in fact be a power of p. We divide p^{β} by λ to obtain $p^{\beta} = q\lambda + r$, with $0 \le r < \lambda$. Suppose $r \ne 0$. Then $rb = p^{\beta}b - q\lambda b = -q\lambda b \in P_k$. This contradicts the definition of λ as the least integer with this property. So r = 0. It follows that λ divides p^{β} . Thus, λ is a power of p, say $\lambda = p^{r_{k+1}}$. By (iii), $r_{k+1} \le r_k$. Certainly, $r_{k+1} \le \beta$.

The Basis Theorem (Cont'd)

Claim: Every coefficient
$$\mu_i$$
 in $\lambda b = \sum_{i=1}^{k} \mu_i a_i$ is divisible by λ .
Multiply by $\frac{p^{\beta}}{\lambda} = p^{\beta - r_{k+1}}$. We get $0 = p^{\beta}b = \sum_{i=1}^{k} \frac{\mu_i p^{\beta}}{\lambda} a_i$.
By (ii), we have $\frac{\mu_i p^{\beta}}{\lambda} a_i = 0$, for all *i*.
Hence, $\frac{\mu_i p^{\beta}}{\lambda} = \mu_i p^{\beta - r_{k+1}}$ is divisible by $o(a_i) = p^{r_i}$, say $\frac{\mu_i p^{\beta}}{\lambda} = \mu'_i p^{r_i}$.
Now $\beta \le r_i$, for $i = 1, 2, ..., k$.
Hence, $\mu_i = \lambda \mu'_i p^{r_i - \beta} = \lambda v_i$, where $v_i = \mu'_i p^{r_i - \beta}$ is an integer.
Let

$$a_{k+1} = b - \sum_{i=1}^k v_i a_i.$$

Then the order of a_{k+1} is $\lambda = p^{r_{k+1}}$. We have $\lambda a_{k+1} = \lambda b - \sum_{i=1}^{k} \lambda v_i a_i = 0$. Assume $\kappa a_{k+1} = 0$, for $\kappa > 0$. Then $\kappa b = \kappa (a_{k+1} + \sum_{i=1}^{k} \lambda v_i a_i) = \sum_{i=1}^{k} \kappa \lambda v_i a_i \in P_k$. So $\kappa \ge \lambda$.

The Basis Theorem (Conclusion)

• Let $P_{k+1} = \langle a_1, a_2, \dots, a_k, a_{k+1} \rangle$. We must show $P_{k+1} = \langle a_1 \rangle \oplus \langle a_2 \rangle \oplus \cdots \oplus \langle a_k \rangle \oplus \langle a_{k+1} \rangle$. We show that, if $z_1a_1 + z_2a_2 + \cdots + z_{k+1}a_{k+1} = 0$, where z_1, z_2, \dots, z_{k+1} are integers, then $z_1 a_1 = z_2 a_2 = \cdots = z_{k+1} a_{k+1} = 0$. Let $z_1a_1 + z_2a_2 + \dots + z_{k+1}a_{k+1} = 0$, with z_1, z_2, \dots, z_{k+1} integers. Then $z_{k+1}a_{k+1}$ belongs to P_k . Since $a_{k+1} = b - \sum_{i=1}^k v_i a_i$, $z_{k+1}b_i$ belongs to P_k . By the minimal property of λ , $\lambda \leq z_{k+1}$. The division algorithm gives $z_{k+1} = q\lambda + r$, with $0 \le r < \lambda$. So $rb = z_{k+1}b - q\lambda b \in P_k$, a contradiction unless r = 0. Thus, $\lambda \mid z_{k+1}$. Let $z_{k+1} = \lambda z'_{k+1} = p^{r_{k+1}} z'_{k+1}$. The order of a_{k+1} is $\lambda = p^{r_{k+1}}$. So $z_{k+1}a_{k+1} = 0$. By (ii), $z_ia_i = 0$, for i = 1, 2, ..., k. So $P_{k+1} = \langle a_1, a_2, \dots, a_{k+1} \rangle = \langle a_1 \rangle \oplus \langle a_2 \rangle \oplus \dots \oplus \langle a_{k+1} \rangle$. Since A is finite, the process must eventually terminate. We find $A = \langle a_1, a_2, \dots, a_\ell \rangle = \langle a_1 \rangle \oplus \langle a_2 \rangle \oplus \dots \oplus \langle a_\ell \rangle$.

Direct Product Representation

 In multiplicative notation, a direct sum is called a direct product and written U₁ × U₂ × ··· × U_k. We have subgroups (necessarily normal since A is abelian)

$$\{1\} = V_0 \lhd V_1 \lhd \cdots \lhd V_k = A,$$

where $V_i = U_1 \times U_2 \times \cdots \times U_i$, $i = 1, 2, \dots, k$.

