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Some Group Theory Abelian Groups

Subsection 1

Abelian Groups
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Some Group Theory Abelian Groups

Direct Sums

It is traditional to write abelian groups in additive notation, writing

a+b,0,−a,na, n ∈Z,

rather than
ab,1,a−1

,an.

We shall be concerned here solely with finite abelian groups.

An abelian group A with subgroups U1,U2, . . . ,Uk is said to be the
direct sum of U1,U2, . . . ,Uk , if every element a of A has a unique
expression

a= u1+u2+·· ·+uk , ui ∈Ui , i = 1,2, . . . ,k .

Clearly, Ui ∩Uj = {0}, if i 6= j .

If 0 6=w ∈Ui ∩Uj , we would have distinct expressions w +0= 0+w .

We write A=U1⊕·· ·⊕Uk .
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Some Group Theory Abelian Groups

An Equivalent Condition

It follows from the definition that, for all ui ∈Ui , i = 1,2, . . . ,k ,

u1+u2+·· ·+uk = 0 implies u1 = u2 = ·· · = uk = 0.

Otherwise we would have two distinct expressions for the element 0,
the other being 0+0+·· ·+0.

This condition is actually equivalent to the uniqueness condition in
a= u1+·· ·+uk , ui ∈Ui , i = 1, . . . ,k .

Let a= u1+u2+·· ·+uk = u′
1+u′

2+·· ·+u′
k
, with ui ,u

′
i
∈Ui , for all i .

Then
(u1−u′

1)+ (u2−u′
2)+·· ·+ (uk −u′

k)= 0.

By the hypothesis, we get ui = u′
i
, for all i .
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Some Group Theory Abelian Groups

Order a Product of Two Coprimes

Lemma

Let a be an element of a finite abelian group A, and suppose that the order
of a is mn, where gcd(m,n)= 1. Then a can be written in exactly one way
as b+c , where o(b)=m and o(c)= n.

Let b′ = na and c ′ =ma. Then certainly o(b′)=m and o(c ′)= n.

Since m and n are coprime, there exist s ,t in Z, such that sm+ tn= 1.

Hence, a= (sm+ tn)a= tb′+ sc ′.

Since sm+ tn= 1, we must have gcd(t ,m)= 1 and gcd(s ,n)= 1.

Hence, o(tb′)=m and o(sc ′)= n. So b = tb′ and c = sc ′ are such that
a= b+c , with o(b)=m and o(c)= n.

Let a= b+c = b1+c1, where o(b)= o(b1)=m and o(c)= o(c1)= n.

So b−b1 = c1−c = d (say). Then md =mb−mb1 = 0 and
nd = nc1−nc = 0. So o(d) divides both m and n. Hence, o(d)= 1.

So b−b1 = c1−c = 0. I.e., b = b1 and c = c1.
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Some Group Theory Abelian Groups

Order a Product of Finitely Many Coprimes

Corollary

Let a be an element of a finite abelian group A, and suppose that
o(a)=m1m2 · · ·mr , where gcd(mi ,mj )= 1, whenever i 6= j .
Then a can be written in exactly one way as

a1+a2+·· ·+ar ,

where o(ai )=mi , i = 1,2, . . . ,r .

By hypothesis, gcd(m1 · · ·mr−1,mr )= 1.

By the theorem we can write a uniquely as a′+ar , with
o(a′)=m1 · · ·mr−1 and o(ar )=mr .

The result then follows by induction on r .
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Some Group Theory Abelian Groups

Direct Sum Decomposition of Finite Abelian Groups

Theorem

Every finite abelian group is expressible as the direct sum of abelian
p-groups.

Suppose A is an abelian group of order n= p
e1

1 p
e2

2 · · ·p
er
r .

Let Ui be the set of elements of A whose order is a power of pi .

Claim: Ui is a subgroup of A.

Let x ,y ∈Ui , with orders pk
i

,pℓ
i
, respectively. Then pmax{k ,ℓ}

i
(x−y)= 0.

So the order of x −y is a divisor of pmax{k ,ℓ}

i
. So it is a power of pi .

Thus, x −y ∈Ui .

Let a be an element of A. Then the order of a divides n. So a has
order pd1

1
p
d2

2
· · ·p

dr
r . By the corollary, a can be expressed uniquely as

a1+a2+·· ·+ar , with o(ai )= p
di
i

, i = 1,2, . . . ,r . Thus, we have
A=U1⊕U2⊕·· ·⊕Ur .
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Some Group Theory Abelian Groups

The Basis Theorem

Theorem (The Basis Theorem)

Every finite abelian group is expressible as a direct sum of cyclic groups.

In view of the preceding theorem, we need only consider an abelian
p-group A, of order pm.

Let a1 be an element of maximal order pr1 in A.

