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Metric Spaces and Metrics

The symbol × denotes the Cartesian product of sets: A×B is the
set of all ordered pairs (a,b), where a ∈A and b ∈B .

Hence X ×X is the set of all ordered pairs of elements of X .

Definition (Metric Space, Metric)

A metric space is a pair (X ,d), where X is a set and d is a metric on X
(or distance function on X ), that is, a function defined on X ×X , such
that for all x ,y ,z ∈X , we have:

(M1) d is real-valued, finite and nonnegative.

(M2) d(x ,y)= 0 if and only if x = y .

(M3) d(x ,y)= d(y ,x). (Symmetry)

(M4) d(x ,y)≤ d(x ,z)+d(z ,y). (Triangle Inequality)

George Voutsadakis (LSSU) Functional Analysis May 2023 4 / 75



Metric Spaces Metric Spaces

Comments on the Definition of Metric Spaces

X is usually called the underlying set of (X ,d). Its elements are
called points.

For fixed x ,y we call the nonnegative number d(x ,y) the distance

from x to y .

Properties (M1) to (M4) are the axioms of a metric.

The name “triangle inequality” is motivated by elementary geometry:

From (M4) we obtain by induction the generalized triangle

inequality d(x1,xn)≤ d(x1,x2)+d(x2,x3)+·· ·+d(xn−1,xn).

Instead of (X ,d) we may simply write X if no confusion is likely.
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Subspaces and Induced Metrics

A subspace (Y , d̃) of (X ,d) is obtained if we take a subset Y ⊆X

and restrict d to Y ×Y .

Thus, the metric on Y is the restriction d̃ = d |Y×Y .

d̃ is called the metric induced on Y by d .

Example: (Real line R) This is the set of all real numbers R, taken
with the usual metric defined by

d(x ,y)= |x −y |.
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The Euclidean Plane

(Euclidean plane R2) The metric space R2, called the Euclidean

plane, is obtained if we take the set R2 of ordered pairs of real
numbers, written x = (ξ1,ξ2), y = (η1,η2), etc., and the Euclidean

metric defined by

d(x ,y)=
√
(ξ1−η1)2+ (ξ2−η2)2.

Another metric space is obtained
if we choose the same set as
before, but another metric d1

defined by

d1(x ,y)= |ξ1−η1|+ |ξ2 −η2|.

d1 is sometimes called the taxicab metric.

Hence, from a given set (having more than one element) we can
obtain various metric spaces by choosing different metrics.

R2 is sometimes denoted by E 2.
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Higher Dimensional Euclidean Spaces

(Three-dimensional Euclidean space R3) This metric space
consists of the set R3 of ordered triples of real numbers x = (ξ1,ξ2,ξ3),
y = (η1,η2,η3) etc., and the Euclidean metric defined by

d(x ,y)=
√
(ξ1−η1)2+ (ξ2−η2)2+ (ξ3−η3)2.

(n-Dimensional Euclidean space Rn) The previous examples are
special cases of n-dimensional Euclidean space Rn. This space is
obtained if we take the set Rn of all ordered n-tuples of real numbers,
written x = (ξ1, . . . ,ξn), y = (η1, . . . ,ηn), etc., and the Euclidean metric
defined by

d(x ,y)=
√
(ξ1−η1)2+·· ·+ (ξn−ηn)2.
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Unitary Spaces and Complex Plane

(unitary space Cn) n-dimensional unitary space Cn is the space
Cn of all ordered n-tuples of complex numbers with metric defined by

d(x ,y)=
√

|ξ1−η1|
2+·· ·+ |ξn−ηn|2.

(complex plane C) When n= 1 this is the complex plane C with
the usual metric defined by

d(x ,y)= |x −y |.

Cn is also called complex Euclidean n-space.
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The Sequence Space ℓ∞

(Sequence space ℓ∞) As a set X , we take the set of all bounded
sequences of complex numbers, i.e., every element of X is a complex
sequence x = (ξ1,ξ2, . . .), briefly x = (ξj ), such that for all j = 1,2, . . .,
we have |ξj | ≤ cx , where cx is a real number which may depend on x ,
but does not depend on j .

We choose the metric defined by

d(x ,y)= sup
j∈N

|ξj −ηj |,

where y = (ηj) ∈X and N= {1,2, . . .}, and sup denotes the supremum
(least upper bound).

The metric space thus obtained is generally denoted by ℓ∞.

ℓ∞ is a sequence space because each element of X (each point of
X ) is a sequence.
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The Function Space C [a,b]

(Function space C [a,b]) As a set X we take the set of all real-valued
functions x ,y , . . . which are functions of an independent real variable t

and are defined and continuous on a given closed interval J = [a,b].

Choosing the metric defined by

d(x ,y)=max
t∈J

|x(t)−y(t)|,

where max denotes the maximum, we obtain a metric space which is
denoted by C [a,b] (C suggesting “continuous”).

This is a function space because every point of C [a,b] is a function.

A significant difference between calculus and functional analysis is
that:

in calculus, we consider a single function or a few functions at a time;
in functional analysis, a function becomes a single point in a large
space.
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Discrete Metric Spaces

(Discrete metric space) We take any set X and on it the so-called
discrete metric for X , defined by

d(x ,x)= 0, d(x ,y)= 1, if x 6= y .

This space (X ,d) is called a discrete metric space.

Discrete metric spaces rarely occur in applications.

They are used, however, in examples for illustrating certain concepts.
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Subsection 2

Further Examples of Metric Spaces
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Sequence Space s

This space consists of the set of all (bounded or unbounded)
sequences of complex numbers and the metric d defined by

d(x ,y)=
∞∑

j=1

1

2j
|ξj −ηj |

1+|ξj −ηj |
,

where x = (ξj ) and y = (ηj ).

It is easy to see that Axioms (M1) to (M3) are satisfied.

To verify (M4), consider the function f defined on R by f (t)= t
1+t

.

Since f ′(t)= 1
(1+t)2

> 0, f is increasing.

Consequently, |a+b| ≤ |a|+ |b| implies f (|a+b|)≤ f (|a|+ |b|).

