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Subsection 1

Vector Space
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Vector Spaces

Let K be a field that may be R or C. The elements of K are called
scalars.

Definition (Vector Space)

A vector space (or linear space) over a field K is a nonempty set X of
elements x ,y , . . . (called vectors) together with two algebraic operations.
These operations are called vector addition and multiplication of

vectors by scalars, that is, by elements of K .
Vector addition associates with every ordered pair (x ,y) of vectors a
vector x +y , called the sum of x and y , in such a way that the following
properties hold:

Vector addition is commutative and associative: for all vectors we have
x +y = y +x and x + (y +z)= (x +y)+z ;

There exists a vector 0, called the zero vector, and for every vector x , there
exists a vector −x , such that for all vectors we have x +0= x and
x + (−x)= 0.
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Definition of Vector Spaces (Cont’d)

Definition (Vector Space) (Cont’d)

Multiplication by scalars associates with every vector x and scalar α a
vector αx (also written xα), called the product of α and x , in such a way
that for all vectors x ,y and scalars α,β, we have:

α(βx)= (αβ)x and 1x = x ;

the distributive laws: α(x +y)=αx +αy and (α+β)x =αx +βx .

Vector addition is a mapping X ×X →X whereas multiplication by
scalars is a mapping K ×X →X .

K is called the scalar field (or coefficient field) of the vector space
X , and X is called a real vector space if K =R and a complex

vector space if K =C.

The use of 0 for the scalar 0 as well as for the zero vector should
cause no confusion, in general. If desirable for clarity, we can denote
the zero vector by θ.
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Properties of Vector Spaces

Let X be a vector space over a field K .
Then, for all vectors x and scalars α,
(a) 0x = θ;
(b) αθ = θ;
(c) (−1)x =−x .

(a) We have
0x +0x = (0+0)x = 0x ⇒ 0x = θ.

(b) We have
αx =α(x +θ)=αx +αθ ⇒ αθ = θ.

(c) We have

x + (−1)x = 1x + (−1)x = (1+ (−1))x = 0x = θ ⇒ (−1)x =−x .
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Vector Spaces Rn and Cn

(Space Rn) This is the Euclidean space with underlying set being the
set of all n-tuples of real numbers, x = (ξ1, . . . ,ξn), y = (η1, . . . ,ηn), etc.

This is a real vector space with the two algebraic operations defined in
the usual fashion

x +y = (ξ1+η1, . . . ,ξn+ηn)
αx = (αξ1, . . . ,αξn), α ∈R.

(Space Cn) This space consists of all ordered n-tuples of complex
numbers x = (ξ1, . . . ,ξn), y = (η1, . . . ,ηn), etc..

It is a complex vector space with the algebraic operations defined as in
the previous example, where now α ∈C.
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Spaces of Functions

(Space C [a,b]) The points of this space are continuous real-valued
functions on [a,b]. The set of all these functions forms a real vector
space with the algebraic operations defined in the usual way:

(x +y)(t) = x(t)+y(t)
(αx)(t) = αx(t), α ∈R.

In fact, x +y and αx are continuous real-valued functions defined on
[a,b] if x and y are such functions and α is real.

Other important vector spaces of functions are:

(a) the vector space B(A);
(b) the vector space of all differentiable functions on R;
(c) the vector space of all real-valued functions on [a,b] which are

integrable in some sense.
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Sequence Spaces

(Space ℓ2) This space is a vector space with the algebraic operations
defined as usual in connection with sequences:

(ξ1,ξ2, . . .)+ (η1,η2, . . .) = (ξ1+η1,ξ2+η2, . . .)
α(ξ1,ξ2, . . .) = (αξ1,αξ2, . . .).

In fact, x = (ξj ) ∈ ℓ2 and y = (ηj) ∈ ℓ2 implies x +y ∈ ℓ2, as follows
readily from the Minkowski inequality; also αx ∈ ℓ2.

Other vector spaces whose points are sequences are ℓ∞, ℓp, where
1≤ p <+∞, and s.
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Subspaces

A subspace of a vector space X is a nonempty subset Y of X , such
that for all y1,y2 ∈Y and all scalars α,β, we have

αy1+βy2 ∈Y .

Hence, Y is itself a vector space, the two algebraic operations being
those induced from X .

A special subspace of X is the improper subspace Y =X .

Another special subspace of any vector space X is Y = {0}.

Every other subspace of X (6=X , {0}) is called proper.

George Voutsadakis (LSSU) Functional Analysis May 2023 10 / 124



Normed Spaces, Banach Spaces Vector Space

Spans

A linear combination of vectors x1, . . . ,xm of a vector space X is an
expression of the form

α1x1+α2x2+·· ·+αmxm,

where the coefficients α1, . . . ,αm are any scalars.

For any nonempty subset M ⊆X the set of all linear combinations of
vectors of M is called the span of M, written spanM.

spanM is a subspace of X , and we say that it is spanned or
generated by M.
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Linear Dependence and Independence

Definition (Linear Independence, Linear Dependence)

Let M be a given set of vectors x1, . . . ,xr , r ≥ 1, in a vector space X and
consider the equation α1x1+α2x2+·· ·+αr xr = 0, where α1, . . . ,αr are
scalars. Clearly, the equation holds for αl =α2 = ·· · =αr = 0.

If this is the only r -tuple of scalars for which it holds, the set M is said
to be linearly independent.

M is said to be linearly dependent if M is not linearly independent,
i.e., if the equation also holds for some r -tuple of scalars, not all zero.

An arbitrary subset M of X is said to be linearly independent if every
nonempty finite subset of M is linearly independent.
M is said to be linearly dependent if M is not linearly independent.
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A Consequence of Linear Dependence

Proposition

In a vector space X , M = {x1, . . . ,xr } is linearly dependent if and only if at
least one vector of M can be written as a linear combination of the others.

Suppose xi can be written as a linear combination of the other
vectors, i.e., there exist scalars α1, . . . ,αi−1,αi+1, . . . ,αr , such that

xi =α1x1+·· ·+αi−1xi−1+αi+1xi+1+·· ·+αrxr .

Setting αi =−1, we get
∑r

j=1
αjxj = 0, with not all αj equal to 0.

Hence, by definition, M is linearly dependent.

Conversely, if M is linearly dependent, there exist scalars aj ,
j = 1, . . . ,r , not all 0, such that

∑r
j=1

αjxj = 0. Suppose that αi 6= 0, for
some 1≤ i ≤ r . Then we have

xi =−
α1

αi
x1−·· ·−

αi−1

αi
xi−1−

αi+1

αi
xi+1−·· ·−

αr

αi
xr .
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Dimension

Definition (Finite and Infinite Dimensional Vector Spaces)

A vector space X is said to be finite dimensional if there is a positive
integer n such that X contains a linearly independent set of n vectors,
whereas any set of n+1 or more vectors of X is linearly dependent.
n is called the dimension of X , written n= dimX .
By definition, X = {0} is finite dimensional and dimX = 0.
If X is not finite dimensional, it is said to be infinite dimensional.

In analysis, infinite dimensional vector spaces are of greater interest
than finite dimensional ones:

C [a,b] and ℓ2 are infinite dimensional;
Rn and Cn are n-dimensional.
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Bases, Canonical Bases and Hamel Bases

If dimX = n, a linearly independent n-tuple of vectors of X is called a
basis for X (or a basis in X ).

If {e1, . . . ,en} is a basis for X , every x ∈X has a unique representation
as a linear combination of the basis vectors x =α1e1+·· ·+αnen.

Example: A basis for Rn is e1 = (1,0,0, . . . ,0), e2 = (0,1,0, . . . ,0), . . .,
en = (0,0,0, . . . ,1).

This is sometimes called the canonical basis for Rn.