Let A1 = 〈a1〉, the cyclic subgroup of A generated by a1.

If r1 =m, then 〈a1〉 =A. Thus, the group A is cyclic.

So suppose that r1 <m. We prove the result by induction.
Suppose that we have found k elements a1,a2, . . . ,ak of orders
pr1 ,pr2 , . . . ,prk (respectively) such that:
(i) r1 ≥ r2 ≥ ·· · ≥ rk ;
(ii) The subgroup Pk = 〈a1,a2, . . . ,ak 〉 is the direct sum

〈a1〉⊕〈a2〉⊕ ·· ·⊕〈ak 〉;

(iii) No element of A\Pk has order exceeding prk .
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Some Group Theory Abelian Groups

The Basis Theorem (Cont’d)

If Pk =A, then we are done.

Suppose there exists b in A\Pk . By (iii), the order of b is pβ, β≤ rk .

The set of multiples of b lying in Pk is non-empty, since pβb = 0 ∈Pk .

Let λ be the least positive integer with the property that λb ∈Pk .

Thus,

λb =

k
∑

i=1

µiai , λ≤ pβ
.

Claim: The integer λ must in fact be a power of p.

We divide pβ by λ to obtain pβ = qλ+ r , with 0≤ r <λ.

Suppose r 6= 0. Then rb = pβb−qλb = −qλb ∈Pk . This contradicts
the definition of λ as the least integer with this property. So r = 0.

It follows that λ divides pβ. Thus, λ is a power of p, say λ= prk+1 .

By (iii), rk+1 ≤ rk . Certainly, rk+1 ≤β.
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Some Group Theory Abelian Groups

The Basis Theorem (Cont’d)

Claim: Every coefficient µi in λb =
∑k

i=1
µiai is divisible by λ.

Multiply by pβ

λ = pβ−rk+1. We get 0= pβb =
∑k

i=1

µip
β

λ ai .

By (ii), we have
µip

β

λ ai = 0, for all i .

Hence,
µip

β

λ =µip
β−rk+1 is divisible by o(ai )= pri , say

µip
β

λ =µ′
i
pri .

Now β≤ ri , for i = 1,2, . . . ,k .

Hence, µi =λµ′
i
pri−β =λνi , where νi =µ′

i
pri−β is an integer.

Let

ak+1 = b−
k
∑

i=1

νiai .

Then the order of ak+1 is λ= prk+1 .

We have λak+1 =λb−
∑k

i=1
λνiai = 0.

Assume κak+1 = 0, for κ> 0.

Then κb = κ(ak+1+
∑k

i=1
λνiai)=

∑k
i=1

κλνiai ∈Pk . So κ≥λ.
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Some Group Theory Abelian Groups

The Basis Theorem (Conclusion)

Let Pk+1 = 〈a1,a2, . . . ,ak ,ak+1〉.

We must show Pk+1 = 〈a1〉⊕〈a2〉⊕ · · ·⊕〈ak〉⊕〈ak+1〉.

We show that, if z1a1+z2a2+·· ·+zk+1ak+1 = 0, where z1,z2, . . . ,zk+1

are integers, then z1a1 = z2a2 = ·· · = zk+1ak+1 = 0.

Let z1a1+z2a2+·· ·+zk+1ak+1 = 0, with z1,z2, . . . ,zk+1 integers.

Then zk+1ak+1 belongs to Pk . Since ak+1 = b−
∑k

i=1
νiai , zk+1b

belongs to Pk . By the minimal property of λ, λ≤ zk+1.

The division algorithm gives zk+1 = qλ+ r , with 0≤ r <λ.

So rb = zk+1b−qλb ∈Pk , a contradiction unless r = 0. Thus, λ | zk+1.

Let zk+1 =λz ′
k+1

= prk+1z ′
k+1

. The order of ak+1 is λ= prk+1 .

So zk+1ak+1 = 0. By (ii), ziai = 0, for i = 1,2, . . . ,k .

So Pk+1 = 〈a1,a2, . . . ,ak+1〉 = 〈a1〉⊕〈a2〉⊕ · · ·⊕〈ak+1〉.

Since A is finite, the process must eventually terminate.

We find A= 〈a1,a2, . . . ,aℓ〉 = 〈a1〉⊕〈a2〉⊕ · · ·⊕〈aℓ〉.
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Some Group Theory Abelian Groups

Direct Product Representation

In multiplicative notation, a direct sum is called a direct product and
written U1×U2×·· ·×Uk . We have subgroups (necessarily normal
since A is abelian)

{1} =V0 ⊳V1 ⊳ · · ·⊳Vk =A,

where Vi =U1×U2×·· ·×Ui , i = 1,2, . . . ,k .

Theorem

With the above notation, Vi/Vi−1
∼=Ui .