Theorem

With the above notation, $V_i/V_{i-1} \cong U_i$.

Let φ: V_i → U_i be given by φ(v_i) = u_i, where u₁u₂···u_i is the unique expression of v_i as a product of elements from U₁, U₂,..., U_i. It is clear that φ maps onto U_i.
φ is a homomorphism. If v_i = u'₁u'₂···u'_i ∈ V_i, then

$$\varphi(v_iv_i') = \varphi[(u_1u_1')(u_2u_2')\cdots(u_iu_i')] = u_iu_i' = \varphi(v_i)\varphi(v_i').$$

The kernel of φ is $\{u_1u_2\cdots u_i: u_i=1\} = V_{i-1}$. So $U_i \cong V_i/V_{i-1}$.

George Voutsadakis (LSSU)

Solvability

• A finite group is called **solvable** if, for some $m \ge 0$, it has a finite series

$$\{1\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_m = G$$

of subgroups such that, for i = 0, 1, ..., m-1:

(i) $G_i \lhd G_{i+1}$; (ii) G_{i+1}/G_i is cyclic.

• Solvability is not asserting that the subgroups G_i are all normal in G.

• The representation

$$\{1\} = V_0 \lhd V_1 \lhd \cdots \lhd V_k = A,$$

where
$$V_i = U_1 \times U_2 \times \cdots \times U_i$$
, $i = 1, 2, \dots, k$, yields:

Theorem

Every finite abelian group is solvable.

George Voutsadakis (LSSU)

Fields and Galois Theory

January 2024 14 / !

Solvability: Alternative Formulation

Theorem

A finite group G is solvable if and only if, for some $m \ge 0$, it has a finite series

$$\{1\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_m = G$$

of subgroups such that, for i = 0, 1, ..., m-1:

- (i) $G_i \lhd G_{i+1};$
- ii) G_{i+1}/G_i is abelian.
 - Since every cyclic group is abelian, the "only if" is clear. For the "if", suppose that we have a series as in the statement. For all k = 0, ..., m-1, G_{i+1}/G_i is finite abelian. By the preceding theorem, there exists a series

$$\{1\} = \overline{G}_{i,0} \subseteq \overline{G}_{i,1} \subseteq \cdots \subseteq \overline{G}_{i,j_i} = G_{i+1}/G_i,$$

such that $\overline{G}_{i,\ell} \lhd \overline{G}_{i,\ell+1}$ and $\overline{G}_{i,\ell+1}/\overline{G}_{i,\ell}$ is cyclic, for all $0 \le \ell < j_i$.

Solvability: Alternative Formulation

• Thus, there exist $G_{i,\ell}$, $\ell = 0, ..., j_i$, such that

$$G_i = G_{i,0} \subseteq G_{i,1} \subseteq \cdots \subseteq G_{i,j_i} = G_{i+1},$$

and $G_{i,\ell} \triangleleft G_{i,\ell+1}$ and $G_{i,\ell+1}/G_{i,\ell} \cong \overline{G}_{i,\ell+1}/\overline{G}_{i,\ell}$ is cyclic, for all $0 \le \ell < j_i$.

The proof is finished by interjecting these series between the G_i 's in the series provided by the hypothesis to obtain

$$\{1\} = G_0 = G_{0,0} \subseteq G_{0,1} \subseteq \dots \subseteq G_{0,j_0} = G_1$$

= $G_{1,0} \subseteq G_{1,1} \subseteq \dots \subseteq G_{1,j_1} = G_2$
= $G_{2,0} \subseteq G_{2,1} \subseteq \dots \subseteq G_{2,j_2} = G_3$
:
= $G_{m-1,0} \subseteq G_{m-1,1} \subseteq \dots \subseteq G_{m-1,j_{m-1}} = G_m.$

Subsection 2

Sylow Subgroups

Join of Groups

• If H and K are subgroups of a group G, then the subgroup $H \lor K$, the smallest subgroup of G containing H and K, consists of all finite products

$$y = h_1 k_1 h_2 k_2 \cdots h_m k_m,$$

where $h_1, h_2, ..., h_m \in H$ and $k_1, k_2, ..., k_m \in K$.

- If at least one of the subgroups, say H, is normal, then we can rewrite k_1h_2 as h'_2k_1 , where $h'_2 = k_1h_2k_1^{-1} \in H$.
- By repeating this argument, we can obtain an expression h^*k^* for y.
- It is then natural to write $H \lor K$ as HK (or equivalently as KH).