Now we get

|a+b|

1+|a+b|
≤

|a|+ |b|

1+|a|+ |b|
=

|a|

1+|a|+ |b|
+

|b|

1+|a|+ |b|
≤

|a|

1+|a|
+

|b|

1+|b|
.
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Sequence Space s (Cont’d)

We got
|a+b|

1+|a+b|
≤

|a|

1+|a|
+

|b|

1+|b|
.

In this inequality take a= ξj −ζj and b = ζj −ηj , where z = (ζj ).

Then, since a+b = ξj −ηj ,

|ξj −ηj |

1+|ξj −ηj |
≤

|ξj −ζj |

1+|ξj −ζj |
+

|ζj −ηj |

1+|ζj −ηj |
.

Multiply both sides by 1
2j

and sum over j from 1 to ∞, to get

d(x ,y)≤ d(x ,z)+d(z ,y).

So (M4) holds and s is a metric space.
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Space B(A) of Bounded Functions

By definition, each element x ∈B(A) is a function defined and
bounded on a given set A, and the metric is defined by

d(x ,y)= sup
t∈A

|x(t)−y(t)|,

where sup denotes the supremum.

We write B [a,b] for B(A) in the case of an interval A= [a,b]⊆R.

We show that B(A) is a metric space.

Clearly, (M1) and (M3) hold.
For (M2), note, first, that d(x ,x)= 0.
Conversely, suppose d(x ,y)= 0. This implies x(t)−y(t)= 0, for all
t ∈A. Hence, x = y .
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Space B(A) of Bounded Functions (Cont’d)

For (M4), note that for every t ∈A,

|x(t)−y(t)| ≤ |x(t)−z(t)|+ |z(t)−y(t)|
≤ maxt∈A |x(t)−z(t)|+maxt∈A |z(t)−y(t)|.

This shows that x −y is bounded on A.

The bound given by the expression on the right does not depend on t.

Taking the supremum on the left, we obtain (M4).
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Space ℓp

Let p ≥ 1 be a fixed real number. By definition, each element in the
space ℓp is a sequence x = (ξj)= (ξ1,ξ2, . . .) of numbers such that
|ξ1|

p +|ξ2|
p +·· · converges; thus,

∑∞
j=1

|ξj |
p <∞.

The metric is defined by

d(x ,y)=

(
∞∑

j=1

|ξj −ηj |
p

)1/p

,

where y = (ηj) and
∑
|ηj |

p <∞.

If we take only real sequences, we get the real space ℓp.

If we take complex sequence, we get the complex space ℓp.

In the case p = 2 we have the famous Hilbert sequence space ℓ2

with metric defined by

d(x ,y)=

√√√√
∞∑

j=1

|ξj −ηj |
2.
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Strategy for Proving ℓp is a Metric Space

Clearly,

d(x ,y)=

(
∞∑

j=1

|ξj −ηj |
p

)1/p

satisfies (M1) to (M3) provided the series on the right converges.

We shall prove that it does converge and that (M4) is satisfied.

Proceeding stepwise, we shall derive

(a) an auxiliary inequality;
(b) the Hölder inequality from (a);
(c) the Minkowski inequality from (b);
(d) the triangle inequality (M4) from (c).
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The Auxiliary Inequality

Two numbers p,q > 1, with 1
p +

1
q = 1 are called conjugate exponents.

Note that 1=
p+q
pq ⇒ pq = p+q ⇒ (p−1)(q−1)= 1 ⇒

1
p−1

= q−1.

As a consequence, u = tp−1 implies t = uq−1.

Let α and β be any positive numbers. Since αβ is the area of the
rectangle, we get, by integration:

αβ≤

∫α

0
tp−1dt +

∫β

0
uq−1du =

αp

p
+
βq

q
.

This inequality is trivially true if α= 0 or β= 0.
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The Hölder Inequality

Let (ξ̃j) and (η̃j) be such that
∑
|ξ̃j |

p = 1,
∑
|η̃j |

q = 1.

By the preceding inequality, with α= |ξ̃j | and β= |η̃j |,

|ξ̃j η̃j | ≤
1

p
|ξ̃j |

p
+

1

q
|η̃j |

q sum over j

⇒
∑

|ξ̃j η̃j | ≤
1

p
+

1

q
= 1.

Take any nonzero x = (ξj) ∈ ℓp and y = (ηj ) ∈ ℓq and set

ξ̃j =
ξj

(
∑
|ξk |p)1/p

, η̃j =
ηj

(
∑
|ηm|q)1/q

. Then
∑
|ξ̃j |

p = 1 and
∑
|η̃j |

q = 1.

So, by what was shown above,

∑∣∣∣∣
ξj

(
∑
|ξk |

p)1/p
ηj

(
∑
|ηm|q)1/q

∣∣∣∣≤ 1.

Equivalently, we have the Hölder inequality for sums

∞∑

j=1

|ξjηj | ≤ (
∞∑

k=1

|ξk |
p)1/p(

∞∑

m=1

|ηm|
q)1/q , p > 1,

1

p
+

1

q
= 1.
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The Hölder Inequality

We proved the Hölder inequality for sums:

∞∑

j=1

|ξjηj | ≤ (
∞∑

k=1

|ξk |
p)1/p(

∞∑

m=1

|ηm|
q)1/q , p > 1,

1

p
+

1

q
= 1.

If p = 2, then q = 2, we get the Cauchy-Schwarz inequality for sums:

∞∑

j=1

|ξjηj | ≤

√
∞∑

k=1

|ξk |
2

√
∞∑

m=1

|ηm|2.
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The Minkowski Inequality

We prove the Minkowski inequality for sums

(
∞∑

j=1

|ξj +ηj |
p)1/p ≤ (

∞∑

k=1

|ξk |
p)1/p + (

∞∑

m=1

|ηm|
p)1/p ,

where x = (ξj )∈ ℓp and y = (ηj) ∈ ℓp, and p ≥ 1.

For p = 1, use the triangle inequality for numbers.

Let p > 1. Write ξj +ηj =ωj .

By the triangle inequality,

|ωj |
p
= |ξj +ηj ||ωj |

p−1
≤ (|ξj |+ |ηj |)|ωj |

p−1
.

