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Local Structure of Fractals Introduction

Restriction to s-Sets

Our goal os to study the local structure of fractals using the power of
Hausdorff measures.

For this, it is necessary to restrict attention to s-sets.

These are Borel sets of Hausdorff dimension s with positive finite
s-dimensional Hausdorff measure.

This is not so restrictive as it first appears, since many fractals
encountered in practice are s-sets.

Even if Hs(F ) = ∞, by a previous theorem, F has subsets that are
s-sets to which this theory can be applied.

Alternatively, it sometimes happens that a set F of dimension s is a
countable union of s-sets, and the properties of these component sets
can often be transferred to F .
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Local Structure of Fractals Introduction

Difficulty of Proofs

The material outlined in this set lies at the heart of geometric
measure theory.

In this area, rigorous proofs are often intricate and difficult.

We include some proofs to give a flavor of the subject

But we omit the harder proofs.

We generally restrict attention to subsets of the plane.

Higher-dimensional analogues, though valid, are often harder.
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Local Structure of Fractals Densities

Subsection 2

Densities
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Local Structure of Fractals Densities

Density of a Set

Let F be a subset of the plane.

Let B(x , r) be the closed disc of radius r and center x

The density of F at x is

lim
r→0

area(F ∩ B(x , r))

area(B(x , r))
= lim

r→0

area(F ∩ B(x , r))

πr2
.

The classical Lebesgue Density Theorem tells us that, for a Borel set
F , except for a set of x of area 0, the density limit exists and:

Equals 1 when x ∈ F ;
Equals 0 when x 6∈ F .
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Local Structure of Fractals Densities

Density of a Set (Illustration)

For a typical point x of F , small discs centered at x are almost
entirely filled by F .

On the other hand, if x is outside F , then small discs centered at x
generally contain very little of F .
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Local Structure of Fractals Densities

Density of Smooth Curves

Suppose F is a smooth curve in the plane.

If x is a point of F (other than an endpoint), then F ∩B(x , r) is close
to a diameter of B(x , r) for small r and

lim
r→0

length(F ∩ B(x , r))

2r
= 1.

If x 6∈ F , then this limit is clearly 0.

Density theorems such as these tell us how much of the set F , in the
sense of area or length, is concentrated near x .
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Local Structure of Fractals Densities

Density of an s-Set

Suppose F is an s-set in R2 with 0 < s < 2.
0-sets are just finite sets of points;
H2 is essentially area, so if s = 2 we are in the Lebesgue density
situation.

We would like to know how the s-dimensional Hausdorff measure of
F ∩ B(x , r) behaves as r → 0.

The lower density of an s-set F at a point x ∈ Rn is

Ds(F , x) = lim
r→0

Hs(F ∩ B(x , r))

(2r)s
.

The upper density of an s-set F at a point x ∈ Rn is

D
s
(F , x) = lim

r→0

Hs(F ∩ B(x , r))

(2r)s
.

If Ds(F , x) = D
s
(F , x) we say that the density of F at x exists and

we write Ds(F , x) for the common value.
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Local Structure of Fractals Densities

Regular and Irregular Points and Sets

A point x at which Ds(F , x) = D
s
(F , x) = 1 is called a regular point

of F .

Otherwise, x is an irregular point.

An s-set is termed regular if Hs-almost all of its points (i.e., all of its
points except for a set of Hs-measure 0) are regular.

It is called irregular if Hs-almost all of its points are irregular.

Not that, in this sense, “irregular” does not mean “not regular”!

As we will see, a fundamental result is that an s-set F must be
irregular unless s is an integer.

However, if s is integral an s-set decomposes into a regular and an
irregular part. Roughly speaking:

A regular 1-set consists of portions of rectifiable curves of finite length;
An irregular 1-set is totally disconnected and dust-like, and typically of
fractal form.
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Local Structure of Fractals Densities

Behavior of Irregular Sets

Proposition

Let F be an s-set in Rn. Then:

(a) Ds(F , x) = D
s
(F , x) = 0, for Hs-almost all x 6∈ F ;

(b) 2−s ≤ D
s
(F , x) ≤ 1, for Hs-almost all x ∈ F .

Partial Proof:

(a) Suppose, first, F is closed and x 6∈ F .

Then, for r small enough, B(x , r) ∩ F = ∅.

Hence,

lim
r→0

Hs(F ∩ B(x , r))

(2r)s
= 0.