If X is any vector space, not necessarily finite dimensional, and B is a
linearly independent subset of X which spans X , then B is called a
basis (or Hamel basis) for X .

If B is a basis for X , then every nonzero x ∈X has a unique
representation as a linear combination of (finitely many!) elements of
B with nonzero scalars as coefficients.
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Existence of Bases

Theorem

Every vector space X 6= {0} has a basis.

Let X be a vector space over some field K .

Consider the collection P of all linearly independent subset of X
ordered by inclusion

P = {S ⊆X : S is linearly independent}.

To apply Zorn’s lemma, suppose that C = {Si }i∈I is a chain in P .

We show that M =
⋃
i∈I Si is an upper bound of C in P .

That it is an upper bound of C is immediate by definition.

So we check that M is a linearly independent subset of X .

If not, there are vectors s1, . . . ,sn, where sk ∈ Sik for some Sik , and
scalars α1, . . . ,αn not all 0, such that α1s1+·· ·+αnsn = 0.

As C is totally ordered, one of Si1 , . . . ,Sin , say S , contains the others.
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Existence of Bases (Cont’d)

So every vector si belongs to some S in C .

This says there is a non-trivial dependence relation among vectors in
S , contradicting that S is linearly independent (S ∈C ⊆P).

Therefore, M is a linearly independent subsets of X , i.e., M ∈P .

By Zorn’s lemma, P contains a maximal element, say B .

It suffices to show that B spans X .

If not, then there is some x ∈X , such that x 6∈ span(B).

This says that B ∪ {x} is a linearly independent subset of X .

Since B áB ∪ {x}, this contradicts the maximality of B .
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Steinitz Exchange Lemma

Theorem (Steinitz Exchange Lemma)

Let Y and Z be finite subsets of a vector space X . If Y is linearly
independent and Z spans X , then:

|Y | ≤ |Z |;

There exists Z ′ ⊆Z , with |Z ′| = |Z |− |Y |, such that Y ∪Z ′ spans X .

Let Y = {y1, . . . ,ym} and Z = {z1, . . . ,zn}.

We show by induction on k = 0,1, . . . ,m, that k ≤ n and {y1, . . . ,yk ,

zk+1, . . . ,zn} spans X (here, the zj may have been reordered and the
reordering depends on k).

For k = 0, there are no yi and, by hypothesis, {z1, . . . ,zn} spans X .

Suppose that the conclusion holds for some k <m.
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Steinitz Exchange Lemma (Cont’d)

Since {y1, . . . ,yk ,zk+1, . . . ,zn} spans X , there exist α1, . . . ,αn, such that
yk+1 =

∑k
j=1

αjyj +
∑n

k+1
αjzj .

As {y1, . . . ,yk+1} are linearly independent, one of {αk+1, . . . ,αn} must be
nonzero.

This implies k +1≤ n.

By reordering, assume αk+1 6= 0.

Then, we get zk+1 =
1

αk+1
(yk+1−

∑k
j=1

αjyj −
∑n

j=k+2
αjzj).

Hence, zk+1 is in the span of {y1, . . . ,yk+1,zk+2, . . . ,zn}.

Thus, by the induction hypothesis, since the latter span includes zk+1,
it must be X .

Therefore, the span of {y1, . . . ,yk+1,zk+2, . . . ,zn} is also X .
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Dimensions

Theorem

All bases for a given (finite or infinite dimensional) vector space X have the
same cardinal number, called the dimension of X .

Suppose {xi : i ∈ I } is linearly independent and that {yj : j ∈ J} is a
generating set.

If |J | is finite, the conclusion follows by Steinitz’s Lemma.

Suppose |J | is infinite. As the case where |I | is finite leaves nothing to
prove, assume that |I | is also infinite.

Towards obtaining a contradiction, suppose |I | > |J |.

By Zorn’s Lemma, every linearly independent set is contained in a
maximal one, which is necessarily a basis.

So, without loss of generality, we may assume that {xi : i ∈ I } is a basis.
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Dimensions (Cont’d)

Thus, for every j ∈ J, there exist scalars αij , such that yj =
∑

i∈Ej
αijxi ,

where Ej is a finite subset of I .

Since J is infinite, |
⋃
j∈J Ej | = |J |.

Hence, by hypothesis, |
⋃
j∈J Ej | < |I |.

We conclude that there exists i0 ∈ I , i0 6∈
⋃
j∈J Ej .

As {yj : j ∈ J} is a generating set, xi0 may be expressed as a finite linear
combination of yj ’s.

By what was shown above, each yj may, in turn, be expressed as a
finite linear combination of xi ’s other that xi0 .

Therefore, xi0 is linearly dependent on the other xi ’s, which
contradicts the hypothesis.
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Dimension of Subspaces

Theorem (Dimension of a Subspace)

Let X be an n-dimensional vector space. Then any proper subspace Y of
X has dimension less than n.

If n= 0, then X = {0} and has no proper subspace.

If dimY = 0, then Y = {0}, and X 6=Y implies dimX ≥ 1. Clearly,
dimY ≤ dimX = n. If dimY were n, then Y would have a basis of n
elements, which would also be a basis for X since dimX = n. So
X =Y . This shows that any linearly independent set of vectors in Y

must have fewer than n elements. Hence dimY < n.
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Subsection 2

Normed Space, Banach Space
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Norms and Induced Metrics

Definition (Norms and Induced Metrics)

A norm on a (real or complex) vector space X is a real-valued function on
X whose value at an x ∈X is denoted by ‖x‖ and which has the properties,
for all x ,y ∈X and α a scalar:

(N1) ‖x‖≥ 0;

(N2) ‖x‖= 0 if and only if x = 0;

(N3) ‖αx‖ = |α|‖x‖;

(N4) ‖x +y‖≤ ‖x‖+‖y‖ (Triangle Inequality);

A norm on X defines a metric d on X which is given, for all x ,y ∈X , by

d(x ,y)= ‖x −y‖.

It is called the metric induced by the norm.
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Normed Spaces and Banach Spaces

Definition (Normed Space, Banach Space)

A normed space X is a vector space with a norm ‖ ·‖ defined on it.
A Banach space is a complete normed space (complete in the metric
defined by the norm).
The normed space is denoted by (X ,‖ ·‖) or simply by X .
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Remarks on the Properties

The defining properties (N1) to (N4) of a norm are suggested and
motivated by the length ‖x‖ of a vector x in elementary vector algebra.

In this case we can write ‖x‖= |x |.

In fact, (N1) and (N2) state that all vectors have positive lengths
except the zero vector which has length zero.

(N3) means that when a vector is multiplied by a scalar, its length is
multiplied by the absolute value of the scalar.

(N4) means that the length of one side of a triangle cannot exceed the
sum of the lengths of the two other sides.

From (N1) to (N4), we see that d(x ,y) does define a metric.

Hence, normed spaces and Banach spaces are metric spaces.
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Continuity of the Norm

Note that, by (N3), ‖x −y‖= ‖y −x‖.

By (N4), we get:

‖y‖−‖x‖ ≤ ‖y −x‖;
−‖y −x‖ ≤ ‖y‖−‖x‖.

These give −‖y −x‖ ≤ ‖y‖−‖x‖≤ ‖y −x‖.

or, equivalently,
|‖y‖−‖x‖| ≤ ‖y −x‖.

This formula implies the continuity property of the norm:

The norm is continuous, i.e., x 7→ ‖x‖ is a continuous mapping of
(X ,‖ ·‖) into R.
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Examples

(Euclidean Space Rn and Unitary Space Cn) These spaces are
Banach spaces with norm defined by

‖x‖=

(
n∑

j=1

|ξj |
2

)1/2

=

√
|ξ1|2+·· ·+ |ξn|2.