Summing from j = 1 to a fixed n,

∑
|ωj |

p
≤

∑
|ξj ||ωj |

p−1
+

∑
|ηj ||ωj |

p−1
.
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The Minkowski Inequality (Cont’d)

We obtained
∑
|ωj |

p ≤
∑
|ξj ||ωj |

p−1+
∑
|ηj ||ωj |

p−1.

Apply the Hölder inequality to the first sum on the right
∑

|ξj ||ωj |
p−1

≤ [
∑

|ξk |
p]1/p[

∑
(|ωm|

p−1)q]1/q .

Since pq = p+q, (p−1)q = p.

Similarly, we obtain
∑

|ηj ||ωj |
p−1

≤ [
∑

|ηk |
p]1/p[

∑
|ωm|

p]1/q .

Together,
∑

|ωj |
p
≤ ([

∑
|ξk |

p]1/p + [
∑

|ηk |
p]1/p)(

∑
|ωm|

p)1/q .

Dividing by the last factor on the right and noting that 1− 1
q
=

1
p
, we

obtain the inequality with n instead of ∞.

Now let n→∞. On the right, the two series converge since x ,y ∈ ℓp.

So the series on the left also converges, and yields the result.
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The Triangle Inequality in ℓp

The Triangle Inequality: Taking any x ,y ,z ∈ ℓp, with x = (ξj),
y = (ηj) and z = (ζj), we now obtain

d(x ,y) = (
∑
|ξj −ηj |

p)1/p

≤ (
∑
[|ξj −ζj |+ |ζj −ηj |]

p)1/p

≤ (
∑
|ξj −ζj |

p)1/p + (
∑
|ζj −ηj |

p)1/p

= d(x ,z)+d(z ,y).

This completes the proof that ℓp is a metric space.
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Subsection 3

Open Set, Closed Set, Neighborhood
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Open and Closed Balls and Spheres

We first consider important types of subsets of a given metric space
X = (X ,d).

Definition (Ball and Sphere)

Given a point x0 ∈X and a real number r > 0, we define three types of sets:

(a) B(x0;r)= {x ∈X : d(x ,x0)< r } (Open Ball)

(b) B̃(x0;r)= {x ∈X : d(x ,x0)≤ r } (Closed Ball)

(c) S(x0;r)= {x ∈X : d(x ,x0)= r } (Sphere)

In all three cases, x0 is called the center and r the radius.

We see that an open ball of radius r is the set of all points in X whose
distance from the center of the ball is less than r .

The definition immediately implies that S(x0;r)= B̃(x0;r)−B(x0;r).
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Open and Closed Sets, Neighborhoods and Interior

Definition (Open and Closed Set)

A subset M of a metric space X is said to be open if it contains a ball
about each of its points. A subset K of X is said to be closed if its
complement (in X ) is open, that is, KC =X −K is open.

An open ball is an open set.

Consider B(x0;ε) and x ∈B(x0;ε).

Choose positive δ< ε−d(x0,x).

Then B(x ;δ)⊆B(x0;ε).

A closed ball is a closed set.

Consider B̃(x0;ε) and x ∈ B̃(x0;ε)
C .

Choose positive δ< d(x0,x)−ε.

Then B(x ;δ)⊆B(x0;ε)
C .
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Neighborhoods

An open ball B(x0;ε) is often called an ε-neighborhood of x0.

By a neighborhood of x0 we mean any subset of X which contains
an ε-neighborhood of x0.

Every neighborhood of x0 contains x0.

If N is a neighborhood of x0 and N ⊆M, then M is also a
neighborhood of x0.
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Interior

We call x0 an interior point of a set M ⊆X if M is a neighborhood of
x0.

The interior of M is the set of all interior points of M and is denoted
by M0 or Int(M).

Int(M) is open.

Int(M) is, in fact, the largest open set contained in M.
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Properties of Open Sets

The collection of all open subsets of X , call it T , has the following
properties:

(T1) ;∈T , X ∈T ;
(T2) The union of any members of T is a member of T ;
(T3) The intersection of finitely many members of T is a member of T .

(T1) Follows by noting that ; is open since ; has no elements.

Obviously, X is open.

(T2) Any point x of the union U of open sets belongs to (at least) one of
these sets, call it M. M contains a ball B about x since M is open.
Then B ⊆U , by the definition of a union.

(T3) Finally, if y is any point of the intersection of open sets M1, . . . ,Mn,
then each Mi contains a ball about y . A smallest of these balls is
contained in that intersection.
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Topological Spaces and Continuous Functions

We define a topological space (X ,T ) to be a set X and a collection
T of subsets of X , such that T satisfies the axioms (T1)-(T3).

The set T is called a topology for X .

A metric space is a topological space, according to the preceding slide.

Definition (Continuous Mapping)

Let X = (X ,d) and Y = (Y , d̃) be metric spaces.

A mapping T :X →Y is said to be contin-

uous at a point x0 ∈X if, for every ε> 0,
there is a δ> 0, such that
d(x ,x0)< δ implies d̃(Tx ,Tx0)< ε.

T is said to be continuous if it is continuous at every point of X .
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The Continuous Mapping Theorem

Theorem (Continuous Mapping)

A map T of a metric space X into a metric space Y is continuous if and
only if the inverse image of any open subset of Y is an open subset of X .

Suppose that T is continuous. Let S ⊆Y be open and S0 the inverse
image of S . If S0 =;, it is open.

Let S0 6= ;. For any x0 ∈ S0,
let y0 = Tx0. Since S is open,
it contains an ε-neighborhood N

of y0. Since T is continuous, x0

has a δ-neighborhood N0 which is
mapped into N.

Since N ⊆ S , we have N0 ⊆ S0, Since x0 ∈ S0 was arbitrar, S0 is open.
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The Continuous Mapping Theorem (Converse)

Conversely, assume that the inverse image of every open set in Y is an
open set in X . Then for every x0 ∈X and any ε-neighborhood N of
Tx0, the inverse image N0 of N is open, since N is open, and N0

contains x0.

Hence N0 also contains a δ-neighborhood of x0, which is mapped into
N because N0 is mapped into N. Consequently, by the definition, T is
continuous at x0. Since x0 ∈X was arbitrary, T is continuous.