Let ϕ :Vi →Ui be given by ϕ(vi )= ui , where u1u2 · · ·ui is the unique
expression of vi as a product of elements from U1,U2, . . . ,Ui .
It is clear that ϕ maps onto Ui .
ϕ is a homomorphism. If v ′

i
= u′

1u
′
2 · · ·u

′
i
∈Vi , then

ϕ(viv
′
i )=ϕ[(u1u

′
1)(u2u

′
2) · · ·(uiu

′
i )]= uiu

′
i =ϕ(vi )ϕ(v

′
i ).

The kernel of ϕ is {u1u2 · · ·ui : ui = 1} =Vi−1. So Ui
∼=Vi/Vi−1.
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Some Group Theory Abelian Groups

Solvability

A finite group is called solvable if, for some m≥ 0, it has a finite series

{1} =G0 ⊆G1 ⊆ ·· · ⊆Gm =G

of subgroups such that, for i = 0,1, . . . ,m−1:

(i) Gi ⊳Gi+1;
(ii) Gi+1/Gi is cyclic.

Solvability is not asserting that the subgroups Gi are all normal in G .

The representation

{1} =V0 ⊳V1 ⊳ · · ·⊳Vk =A,

where Vi =U1×U2×·· ·×Ui , i = 1,2, . . . ,k , yields:

Theorem

Every finite abelian group is solvable.
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Some Group Theory Abelian Groups

Solvability: Alternative Formulation

Theorem

A finite group G is solvable if and only if, for some m≥ 0, it has a finite
series

{1} =G0 ⊆G1 ⊆ ·· · ⊆Gm =G

of subgroups such that, for i = 0,1, . . . ,m−1:

(i) Gi ⊳Gi+1;

(ii) Gi+1/Gi is abelian.

Since every cyclic group is abelian, the “only if” is clear.

For the “if”, suppose that we have a series as in the statement.

For all k = 0, . . . ,m−1, Gi+1/Gi is finite abelian.

By the preceding theorem, there exists a series

{1} =G i ,0 ⊆G i ,1 ⊆ ·· · ⊆G i ,ji =Gi+1/Gi ,

such that G i ,ℓ ⊳G i ,ℓ+1 and G i ,ℓ+1/G i ,ℓ is cyclic, for all 0≤ ℓ< ji .
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Some Group Theory Abelian Groups

Solvability: Alternative Formulation

Thus, there exist Gi ,ℓ, ℓ= 0, . . . , ji , such that

Gi =Gi ,0 ⊆Gi ,1 ⊆ ·· · ⊆Gi ,ji =Gi+1,

and Gi ,ℓ ⊳Gi ,ℓ+1 and Gi ,ℓ+1/Gi ,ℓ
∼=G i ,ℓ+1/G i ,ℓ is cyclic, for all

0≤ ℓ< ji .

The proof is finished by interjecting these series between the Gi ’s in
the series provided by the hypothesis to obtain

{1} =G0 =G0,0 ⊆G0,1 ⊆ ·· · ⊆G0,j0 =G1

=G1,0 ⊆G1,1 ⊆ ·· · ⊆G1,j1 =G2

=G2,0 ⊆G2,1 ⊆ ·· · ⊆G2,j2 =G3

...
=Gm−1,0 ⊆Gm−1,1 ⊆ ·· · ⊆Gm−1,jm−1

=Gm.
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Some Group Theory Sylow Subgroups

Subsection 2

Sylow Subgroups
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Some Group Theory Sylow Subgroups

Join of Groups

If H and K are subgroups of a group G , then the subgroup H∨K , the
smallest subgroup of G containing H and K , consists of all finite
products

y = h1k1h2k2 · · ·hmkm,

where h1,h2, . . . ,hm ∈H and k1,k2, . . . ,km ∈K .

If at least one of the subgroups, say H, is normal, then we can rewrite
k1h2 as h′2k1, where h′2 = k1h2k

−1
1 ∈H.

By repeating this argument, we can obtain an expression h∗k∗ for y .

It is then natural to write H ∨K as HK (or equivalently as KH).
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Some Group Theory Sylow Subgroups

Isomorphisms of Groups

Theorem

Let G be a group, let N ⊳G and let H be a subgroup of G .

(i) N ∩H ⊳H and
H/(N ∩H)∼=NH/N.

(ii) If N ≤H and H ⊳G , then N ⊳H, H/N ⊳G/N, and

(G/N)/(H/N) ∼=G/N.

(i) Let x ∈N∩H and h ∈H. Then h−1xh ∈N ∩H. So N ∩H ⊳H.

Let φ : g 7→Ng be the natural mapping from G onto G/N.

Let ι :H →G be the inclusion mapping.
Consider the homomorphism φ◦ ι :H →G/N.