In fact, Rn and Cn are complete, and the norm yields the metric
encountered before:

d(x ,y)=‖x −y‖=

√
|ξ1−η1|2+·· ·+ |ξn−ηn|2.

Note, in particular, that in R3 we have

‖x‖ = |x | =
√
ξ2
1
+ξ2

2
+ξ2

3
.

Thus, the norm does indeed generalize the elementary notion of the
length |x | of a vector.
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The Spaces ℓp and ℓ∞

(Space ℓp) This space is a Banach space with norm given by

‖x‖=

(
∞∑

j=1

|ξj |
p

)1/p

.

In fact, this norm induces the metric

d(x ,y)=‖x −y‖=

(
∞∑

j=1

|ξj −ηj |
p

)1/p

.

Completeness has been proved.

(Space ℓ∞) This space is a Banach space since its metric is obtained
from the norm defined by

‖x‖=
∑

j

|ξj |.

Completeness has also been shown.
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Space C [a,b]

(Space C [a,b]) This space is a Banach space with norm given by

‖x‖ =max
t∈J

|x(t)|,

where J = [a,b].

Completeness has been proved.

(Incomplete Normed Spaces) From the incomplete metric spaces
that we studied before, we may readily obtain incomplete normed
spaces.

For instance, the metric d(x ,y)=
∫1
0 |x(t)−y(t)|dt is induced by the

norm

‖x‖=

∫1

0
|x(t)|dt .

We saw that every incomplete metric space may be completed.

It turns out that it is also possible to extend the operations of a vector
space and the norm to the completion, thereby completing an
incomplete normed vector space.
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An Incomplete Normed Space and its Completion L
2[a,b]

The vector space of all continuous real-valued functions on [a,b] forms
a normed space X with norm defined by

‖x‖=

(∫b

a
x(t)2dt

)1/2

.

This space is not complete.

For instance, consider [a,b]= [0,1].

The sequence

xm(t)=





0, if 0≤ x ≤ 1
2

m(x − 1
2
), if 1

2
≤ x ≤ 1

2
+ 1

m

1, if x ≥ 1
2
+ 1

m

is Cauchy in X .
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An Incomplete Normed Space and its Completion (Cont’d)

In fact, for n>m, we obtain

‖xn−xm‖2 =
∫1
0 [xn(t)−xm(t)]

2dt

=
∫1/n
0

(nx −mx)2dx +
∫1/m

1/n
(1−mx)2dx

= (n−m)2 1
3
x3 |

1/n
0

− 1
3m (1−mx)3 |

1/m

1/n

=
(n−m)2

3n3 + 1
3m

(1− m
n
)3 =

(n−m)3

3n3 +
(n−m)3

3mn3

=
m(n−m)2+(n−m)3

3mn3 =
(n−m)2(m+n−m)

3mn2

=
(n−m)2

3mn2 < 1
3m

− 1
3n

.

This Cauchy sequence does not converge.

The space X can be completed. The completion is denoted L2[a,b].

This is a Banach space: In fact, the norm on X and the operations of
vector space can be extended to the completion of X , as we will see in
the next section.
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The Spaces Lp[a,b]

More generally, for any fixed real number p ≥ 1, the Banach space
Lp[a,b] is the completion of the normed space which consists of all
continuous real-valued functions on [a,b], as before, and the norm
defined by

‖x‖p =

(∫b

a
|x(t)|pdt

)1/p

.

The subscript p is supposed to remind us that this norm depends on
the choice of p, which is kept fixed.

The space Lp[a,b] can also be obtained in a direct way by the use of
the Lebesgue integral and Lebesgue measurable functions x on [a,b],
such that the Lebesgue integral of |x |p over [a,b] exists and is finite.

The elements of Lp[a,b] are equivalence classes of those functions,
where x is equivalent to y if the Lebesgue integral of |x −y |p over
[a,b] is zero.
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Properties of Metrics Induced by Norms

Lemma (Properties of Metrics Induced by Norms)

A metric d induced by a norm on a normed space X satisfies, for all
x ,y ,a ∈X and all scalars α:

(a) d(x +a,y +a)= d(x ,y); (Translation Invariance)

(b) d(αx ,αy)= |α|d(x ,y).

We have d(x +a,y +a)=‖x +a− (y +a)‖ = ‖x −y‖= d(x ,y) and
d(αx ,αy)=‖αx −αy‖ = |α|‖x −y‖= |α|d(x ,y).

Not every metric on a vector space can be obtained from a norm:

s is a vector space, but its metric d defined by

d(x ,y)=
∞∑

j=1

1

2j
|ξj −ηj |

1+|ξj −ηj |

cannot be obtained from a norm.

This may immediately be seen from the preceding lemma.
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Subsection 3

Further Properties of Normed Spaces
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Subspaces of Normed Spaces and of Banach Spaces

By definition, a subspace Y of a normed space X is a subspace of X
considered as a vector space, with the norm obtained by restricting the
norm on X to the subset Y .

This norm on Y is said to be induced by the norm on X .

If Y is closed in X , then Y is called a closed subspace of X .

A subspace Y of a Banach space X is a subspace of X considered as
a normed space. We do not require Y to be complete.

In this connection, we get by a previous theorem,

Theorem (Subspace of a Banach Space)

A subspace Y of a Banach space X is complete if and only if the set Y is
ciosed in X .
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Convergent Sequences and Cauchy Sequences

Convergence of sequences and related concepts in normed spaces
follow readily from the corresponding definitions for metric spaces,
given the metric

d(x ,y)= ‖x −y‖.

(i) A sequence (xn) in a normed space X is convergent if X contains an
x such that

lim
n→∞

‖xn−x‖ = 0.

Then we write xn → x and call x the limit of (xn).
(ii) A sequence (xn) in a normed space X is Cauchy if for every ε> 0,

there is an N , such that

‖xm−xn‖< ε, for all m,n >N .
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Infinite Series, Convergence and Absolute Convergence

If (xk) is a sequence in a normed space X , we can associate with (xk)
the sequence (sn) of partial sums sn = x1+x2+·· ·+xn, n= 1,2, . . ..

If (sn) is convergent, say, sn → s, that is, ‖sn− s‖→ 0, then the
infinite series or, briefly, series

∞∑

k=1

xk = x1+x2+·· ·

is said to converge or to be convergent. s is called the sum of the
series and we write

s =
∞∑

k=1

xk = x1+x2+·· · .

If ‖x1‖+‖x2‖+·· · converges, the series
∑∞

k=1
xk is said to be

absolutely convergent.

Warning: In a normed space X , absolute convergence implies
convergence if and only if X is complete.
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Schauder Basis

If a normed space X contains a sequence (en) with the property that,
for every x ∈X , there is a unique sequence of scalars (αn) such that

‖x − (α1e1+·· ·+αnen)‖
n→∞
−→ 0,

then (en) is called a Schauder basis (or basis) for X .

The series
∑∞

k=1
αkek which has the sum x is then called the

expansion of x with respect to (en), and we write

x =
∞∑

k=1

αkek .

Example: ℓp has a Schauder basis, namely (en), where en = (δnj ), that
is, en is the sequence whose n-th term is 1 and all other terms are
zero; thus, e1 = (1,0,0,0, . . .), e2 = (0,1,0,0, . . .), e3 = (0,0,1,0, . . .), etc.
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Schauder Bases and Separability

If a normed space X has a Schauder basis, then X is separable.

Suppose {xi }
∞
i=1

is a Schauder basis, with ‖xi‖ = 1, for all i .

We show that an arbitrary x ∈X can be ε-approximated by elements
drawn from a countable set in X .

By the basis property, there exist n ∈N and αi , i ≤ n, such that

‖x −
n∑

i=1

αixi‖ <
ε

2
.