Isomorphisms of Groups

Theorem

Let G be a group, let $N \lhd G$ and let H be a subgroup of G.

(i) $N \cap H \lhd H$ and

 $H/(N \cap H) \cong NH/N.$

ii) If $N \leq H$ and $H \lhd G$, then $N \lhd H$, $H/N \lhd G/N$, and

 $(G/N)/(H/N) \cong G/N.$

 Let x ∈ N ∩ H and h ∈ H. Then h⁻¹xh ∈ N ∩ H. So N ∩ H ⊲ H. Let φ: g ↦ Ng be the natural mapping from G onto G/N. Let ι: H → G be the inclusion mapping. Consider the homomorphism φ ∘ ι: H → G/N.

- Its image is NH/N;
- Its kernel is $N \cap H$.

By the Homomorphism Theorem, $H/(N \cap H) \cong NH/N$.

Isomorphisms of Groups Part (ii)

(ii) Let $x \in N$ and $h \in H$. Since $N \lhd G$, $h^{-1}xh \in N$. So $N \lhd H$. Define a mapping $\theta : G/N \rightarrow G/H$ by

$$\theta(Ng) = Hg.$$

- This is well defined: Suppose $Ng_1 = Ng_2$. Then $g_1g_2^{-1} \in N \subseteq H$. So $Hg_1 = Hg_2$.
- It clearly maps onto G/H.
- It is a homomorphism:

 $\theta((Na)(Nb)) = \theta(N(ab)) = H(ab) = (Ha)(Hb) = [\theta(Na)][\theta(Nb)].$

• Its kernel is $\{Ng : Hg = H\} = \{Ng : g \in H\} = H/N.$

By the Homomorphism Theorem, $(G/N)/(H/N) \cong G/H$.

Existence of Elements of Prime Divisor Order

Theorem

Let A be a finite abelian group and let p be a prime such that p divides |A|. Then A contains an element of order p.

- We use induction on |A|. The result is trivial if |A| = p.
 Let |A| = p^kn, where k≥1 and p∤n. Let M be a maximal proper subgroup of A, with order m.
 - Suppose $p \mid m$. By induction, M (and hence, of course, A) contains an element of order p.
 - Suppose p ∤ m. Let v ∈ A\M. Suppose that the cyclic subgroup V = ⟨v⟩ is of order r. Now MV is a subgroup of A properly containing M. So MV = A. By the theorem, A/M = MV/M ≅ V/(M ∩ V). So

$$p^{k}n = |A| = \frac{|M||V|}{|M \cap V|} = \frac{mr}{|M \cap V|}.$$

Hence $p \mid r$. So the element $v^{r/p}$ has order p.

The Class Equation

- Let G be a finite group, and let $a, b \in G$.
- We say that a is **conjugate** to b if there exists x in G such that

$$x^{-1}ax = b.$$

- Conjugacy is an equivalence relation.
- Hence G is partitioned into k equivalence classes C_i , i = 1, 2, ..., k.
 - Within each C_i , every element is conjugate to every other.
 - The only element conjugate to the identity element e is e itself.
 - We suppose that $C_1 = \{e\}$.
- The **class equation** of *G* is the arithmetical equality deriving from the partition:

$$|G| = 1 + |C_2| + \dots + |C_k|.$$

• In an abelian group the notion of conjugacy is not useful, since elements are conjugate only if they are equal.

George Voutsadakis (LSSU)

Fields and Galois Theory

The Centralizer

- Let G be a group and a an element of G.
- The centralizer Z(a) is defined to be the set of all g in G such that

ga = ag.

Proposition

Let G be a group and $a \in G$. Z(a) is a subgroup of G.

 Let g,g' ∈ Z(a). By definition, ga = ag and g'a = ag'. The second gives g'⁻¹a = ag'⁻¹. So g'⁻¹ ∈ Z(a). Finally, we obtain

$$(gg')a = g(g'a) = g(ag') = (ga)g' = (ag)g' = a(gg').$$

So $gg' \in Z(a)$. It follows that Z(a) is a subgroup of G.

Conjugacy Classes and the Centralizer

• For $a \in G$, $C(a) = \{x^{-1}ax : x \in G\}$, the conjugacy class of a.

Lemma

Let G be a group and $a \in G$. The number of elements in C(a) is equal to the index of Z(a) in G.

• By definition, $C(a) = \{x^{-1}ax : x \in G\}$. For $x, y \in G$, we have $x^{-1}ax = y^{-1}ay \quad \text{iff} \quad axy^{-1} = xy^{-1}a$ $\text{iff} \quad xy^{-1} \in Z(a)$ $\text{iff} \quad Z(a)x = Z(a)y.$

Thus, the number of distinct elements in C(a) is equal to the number of distinct cosets of Z(a).