Its image is NH/N ;
Its kernel is N ∩H .

By the Homomorphism Theorem, H/(N ∩H)∼=NH/N.
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Some Group Theory Sylow Subgroups

Isomorphisms of Groups Part (ii)

(ii) Let x ∈N and h ∈H. Since N ⊳G , h−1xh ∈N. So N ⊳H.

Define a mapping θ :G/N →G/H by

θ(Ng)=Hg .

This is well defined: Suppose Ng1 =Ng2. Then g1g
−1
2

∈N ⊆H . So
Hg1 =Hg2.
It clearly maps onto G/H .
It is a homomorphism:

θ((Na)(Nb))= θ(N(ab))=H(ab)= (Ha)(Hb)= [θ(Na)][θ(Nb)].

Its kernel is {Ng :Hg =H}= {Ng : g ∈H}=H/N .

By the Homomorphism Theorem, (G/N)/(H/N) ∼=G/H.
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Some Group Theory Sylow Subgroups

Existence of Elements of Prime Divisor Order

Theorem

Let A be a finite abelian group and let p be a prime such that p divides
|A|. Then A contains an element of order p.

We use induction on |A|. The result is trivial if |A| = p.

Let |A| = pkn, where k ≥ 1 and p ∤ n. Let M be a maximal proper
subgroup of A, with order m.

Suppose p |m. By induction, M (and hence, of course, A) contains an
element of order p.
Suppose p ∤m. Let v ∈A\M . Suppose that the cyclic subgroup V = 〈v〉

is of order r . Now MV is a subgroup of A properly containing M . So
MV =A. By the theorem, A/M =MV /M ∼=V /(M ∩V ). So

pkn= |A| =
|M ||V |

|M∩V |
=

mr

|M ∩V |
.

Hence p | r . So the element v r/p has order p.
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Some Group Theory Sylow Subgroups

The Class Equation

Let G be a finite group, and let a,b ∈G .

We say that a is conjugate to b if there exists x in G such that

x−1ax = b.

Conjugacy is an equivalence relation.

Hence G is partitioned into k equivalence classes Ci , i = 1,2, . . . ,k .
Within each Ci , every element is conjugate to every other.
The only element conjugate to the identity element e is e itself.
We suppose that C1 = {e}.

The class equation of G is the arithmetical equality deriving from the
partition:

|G | = 1+|C2|+ · · ·+ |Ck |.

In an abelian group the notion of conjugacy is not useful, since
elements are conjugate only if they are equal.
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Some Group Theory Sylow Subgroups

The Centralizer

Let G be a group and a an element of G .

The centralizer Z (a) is defined to be the set of all g in G such that

ga= ag .

Proposition

Let G be a group and a ∈G . Z (a) is a subgroup of G .

Let g ,g ′ ∈Z (a). By definition, ga= ag and g ′a= ag ′.

The second gives g ′−1a= ag ′−1. So g ′−1 ∈Z (a).

Finally, we obtain

(gg ′)a= g(g ′a)= g(ag ′)= (ga)g ′
= (ag)g ′

= a(gg ′).

So gg ′ ∈Z (a). It follows that Z (a) is a subgroup of G .
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Some Group Theory Sylow Subgroups

Conjugacy Classes and the Centralizer

For a ∈G , C (a)= {x−1ax : x ∈G }, the conjugacy class of a.

Lemma

Let G be a group and a ∈G . The number of elements in C (a) is equal to
the index of Z (a) in G .

By definition, C (a)= {x−1ax : x ∈G }. For x ,y ∈G , we have

x−1ax = y−1ay iff axy−1 = xy−1a

iff xy−1 ∈Z (a)
iff Z (a)x =Z (a)y .

Thus, the number of distinct elements in C (a) is equal to the number
of distinct cosets of Z (a).

Corollary

Let G be a group. Then |C (a)| divides |G |, for all a ∈G .
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Some Group Theory Sylow Subgroups

The Center

The center of a group G is the set

Z =Z (G )= {z ∈G : (∀ g ∈G ) zg = gz }.

Alternatively, Z is the set of elements z of G for which Z (z)=G .

Proposition

Let G be a group. Every subgroup U of G contained in Z (G ) (including
Z (G ) itself) is normal.

Suppose u ∈U and g ∈G . Then, since u ∈Z (G ), we have

g−1ug = g−1gu = u ∈U .

So U is a normal subgroup of G .

Note that a ∈Z if and only if C (a)= {a}.
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Some Group Theory Sylow Subgroups

The Center of p-Groups

Theorem

If G is a group of order pm, where p is prime and m is a positive integer,
then Z (G ) is non-trivial.

The class equation gives pm = 1+|C2|+ · · ·+ |Ck |.