For every i , there exists βi (in Q or Q+ iQ), such that |αi −βi | <
ε

2i+1 .

Therefore,

‖x −
∑n

i=1
βixi‖ < ‖x −

∑n
i=1

αixi‖+‖
∑n

i=1
αixi −

∑n
i=1

βixi‖

< ε
2
+

∑∞
i=1

ε
2i+1 < ε.

Almost all known separable Banach spaces possess a Schauder basis.

However, there exist separable Banach spaces that do not have have a
Schauder basis (Enflo 1973).
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Completion Theorem

Theorem (Completion)

Let X = (X ,‖ ·‖) be a normed space. Then there is a Banach space X̂ and
an isometry A from X onto a subspace W of X̂ which is dense in X̂ . The
space X̂ is unique, except for isometries.

We know there exists a complete metric space X̂ = (X̂ , d̂) and an
isometry A :X →W =A(X ), where W is dense in X̂ and X̂ is unique,
except for isometries.

Consequently, to prove the present theorem, we must make X̂ into a
vector space and then introduce on X̂ a suitable norm.

To define on X̂ the two algebraic operations of a vector space, we
consider any x̂ , ŷ ∈ X̂ and any representatives (xn)∈ x̂ and (yn) ∈ ŷ .

x̂ and ŷ are equivalence classes of Cauchy sequences in X .
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Completion Theorem (Addition)

Consider the sequence (zn), with zn = xn+yn.

(zn) is Cauchy:

‖zn−zm‖= ‖xn+yn− (xm+ym)‖ ≤ ‖xn−xm‖+‖yn−ym‖.

Define the sum x̂ + ŷ := ẑ , the equivalence class of (zn).

The definition is independent of representatives:

Suppose (xn)∼ (x ′n) and (yn)∼ (y ′
n). Then

‖xn+yn− (x ′n+y ′
n)‖ ≤ ‖xn−x ′n‖+‖yn−y ′

n‖,

whence (xn+yn)∼ (x ′n+y ′
n).
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Completion Theorem (Remaining Structure)

Similarly, we define the product αx̂ ∈ X̂ of a scalar α and x̂ to be the
equivalence class for which (αxn) is a representative.

This definition is independent of the representative of x̂ .

The zero element of X is the equivalence class containing all Cauchy
sequences which converge to zero.

It is not difficult to see that those two algebraic operations have all
the properties required by the definition, so that X̂ is a vector space.

From the definition it follows that on W the operations of vector space
induced from X̂ agree with those induced from X by means of A.
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Completion Theorem (The Norm)

A induces on W a norm ‖ ·‖1, whose value at every ŷ =Ax ∈W is

‖ŷ‖1 = ‖x‖.

The corresponding metric on W is the restriction of d̂ to W since A is
isometric.

We can extend the norm ‖ ·‖1 to X by setting, for every x̂ ∈ X̂ ,

‖x‖2 = d̂(0̂, x̂).

It is obvious that ‖ ·‖2 satisfies (N1) and (N2).

The other two axioms (N3) and (N4) follow from those for ‖ ·‖1 by a
limit process.

George Voutsadakis (LSSU) Functional Analysis May 2023 44 / 124



Normed Spaces, Banach Spaces Finite Dimensional Normed Spaces and Subspaces

Subsection 4

Finite Dimensional Normed Spaces and Subspaces
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Linear Combinations

Lemma (Linear Combinations)

Let {x1, . . . ,xn} be a linearly independent set of vectors in a normed space X

(of any dimension). Then, there is a number c > 0, such that, for every
choice of scalars α1, . . . ,αn, we have

‖α1x1+·· ·+αnxn‖ ≥ c(|α1|+ · · ·+ |αn |), c > 0.

Let s = |α1|+ · · ·+ |αn|. If s = 0, all αj are zero, so the relation holds
for any c . Let s > 0. Then the inequality is equivalent to that obtained
by dividing by s and writing βj =

αj

s
, i.e., ‖β1x1+·· ·+βnxn‖ ≥ c , with∑n

j=1
|βj | = 1. Hence it suffices to prove the existence of a c > 0, such

that the latter holds for every n-tuple β1, . . . ,βn, with
∑
|βj | = 1.

Suppose this is false. Then there exists a sequence (ym) of vectors

ym =β
(m)
1

x1+·· ·+β
(m)
n xn, with

∑n
j=1

|β
(m)
j

| = 1, such that ‖ym‖
m→∞
→ 0.

Since
∑
|β

(m)
j

| = 1, we have |β
(m)
j

| ≤ 1. Hence for each fixed j , the

sequence (β
(m)

j
)= (β

(1)

j
,β

(2)

j
, . . .) is bounded.

George Voutsadakis (LSSU) Functional Analysis May 2023 46 / 124



Normed Spaces, Banach Spaces Finite Dimensional Normed Spaces and Subspaces

Linear Combinations (Cont’d)

The sequence (β
(m)

j
)= (β

(1)

j
,β

(2)

j
, . . .) is bounded. Consequently, by the

Bolzano-Weierstrass theorem, (β
(m)
1

) has a convergent subsequence.
Let β1 denote the limit of that subsequence, and let (y1,m) denote the
corresponding subsequence of (ym). By the same argument, (y1,m)
has a subsequence (y2,m) for which the corresponding subsequence of

scalars (β
(m)
2

) converges. Let β2 denote the limit. Continuing in this
way, after n steps we obtain a subsequence (yn,m)= (yn,1,yn,2, . . .) of

(ym) with terms of the form yn,m =
∑n

j=1
γ
(m)
j

xj , with
∑n

j=1
|γ

(m)
j

| = 1,

and γ
(m)
j

satisfying γ
(m)
j

m→∞
→ βj . Hence, yn,m

m→∞
→ y =

∑n
j=1

βjxj ,

where
∑
|βj | = 1, so that not all βj can be zero. Since {x1, . . . ,xn} is a

linearly independent set, we thus have y 6= 0. On the other hand,
yn,m → y implies ‖yn,m‖→‖y‖, by the continuity of the norm. Since
‖ym‖→ 0 by assumption and (yn,m) is a subsequence of (ym), we must
have ‖yn,m‖→ 0. Hence ‖y‖= 0, so that y = 0. This contradicts y 6= 0.
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Completeness

Theorem (Completeness)

Every finite dimensional subspace Y of a normed space X is complete. In
particular, every finite dimensional normed space is complete.

Consider an arbitrary Cauchy sequence (ym) in Y . We show that it is
convergent in Y ; the limit will be denoted by y . Let dimY = n and
{e1, . . . ,en} any basis for Y . Then each ym has a unique representation

of the form ym =α
(m)
1

e1+·· ·+α
(m)
n en. Since (ym) is Cauchy, for every

ε> 0, there is an N, such that ‖ym−yr‖< ε when m,r >N. From this
and the lemma we have, for some c > 0, ε> ‖ym−yr‖=

‖
∑n

j=1
(α

(m)

j
−α

(r)

j
)ej‖≥ c

∑n
j=1

|α
(m)

j
−α

(r)

j
|, where m,r >N. Division

by c > 0 gives |α
(m)
j

−α
(r)
j

| ≤
∑n

j=1
|α

(m)
j

−α
(r)
j

| < ε
c , m,r >N. Thus,

each of the n sequences (α
(m)
j

)= (α
(1)
j

,α
(2)
j

, . . .), j = 1, . . . ,n, is Cauchy

in R or C. Hence it converges to a limit aj .
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Completeness (Cont’d)

Using these n limits α1, . . . ,αn, we define y =α1e1+·· ·+αnen. Clearly,
y ∈Y . Furthermore,

‖ym−y‖ = ‖
n∑

j=1

(α
(m)
j

−αj )ej‖ ≤
n∑

j=1

|α
(m)
j

−αj |‖ej‖.