George Voutsadakis (LSSU) Functional Analysis May 2023 34 / 75



Metric Spaces Open Set, Closed Set, Neighborhood

Accumulation Points and Closures

Let M be a subset of a metric space X .

A point x0 of X (which may or may not be a point of M) is called an
accumulation point of M (or limit point of M) if every
neighborhood of x0 contains at least one point y ∈M distinct from x0.

The set consisting of the points of M and the accumulation points of
M is called the closure of M and is denoted by M.

The closure of M of M is the smallest closed set containing M.
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Dense and Separable Sets

Definition (Dense Set, Separable Space)

A subset M of a metric space X is said to be dense in X if M =X .
X is said to be separable if it has a countable subset which is dense in X .

By the definition, if M is dense in X , then every ball in X , no matter
how small, will contain points of M.

In other words, if M is dense in X , there is no point x ∈X which has a
neighborhood that does not contain points of M.
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Examples

(Real Line R) The real line R is separable.

The set Q of all rational numbers is countable and is dense in R.

(Complex Plane C) The complex plane C is separable.

A countable dense subset of C is the set of all complex numbers
whose real and imaginary parts are both rational.

(Discrete metric space) A discrete metric space X is separable if
and only if X is countable.

The kind of metric implies that no proper subset of X can be dense in
X . Hence the only dense set in X is X itself, and the statement
follows.
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Example: The Space ℓ∞

The space ℓ∞ is not separable.

Let y = (η1,η2,η3, . . .) be a sequence of zeros and ones. Then y ∈ ℓ∞.
With y we associate the real number ŷ , whose binary representation is
η1

21 +
η2

22 +
η3

23 +·· ·. We now use the facts that:
the set of points in the interval [0,1] is uncountable;
each ŷ ∈ [0,1] has a binary representation;
different ŷ ’s have different binary representations.

Hence there are uncountably many sequences of zeros and ones.

In ℓ∞, any two different ones must be at distance 1 apart.

Let each of these sequences be the center of a small ball of radius 1
3
.

These balls do not intersect and we have uncountably many of them.

If M is any dense set in ℓ∞, each of these nonintersecting balls must
contain an element of M. Hence M cannot be countable.

Since M was an arbitrary dense set, ℓ∞ cannot have dense subsets
which are countable. Consequently, ℓ∞ is not separable.
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Example: The Space ℓp

The space ℓp with 1≤ p <+∞ is separable.

Let M be the set of all sequences y of the form

y = (η1,η2, . . . ,ηn,0,0, . . .),

where n is any positive integer and the ηj ’s are rational.
M is countable.
We show that M is dense in ℓp: Let x = (ξj ) ∈ ℓp be arbitrary.

For every ε> 0, there is an n= n(ε), such that
∑∞

j=n+1
|ξj |

p < εp

2 ,

because on the left we have the remainder of a converging series.
Since the rationals are dense in R, for each ξj , there is a rational ηj
close to it. Hence, there is a y ∈M satisfying

∑n
j=1 |ξj −ηj |

p <
εp

2 .

It follows that

[d(x ,y)]p =

n∑

j=1

|ξj −ηj |
p
+

∞∑

j=n+1

|ξj |
p
< εp .

We thus have d(x ,y)< ε. So M is dense in ℓp.

George Voutsadakis (LSSU) Functional Analysis May 2023 39 / 75



Metric Spaces Convergence, Cauchy Sequence, Completeness

Subsection 4

Convergence, Cauchy Sequence, Completeness
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Convergence of Sequences and Limits

Definition (Convergence and Limit)

A sequence (xn) in a metric space X = (X ,d) is said to converge or to be

convergent if there is an x ∈X , such that limn→∞d(xn,x)= 0.
x is called the limit of (xn) and we write limn→∞ xn = x or, simply, xn → x .
We say that (xn) converges to x or has the limit x .
If (xn) is not convergent, it is said to be divergent.

The metric d yields the sequence of real numbers an = d(xn,x) whose
convergence defines that of (xn).

Hence, if xn → x , an ε> 0 being given, there is an N =N(ε), such that
all xn, with n>N, lie in the ε-neighborhood B(x ;ε) of x .

The limit of a convergent sequence must be a point in X :

Let X be the open interval (0,1) on R with metric d(x ,y)= |x −y |.

The sequence (1
2

,
1
3

,
1
4

, . . .) is not convergent, since 0 6∈X .
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Boundedness

The diameter δ(M) of a nonempty subset M of a metric space
X = (X ,d) is defined by

δ(M)= max
x ,y∈M

d(x ,y).

A nonempty subset M ⊆X is a bounded set if its diameter is finite.

A sequence (xn) in X is a bounded sequence if the corresponding
point set is a bounded subset of X .

Obviously, if M is bounded, then M ⊆B(x0;r), where x0 ∈X is any
point and r is a (sufficiently large) real number, and conversely.
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Boundedness and Limits

Lemma (Boundedness, Limit)

Let X = (X ,d) be a metric space. Then:

(a) A convergent sequence in X is bounded and its limit is unique.

(b) If xn → x and yn → y in X , then d(xn,yn)→ d(x ,y).

(a) Suppose that xn → x . Then, taking ε= 1, we can find an N, such that
d(xn,x)< 1, for all n>N. Hence, by the triangle inequality, for all n,
we have d(xn,x)< 1+a, where a=max {d(x1,x), . . . ,d(xN ,x)}. This
shows that (xn) is bounded.

If xn → x and xn → z , we get 0≤ d(x ,z)≤ d(x ,xn)+d(xn,z)→ 0+0.

So, the uniqueness x = z of the limit follows from (M2).

(b) We have d(xn,yn)≤ d(xn,x)+d(x ,y)+d(y ,yn). So, d(xn,yn)−d(x ,y)
≤ d(xn,x)+d(y ,yn). By interchanging xn and x as well as yn and y

and multiplying by −1, we get −d(xn,x)−d(yn,y)≤ d(xn,yn)−d(x ,y).
Together, |d(xn,yn)−d(x ,y)| ≤ d(xn,x)+d(yn ,y)→ 0 as n→∞.
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Convergence and Cauchy Sequences in R and in C

Recall that a sequence (xn) of real or complex numbers converges on
the real line R or in the complex plane C, respectively, if and only if it
satisfies the Cauchy convergence criterion:

For every given ε> 0, there is an N =N(ε), such that |xm−xn | < ε, for
all m,n>N .