So 1+|C2|+ · · ·+ |Ck | is divisible by p.

But, by a previous corollary, each |Ci | divides pm.

So |Ci | = 1, for at least p−1 values of i in {2, . . . ,k}.

Hence, |Z (G )| ≥ p.
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Some Group Theory Sylow Subgroups

Existence of Sylow Subgroups

Theorem

Let G be a finite group of order pℓr , where p is prime and p ∤ r . Then G

has at least one subgroup of order pℓ.

We use induction on |G |, the result being clear if |G | = 1 or 2.

Consider the class equation

pℓr = |G | = c1+c2+·· ·+ck ,

where ci = |Ci |, i = 1,2, . . . ,k .

By a previous corollary, ci is equal to |G |

|Zi |
, where Zi is the centralizer in

G of a typical element of Ci .

Writing zi for the order of Zi , we get zi =
pℓr
ci

, i = 1,2, . . . ,k .

Suppose, first, that there exists ci > 1 such that p ∤ ci .
Then zi < pℓr and is divisible by pℓ.
By the induction hypothesis, Zi contains a subgroup of order pℓ.
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Some Group Theory Sylow Subgroups

Existence of Sylow Subgroups (Cont’d)

Now assume, for all i in {1,2, . . . ,k}, either ci = 1 or p divides ci .

The union of the classes Ci , with ci = 1, is the center Z of G .

So pℓr = |Z |+vp, for some integer v .

Hence Z is non-trivial, with order divisible by p.

But Z is abelian. So, it contains an element a of order p.

Since Z is normal, the cyclic subgroup 〈a〉 is certainly normal.

Moreover, |G/〈a〉| = pℓ−1r .

By induction, G/〈a〉 contains a subgroup U/〈a〉 of order pℓ−1.

So G contains a subgroup U of order pℓ.

The subgroup U is called a Sylow subgroup.
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Some Group Theory Sylow Subgroups

The Cauchy Theorem

Corollary (Cauchy)

Let G be a finite group and let p be a prime such that p divides |G |. Then
G contains an element of order p.

We have seen that G has a subgroup H of order pℓ.

A typical element v of H has order pk , where k ≤ ℓ.

It is then clear that vp
k−1

has order p.

The preceding theorem is, actually, only part of Sylow’s Theorem.
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Some Group Theory Sylow Subgroups

Tower of Normal Subgroups of Power p Order

Theorem

Let G be a group of order pm, where p is prime and m is a positive integer.
Then there exist normal subgroups

{e} =H0 ⊂H1 ⊂ ·· · ⊂Hm−1 ⊂Hm =G

of G such that |Hi | = pi , for i = 0,1, . . . ,m.

G must contain an element of order p. The order of any a 6= e in G is
pr for some r in {1,2, . . . ,m}. So ap

r−1
is of order p.

For m= 1, there is nothing to prove. Let m≥ 2. Suppose inductively
that the result holds for all k <m. Let |G | = pm.

By a previous theorem, we may suppose that there is a subgroup P of
order p contained in the center Z (G ).
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Some Group Theory Sylow Subgroups

Tower of Normal Subgroups of Power p Order (Cont’d)

Consider a subgroup P of order p contained in the center Z (G ).

Then P is normal and we have |G/P | = pm−1.

Every normal subgroup N of G/P may be written as N/P , where N is
a normal subgroup of G containing P .

By induction, there exist normal subgroups Ki , all containing P , such
that

{e} =K0/P ⊂K1/P ⊂ ·· · ⊂Km−1/P =G/P ,

with |Ki/P | = pi , i = 1,2, . . . ,m−1.

Define H0 = {e}, H1 =P and Hi =Ki−1, i = 2, . . . ,m.

We obtain normal subgroups Hi of G , such that

{e} =H0 ⊂H1 ⊂ ·· · ⊂Hm−1 ⊂Hm =G ,

with |Hi | = pi , i = 0,1, . . . ,m.
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Some Group Theory Permutation Groups

Subsection 3

Permutation Groups
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Some Group Theory Permutation Groups

Symmetric Groups

Let Sn be the symmetric group on n symbols.

Its elements are all one-to-one mappings (permutations) of the set
{1,2, . . . ,n} onto itself;
The operation is composition of mappings.

The composition of two permutations π1 and π2 is called their
product.

π1π2 is interpreted as “first π1, then π2”.

A cycle of length k , written σ= (a1 a2 · · · ak) is a permutation such
that

a1σ= a2, a2σ= a3, . . . , ak−1σ= ak , akσ= a1

and xσ= x , for each x not in the set {a1,a2, . . . ,ak }.
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Some Group Theory Permutation Groups

The Cycle Decomposition

Theorem

Every π in Sn can be expressed as a product of disjoint cycles. The order of
π is the least common multiple of the lengths of the cycles.