If F is not closed the proof is a little more involved and we omit it.
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Local Structure of Fractals Densities

Behavior of Irregular Sets (Part (b))

(b) This follows quickly from a previous proposition.

Take µ as the restriction of Hs to F , i.e. µ(A) = Hs(F ∩ A).

Let

F1 =

{

x ∈ F : D
s
(F , x) = lim

r→0

Hs(F ∩ B(x , r))

(2r)s
< 2−sc

}

.

Then

Hs(F1) ≥
Hs(F )

c
≥

Hs(F1)

c
.

If 0 < c < 1, this is only possible if Hs(F1) = 0.

Thus, for almost all x ∈ F , we have D
s
(F , x) ≥ 2−s .

The upper bound follows similarly, using the same proposition.

Note that an immediate consequence of Part (b) is that an irregular
set has a lower density which is strictly less than 1 almost everywhere.
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Local Structure of Fractals Densities

Density of a Set and Densities of Subsets

Let F be an s-set and let E be a Borel subset of F . Then

Hs(F ∩ B(x , r))

(2r)s
=

Hs(E ∩ B(x , r))

(2r)s
+

Hs((F\E ) ∩ B(x , r))

(2r)s
.

For almost all x in E , we have Hs((F\E)∩B(x ,r))
(2r)s → 0 as r → 0, by the

preceding proposition. So letting r → 0 gives

Ds(F , x) = Ds(E , x), D
s
(F , x) = D

s
(E , x),

for Hs-almost all x in E .

Thus, if E is a subset of an s-set F with Hs(E ) > 0, then:

E is regular if F is regular;
E is irregular if F is irregular.

In particular, the intersection of a regular and an irregular set, being a
subset of both, has measure zero.
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Local Structure of Fractals Densities

Non-Integrality and Irregularity

Theorem

Let F be an s-set in R2. Then F is irregular unless s is an integer.

Partial Proof: We show that F is irregular if 0 < s < 1 by showing
that the density Ds(F , x) fails to exist almost everywhere in F .

Suppose, to the contrary, that there is a set F1 ⊆ F of positive
measure where the density exists.

By the preceding proposition, 1
2 < 2−s ≤ Ds(F , x).

By Egoroff’s Theorem, we may find r0 > 0 and a Borel set
E ⊆ F1 ⊆ F with Hs(E ) > 0, such that, for all x ∈ E and r < r0,

Hs(F ∩ B(x , r)) >
1

2
(2r)s .

Let y ∈ E be a cluster point of E , i.e., a point y with other points of
E arbitrarily close.
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Local Structure of Fractals Densities

Non-Integrality and Irregularity (Cont’d)

Let η be a number with 0 < η < 1.

Let Ar ,η be the annulus

Ar ,η = B(y , r(1 + η))\B(y , r(1 − η)).

Then,

(2r)−sHs(F ∩ Ar ,η) = (2r)−sHs(F ∩ B(y , r(1 + η)))
− (2r)−sHs(F ∩ B(y , r(1− η)))

r → 0
→ Ds(F , y)((1 + η)s − (1− η)s ).
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Local Structure of Fractals Densities

Non-Integrality and Irregularity (Cont’d)

For a sequence of values of r tending to 0,
we may find x ∈ E with |x − y | = r .

Then B(x , 12 rη) ⊆ Ar ,η.

So we get

1
2 r

sηs < Hs
(

F ∩ B
(

x , 12 rη
))

≤ Hs(F ∩ Ar ,η).

Therefore,

2−s−1ηs = 1
2 r

sηs 1
(2r)s

= 1
(2r)s H

s(F ∩ Ar ,η)

≤ Ds(F , y)((1 + η)s − (1− η)s)
= Ds(F , y)(2sη + terms in η2 or higher).

Letting η → 0, we see that this is impossible when 0 < s < 1.
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Local Structure of Fractals Structure of 1-Sets

Subsection 3

Structure of 1-Sets
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Local Structure of Fractals Structure of 1-Sets

Decomposition Theorem

Decomposition Theorem

Let F be a 1-set. The set of regular points of F forms a regular set, the
set of irregular points forms an irregular set.

Consider the sets of regular and of irregular points of F .

Then take into account the relation between the dimensions of a set
and of its subsets.
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Local Structure of Fractals Structure of 1-Sets

Example

Examples of regular and irregular 1-sets abound.