In a measure space X = (X ,d), a sequence (xn) is called a Cauchy

sequence if, for all ε> 0, there exists N > 0, such that d(xm,xn)< ε,
for all m,n>N.

The Cauchy criterion simply says that a sequence of real or complex
numbers converges on R or in C if and only if it is a Cauchy sequence.

Unfortunately, in more general spaces, there may be Cauchy sequences
which do not converge.
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Cauchy Sequences and Completeness

Definition (Cauchy Sequence, Completeness)

A sequence (xn) in a metric space X = (X ,d) is said to be Cauchy (or
fundamental) if, for every ε> 0, there is an N =N(ε), such that
d(xm,xn)< ε, for every m,n>N.
The space X is said to be complete if every Cauchy sequence in X

converges (that is, has a limit which is an element of X ).

Expressed in terms of completeness, the Cauchy convergence criterion
implies the following:

Theorem (Real Line, Complex Plane)

The real line and the complex plane are complete metric spaces.

The definition shows that complete metric spaces are precisely those
in which the Cauchy Condition continues to be necessary and
sufficient for convergence.
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Some Examples

Omission of a point a from the real line yields the incomplete space
R− {a}.

By the omission of all irrational numbers we have the rational line Q,
which is incomplete.

An open interval (a,b) with the metric induced from R is another
incomplete metric space.

Take X = (0,1], with the usual metric defined by d(x ,y)= |x −y |, and
the sequence (xn), where xn =

1
n and n= 1,2, . . ..

This is a Cauchy sequence, but it does not converge, because the point
0 (to which it “wants to converge”) is not a point of X .
This also illustrates that the concept of convergence is not an intrinsic
property of the sequence itself but also depends on the space in which
the sequence lies.
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Necessity of the Cauchy Condition

Theorem (Convergent Sequence)

Every convergent sequence in a metric space is a Cauchy sequence.

If xn → x , then for every ε> 0, there is an N =N(ε), such that
d(xn,x)< ε

2
, for all n>N. Hence, by the triangle inequality, we obtain

for m,n>N,

d(xm,xn)≤ d(xm,x)+d(x ,xn)<
ε

2
+
ε

2
= ε.

This shows that (xn) is Cauchy.

The completeness of the real line R is the main reason why in calculus
we use R rather than the rational line Q (the set of all rational
numbers with the metric induced from R).
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Closures and Closed Sets

Theorem (Closure, Closed Set)

Let M be a nonempty subset of a metric space (X ,d) and M its closure as
defined in the previous section. Then:

(a) x ∈M if and only if there is a sequence (xn) in M, such that xn → x .

(b) M is closed if and only if xn ∈M and xn → x imply that x ∈M.

(a) Let x ∈M. If x ∈M, a sequence of that type is (x ,x , . . .). If x 6∈M, it is
a point of accumulation of M. Hence, for each n = 1,2, . . ., the ball
B(x ; 1

n ) contains an xn ∈M, and xn → x because limn→∞
1
n = 0.

Conversely, if (xn) is in M and xn → x , then x ∈M or every
neighborhood of x contains points xn 6= x , so that x is a point of
accumulation of M. Hence x ∈M, by the definition of the closure.

(b) M is closed if and only if M =M, so that (b) follows from (a).
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Complete Subspaces

Theorem (Complete Subspace)

A subspace M of a complete metric space X is itself complete if and only if
the set M is closed in X .

Let M be complete. For every x ∈M, there is a sequence (xn) in M

which converges to x . Since (xn) is Cauchy and M is complete, (xn)
converges in M and the limit being unique. Hence x ∈M. This proves
that M is closed because x ∈M was arbitrary.

Conversely, let M be closed and (xn) Cauchy in M. Then xn → x ∈X .
So x ∈M. Then x ∈M, since M =M, by assumption. Hence the
arbitrary Cauchy sequence (xn) converges in M. This proves
completeness of M.
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Convergence of Sequences and Continuity

Theorem (Continuous Mapping)

A mapping T :X →Y of a metric space (X ,d) into a metric space (Y , d̃)
is continuous at a point x0 ∈X if and only if xn → x0 implies Txn →Tx0.

Assume T to be continuous at x0. Then for ε> 0, there is a δ> 0,
such that d(x ,x0)< δ implies d̃(Tx ,Tx0)< ε. Let xn → x0. Then, there
is an N, such that, for all n>N, we have d(xn,x0)< δ. Hence, for all
n>N, d̃(Txn,Tx0)< ε. By definition, this means that Txn →Tx0.

Conversely, assume that xn → x0 implies Txn →Tx0. We prove that T
is continuous at x0. Suppose this is false. Then there is an ε> 0, such
that, for every δ> 0, there is an x 6= x0 satisfying d(x ,x0)< δ but
d̃(Tx ,Tx0)≥ ε. In particular, for δ=

1
n , there is an xn satisfying

d(xn,x0)<
1
n but d̃(Txn,Tx0)≥ ε. Clearly xn → x but (Txn) does not

converge to Tx0. This contradicts Txn →Tx0 and proves the theorem.
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Subsection 5

Examples, Completeness Proofs
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Completeness Proofs

In various applications a set X is given (for instance, a set of
sequences or a set of functions), and X is made into a metric space.

This is done by choosing a metric d on X .

The remaining task is then to find out whether (X ,d) has the
desirable property of being complete.

To prove completeness, we take an arbitrary Cauchy sequence (xn) in
X and show that it converges in X .

For different spaces, such proofs may vary in complexity, but they have
the same general pattern:

(i) Construct an element x (to be used as a limit).
(ii) Prove that x is in the space considered.
(iii) Prove convergence xn → x (in the sense of the metric).

Often, we get help from the completeness of the real line or the
complex plane.
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Completeness of Rn and Cn

Euclidean space Rn and unitary space Cn are complete.

We first consider Rn.

The metric on Rn is defined, for all x = (ξj ) and all y = (ηj ), by

d(x ,y)= (
n∑

j=1

(ξj −ηj )
2)1/2.