Let x1 be an arbitrarily chosen element of {1,2, . . . ,n}. If x1π= x1, then
(x1) is itself a cycle. Otherwise, write x1π as x2. We continue with a
sequence x1,x2 = x1π,x3 = x2π, . . .. Since the set {1,2, . . . ,n} is finite,
there must eventually be a repetition. Suppose that the first repetition
is xkπ= xj , with k > j . Suppose j 6= 1. Then xj−1π= xkπ= xj . This
contradiction gives j = 1. So the restriction of π to {x1,x2, . . . ,xk } is the
cycle (x1 x2 · · · xk).

Now choose y1 not in {x1,x2, . . . ,xk } and repeat the process. We obtain
a cycle (y1 y2 · · · y1). Eventually this process ends.

We, thus, obtain the decomposition of π into disjoint cycles.
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Some Group Theory Permutation Groups

The Cycle Decomposition (Cont’d)

It is clear that the order of a cycle coincides with its length.

Moreover, disjoint cycles commute with each other.

Let π be the product σ1σ2 · · ·σr of disjoint cycles of lengths
λ1,λ2, . . . ,λr .

Then, for each m≥ 1,

πm
=σm

1 σm
2 · · ·σm

r .

This is equal to the identity permutation if and only if m is a multiple
of each of the integers λ1,λ2, . . . ,λr .

The decomposition into disjoint cycles is in effect unique.

The cycles can begin with any one of their entries;
The order of the cycles is arbitrary.
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Some Group Theory Permutation Groups

Transpositions

A cycle of length 2 is called a transposition.

Corollary

Every permutation can be expressed as a product of transpositions.

In view of the theorem, we need only show that a cycle is a product of
transpositions.

It is easy to verify that

(a1 a2 · · · ak)= (a1 a2)(a1 a3) · · ·(a1 ak).

a1
(a1 a2)
−→ a2;

ai
(a1 ai )
−→ a1

(a1 ai+1)
−→ ai+1, i ≤ 2≤ k−1;

ak
(a1 ak )
−→ a1.

George Voutsadakis (LSSU) Fields and Galois Theory January 2024 36 / 53



Some Group Theory Permutation Groups

Even and Odd Permutations

Consider the polynomial

∆(X1, . . . ,Xn) =
∏

1≤i<j≤n

(Xi −Xj)

= (X1−X2)(X1−X3) · · ·(X1−Xn)
(X2−X3) · · ·(X2−Xn)

· · ·

(Xn−1−Xn).

of degree (n−1)+ (n−2)+·· · +1=
1
2
n(n−1).

For each permutation π in the symmetric group Sn, we may define

π(∆)=
∏

1≤i<j≤n

(Xπ(i)−Xπ(j)).

The factors in π(∆) are the same as the factors in ∆, except that they
are in a different order, and some of them may be reversed.

A permutation π is even or odd according as π(∆)=∆ or π(∆)=−∆.
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Some Group Theory Permutation Groups

The Alternating Group

A permutation π is even [odd] if and only if it is expressible as a
composition of an even [odd] number of transpositions.

It follows that

even ·even= even, even ·odd= odd ·even= odd, odd ·odd= even.

Consequently the set of all even permutations is a subgroup, indeed a
normal subgroup, of Sn, called the alternating group, and denoted
by An.

For any transposition (x1 x2), the coset An(x1 x2) is precisely the set
of odd permutations.

The coset An(x1 x2) consists entirely of odd permutations.
Let π be an odd permutation. Then π can be written as
(π(x1 x2))(x1 x2), with π(x1 x2) even. So π is in An(x1 x2).

So An is of index 2 in Sn and of order 1
2
n!.
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Some Group Theory Permutation Groups

Solvability of S3

Theorem

The symmetric group S3 is solvable.

S3 consists of the permutations

e = 1, a= (1 2 3), b = (1 3 2), x = (2 3), y = (1 3), z = (1 2).

S3 has a normal subgroup H = {e,a,b}.

Both H and S/H are cyclic.

Thus S3 is solvable.
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Some Group Theory Permutation Groups

Solubility of S4

Theorem

The symmetric group S4 is solvable.

The alternating group A4 is a subgroup of index 2 and is normal.

The quotient S4/A4, being a group of order 2, is assuredly cyclic.

The alternating group consists of the identity, together with:

(1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3),

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3).

The set V = {1,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} is an abelian
subgroup of A4 (the Klein 4-group). Its right and left cosets are V ,
V (1 2 3)= (1 2 3)V = {(1 2 3),(1 3 4),(1 4 2),(2 4 3)},
V (1 2 4)= (1 2 4)V = {(1 2 4),(1 3 2),(1 4 3),(2 3 4)}.