Corollary

Let G be a group. Then |C(a)| divides |G|, for all $a \in G$.

The Center

• The center of a group G is the set

$$Z = Z(G) = \{z \in G : (\forall g \in G) zg = gz\}.$$

• Alternatively, Z is the set of elements z of G for which Z(z) = G.

Proposition

Let G be a group. Every subgroup U of G contained in Z(G) (including Z(G) itself) is normal.

• Suppose $u \in U$ and $g \in G$. Then, since $u \in Z(G)$, we have

$$g^{-1}ug = g^{-1}gu = u \in U.$$

So U is a normal subgroup of G.

• Note that $a \in Z$ if and only if $C(a) = \{a\}$.

The Center of *p*-Groups

Theorem

If G is a group of order p^m , where p is prime and m is a positive integer, then Z(G) is non-trivial.

• The class equation gives $p^m = 1 + |C_2| + \dots + |C_k|$. So $1 + |C_2| + \dots + |C_k|$ is divisible by p. But, by a previous corollary, each $|C_i|$ divides p^m . So $|C_i| = 1$, for at least p - 1 values of i in $\{2, \dots, k\}$. Hence, $|Z(G)| \ge p$.

Existence of Sylow Subgroups

Theorem

Let G be a finite group of order $p^{\ell}r$, where p is prime and $p \nmid r$. Then G has at least one subgroup of order p^{ℓ} .

• We use induction on |G|, the result being clear if |G| = 1 or 2. Consider the class equation

$$p^\ell r = |G| = c_1 + c_2 + \dots + c_k,$$

where $c_i = |C_i|, i = 1, 2, ..., k$.

By a previous corollary, c_i is equal to $\frac{|G|}{|Z_i|}$, where Z_i is the centralizer in G of a typical element of C_i .

Writing z_i for the order of Z_i , we get $z_i = \frac{p^{\ell}r}{c_i}$, i = 1, 2, ..., k.

 Suppose, first, that there exists c_i > 1 such that p∤c_i. Then z_i < p^ℓr and is divisible by p^ℓ. By the induction hypothesis, Z_i contains a subgroup of order p^ℓ.

Existence of Sylow Subgroups (Cont'd)

- Now assume, for all *i* in $\{1, 2, ..., k\}$, either $c_i = 1$ or *p* divides c_i . 0 The union of the classes C_i , with $c_i = 1$, is the center Z of G. So $p^{\ell}r = |Z| + vp$, for some integer v. Hence Z is non-trivial, with order divisible by p. But Z is abelian. So, it contains an element a of order p. Since Z is normal, the cyclic subgroup $\langle a \rangle$ is certainly normal. Moreover, $|G/\langle a \rangle| = p^{\ell-1}r$. By induction, $G/\langle a \rangle$ contains a subgroup $U/\langle a \rangle$ of order $p^{\ell-1}$. So G contains a subgroup U of order p^{ℓ} .
- The subgroup U is called a **Sylow subgroup**.

The Cauchy Theorem

Corollary (Cauchy)

Let G be a finite group and let p be a prime such that p divides |G|. Then G contains an element of order p.

- We have seen that G has a subgroup H of order p^ℓ.
 A typical element v of H has order p^k, where k ≤ ℓ.
 It is then clear that v^{p^{k-1}} has order p.
- The preceding theorem is, actually, only part of Sylow's Theorem.

Tower of Normal Subgroups of Power *p* Order

Theorem

Let G be a group of order p^m , where p is prime and m is a positive integer. Then there exist normal subgroups

$$\{e\} = H_0 \subset H_1 \subset \cdots \subset H_{m-1} \subset H_m = G$$

of G such that $|H_i| = p^i$, for $i = 0, 1, \dots, m$.

G must contain an element of order p. The order of any a ≠ e in G is p^r for some r in {1,2,...,m}. So a^{p^{r-1}} is of order p.
 For m = 1, there is nothing to prove. Let m ≥ 2. Suppose inductively that the result holds for all k < m. Let |G| = p^m.

By a previous theorem, we may suppose that there is a subgroup P of order p contained in the center Z(G).

Tower of Normal Subgroups of Power *p* Order (Cont'd)

- Consider a subgroup P of order p contained in the center Z(G). Then P is normal and we have $|G/P| = p^{m-1}$.
 - Every normal subgroup \overline{N} of G/P may be written as N/P, where N is a normal subgroup of G containing P.
 - By induction, there exist normal subgroups K_i , all containing P, such that

$$\{e\} = K_0/P \subset K_1/P \subset \cdots \subset K_{m-1}/P = G/P,$$

with $|K_i/P| = p^i, i = 1, 2, ..., m-1$.