Smooth curves are regular, and provide us with the shapes of classical
geometry such as the perimeters of circles or ellipses.

On the other hand the iterated construction of the “Cantor dust”
gives an irregular 1-set which is a totally disconnected fractal.

This is typical, since as we will see:

Regular 1-sets are made up from pieces of curve;
Irregular 1-sets are dust-like and “curve-free”,
i.e., intersect any (finite length) curve in length zero.
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Local Structure of Fractals Structure of 1-Sets

Jordan Curves

For our purposes a curve or Jordan curve C is the image of a
continuous injection (one-to-one function)

ψ : [a, b] → R
2,

where [a, b] ⊆ R is a proper closed interval.

According to our definition:

Curves are not self-intersecting;
They have two ends;
They are compact connected subsets of the plane.
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Local Structure of Fractals Structure of 1-Sets

Rectifiable Curves

The length L(C ) of the curve C is given by polygonal approximation:

L(C ) = sup

m
∑

i=1

|xi − xi−1|,

where the supremum is taken over all dissections of C by points
x0, x1, . . . , xm in that order along the curve.

If the length L(C ) is positive and finite, we call C a rectifiable curve.
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Local Structure of Fractals Structure of 1-Sets

Length and Hausdorff Measure

Lemma

If C is a rectifiable curve then H1(C ) = L(C ).

For x , y ∈ C , let Cx ,y denote that part of C between x and y .

Denote by [x , y ] the straight-line segment joining x to y .

Orthogonal projection onto the line through x and y does not
increase distances.

So we get by the definition of H1,

H1(Cx ,y ) ≥ H1[x , y ] = |x − y |.

Hence, for any dissection x0, x1, . . . , xm of C ,
m
∑

i=1

|xi − xi−1| ≤
m
∑

i=1

H1(Cxi ,xi−1
) ≤ H1(C ).

So L(C ) ≤ H1(C ).
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Local Structure of Fractals Structure of 1-Sets

Length and Hausdorff Measure (Cont’d)

On the other hand, let f : [0,L(C )] → C be the mapping that takes t
to the point on C at distance t along the curve from one of its ends.

Clearly, for 0 ≤ t, u ≤ L(C ),

|f (t)− f (u)| ≤ |t − u|.

This shows that f is Lipschitz.

Therefore,
H1(C ) ≤ H1[0,L(C )] = L(C ).
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Local Structure of Fractals Structure of 1-Sets

Regularity of Rectifiable Curves

Lemma

A rectifiable curve is a regular 1-set.

If C is rectifiable, L(C ) <∞.

C has distinct endpoints p and q.

So L(C ) ≥ |p − q| > 0.

By the preceding lemma, 0 < H1(C ) <∞.

So C is a 1-set.

A point x of C , not an endpoint, divides C into Cp,x and Cx ,q.

If r is sufficiently small, then, moving away from x along the curve
Cx ,q, we reach a first point y on C with |x − y | = r .

Then Cx ,y ⊆ B(x , r) and

r = |x − y | ≤ L(Cx ,y) = H1(Cx ,y ) ≤ H1(Cx ,q ∩ B(x , r)).
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Local Structure of Fractals Structure of 1-Sets

Regularity of Rectifiable Curves (Cont’d)

We got r ≤ H1(Cx ,q ∩ B(x , r)).

Similarly, r ≤ H1(Cp,x ∩ B(x , r)).

So, for r small enough,

2r ≤ H1(C ∩ B(x , r)).

Thus,

D1(C , x) = lim
r→0

H1(C ∩ B(x , r))

2r
≥ 1.

By the first proposition of the section,

D1(C , x) ≤ D
1
(C , x) ≤ 1.

So D1(C , x) exists and equals 1, for all x ∈ C other than the two
endpoints. This proves that C is regular.
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Local Structure of Fractals Structure of 1-Sets

Curve-like 1-Sets

The relation between dimensions of sets and their subsets gives:

Subsets of regular sets are regular;
Unions of regular are regular.

We define a 1-set to be curve-like if it is contained in a countable
union of rectifiable curves.
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Local Structure of Fractals Structure of 1-Sets

Curve-like 1-Sets and Regularity

Proposition

A curve-like 1-set is a regular 1-set.

Let F be a curve-like 1-set.

Then F ⊆
⋃∞

i=1 Ci , where the Ci are rectifiable curves.