Consider any Cauchy sequence (xm) in Rn, with xm = (ξ
(m)
1

, . . . ,ξ
(m)
n ).

Since (xm) is Cauchy, for every ε> 0, there is an N, such that

d(xm,xr )= (
n∑

j=1

(ξ
(m)

j
−ξ

(r)

j
)2)1/2 < ε, for all m,r >N.

So, for m,r >N, j = 1, . . . ,n, (ξ
(m)

j
−ξ

(r)

j
)2 < ε2 and |ξ

(m)

j
−ξ

(r)

j
| < ε.

This shows that for each fixed j , 1≤ j ≤ n, the sequence (ξ
(1)
j

,ξ
(2)
j

, . . .)

is a Cauchy sequence of real numbers.
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Completeness of Rn and Cn (Cont’d)

We showed that, for each fixed j , 1≤ j ≤ n, the sequence (ξ
(1)
j

,ξ
(2)
j

, . . .)

is a Cauchy sequence of real numbers.

So, it converges say, ξ
(m)
j

m→∞

→ ξj .

Define x = (ξ1, . . . ,ξn).

Clearly, x ∈Rn.

Let r →∞ in (
∑n

j=1
(ξ

(m)
j

−ξ
(r)
j

)2)1/2 < ε.

Then, we get
d(xm,x)≤ ε, for all m>N.

This shows that x is the limit of (xm) and proves completeness of Rn

because (xm) was an arbitrary Cauchy sequence.

Completeness of Cn follows by the same method of proof.
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Completeness of ℓ∞

The space ℓ∞ is complete.

Let (xm) be any Cauchy sequence in ℓ∞, with xm = (ξ
(m)
1

,ξ
(m)
2

, . . .).

The metric on ℓ∞ is given, for all x = (ξj) and y = (ηj), by

d(x ,y)= sup
j

|ξj −ηj |.

Since (xm) is Cauchy, for any ε> 0, there is an N, such that

d(xm,xn)= sup
j

|ξ
(m)
j

−ξ
(n)
j

| < ε, for all m,n>N.

A fortiori, for every fixed j , |ξ
(m)
j

−ξ
(n)
j

| < ε, for all m,n>N.

Hence, for every fixed j , the sequence (ξ
(1)
j

,ξ
(2)
j

, . . .) is a Cauchy

sequence of numbers. So, it converges ξ
(m)
j

m→∞
→ ξj .

We now define x = (ξ1,ξ2, . . .) and show that x ∈ ℓ∞ and xm → x .
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Completeness of ℓ∞ (Cont’d)

From |ξ
(m)

j
−ξ

(n)

j
| < ε with n→∞, we have

|ξ
(m)

j
−ξj | ≤ ε, for all m>N.

Since xm = (ξ
(m)

j
) ∈ ℓ∞, there is km, such that |ξ

(m)

j
| ≤ km for all j .

Hence, by the triangle inequality,

|ξj | ≤ |ξj −ξ
(m)
j

|+ |ξ
(m)
j

| ≤ ε+km , for all m>N.

This holds for all j , and the right-hand side does not involve j .

Hence (ξj) is a bounded sequence of numbers.

This implies that x = (ξj )∈ ℓ∞.

Since |ξ
(m)
j

−ξj | ≤ ε, we get d(xm,x)= supj |ξ
(m)
j

−ξj | ≤ ε, for all
m>N.

This shows that xm → x .

Since (xm) was an arbitrary Cauchy sequence, ℓ∞ is complete.
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Completeness of c

The space c consisting of all convergent sequences x = (ξj) of complex
numbers, with the metric induced from the space ℓ∞ is complete.

c is a subspace of the complete space ℓ∞.

By the Complete Subspace Theorem, it suffices to show that c is
closed in ℓ∞.

Consider any x = (ξj) ∈ c , the closure of c .

Then there are xn = (ξ
(n)
j

) ∈ c , such that xn → x .

Hence, given any ε> 0, there is an N, such that

|ξ
(n)
j

−ξj | ≤ d(xn,x)<
ε

3
, for all n≥N and all j .

In particular, this holds for n=N and all j .

Since xN ∈ c , its terms ξ
(N)
j

form a convergent sequence.

Such a sequence is Cauchy.
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Completeness of c (Cont’d)

We showed that ξ
(N)

j
, j = 1,2, . . ., is Cauchy.

Hence there is an N1 such that

|ξ
(N)
j

−ξ
(N)

k
| <

ε

3
, for all j ,k ≥N1.

The triangle inequality now yields for all j ,k ≥N1,

|ξj −ξk | ≤ |ξj −ξ
(N)

j
|+ |ξ

(N)

j
−ξ

(N)

k
|+ |ξ

(N)

k
−ξk | < ε.

This shows that the sequence x = (ξj) is convergent.

Hence x ∈ c .

Since x ∈ c was arbitrary, this proves closedness of c in ℓ∞.
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Completeness of ℓp

The space ℓp is complete; here p is fixed and 1≤ p <+∞.

Let (xn) be any Cauchy sequence in ℓp, where xm = (ξ
(m)
1

,ξ
(m)
2

, . . .).

For every ε> 0, there is an N, such that

d(xm,xn)= (
∞∑

j=1

|ξ
(m)
j

−ξ
(n)
j

|
p)1/p < ε, for all m,n>N.

So, for every j = 1,2, . . . we have

|ξ
(m)

j
−ξ

(n)

j
| < ε.

Choose a fixed j .

Then (ξ
(1)
j

,ξ
(2)
j

, . . .) is a Cauchy sequence of numbers.

It converges since R and C are complete, ξ
(m)

j

m→∞
→ ξj .

We define x = (ξ1,ξ2, . . .) and show that x ∈ ℓp and xm → x .
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Completeness of ℓp (Cont’d)

From d(xm,xn)= (
∑∞

j=1
|ξ
(m)
j

−ξ
(n)
j

|p)1/p < ε we have for k = 1,2, . . .,

k∑

j=1

|ξ
(m)
j

−ξ
(n)
j

|
p
< εp , for all m,n>N.

Letting n→∞, we obtain, for k = 1,2, . . .,

k∑

j=1

|ξ
(m)

j
−ξj |

p
≤ εp , for all m>N.