Define $H_0 = \{e\}, H_1 = P$ and $H_i = K_{i-1}, i = 2, ..., m$.

We obtain normal subgroups H_i of G, such that

$$\{e\}=H_0\subset H_1\subset\cdots\subset H_{m-1}\subset H_m=G,$$

with $|H_i| = p^i, i = 0, 1, ..., m$.

Subsection 3

Permutation Groups

Symmetric Groups

- Let S_n be the symmetric group on n symbols.
 - Its elements are all one-to-one mappings (permutations) of the set {1,2,...,n} onto itself;
 - The operation is composition of mappings.
- The composition of two permutations π₁ and π₂ is called their product.
- $\pi_1\pi_2$ is interpreted as "first π_1 , then π_2 ".
- A cycle of length k, written σ = (a₁ a₂ ··· a_k) is a permutation such that

$$a_1\sigma = a_2$$
, $a_2\sigma = a_3$, ..., $a_{k-1}\sigma = a_k$, $a_k\sigma = a_1$

and $x\sigma = x$, for each x not in the set $\{a_1, a_2, \dots, a_k\}$.

The Cycle Decomposition

Theorem

Every π in S_n can be expressed as a product of disjoint cycles. The order of π is the least common multiple of the lengths of the cycles.

Let x₁ be an arbitrarily chosen element of {1,2,...,n}. If x₁π = x₁, then (x₁) is itself a cycle. Otherwise, write x₁π as x₂. We continue with a sequence x₁, x₂ = x₁π, x₃ = x₂π,.... Since the set {1,2,...,n} is finite, there must eventually be a repetition. Suppose that the first repetition is x_kπ = x_j, with k > j. Suppose j ≠ 1. Then x_{j-1}π = x_kπ = x_j. This contradiction gives j = 1. So the restriction of π to {x₁, x₂,...,x_k} is the cycle (x₁ x₂ ... x_k). Now choose y₁ not in {x₁, x₂,...,x_k} and repeat the process. We obtain a cycle (y₁ y₂ ... y₁). Eventually this process ends.

We, thus, obtain the decomposition of π into disjoint cycles.

The Cycle Decomposition (Cont'd)

 It is clear that the order of a cycle coincides with its length. Moreover, disjoint cycles commute with each other. Let π be the product σ₁σ₂···σ_r of disjoint cycles of lengths λ₁, λ₂,..., λ_r.

Then, for each $m \ge 1$,

$$\pi^m = \sigma_1^m \sigma_2^m \cdots \sigma_r^m.$$

This is equal to the identity permutation if and only if *m* is a multiple of each of the integers $\lambda_1, \lambda_2, ..., \lambda_r$.

- The decomposition into disjoint cycles is in effect unique.
 - The cycles can begin with any one of their entries;
 - The order of the cycles is arbitrary.

Transpositions

• A cycle of length 2 is called a transposition.

Corollary

Every permutation can be expressed as a product of transpositions.

 In view of the theorem, we need only show that a cycle is a product of transpositions.

It is easy to verify that

$$(a_1 \ a_2 \ \cdots \ a_k) = (a_1 \ a_2)(a_1 \ a_3) \cdots (a_1 \ a_k).$$

$$a_{1} \stackrel{(a_{1} \ a_{2})}{\longrightarrow} a_{2};$$

$$a_{i} \stackrel{(a_{1} \ a_{i})}{\longrightarrow} a_{1} \stackrel{(a_{1} \ a_{i+1})}{\longrightarrow} a_{i+1}, \quad i \leq 2 \leq k-1;$$

$$a_{k} \stackrel{(a_{1} \ a_{k})}{\longrightarrow} a_{1}.$$

Even and Odd Permutations

• Consider the polynomial

$$\Delta(X_1,...,X_n) = \prod_{\substack{1 \le i < j \le n \\ (X_1 - X_2)(X_1 - X_3) \cdots (X_1 - X_n) \\ (X_2 - X_3) \cdots (X_2 - X_n) \\ \cdots \\ (X_{n-1} - X_n)}$$

of degree $(n-1) + (n-2) + \dots + 1 = \frac{1}{2}n(n-1)$.

• For each permutation π in the symmetric group S_n , we may define

$$\pi(\Delta) = \prod_{1 \le i < j \le n} (X_{\pi(i)} - X_{\pi(j)}).$$

- The factors in π(Δ) are the same as the factors in Δ, except that they are in a different order, and some of them may be reversed.
- A permutation π is even or odd according as $\pi(\Delta) = \Delta$ or $\pi(\Delta) = -\Delta$.