On the right, α
(m)
j

→αj . Hence ‖ym−y‖→ 0, that is, ym → y . This

shows that (ym) is convergent in Y .
Since (ym) was an arbitrary Cauchy sequence in Y , this proves that Y
is complete.
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Closedness

Theorem (Closedness)

Every finite dimensional subspace Y of a normed space X is closed in X .

A subspace of a complete metric space is complete iff it is closed.

Infinite dimensional subspaces need not be closed.

Example: Let X =C [0,1] and Y = span(x0,x1, . . .), where xj(t)= t j , so
that Y is the set of all polynomials. Y is not closed in X .
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Equivalent Norms

Definition (Equivalent Norms)

A norm ‖·‖ on a vector space X is said to be equivalent to a norm ‖·‖0 on
X if there are positive numbers a and b, such that, for all x ∈X , we have

a‖x‖0 ≤ ‖x‖ ≤ b‖x‖0.

Claim: Equivalent norms on X define the same topology for X .

This follows from the definition and the fact that every nonempty
open set is a union of open balls.

The Cauchy sequences in (X ,‖ ·‖) and (X ,‖ ·‖0) are the same.
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Equivalent Norms in Finite Dimensions

Theorem (Equivalent Norms)

On a finite dimensional vector space X , any norm ‖ ·‖ is equivalent to any
other norm ‖ ·‖0.

Let dimX = n and {e1, . . . ,en} any basis for X . Then, every x ∈X has a
unique representation x =α1e1+·· ·+αnen. By a preceding lemma,
there is a positive constant c , such that ‖x‖ ≥ c(|α1|+ · · ·+ |αn |). On
the other hand, the triangle inequality gives

‖x‖0 ≤
n∑

j=1

|αj |‖ej‖0 ≤ k
n∑

j=1

|αj |, k =max
j

‖ej‖0.

Together, a‖x‖0 ≤ ‖x‖, where a= c
k > 0. The other inequality is

obtained by interchanging the roles of ‖ ·‖ and ‖ ·‖0 in the argument.

This theorem implies that convergence or divergence of a sequence in
a finite dimensional vector space does not depend on the particular
choice of a norm on that space.
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Subsection 5

Compactness and Finite Dimension
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Compactness

Definition (Compactness)

A metric space X is said to be compact if every sequence in X has a
convergent subsequence.
A subset M of X is said to be compact if M is compact considered as a
subspace of X , that is, if every sequence in M has a convergent
subsequence whose limit is an element of M.

Lemma (Compactness)

A compact subset M of a metric space is closed and bounded.

For every x ∈M, there is a sequence (xn) in M such that xn → x . Since
M is compact, x ∈M. Hence M is closed because x ∈M was arbitrary.

M is bounded: If not, it would contain an unbounded sequence (yn),
such that d(yn,b)> n, where b is any fixed element. This sequence
could not have a convergent subsequence since a convergent
subsequence must be bounded.
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On the Converse of the Compactness Lemma

Claim: The converse of this lemma is in general false.

Consider the sequence (en) in ℓ2, where en = (δnj ) has the n-th term 1
and all other terms 0. This sequence is bounded since ‖en‖ = 1. Its
terms constitute a point set which is closed because it has no point of
accumulation. For the same reason, that point set is not compact.
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Compactness in Finite Dimensional Normed Spaces

Theorem (Compactness)

In a finite dimensional normed space X , any subset M ⊆X is compact if
and only if M is closed and bounded.

We know compactness implies closedness and boundedness.

Conversely, let M be closed and bounded. Let dimX = n and
{e1, . . . ,en} a basis for X . We consider any sequence (xm) in M. Each

xm has a representation xm = ξ
(m)
1

e1+·· ·+ξ
(m)
n en. Since M is

bounded, so is (xm), say, ‖xm‖≤ k , for all m. By a preceding lemma,

k ≥ ‖xm‖ = ‖
∑n

j=1
ξ
(m)
j

ej‖≥ c
∑n

j=1
|ξ
(m)
j

| where c > 0. Hence, the

sequence of numbers (ξ
(m)
j

), j fixed, is bounded. By the Bolzano -

Weierstrass theorem, it has a point of accumulation ξj ,1≤ j ≤ n. As in
the proof of the preceding lemma, (xm) has a subsequence (zm) which
converges to z =

∑
ξjej . Since M is closed, z ∈M. Thus, an arbitrary

sequence (xm) in M has a subsequence which converges in M.
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Compactness in Rn

Our discussion shows the following:
In Rn (or in any other finite dimensional normed space) the compact
subsets are precisely the closed and bounded subsets, so that this
property (closedness and boundedness) can be used for defining
compactness.

However, this can no longer be done in the case of an infinite
dimensional normed space.
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Riesz’s Lemma

Riesz’s Lemma

Let Y and Z be subspaces of a normed space X (of any dimension), and
suppose that Y is closed and is a proper subset of Z . Then for every real
number θ in the interval (0,1), there is a z ∈Z , such that ‖z‖= 1,
‖z −y‖ ≥ θ, for all y ∈Y .

We consider any v ∈Z −Y and denote its distance from Y by a:
a= infy∈Y ‖v −y‖.

Clearly, a> 0 since Y is closed. We now take
any θ ∈ (0,1). By the definition of an infimum,
there is a y0 ∈ Y , such that a ≤ ‖v −y0‖ ≤

a
θ ,

( aθ > a, since 0< θ < 1).
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Riesz’s Lemma (Cont’d)

Let z = c(v −y0) where c = 1
‖v−y0‖

. Then
‖z‖ = 1. We show that ‖z − y‖ ≥ θ, for
every y ∈Y . We have

‖z −y‖ = ‖c(v −y0)−y‖

= c‖v −y0−c−1y‖

= c‖v −y1‖,

where y1 = y0+c−1y .

The form of y1 shows that y1 ∈Y . Hence ‖v −y1‖ ≥ a, by the
definition of a. Writing c out, we obtain

‖z −y‖ = c‖v −y1‖≥ ca=
a

‖v −y0‖
≥

a

a/θ
= θ.

Since y ∈Y was arbitrary, this completes the proof.
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Closedness of the Unit Ball Implies Finite Dimensionality

In a finite dimensional normed space the closed unit ball is compact.

Theorem (Finite Dimension)

If a normed space X has the property that the closed unit ball
M = {x : ‖x‖ ≤ 1} is compact, then X is finite dimensional.

Assume that M is compact but dimX =∞. We choose any x1 of norm
1. This x1 generates a one dimensional subspace x1 of X , which is
closed and is a proper subspace of X since dimX =∞. By Riesz’s
Lemma, there is an x2 ∈X of norm 1, such that ‖x2−x1‖≥ θ = 1

2
. The

elements x1,x2 generate a two dimensional proper closed subspace X2

of X . By Riesz’s Lemma, there is an x3 of norm 1 such that for all
x ∈X2, we have ‖x3−x‖ ≥ 1

2
. In particular, ‖x3−x1‖≥

1
2
, ‖x3−x2‖ ≥

1
2
.

Proceeding by induction, we obtain a sequence (xn) of elements
xn ∈M such that ‖xm−xn‖≥

1
2
. Obviously, (xn) cannot have a

convergent subsequence. This contradicts the compactness of M.
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Continuity and Compactness

Compact sets are important since they are “well-behaved”: they have
several basic properties similar to those of finite sets and not shared by
noncompact sets.

Theorem (Continuous Mapping)

Let X and Y be metric spaces and T :X →Y a continuous mapping.
Then the image of a compact subset M of X under T is compact.