We may now let k →∞:
∞∑

j=1

|ξ
(m)
j

−ξj |
p
≤ εp , for all m>N.

This shows that xm−x = (ξ
(m)
j

−ξj) ∈ ℓp.

Since xm ∈ ℓp, by the Minkowski inequality, x = xm+ (x −xm) ∈ ℓp.

Furthermore, the series in
∑

∞
j=1

|ξ
(m)
j

−ξj |
p ≤ εp represents [d(xm,x)]p .

So the inequality implies that xm → x .
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Completeness of C [a,b]

The function space C [a,b] is complete ([a,b] any closed interval in R).

Let (xm) be any Cauchy sequence in C [a,b]. Denote J := [a,b].

Given ε> 0, there is an N, such that

d(xm,xn)=max
t∈J

|xm(t)−xn(t)| < ε, for all m,n>N.

Hence, for any fixed t = t0 ∈ J,

|xm(t0)−xn(t0)| < ε, for all m,n>N.

So (x1(t0),x2(t0), . . .) is a Cauchy sequence of real numbers.

Since R is complete, it converges, say, xm(t0)
m→∞

→ x(t0).

In this way we can associate with each t ∈ J a unique real number x(t).

This defines a function x on J.

We show that x ∈C [a,b] and xm → x .
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Completeness of C [a,b] (Cont’d)

We have

d(xm,xn)=max
t∈J

|xm(t)−xn(t)| < ε, for all m,n>N.

Letting n→∞, we get

max
t∈J

|xm(t)−x(t)| ≤ ε, for m>N..

Hence, for every t ∈ J,

|xm(t)−x(t)| ≤ ε, for all m>N.

This shows that (xm(t)) converges to x(t) uniformly on J.

Since the xm’s are continuous on J and the convergence is uniform,
the limit function x is continuous on J.

Hence, x ∈C [a,b].

Also xm → x .

This proves completeness of C [a,b].
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Uniform Convergence and Uniform Metric

In the preceding example, we assumed the functions x to be
real-valued, for simplicity.

We may call this space the real C [a,b].

Similarly, we obtain the complex C [a,b] if we take complex-valued
continuous functions defined on [a,b]⊆R.

This space is also complete and the proof is almost the same as before.

Furthermore, the proof shows the following:

Theorem (Uniform Convergence)

Convergence xm → x in the space C [a,b] is uniform convergence, i.e., (xm)
converges uniformly on [a,b] to x .

Hence the metric on C [a,b] describes uniform convergence on [a,b]
and it is sometimes called the uniform metric.
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Examples of Incomplete Metric Spaces

(Space Q) This is the set of all rational numbers with the usual
metric given by d(x ,y)= |x −y |, where x ,y ∈Q, and is called the
rational line. Q is not complete.

(Polynomials) Let X be the set of all polynomials considered as
functions of t on some finite closed interval J = [a,b] and define a
metric d on X by

d(x ,y)=max
t∈J

|x(t)−y(t)|.

This metric space (X ,d) is not complete:

An example of a Cauchy sequence without limit in X is given by any
sequence of polynomials which converges uniformly on J to a
continuous function, not a polynomial.
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Continuous Functions

Let X be the set of all continuous real-valued functions on J = [0,1],
d(x ,y)=

∫1
0 |x(t)−y(t)|dt . The metric space (X ,d) is not complete.

Consider the functions xm whose
graphs are shown of the left.
They form a Cauchy sequence.
Note that d(xm,xn) is the area of the
triangle on right.
Given ε> 0, choose m,n >

1
ε
.

Then

d(xm,xn)=
1

2

(
1

m
−

1

n

)
< ε.

We show that this Cauchy sequence does not converge.
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Continuous Functions (Cont’d)

Note that

xm(t)= 0, if t ∈ [0,
1
2
],

xm(t)= 1, if t ∈ [am,1], where am = 1
2
+ 1

m
.

Hence, for all x ∈X ,

d(xm,x) =
∫1
0 |xm(t)−x(t)|dt

=
∫1/2
0 |x(t)|dt +

∫am
1/2

|xm(t)−x(t)|dt

+
∫1
am

|1−x(t)|dt .

The integrands are nonnegative. So, the same holds for the integrals.

Now, d(xm,x)→ 0 implies that each integral approaches 0.

By the continuity of x we should have

x(t)= 0, if t ∈ [0,
1
2
),

x(t)= 1, if t ∈ (1
2

,1].

This contradicts the continuity of x .
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Subsection 6

Completion of Metric Spaces
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Isometric Mappings and Isometric Spaces

Definition (Isometric Mapping, Isometric Spaces)

Let X = (X ,d) and X̃ = (X̃ , d̃) be metric spaces. Then:

(a) A mapping T of X into X̃ is said to be isometric or an isometry if T
preserves distances, that is, if for all x ,y ∈X , d̃(Tx ,Ty)= d(x ,y),
where Tx and Ty are the images of x and y , respectively.

(b) The space X is said to be isometric with the space X̃ if there exists a
bijective isometry of X onto X̃ . The spaces X and X̃ are then called
isometric spaces.

Isometric spaces may differ at most by the nature of their points but
are indistinguishable from the viewpoint of metric.

In any study in which the nature of the points does not matter, we
may regard two isometric spaces as identical - as two copies of the
same “abstract” space.
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Metric Spaces Completion of Metric Spaces

The Completion Theorem

It turns out that every metric space can be completed. The space X̂

occurring below is called the completion of the given space X .

Theorem (Completion)

For a metric space X = (X ,d), there exists a complete metric space
X̂ = (X̂ , d̂) which has a subspace W isometric with X and is dense in X̂ .
The space X̂ is unique up to isometries, i.e., if X̃ is any complete metric
space having a dense subspace W̃ isometric with X , then X̃ and X̂ are
isometric.

The proof is subdivided it into four steps (a) to (d):

(a) We construct X̂ = (X̂ , d̂);

(b) We construct an isometry T of X onto W , where W = X̂ ;
(c) We prove completeness of X̂ ;
(d) We prove uniqueness of X̂ , up to isometries.
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Metric Spaces Completion of Metric Spaces

The Completion Theorem: Outline of the Proof

The task will be the assignment of suitable limits to Cauchy sequences
in X that do not converge.