For each i and H1-almost all x ∈ F ∩ Ci we have

1 = D1(Ci , x) (preceding lemma)

= D1(F ∩ Ci , x) (relation between dimensions)

≤ D1(F , x).

Hence 1 ≤ D1(F , x), for almost all x ∈ F .

But, by a previous proposition, for almost all x ∈ F we have

D1(F , x) ≤ D
1
(F , x) ≤ 1.

So D1(F , x) = 1 almost everywhere, and F is regular.
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Local Structure of Fractals Structure of 1-Sets

Curve-Free 1-Sets

A 1-set is called curve-free if its intersection with every rectifiable
curve has H1-measure-zero.

Proposition

An irregular 1-set is curve-free.

Let F be irregular and C be a rectifiable curve.

Then F ∩ C is a subset of both a regular and an irregular set.

So F ∩ C has zero H1-measure.
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Local Structure of Fractals Structure of 1-Sets

A Bound for the Dimension of Curve-Free 1-Sets

The two preceding propositions begin to suggest that regular and
irregular sets might be characterized as curve-like and curve-free,
respectively.

This is indeed the case, but it is far from easy to prove.

The proof relies on a lower density estimate.

This is given in the following proposition, whose omitted proof
involves:

An intricate use of the properties of curves and connected sets;
Some ingenious geometrical arguments.

Proposition

Let F be a curve-free 1-set in R2. Then

D1(F , x) ≤
3

4
at almost all x ∈ F .
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Local Structure of Fractals Structure of 1-Sets

Characterizations of Irregular and Regular 1-Sets

Theorem

(a) A 1-set in R2 is irregular if and only if it is curve-free.

(b) A 1-set in R2 is regular if and only if it is the union of a curve-like set
and a set of H1-measure zero.

(a) A curve-free set must be irregular by the preceding proposition.

The proposition before the last provides the converse implication.

(b) By a previous proposition, a curve-like set is regular.

Adding in a set of measure zero does not affect densities.

Therefore, regularity also remains unaffected.

Suppose F is regular. Then any Borel subset E of positive measure is
regular with D1(E , x) = 1, for almost all x ∈ E .

By the preceding proposition, the set E cannot be curve-free.

So some rectifiable curve intersects E in a set of positive length.

We use this to define inductively a sequence of rectifiable curves {Ci}.
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Local Structure of Fractals Structure of 1-Sets

Characterizations of Irregular and Regular 1-Sets (Cont’d)

We choose C1 to cover a reasonably large part of F , say

H1(F ∩ C1) ≥
1

2
sup {H1(F ∩ C ) : C is rectifiable} > 0.

Suppose C1, . . . ,Ck have been selected.

Assume, first, Fk = F\
⋃k

i=1 Ci has positive measure.

Let Ck+1 be a rectifiable curve for which

H1(Fk ∩ Ck+1) ≥
1

2
sup {H1(Fk ∩ C ) : C is rectifiable} > 0.

If Fk = F\
⋃k

i=1 Ci has measure zero, the process terminates.

If the process terminates, then for some k the curves C1, . . . ,Ck cover
almost all of F and F is curve-like.

We argue that, if the process does not terminate, then F is the union
of a curve-like set and a set of H1-measure zero.

George Voutsadakis (LSSU) Fractal Geometry April 2024 32 / 47



Local Structure of Fractals Structure of 1-Sets

Characterizations of Irregular and Regular 1-Sets (Cont’d)

Suppose the process does not terminate.

The Fk ∩ Ck+1 are disjoint.

So we have
∑

k H
1(Fk ∩ Ck+1) ≤ H1(F ) <∞.

So H1(Fk ∩ Ck+1) → 0 as k → ∞.

Suppose H1(F\
∑∞

i=1 Ci ) > 0.

Then, there is a rectifiable curve C , such that, for some d > 0,

H1

((

F\
∞
∑

i=1

Ci

)

∩ C

)

= d .

But H1(Fk ∩ Ck+1) <
1
2d , for some k . So, according to the definition

of Ck+1, C would have been selected in preference to Ck+1.

This shows that H1(F\
∑∞

i=1 Ci ) = 0.
Hence, F consists of:

The curve-like set F ∩
⋃

∞

i=1 Ci ;
F\
⋃

∞

i=1 Ci , which is of measure zero.
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Local Structure of Fractals Structure of 1-Sets

Differences Between Regular and Irregular 1-Sets

In terns of curves:
Regular 1-sets are essentially unions of subsets of rectifiable curves;
Irregular 1-sets contain no pieces of rectifiable curves at all.