The Alternating Group

- A permutation π is even [odd] if and only if it is expressible as a composition of an even [odd] number of transpositions.
- It follows that

```
even \cdot even = even, even \cdot odd = odd \cdot even = odd, odd \cdot odd = even.
```

- Consequently the set of all even permutations is a subgroup, indeed a normal subgroup, of S_n , called the **alternating group**, and denoted by A_n .
- For any transposition $(x_1 \ x_2)$, the coset $A_n(x_1 \ x_2)$ is precisely the set of odd permutations.
 - The coset $A_n(x_1 x_2)$ consists entirely of odd permutations.
 - Let π be an odd permutation. Then π can be written as $(\pi(x_1 \ x_2))(x_1 \ x_2)$, with $\pi(x_1 \ x_2)$ even. So π is in $A_n(x_1 \ x_2)$.
- So A_n is of index 2 in S_n and of order $\frac{1}{2}n!$.

Solvability of S_3

Theorem

The symmetric group S_3 is solvable.

• S_3 consists of the permutations

e = 1, $a = (1 \ 2 \ 3)$, $b = (1 \ 3 \ 2)$, $x = (2 \ 3)$, $y = (1 \ 3)$, $z = (1 \ 2)$.

 S_3 has a normal subgroup $H = \{e, a, b\}$. Both H and S/H are cyclic. Thus S_3 is solvable.

Solubility of S_4

Theorem

The symmetric group S_4 is solvable.

 The alternating group A₄ is a subgroup of index 2 and is normal. The quotient S₄/A₄, being a group of order 2, is assuredly cyclic. The alternating group consists of the identity, together with:

(1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3).

The set $V = \{1, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\}$ is an abelian subgroup of A_4 (the Klein 4-group). Its right and left cosets are V, $V(1 \ 2 \ 3) = (1 \ 2 \ 3)V = \{(1 \ 2 \ 3), (1 \ 3 \ 4), (1 \ 4 \ 2), (2 \ 4 \ 3)\},$ $V(1 \ 2 \ 4) = (1 \ 2 \ 4)V = \{(1 \ 2 \ 4), (1 \ 3 \ 2), (1 \ 4 \ 3), (2 \ 3 \ 4)\}.$ So $V \lhd A_4$. The quotient A_4/V , being of order 3, is cyclic. We thus have $1 \lhd V \lhd A_4 \lhd S_4$, with $V/1, A_4/V, S_4/A_4$ cyclic.

Alternating Group and Cycles of Length 3

Lemma

For all $n \ge 3$, the alternating group A_n is generated by the set of all cycles of length 3.

- It is clear that A_n is generated by the set of elements of type (a b)(c d).
 - If the two transpositions are equal, their product is the identity.
 - If the product is of the form (a b)(a c), where a, b, c are distinct, then we see that (a b)(a c) = (a b c);
 - If a, b, c, d are all distinct, then

$$(a \ b)(c \ d) = [(a \ b)(a \ c)][(c \ a)(c \ d)] = (a \ b \ c)(c \ a \ d).$$

Simplicity of A_n , $n \ge 5$

- A non-abelian group is called **simple** if it has no proper normal subgroups.
- Such a group is certainly not solvable.

Theorem

For all $n \ge 5$, the alternating group A_n is simple.

- Let N ≠ {1} be a normal subgroup of A_n. We shall show that N contains every cycle of length 3. Then, by the lemma, N = A_n.
 Case 1: Suppose that N contains a cycle (a b c) of length 3. Let x, y, z be distinct elements in {1,2,...,n} and α = (a b c / x y z). Then α⁻¹(a b c)α = (x y z).
 - If α is even, this implies that $(x \ y \ z) \in N$.
 - If α is odd, replace it by the even permutation β = (d e)α, where d, e ∉ {a, b, c} (possible since n ≥ 5). Observe β⁻¹(a b c)β = (x y z).
 Hence N contains all cycles of length 3. So N = A_n.