By the definition of compactness, it suffices to show that every
sequence (yn) in the image T (M)⊆Y contains a subsequence which
converges in T (M). Since yn ∈T (M), we have yn =Txn, for some
xn ∈M. Since M is compact, (xn) contains a subsequence (xnk ) which
converges in M. The image of (xnk ) is a subsequence of (yn) which
converges in T (M) because T is continuous. Hence, T (M) is
compact.
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Maximum and Minimum Value Theorem

The Continuous Mapping Theorem shows that the following property,
well-known from calculus for continuous functions, carries over to
metric spaces:

Corollary (Maximum and Minimum)

A continuous mapping T of a compact subset M of a metric space X into
R assumes a maximum and a minimum at some points of M.

T (M)⊆R is compact and closed and bounded by preceding lemmas.
So infT (M) ∈T (M) and supT (M) ∈T (M). The inverse images of
these two points consist of points of M at which Tx is minimum or
maximum, respectively.
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Subsection 6

Linear Operators
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Linear Operators

Definition (Linear Operator)

A linear operator T is an operator such that:

(i) the domain D(T ) of T is a vector space and the range R(T ) lies in a
vector space over the same field;

(ii) for all x ,y ∈D(T ) and scalars α,

T (x +y)=Tx +Ty , T (αx)=αTx .

We write Tx instead of T (x).

D(T ) denotes the domain of T .

R(T ) denotes the range of T .

N (T ) denotes the null space of T : this is the set of all x ∈D(T ),
such that Tx = 0.
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Operators and Arrows

Let D(T )⊆X and R(T )⊆Y , where X and Y are vector spaces, both
real or both complex.

Then T is an operator from (or mapping of) D(T ) onto R(T ),
written T :D(T )→R(T ), or from D(T ) into Y , written
T :D(T )→Y .

If D(T ) is the whole space X , then - and only then - we write
T :X →Y .
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The Homomorphism Property

The equations

T (x +y)=Tx +Ty , T (αx)=αTx (1)

are equivalent to
T (αx +βy)=αTx +βTy .

By taking α= 0, we obtain
T0= 0.

The equations (1) express the fact that a linear operator T is a
homomorphism of a vector space (its domain) into another vector
space, i.e., T preserves the two operations of vector space:

On the left we first apply a vector space operation (addition or
multiplication by scalars) and then map the resulting vector into Y ;
On the right we first map x and y into Y and then perform the vector
space operations in Y ;

The outcome is the same.
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Examples

(Identity Operator) The identity operator IX :X →X is defined by
IX x = x , for all x ∈X . We also write simply I for IX ; thus, Ix = x .

(Zero Operator) The zero operator 0 :X →Y is defined by 0x = 0,
for all x ∈X .

(Differentiation) Let X be the vector space of all polynomials on
[a,b]. We may define a linear operator T on X by setting

Tx(t)= x ′(t),

for every x ∈X , where the prime denotes differentiation with respect
to t. This operator T maps X onto itself.

(Integration) A linear operator T from C [a,b] into itself can be
defined by

Tx(t)=

∫t

a

x(τ)dτ, τ ∈ [a,b].
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Examples (Cont’d)

(Multiplication by t) Another linear operator from C [a,b] into itself
is defined by

Tx(t)= tx(t).

(Elementary Vector Algebra) The cross product with one factor
kept fixed defines a linear operator T1 :R

3 →R3. Similarly, the dot

product with one fixed factor defines a linear operator T2 :R
3 →R,

say,
T2x = x ·a= ξ1α1+ξ2α2+ξ3α3,

where a= (αj) ∈R
3 is fixed.
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Matrices

A real matrix A= (αjk) with r rows and n columns defines an operator
T :Rn →Rr by means of y =Ax , where x = (ξj) has n components
and y = (ηj) has r components and both vectors are written as column
vectors because of the usual convention of matrix multiplication;

writing y =Ax out, we have




η1

η2

...
ηr



=




α11 α12 · · · α1n

α21 α22 · · · α2n
...

... · · ·
...

αr1 αr2 · · · αrn







ξ1

ξ2

...

...
ξn




.

T is linear because matrix multiplication is a linear operation.

If A were complex, it would define a linear operator from Cn into Cr .
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Range and Null Space

Theorem (Range and Null Space)

Let T be a linear operator. Then:

(a) The range R(T ) is a vector space.

(b) If dimD(T )= n<∞, then dimR(T )≤ n.

(c) The null space N (T ) is a vector space.

(a) We take any y1,y2 ∈R(T ) and show that αy1+βy2 ∈R(T ), for any
scalars α,β. Since y1,y2 ∈R(T ), we have y1 =Tx1, y2 =Tx2, for some
x1,x2 ∈D(T ), and αx1+βx2 ∈D(T ) because D(T ) is a vector space.
The linearity of T yields T (αx1+βx2)=αTx1+βTx2 =αy1+βy2.
Hence, αy1+βy2 ∈R(T ). Since y1,y2 ∈R(T ) were arbitrary and so
were the scalars, this proves that R(T ) is a vector space.
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Range and Null Space (Cont’d)

(b) We choose n+1 arbitrary elements y1, . . . ,yn+1 of R(T ). Then we
have y1 =Tx1, . . . ,yn+1 =Txn+1, for some x1, . . . ,xn+1 in D(T ). Since
dimD(T )= n, this set {x1, . . . ,xn+1} must be linearly dependent. Hence
α1x1+·· ·+αn+1xn+1 = 0, for some scalars α1, . . . ,αn+1 not all zero.
Since T is linear and T0= 0, application of T on both sides gives
T (α1x1+·· ·αn+1xn+1)=α1y1+·· ·+αn+1yn+1 = 0. This shows that
{y1, . . . ,yn+1} is a linearly dependent set because the αj ’s are not all
zero. Remembering that this subset of R(T ) was chosen in an
arbitrary fashion, we conclude that R(T ) has no linearly independent
subsets of n+1 or more elements. By the definition this means that
dimR(T )≤ n.

(c) We take any x1,x2 ∈N (T ). Then Tx1 =Tx2 = 0. Since T is linear, for
any scalars α,β, we have T (αx1+βx2)=αTx1+βTx2 = 0. This shows
that αx1+βx2 ∈N (T ). Hence N (T ) is a vector space.

(b) shows that linear operators preserve linear dependence.
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Injective or One-to-one Mappings and Inverses

A mapping T :D(T )→Y is said to be injective or one-to-one if
different points in the domain have different images, i.e., if for any
x1,x2 ∈D(T ), x1 6= x2 implies Tx1 6=Tx2.

Equivalently, Tx1 =Tx2 implies x1 = x2.

In this case there exists the map-
ping

T−1 :R(T )→D(T );y0 7→ x0,

which maps every y0 ∈R(T ) onto
that x0 ∈ D(T ) for which Tx0 =

y0. The mapping T−1 is called
the inverse of T .
Clearly, for all x ∈D(T ), T−1Tx = x and, for all y ∈R(T ), TT−1y = y .
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Inverse Operator

Theorem (Inverse Operator)

Let X ,Y be vector spaces, both real or both complex. Let T :D(T )→Y

be a linear operator with domain D(T )⊆X and range R(T )⊆Y . Then:

(a) The inverse T−1 :R(T )→D(T ) exists if and only if Tx = 0 implies
x = 0.

(b) If T−1 exists, it is a linear operator.

(c) If dimD(T )= n<∞ and T−1 exists, then dimR(T )= dimD(T ).

(a) Suppose that Tx = 0 implies x = 0. Let Tx1 =Tx2. Since T is linear,
T (x1−x2)=Tx1−Tx2 = 0. So x1−x2 = 0 by the hypothesis. Hence
Tx1 =Tx2 implies x1 = x2, and T−1 exists.