This dichotomy is remarkable in that the definition of regularity is
purely in terms of densities and makes no reference to curves.

In terms of densities:
Almost everywhere, a regular set has lower density 1;
An irregular set has lower density at most 3

4 .

Thus, in any 1-set F the set of points for which 3
4 < D1(F , x) < 1

has H1-measure zero.
In terms of connectedness:

Regular 1-sets may be connected;
Like sets of dimension less than 1, irregular 1-sets must be totally
disconnected.

Further differences between regular and irregular sets include the
existence of tangents and projection properties.
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Local Structure of Fractals Tangent to s-Sets

Subsection 4

Tangent to s-Sets
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Local Structure of Fractals Tangent to s-Sets

Tangent of s-Set at a Point

Any generalization of the definition of tangents should reflect the
local directional distribution of sets of positive measure.

An s-set F in Rn has a tangent at x in direction θ

(θ a unit vector) if

D
s
(F , x) > 0

and, for every angle ϕ > 0,

lim
r→0

Hs(F ∩ (B(x , r)\S(x ,θ, ϕ)))

r s
= 0,

where S(x ,θ, ϕ) is the double sector with vertex x ,
consisting of those y such that the line segment [x , y ]
makes an angle at most ϕ with θ or −θ.
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Local Structure of Fractals Tangent to s-Sets

Tangent of s-Set at a Point (Cont’d)

Thus, for a tangent in direction θ, we require that:

A significant part of F lies near x ;
Of the part lying near x a negligible amount lies outside any double
sector S(x , θ, ϕ).

George Voutsadakis (LSSU) Fractal Geometry April 2024 37 / 47



Local Structure of Fractals Tangent to s-Sets

Tangents of Rectifiable Curves

Proposition

A rectifiable curve C has a tangent at almost all of its points.

By a previous lemma, the upper density

D
1
(C , x) = 1 > 0, for almost all x ∈ C .

We may reparametrize the defining function of C by arc length.

So the function
ψ : [0,L(C )] → R

2

gives ψ(t) as the point distance t along C from the endpoint ψ(0).

Now L(C ) <∞ means that ψ has bounded variation.

I.e., we have

sup

m
∑

i=1

|ψ(ti )− ψ(ti−1)| <∞,

where the supremum is over all 0 = t0 < t1 < · · · < tm = L(C ).
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Local Structure of Fractals Tangent to s-Sets

Tangents of Rectifiable Curves (Cont’d)

A standard result from the theory of functions asserts that functions
of bounded variation are differentiable almost everywhere.
So ψ′(t) exists as a vector for almost all t.
Because of the arc length parametrization, |ψ′(t)| = 1 for such t.
So at almost all ψ(t) on C , there exists a unit vector θ, such that

lim
u→t

ψ(u)− ψ(t)

u − t
= θ.

Thus, given ϕ > 0, there is a number ε > 0, such that

|u − t| < ε implies ψ(u) ∈ S(ψ(t),θ, ϕ).

But C has no double points. So we may find r , such that

|u − t| ≥ ε implies ψ(u) 6∈ B(ψ(t), r).

So C ∩ (B(ψ(t), r)\S(ψ(t),θ, ϕ)) is empty.
By the definitions, the curve C has a tangent at ψ(t).
Such points account for almost all points on C .
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Local Structure of Fractals Tangent to s-Sets

Tangents of Curve-Like Sets

Proposition

A regular 1-set F in R2 has a tangent at almost all of its points.

By definition of regularity, D
1
(F , x) = 1 > 0 at almost all x ∈ F .

If C is any rectifiable curve, then, by the preceding proposition, for
almost all x in C , there exists θ, such that, if ϕ > 0,

limr→0
H1((F∩C)∩(B(x ,r)\S(x ,θ ,ϕ)))

r

≤ limr→0
H1(C∩(B(x ,r)\S(x ,θ,ϕ)))

r
= 0,
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Local Structure of Fractals Tangent to s-Sets

Tangents of Curve-Like Sets (Cont’d)

Moreover, by a previous property, for almost all x ∈ C ,

limr→0
H1((F\C)∩(B(x ,r)\S(x ,θ ,ϕ)))

r

≤ limr→0
H1((F\C)∩B(x ,r))

r
= 0.