However, we should not introduce “too many” limits, but take into
account that certain sequences “may want to converge with the same
limit” since the terms of those sequences “ultimately come arbitrarily
close to each other”.

This intuitive idea can be expressed mathematically in terms of a
suitable equivalence relation.

This is not artificial but is suggested by the process of completion of
the rational line.
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Metric Spaces Completion of Metric Spaces

Construction of X̂ = (X̂ , d̂)

Let (xn) and (x ′n) be Cauchy sequences in X . Define (xn) to be
equivalent to (x ′n), written (xn)∼ (x ′n), if limn→∞d(xn,x ′n)= 0.

Let X̂ be the set of all equivalence classes x̂ , ŷ , . . ..

Write (xn)∈ x̂ to mean that (xn) is a member of x̂ .

Set, for all x̂ , ŷ ,
d̂(x̂ , ŷ)= lim

n→∞
d(xn,yn),

where (xn) ∈ x̂ and (yn) ∈ ŷ .

We show that this limit exists.

We have d(xn,yn)≤ d(xn,xm)+d(xm,ym)+d(ym,yn), whence
d(xn,yn)−d(xm,ym)≤ d(xn,xm)+d(ym,yn) and a similar inequality
with m and n interchanged. Together,
|d(xn,yn)−d(xm,ym)| ≤ d(xn,xm)+d(ym,yn). Since (xn) and (yn) are
Cauchy, we can make the right side as small as we please. This implies
that the limit in limn→∞d(xn,yn) exists because R is complete.
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Metric Spaces Completion of Metric Spaces

Independence of Representative and the Metric Property

We now show that the limit d̂(x̂ , ŷ)= limn→∞d(xn,yn) is independent
of the particular choice of representatives (xn) ∈ x̂ and (yn) ∈ ŷ .

Suppose (xn)∼ (x ′n) and (yn)∼ (y ′
n).

Then |d(xn,yn)−d(x ′n,y ′
n)| ≤ d(xn,x ′n)+d(yn,y ′

n)→ 0 as n→∞.

This implies limn→∞d(xn,yn)= limn→∞d(x ′n,y ′
n).

We prove, next, that d̂ is a metric on X̂ .

Obviously, d̂ satisfies (M1);
It also satisfies d̂(x̂ , x̂)= 0;
It satisfies (M3);
Further, d̂(x̂ , ŷ)= 0 implies (xn)∼ (yn) implies x̂ = ŷ , giving (M2);
Finally, d(xn,yn)≤ d(xn ,zn)+d(zn,yn). Letting n→∞, we get
d̂(x̂ , ŷ )≤ d̂(x̂ , ẑ)+ d̂(ẑ , ŷ ), i.e., (M4) for d̂ .
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Metric Spaces Completion of Metric Spaces

Construction of an isometry T :X →W ⊆ X̂

With each b ∈X we associate the class b̂ ∈ X̂ which contains the
constant Cauchy sequence (b,b, . . .). This defines a mapping
T :X →W onto the subspace W =T (X )⊆ X̂ . The mapping T is
given by b 7→ b̂ =Tb, where (b,b, . . .) ∈ b̂.

We see that T is an isometry since d̂(b̂, ĉ)= d(b,c), where ĉ is the
class of (yn) where yn = c , for all n.

Any isometry is injective. T :X →W is also surjective since
T (X )=W . Hence, W and X are isometric.

W is dense in X : Consider any x̂ ∈ X̂ . Let (xn) ∈ x̂ . For every ε> 0,
there is N, such that d(xn,xN)<

ε
2
, for all n>N. Let (xN ,xN , . . .) ∈ x̂N .

Then x̂N ∈W . Also, d̂(x̂ , x̂N)= limn→∞d(xn,xN)≤
ε
2
< ε. This shows

that every ε-neighborhood of the arbitrary x̂ ∈ X̂ contains an element
of W . Hence W is dense in X .
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Metric Spaces Completion of Metric Spaces

Completeness of X̂

Let (x̂n) be any Cauchy sequence in X̂ . Since W is dense in X̂ , for
every x̂n, there is a ẑn ∈W , such that d̂(x̂n, ẑn)<

1
n . Hence, by (M4),

d̂(ẑm, ẑn)≤ d̂(ẑm, x̂m)+ d̂(x̂m, x̂n)+ d̂(x̂n, ẑn)<
1

m
+ d̂(x̂m, x̂n)+

1

n
.

This is less than any given ε> 0 for sufficiently large m and n because
(xm) is Cauchy. Hence (ẑm) is Cauchy. Since T :X →W is isometric
and ẑm ∈W , the sequence (zm), where zm =T−1ẑm, is Cauchy in X .

Let x̂ ∈ X̂ be the class to which (zm) belongs. We show x̂ = lim
n→∞

x̂n.

Since d̂(x̂n, ẑn)<
1
n , d̂(x̂n, x̂)≤ d̂(x̂n, ẑn)+ d̂(ẑn, x̂)< 1

n + d̂(ẑ , x̂). But
(zm) ∈ x̂ and ẑn ∈W , so that (zn,zn, . . .) ∈ ẑn. It follows that
d̂(x̂n, x̂)< 1

n + lim
m→∞

d(zn,zm). Hence, the right side is smaller than any

given ε> 0 for sufficiently large n. This shows that x̂ = lim
n→∞

x̂n.
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Metric Spaces Completion of Metric Spaces

Uniqueness of X̂ Except for Isometries

Suppose (X̃ , d̃) is another complete metric

space with a subspace W̃

dense in X̃ ;

isometric with X .

For any x̃ , ỹ ∈ X̃ , we have sequences (x̃n),(ỹn)
in W̃ , such that x̃n → x̃ and ỹn → ỹ .

Now |d̃(x̃ , ỹ)− d̃(x̃n, ỹn)| ≤ d̃(x̃ , x̃n)+ d̃(ỹ , ỹn)→ 0.

Hence, d̃(x̃ , ỹ)= limn→∞ d̃(x̃n, ỹn).

But W̃ is isometric with W ⊆ X̂ , and W = X̂ .

So the distances on X̃ and X̂ must be the same.

Thus, X̃ and X̂ are isometric.
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