Conversely, if T−1 exists, then Tx1 = 0=T0 implies x1 =T−1Tx1 =

T−1T0= 0.
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Inverse Operator (Cont’d)

(b) Assume that T−1 exists. The domain of T−1 is R(T ) and is a vector
space by a preceding theorem. We consider any x1,x2 ∈D(T ) and
their images y1 =Tx1 and y2 =Tx2. Then x1 =T−1y1 and x2 =T−1y2.
T is linear, so that, for any scalars α and β, we have

αy1+βy2 =αTx1+βTx2 =T (αx1+βx2).

Since xi =T−1yi , we get

T−1(αy1+βy2)=αx1+βx2 =αT−1y1+βT−1y2

proving that T−1 is linear.

(c) We have dimR(T )≤ dimD(T ). Also, dimD(T )≤ dimR(T ) by the
same theorem applied to T−1.
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Inverse of Product

Lemma (Inverse of Product)

Let T : X → Y and S : Y → Z be bijective
linear operators, where X ,Y ,Z are vector
spaces. Then the inverse (ST )−1 : Z → X

of the product (the composite) ST exists,
and (ST )−1 =T−1S−1.

The operator ST :X →Z is bijective, so that (ST )−1 exists. We thus
have ST (ST )−1 = IZ , where IZ is the identity operator on Z . Applying
S−1 and using S−1S = IY (the identity operator on Y ), we obtain
T (ST )−1 =S−1ST (ST )−1 =S−1IZ = S−1. Applying T−1 and using
T−1T = IX , we obtain the desired result (ST )−1 =T−1T (ST )−1 =

T−1S−1.
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Subsection 7

Bounded and Continuous Linear Operators
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Bounded Linear Operators

Definition (Bounded Linear Operator)

Let X and Y be normed spaces and T :D(T )→Y a linear operator, where
D(T )⊆X . The operator T is said to be bounded if there is a real number
c such that for all x ∈D(T ), ‖Tx‖≤ c‖x‖.

In the defining inequality, the norm on the left is that on Y , and the
norm on the right is that on X .

The formula shows that a bounded linear operator maps bounded sets
in D(T ) onto bounded sets in Y .
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The Norm of a Bounded Linear Operator

Consider the relationship ‖Tx‖≤ c‖x‖.

By division, ‖Tx‖
‖x‖ ≤ c showing that, for c to satisfy ‖Tx‖ ≤ c‖x‖, for all

nonzero x ∈D(T ), it must be at least as big as the supremum of the
expression on the left taken over D(T )− {0}.

Thus, the smallest possible c for which ‖Tx‖≤ c‖x‖ is the supremum.

This quantity is denoted by ‖T‖:

‖T‖= sup
x∈D(T )
x 6=0

‖Tx‖

‖x‖
.

‖T‖ is called the norm of the operator T .

If D(T )= {0}, we define ‖T‖= 0.

Note that
‖Tx‖ ≤ ‖T‖‖x‖.

George Voutsadakis (LSSU) Functional Analysis May 2023 78 / 124



Normed Spaces, Banach Spaces Bounded and Continuous Linear Operators

The Norm Lemma

Lemma (Norm)

Let T be a bounded linear operator. Then:

(a) An alternative formula for the norm of T is

‖T‖= sup
x∈D(T )
‖x‖=1

‖Tx‖.

(b) The norm defined by ‖T‖= supx∈D(T )
x 6=0

‖Tx‖
‖x‖ satisfies (N1)-(N4).

(a) We write ‖x‖= a and set y = 1
a
x , where x 6= 0. Then ‖y‖= ‖x‖

a
= 1.

Since T is linear,
‖T‖= supx∈D(T )

x 6=0

1
a‖Tx‖= supx∈D(T )

x 6=0

‖T (1
ax)‖ = supy∈D(T )

‖y‖=1

‖Ty‖.

Writing x for y on the right, we have the desired equation.
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The Norm Lemma (Cont’d)

(b) (N1) is obvious, and so is ‖0‖= 0. From ‖T‖= 0, we have Tx = 0, for
all x ∈D(T ), so that T = 0. Hence (N2) holds.

Furthermore, (N3) is obtained from the following, for x ∈D(T ):

sup
‖x‖=1

‖αTx‖ = sup
‖x‖=1

|α|‖Tx‖ = |α| sup
‖x‖=1

‖Tx‖.

Finally, (N4) follows from the following, for x ∈D(T ):

sup‖x‖=1 ‖(T1+T2)x‖ = sup‖x‖=1 ‖T1x +T2x‖

≤ sup‖x‖=1 ‖T1x‖+ sup‖x‖=1‖T2x‖.
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Examples

(Identity Operator) The identity operator I :X →X on a normed
space X 6= {0} is bounded and has norm ‖I‖= 1.

(Zero Operator) The zero operator 0 :X →Y on a normed space X

is bounded and has norm ‖0‖= 0.

(Differentiation Operator) Let X be the normed space of all
polynomials on J = [0,1] with norm given ‖x‖=max |x(t)|,t ∈ J. A
differentiation operator T is defined on X by Tx(t)= x ′(t), where the
prime denotes differentiation with respect to t. This operator is linear
but not bounded. Indeed, let xn(t)= tn, where n ∈N. Then ‖xn‖= 1
and Txn(t)= x ′n(t)= ntn−1, so that ‖Txn‖= n and ‖Txn‖

‖xn‖
= n. Since

n ∈N is arbitrary, this shows that there is no fixed number c , such
that ‖Txn‖

‖xn‖
≤ c . Thus, T is not bounded.
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The Integral Operator

We can define an integral operator T :C [0,1]→C [0,1] by y =Tx ,

where y(t)=
∫1
0 k(t ,τ)x(τ)dτ. Here k is a given function, which is

called the kernel of T and is assumed to be continuous on the closed
square G = J ×J in the tτ-plane, where J = [0,1]. This operator is
linear. T is bounded: To prove this, note that:

The continuity of k on the closed square implies that k is bounded, say,
|k(t,τ)| ≤ k0, for all (t,τ) ∈G , where k0 is a real number;
|x(t)| ≤maxt∈J |x(t)| = ‖x‖.

Hence,
‖y‖ = ‖Tx‖ = maxt∈J |

∫1
0 k(t ,τ)x(τ)dτ|

≤ maxt∈J
∫1
0 |k(t ,τ)||x(τ)|dτ

≤ k0‖x‖.

The result is ‖Tx‖≤ k0‖x‖. This is the required inequality with c = k0.
Hence T is bounded.
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Matrices

A real matrix A= (αjk) with r rows and n columns defines an operator
T :Rn →Rr by means of y =Ax , where x = (ξj) and y = (ηj) are
column vectors with n and r components, respectively.

In terms of components, we get ηj =
∑n

k=1
αjkξk , j = 1, . . . ,r . T is linear

because matrix multiplication is a linear operation. T is bounded:

To prove this, recall that the norm on Rn is ‖x‖= (
∑n

m=1ξ
2
m)

1/2
.

Similarly for y ∈Rr . By definition and the Cauchy-Schwarz inequality,

‖Tx‖2 =
∑r

j=1
η2
j
=

∑r
j=1

[∑n
k=1

αjkξk
]2

≤
∑r

j=1

[
(
∑n

k=1
α2
jk
)1/2(

∑n
m=1 ξ

2
m)

1/2
]2

= ‖x‖2∑r
j=1

∑n
k=1

α2
jk

.

Note that the last double sum does not depend on x . So we can write
our result in the form ‖Tx‖2 ≤ c2‖x‖2, where c2 =

∑r
j=1

∑n
k=1

α2
jk

.

Thus, T is bounded.
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Finite Dimension and Boundedness

Theorem (Finite Dimension)

If a normed space X is finite dimensional, then every linear operator on X

is bounded.