Adding these inequalities, we get for almost all x ∈ C ,

lim
r→0

H1(F ∩ (B(x , r)\S(x ,θ, ϕ)))

r
= 0.

A fortiori, this holds also for almost all x ∈ F ∩ C .

But a countable collection of such curves covers almost all of F .

We conclude that a regular 1-set F in R2 has a tangent at almost all
of its points.
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Local Structure of Fractals Tangent to s-Sets

Irregular Sets and Tangents

Proposition

At almost all points of an irregular 1-set, no tangent exists.

The proof is difficult and it is omitted.

It depends on the characterization of irregular sets as curve-free sets.

George Voutsadakis (LSSU) Fractal Geometry April 2024 42 / 47



Local Structure of Fractals Tangent to s-Sets

s-Sets for 0 < s < 1

We saw that s-sets in R2 for non-integral s are necessarily irregular.

For 0 < s < 1 tangency questions are not particularly interesting.

Suppose a set is contained in a smooth curve.

Then, it will automatically satisfy the second tangent condition with
θ the direction of the tangent to the curve at x .
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Local Structure of Fractals Tangent to s-Sets

Example

Consider the middle third Cantor set F regarded as a subset of the
plane.

It is a log 2
log 3 -set.

Moreover, it satisfies both conditions, for all x in F and ϕ > 0, where
θ is a vector pointing along the set.

Consider a Cartesian product F of two uniform Cantor sets, each
formed by repeated removal of a proportion α > 1

2 from the center of
intervals.

A little calculation shows that F is an s-set with s = 2 log 2

log 2
1−α

< 1.

This set has no tangents at any of its points.
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Local Structure of Fractals Tangent to s-Sets

s-Sets for 1 < s < 2

It is plausible that s-sets in R2, with 1 < s < 2, do not have
tangents.

Such sets are so large that they radiate in many directions from a
typical point;
So the second tangent condition cannot hold.

Proposition

If F is an s-set in R2, with 1 < s < 2, then at almost all points of F , no
tangent exists.

For r0 > 0, let

E = {y ∈ F : Hs(F ∩ B(y , r)) < 2(2r)s for all r < r0}.

For each x ∈ E , each unit vector θ and each angle ϕ, with
0 < ϕ < 1

2π, we estimate how much of E lies in B(x , r) ∩ S(x ,θ, ϕ).
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Local Structure of Fractals Tangent to s-Sets

s-Sets for 1 < s < 2 (Cont’d)

For r < r0
20 and i = 1, 2, . . ., let Ai be the intersection of the annulus

and the double sector given by

Ai = (B(x , irϕ)\B(x , (i − 1)rϕ)) ∩ S(x ,θ, ϕ).

Then B(x , r) ∩ S(x ,θ, ϕ) ⊆
⋃m

i=1 Ai ∪ {x}, for some integer m < 2
ϕ
.

Each Ai comprises two parts, both of diameter at most 10rϕ < r0.

Applying the definition of E to the parts that contain points of E ,
and summing,

Hs(E ∩ B(x , r) ∩ S(x ,θ, ϕ)) ≤ 2m2(20rϕ)s ≤ (4ϕ−1)2(20rϕ)s .

So, if r < r0
20 ,

(2r)−sHs(E ∩ B(x , r) ∩ S(x ,θ, ϕ)) ≤ 8 · 10sϕs−1.
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Local Structure of Fractals Tangent to s-Sets

s-Sets for 1 < s < 2 (Cont’d)

By a previous proposition, for almost all x ∈ E , D
s
(F\E , x) = 0.

Decomposing F ∩ B(x , r) into three parts we get,

Hs(F ∩ B(x , r)) = Hs((F\E ) ∩ B(x , r))
+Hs(E ∩ B(x , r) ∩ S(x ,θ, ϕ))
+Hs(E ∩ (B(x , r)\S(x ,θ, ϕ))).

Divide by (2r)s and take upper limits as r → 0. For almost all x ∈ E ,

D
s
(F , x) ≤ 0 + 8 · 10sϕs−1 + lim

r→0
(2r)−sHs(F ∩ (B(x , r)\S(x ,θ, ϕ))).

Now choose ϕ sufficiently small.

It follows that, for all θ, the tangent conditions cannot both hold.

So no tangent exists at such x .

Finally, note that, by a previous proposition, almost all x ∈ F belong
to the set E for some r0 > 0.
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