Simplicity of A_n , $n \ge 5$ (Cont'd)

Case 2: Next, suppose *N* contains an element π which decomposes into disjoint cycles as $\pi = \kappa_1 \kappa_2 \cdots \kappa_r$. Suppose that one of the cycles, which we may, without loss of generality, take as κ_1 , is of length $s \ge 4$: $\kappa_1 = (a_1 \ a_2 \ \cdots \ a_s)$. Let $\alpha = (a_1 \ a_2 \ a_3)$. Then $\alpha^{-1}\pi\alpha = (\alpha^{-1}\kappa_1\alpha)\kappa_2\cdots\kappa_r$, since only κ_1 is

Let $\alpha = (a_1 \ a_2 \ a_3)$. Then $\alpha \ \pi \alpha = (\alpha \ \kappa_1 \alpha)\kappa_2 \cdots \kappa_r$, since only κ affected by the conjugation. Moreover,

$$\alpha^{-1}\kappa_1\alpha = (a_1 \ a_3 \ a_2)(a_1 \ a_2 \ \cdots \ a_s)(a_1 \ a_2 \ a_3) = (a_2 \ a_3 \ a_1 \ a_4 \ a_5 \ \cdots \ a_s).$$

The element $\pi^{-1}\alpha^{-1}\pi\alpha$ belongs to *N*. We have

$$\pi^{-1}\alpha^{-1}\pi\alpha = \kappa_1^{-1}\alpha^{-1}\kappa_1\alpha = (a_s a_{s-1} \cdots a_1)(a_2 a_3 a_1 a_4 a_5 \cdots a_s) = (a_1 a_2 a_4).$$

We are back in Case 1. So $N = A_n$.

Simplicity of A_n , $n \ge 5$ (Cont'd)

- **Case 3**: Suppose all the elements of *N* have cycle decompositions involving only cycles of length 2 and 3.
 - Suppose π contains only one cycle $(a \ b \ c)$ of length 3 (the other cycles being of length 2). Then $\pi^2 = (a \ c \ b) \in N$. We are back in Case 1.
 - Suppose that π contains at least two disjoint cycles (a b c) and (d e f) of length 3. Then N contains

$$\pi' = (e \ d \ c)\pi(e \ c \ d) \\ = (e \ d \ c)(a \ b \ c)(d \ e \ f)(e \ c \ d) \cdots \\ = (a \ b \ d)(c \ f \ e) \cdots .$$

So it contains

$$\pi\pi' = (a \ b \ c)(d \ e \ f) \cdots (a \ b \ d)(c \ f \ e) \cdots = (a \ d \ c \ b \ f) \cdots .$$

We are back in Case 2. So $N = A_n$.

Simplicity of A_n , $n \ge 5$ (Conclusion)

• Case 3 (Cont'd):

- The final case is where π is a product of a (necessarily even) number of transpositions.
 - Suppose first that there are just two: π = (a b)(c d). Then there is at least one other symbol e, since we are assuming that n≥5. So N contains the element

$$\pi[(a \ b \ e)^{-1}\pi(a \ b \ e)] = (a \ b)(c \ d)(a \ e \ b)(c \ d)(a \ b \ e) = (a \ e \ b).$$

Again we are back in Case 1.

• Suppose finally that $\pi = (a \ b)(c \ d)(e \ f)(g \ h)\cdots$. Then N contains

$$\pi[(b c)^{-1}(d e)^{-1}\pi(d e)(b c)] = \pi(b c)(d e)\pi(d e)(b c)$$

= $(a e d)(b c f)\cdots$.

Once again we are back in a case already considered.

Generation of S_n

Theorem

The symmetric group S_n is generated by the cycles (1 2) and (1 2 \cdots n).

• Let
$$\tau = (1 \ 2)$$
 and $\zeta = (1 \ 2 \ \cdots \ n)$.
Then $\zeta^{-1} = \zeta^{n-1} = (n \ n-1 \ \cdots \ 2 \ 1)$.
So $\zeta^{-1}\tau\zeta = (n \ n-1 \ \cdots \ 1)(1 \ 2)(1 \ 2 \ \cdots \ n) = (2 \ 3)$.
Claim: For all $i = 1, \dots, n-1, \ \zeta^{-i+1}\tau\zeta^{i-1} = (i \ i+1)$.
Suppose $j \notin \{i, i+1\}$. Then we have, modulo n ,

$$j\zeta^{-i+1}\tau\zeta^{i-1} = (j-i+1)\tau\zeta^{i-1} = (j-i+1)\zeta^{i-1} = j.$$

On the other hand,

$$\begin{split} i\zeta^{-i+1}\tau\zeta^{i-1} &= 1\tau\zeta^{i-1} = 2\zeta^{i-1} = i+1;\\ (i+1)\zeta^{-i+1}\tau\zeta^{i-1} &= 2\tau\zeta^{i-1} = 1\zeta^{i-1} = i. \end{split}$$

Generation of S_n (Cont'd)

Claim: For
$$j = 2, 3, ..., n-1$$
,
 $(j \ j+1)(j-1 \ j) \cdots (2 \ 3)(1 \ 2)(2 \ 3) \cdots (j \ j+1) = (1 \ j+1)$.
Claim: For $i = 1, 2, ..., n-1$ and $j = 1, 2, ..., n-i$,
 $\zeta^{-i+1}(1 \ j+1)\zeta^{i-1} = (i \ i+j)$.