So V ⊳A4. The quotient A4/V , being of order 3, is cyclic.

We thus have 1⊳V ⊳A4 ⊳ S4, with V /1,A4/V ,S4/A4 cyclic.
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Some Group Theory Permutation Groups

Alternating Group and Cycles of Length 3

Lemma

For all n ≥ 3, the alternating group An is generated by the set of all cycles
of length 3.

It is clear that An is generated by the set of elements of type
(a b)(c d).

If the two transpositions are equal, their product is the identity.
If the product is of the form (a b)(a c), where a,b,c are distinct, then
we see that (a b)(a c)= (a b c);
If a,b,c ,d are all distinct, then

(a b)(c d)= [(a b)(a c)][(c a)(c d)]= (a b c)(c a d).
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Some Group Theory Permutation Groups

Simplicity of An, n≥ 5

A non-abelian group is called simple if it has no proper normal
subgroups.

Such a group is certainly not solvable.

Theorem

For all n ≥ 5, the alternating group An is simple.

Let N 6= {1} be a normal subgroup of An. We shall show that N
contains every cycle of length 3. Then, by the lemma, N =An.

Case 1: Suppose that N contains a cycle (a b c) of length 3.

Let x ,y ,z be distinct elements in {1,2, . . . ,n} and α=

(

a b c

x y z

)

.

Then α−1(a b c)α= (x y z).
If α is even, this implies that (x y z) ∈N .
If α is odd, replace it by the even permutation β= (d e)α, where
d ,e 6∈ {a,b,c} (possible since n≥ 5). Observe β−1(a b c)β= (x y z).

Hence N contains all cycles of length 3. So N =An.
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Some Group Theory Permutation Groups

Simplicity of An, n≥ 5 (Cont’d)

Case 2: Next, suppose N contains an element π which decomposes
into disjoint cycles as π= κ1κ2 · · ·κr . Suppose that one of the cycles,
which we may, without loss of generality, take as κ1, is of length s ≥ 4:
κ1 = (a1 a2 · · · as).

Let α= (a1 a2 a3). Then α−1πα= (α−1κ1α)κ2 · · ·κr , since only κ1 is
affected by the conjugation. Moreover,

α−1κ1α = (a1 a3 a2)(a1 a2 · · · as)(a1 a2 a3)
= (a2 a3 a1 a4 a5 · · · as).

The element π−1α−1πα belongs to N. We have

π−1α−1πα = κ−1
1 α−1κ1α

= (as as−1 · · · a1)(a2 a3 a1 a4 a5 · · · as)
= (a1 a2 a4).

We are back in Case 1. So N =An.
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Some Group Theory Permutation Groups

Simplicity of An, n≥ 5 (Cont’d)

Case 3: Suppose all the elements of N have cycle decompositions
involving only cycles of length 2 and 3.

Suppose π contains only one cycle (a b c) of length 3 (the other cycles
being of length 2). Then π2 = (a c b) ∈N . We are back in Case 1.
Suppose that π contains at least two disjoint cycles (a b c) and
(d e f ) of length 3. Then N contains

π′ = (e d c)π(e c d)
= (e d c)(a b c)(d e f )(e c d) · · ·
= (a b d)(c f e) · · · .

So it contains

ππ′
= (a b c)(d e f ) · · ·(a b d)(c f e) · · · = (a d c b f ) · · · .

We are back in Case 2. So N =An.
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Some Group Theory Permutation Groups

Simplicity of An, n≥ 5 (Conclusion)

Case 3 (Cont’d):
The final case is where π is a product of a (necessarily even) number of
transpositions.

Suppose first that there are just two: π= (a b)(c d). Then there is at

least one other symbol e, since we are assuming that n≥ 5. So N

contains the element

π[(a b e)−1π(a b e)]= (a b)(c d)(a e b)(a b)(c d)(a b e)= (a e b).

Again we are back in Case 1.

Suppose finally that π= (a b)(c d)(e f )(g h) · · · . Then N contains

π[(b c)−1(d e)−1π(d e)(b c)] = π(b c)(d e)π(d e)(b c)
= (a e d)(b c f ) · · · .

Once again we are back in a case already considered.
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Some Group Theory Permutation Groups

Generation of Sn

Theorem

The symmetric group Sn is generated by the cycles (1 2) and (1 2 · · · n).

Let τ= (1 2) and ζ= (1 2 · · · n).

Then ζ−1 = ζn−1 = (n n−1 · · · 2 1).

So ζ−1τζ= (n n−1 · · · 1)(1 2)(1 2 · · · n)= (2 3).

Claim: For all i = 1, . . . ,n−1, ζ−i+1τζi−1 = (i i +1).

Suppose j 6∈ {i , i +1}. Then we have, modulo n,

jζ−i+1τζi−1
= (j − i +1)τζi−1

= (j − i +1)ζi−1
= j .