We have

$$i\zeta^{-i+1}(1 \ j+1)\zeta^{i-1} = 1(1 \ j+1)\zeta^{i-1} = (j+1)\zeta^{i-1} = i+j;$$

(i+j) $\zeta^{-i+1}(1 \ j+1)\zeta^{i-1} = (j+1)(1 \ j+1)\zeta^{i-1} = 1\zeta^{i-1} = i.$

All other members of $\{1, 2, ..., n\}$ map to themselves. We have shown that τ and ζ generate all transpositions in S_n . By a previous corollary, they generate the whole of S_n .

George Voutsadakis (LSSU)

Fields and Galois Theory

Subsection 4

Properties of Solvable Groups

Properties of Solvable Groups

 Recall that a group G is solvable if, for some m≥0, it has a finite series

$$\{1\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_m = G$$

of subgroups such that, for $i = 0, 1, \ldots, m-1$,

(i) $G_i \lhd G_{i+1}$; (ii) G_{i+1}/G_i is cyclic.

Theorem

Let G be a group.

- (i) If G is solvable, then every subgroup of G is solvable.
- (ii) If G is solvable and N is a normal subgroup of G, then G/N is solvable.
- (iii) Let $N \triangleleft G$. Then G is solvable if and only if both N and G/N are solvable.

Proof of Property (i)

(i) Suppose that

$$1=G_0\lhd G_1\lhd \cdots \lhd G_m=G,$$

and that G_{i+1}/G_i is cyclic for i = 1, 2, ..., m-1. Let H be a subgroup of G. For each i, let $K_i = H \cap G_i$. Then

$$K_i = H \cap (G_{i+1} \cap G_i) = (H \cap G_{i+1}) \cap G_i = K_{i+1} \cap G_i.$$

By a preceding theorem, $K_i \lhd K_{i+1}$. We have

$$K_{i+1}/K_i = K_{i+1}/(K_{i+1} \cap G_i) \cong K_{i+1}G_i/G_i.$$

Since $K_{i+1}G_i/G_i$ is a subgroup of the cyclic group G_{i+1}/G_i , it is cyclic (or trivial). So the sequence

$$\{1\} = K_0 \lhd K_1 \lhd \cdots \lhd K_m = H$$

has the required properties.

George Voutsadakis (LSSU)

Proof of Property (ii)

ii) With G defined as before, it is clear that G/N has a series

$$N/N = G_0 N/N \lhd G_1 N/N \lhd \cdots \lhd G_m N/N = G/N.$$

There may be coincidences in this series - for example, if $G_1 \subseteq N$, then $G_1 N/N = N/N$ - but this causes no problem.

Using a previous theorem, we can transform a typical quotient:

$$\frac{G_{i+1}N/N}{G_iN/N} \cong \frac{G_{i+1}N}{G_iN} = \frac{G_{i+1}(G_iN)}{G_iN} \cong \frac{G_{i+1}}{G_{i+1} \cap (G_iN)} \cong \frac{G_{i+1}/G_i}{(G_{i+1} \cap (G_iN))/G_i}.$$

The quotient, being isomorphic to a factor group of the cyclic group G_{i+1}/G_i is certainly cyclic.

Proof of Property (iii)

- (iii) From Parts (i) and (ii), if G is soluble, N and G/N are soluble. Suppose, conversely, that N and G/N are solvable. Then there are:
 - A series

$$\{1\} = N_0 \lhd N_1 \lhd \cdots \lhd N_p = N,$$

in which
$$N_{i+1}/N_i$$
 is cyclic for $i = 0, 1, \dots, p-1$;

A series

$$\{1\} = N/N = G_0/N \lhd G_1/N \lhd \cdots \lhd G_m/N = G/N,$$

such that $G_i \triangleleft G_{i+1}$ and $G_{i+1}/G_i \cong (G_{i+1}/N)/(G_i/N)$ is cyclic, for $i = 0, 1, \dots, m-1$.

Hence, there is a series

$$\{1\} = N_0 \lhd N_1 \lhd \cdots \lhd N_p = N = G_0 \lhd G_1 \lhd \cdots \lhd G_p = G.$$

So G is solvable.

George Voutsadakis (LSSU)

Non-Solvability of S_n , $n \ge 5$

Corollary

For all $n \ge 5$, the symmetric group S_n is not solvable.

If S_n were solvable, then all its subgroups would be solvable.
 We know that A_n is simple.
 So it is certainly not solvable.