On the other hand,

iζ−i+1τζi−1 = 1τζi−1 = 2ζi−1 = i +1;

(i +1)ζ−i+1τζi−1 = 2τζi−1 = 1ζi−1 = i .
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Some Group Theory Permutation Groups

Generation of Sn (Cont’d)

Claim: For j = 2,3, . . . ,n−1,

(j j +1)(j −1 j) · · ·(2 3)(1 2)(2 3) · · ·(j j +1)= (1 j +1).

Claim: For i = 1,2, . . . ,n−1 and j = 1,2, . . . ,n− i ,

ζ−i+1(1 j +1)ζi−1
= (i i + j).

We have

iζ−i+1(1 j +1)ζi−1 = 1(1 j +1)ζi−1 = (j +1)ζi−1 = i + j ;

(i + j)ζ−i+1(1 j +1)ζi−1 = (j +1)(1 j +1)ζi−1 = 1ζi−1 = i .

All other members of {1,2, . . . ,n} map to themselves.

We have shown that τ and ζ generate all transpositions in Sn.

By a previous corollary, they generate the whole of Sn.
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Subsection 4

Properties of Solvable Groups
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Some Group Theory Properties of Solvable Groups

Properties of Solvable Groups

Recall that a group G is solvable if, for some m≥ 0, it has a finite
series

{1} =G0 ⊆G1 ⊆ ·· · ⊆Gm =G

of subgroups such that, for i = 0,1, . . . ,m−1,

(i) Gi ⊳Gi+1;
(ii) Gi+1/Gi is cyclic.

Theorem

Let G be a group.

(i) If G is solvable, then every subgroup of G is solvable.

(ii) If G is solvable and N is a normal subgroup of G , then G/N is solvable.

(iii) Let N ⊳G . Then G is solvable if and only if both N and G/N are solvable.
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Some Group Theory Properties of Solvable Groups

Proof of Property (i)

(i) Suppose that
1=G0 ⊳G1 ⊳ · · ·⊳Gm =G ,

and that Gi+1/Gi is cyclic for i = 1,2, . . . ,m−1.

Let H be a subgroup of G . For each i , let Ki =H ∩Gi . Then

Ki =H∩ (Gi+1∩Gi)= (H ∩Gi+1)∩Gi =Ki+1∩Gi .

By a preceding theorem, Ki ⊳Ki+1. We have

Ki+1/Ki =Ki+1/(Ki+1∩Gi)∼=Ki+1Gi/Gi .

Since Ki+1Gi/Gi is a subgroup of the cyclic group Gi+1/Gi , it is cyclic
(or trivial). So the sequence

{1} =K0 ⊳K1 ⊳ · · ·⊳Km =H

has the required properties.
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Some Group Theory Properties of Solvable Groups

Proof of Property (ii)

(ii) With G defined as before, it is clear that G/N has a series

N/N =G0N/N ⊳G1N/N ⊳ · · ·⊳GmN/N =G/N.

There may be coincidences in this series - for example, if G1 ⊆N, then
G1N/N =N/N - but this causes no problem.

Using a previous theorem, we can transform a typical quotient:

Gi+1N/N

GiN/N
∼=
Gi+1N

GiN
=
Gi+1(GiN)

GiN
∼=

Gi+1

Gi+1∩ (GiN)
∼=

Gi+1/Gi

(Gi+1∩ (GiN))/Gi
.

The quotient, being isomorphic to a factor group of the cyclic group
Gi+1/Gi is certainly cyclic.
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Some Group Theory Properties of Solvable Groups

Proof of Property (iii)

(iii) From Parts (i) and (ii), if G is soluble, N and G/N are soluble.

Suppose, conversely, that N and G/N are solvable.

Then there are:
A series

{1} =N0 ⊳N1 ⊳ · · ·⊳Np =N ,

in which Ni+1/Ni is cyclic for i = 0,1, . . . ,p−1;
A series

{1}=N/N =G0/N ⊳G1/N ⊳ · · ·⊳Gm/N =G/N ,

such that Gi ⊳Gi+1 and Gi+1/Gi
∼= (Gi+1/N)/(Gi/N) is cyclic, for

i = 0,1, . . . ,m−1.

Hence, there is a series

{1} =N0 ⊳N1 ⊳ · · ·⊳Np =N =G0 ⊳G1 ⊳ · · ·⊳Gp =G .

So G is solvable.
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Some Group Theory Properties of Solvable Groups

Non-Solvability of Sn, n≥ 5

Corollary

For all n ≥ 5, the symmetric group Sn is not solvable.

If Sn were solvable, then all its subgroups would be solvable.

We know that An is simple.

So it is certainly not solvable.
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