Let dimX = n and {e1, . . . ,en} a basis for X . We take any x =
∑
ξjej

and consider any linear operator T on X . Since T is linear,

‖Tx‖= ‖
∑

ξjTej‖≤
∑

|ξj |‖Tej‖ ≤max
k

‖Tek‖
∑

|ξj |.

From the last sum, applying the lemma on linear combinations, we
obtain ∑

|ξj | ≤
1

c
‖
∑

ξjej‖=
1

c
‖x‖.

Together, ‖Tx‖ ≤ γ|x‖, where γ= 1
c
maxk ‖Tek‖. Thus, T is bounded.
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Continuity and Boundedness

Let T :D(T )→Y be any operator, not necessarily linear, where
D(T )⊆X and X and Y are normed spaces. The operator T is
continuous at an x0 ∈D(T ) if for every ε> 0, there is a δ> 0, such
that ‖Tx −Tx0‖ < ε, for all x ∈D(T ) satisfying ‖x −x0‖ < δ. T is
continuous if T is continuous at every x ∈D(T ).

Theorem (Continuity and Boundedness)

Let T :D(T )→Y be a linear operator, where D(T )⊆X and X ,Y are
normed spaces. Then:

(a) T is continuous if and only if T is bounded.

(b) If T is continuous at a single point, it is continuous.

(a) For T = 0 the statement is trivial. Let T 6= 0. Then ‖T‖ 6= 0. We
assume T to be bounded and consider any x0 ∈D(T ). Let any ε> 0
be given.
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Continuity and Boundedness (Cont’d)

Since T is linear, for every x ∈D(T ), such that ‖x −x0‖< δ= ε
‖T‖

,

‖Tx −Tx0‖= ‖T (x −x0)‖ ≤ ‖T‖‖x −x0‖ < ‖T‖δ= ε.

Since x0 ∈D(T ) was arbitrary, this shows that T is continuous.

Conversely, assume that T is continuous at an arbitrary x0 ∈D(T ).
Then, given any ε> 0, there is a δ> 0, such that ‖Tx −Tx0‖ ≤ ε, for
all x ∈D(T ), such that ‖x −x0‖≤ δ. We now take any y 6= 0 in D(T )
and set x = x0+

δ
‖y‖

y . Then x −x0 =
δ

‖y‖
y . Hence ‖x −x0‖ =δ, so that

we may use continuity together with linearity:

‖Tx −Tx0‖= ‖T (x −x0)‖ =

∥∥∥∥T (
δ

‖y‖
y)

∥∥∥∥=
δ

‖y‖
‖Ty‖.

Hence δ
‖y‖‖Ty‖≤ ε. Thus, ‖Ty‖ ≤ ε

δ‖y‖. This can be written
‖Ty‖≤ c‖y‖, where c = ε

δ . This shows that T is bounded.

(b) Continuity of T at a point implies boundedness of T by the second
part of the proof of (a). This, in turn, implies continuity of T by (a).
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Continuity and Null Space

Corollary (Continuity, Null Space)

Let T be a bounded linear operator. Then:

(a) xn → x (where xn,x ∈D(T )) implies Txn →Tx .

(b) The null space N (T ) is closed.

(a) This follows from from ‖Tx‖ ≤ ‖T‖‖x‖ because, as n→∞,

‖Txn−Tx‖ = ‖T (xn−x)‖ ≤ ‖T‖‖xn−x‖→ 0.

(b) For every x ∈N (T ), there is a sequence (xn) in N (T ), such that
xn → x . Hence Txn →Tx by part (a) of this Corollary. Also Tx = 0

since Txn = 0. So x ∈N (T ). Since x ∈N (T ) was arbitrary, N (T ) is
closed.
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Additional Properties

The range of a bounded linear operator may not be closed:

The operator T : ℓ∞ → ℓ∞ defined by y = (ηj )=Tx , ηj =
ξj
j
, x = (ξj ) is

linear and bounded.
The range R(T ) is not closed in Y .

The formula

‖T1T2‖≤ ‖T1‖‖T2‖, ‖T n‖ ≤ ‖T‖n, n ∈N,

is valid for bounded linear operators T2 :X →Y ,T1 :Y →Z and
T :X →X , where X ,Y ,Z are normed spaces.
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Equality, Restriction and Extension of Operators

Two operators T1 and T2 are defined to be equal, written T1 =T2, if
they have the same domain D(T1)=D(T2) and if T1x =T2x , for all
x ∈D(T1)=D(T2).

The restriction of an operator T :D(T )→Y to a subset B ⊆D(T ) is
denoted by T |B and is the operator defined by T |B :B →Y ,
T |B x =Tx , for all x ∈B .

An extension of T to a set M ⊇D(T ) is an operator T̃ :M →Y ,
such that T̃

∣∣
D(T ) =T , i.e., T̃ x =Tx , for all x ∈D(T ).

Hence T is the restriction of T̃ to D(T ).
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Bounded Linear Extension Theorem

Theorem (Bounded Linear Extension)

Let T :D(T )→Y be a bounded linear operator, where D(T ) lies in a
normed space X and Y is a Banach space. Then T has an extension
T̃ :D(T )→Y , where T̃ is a bounded linear operator of norm ‖T̃‖= ‖T‖.

We consider any x ∈D(T ). There is a sequence (xn) in D(T ), such
that xn → x . Since T is linear and bounded, we have

‖Txn−Txm‖= ‖T (xn−xm)‖ ≤ ‖T‖‖xn−xm‖.

Since (xn) converges, (Txn) is Cauchy. Since Y is complete, (Txn)
converges, say, Txn → y ∈Y . Define T̃ by T̃ x = y .
The definition is independent of the choice of a sequence in D(T )
converging to x : Suppose that xn → x and zn → x . Then vm → x ,
where (vm) is (x1,z1,x2,z2, . . .). Hence (Tvm) converges and the two
subsequences (Txn) and (Tzn) of (Tvm) must have the same limit.
Thus, T is uniquely defined at every x ∈D(T ).
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Bounded Linear Extension Theorem

Clearly, T̃ is linear and T̃ x =Tx , for every x ∈D(T ). So T̃ is an
extension of T .
We now use ‖Txn‖≤ ‖T‖‖xn‖ and let n→∞. Then Txn → y = T̃ x .
Since x →‖x‖ defines a continuous mapping, ‖T̃ x‖ ≤ ‖T‖‖x‖. Hence,
T̃ is bounded and ‖T̃‖≤ ‖T‖.

Of course, ‖T̃‖ ≥ ‖T‖ because the norm, being defined by a
supremum, cannot decrease in an extension.

Together we have ‖T̃‖= ‖T‖.
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Subsection 8

Linear Functionals
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Linear Functionals

A functional is an operator whose range lies on the real line R or in
the complex plane C.

We denote functionals by lowercase letters f ,g ,h, . . ., the domain of f
by D(f ), the range by R(f ) and the value of f at an x ∈D(f ) by
f (x), with parentheses.

Functionals are operators, so that previous definitions apply.

Definition (Linear Functional)

A linear functional f is a linear operator with domain in a vector space X

and range in the scalar field K of X . Thus, f :D(f )→K , where K =R if
X is real and K =C if X is complex.
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Bounded Linear Functionals

Definition (Bounded Linear Functional)

A bounded linear functional f is a bounded linear operator with range in
the scalar field of the normed space X in which the domain D(f ) lies.
Thus, there exists a real number c , such that, for all x ∈D(f ),

|f (x)| ≤ c‖x‖. Furthermore, the norm of f is ‖f ‖= supx∈D(f )
x 6=0

|f (x)|
‖x‖

or

‖f ‖ = supx∈D(f )
‖x‖=1

|f (x)|.

Thus, we get |f (x)| ≤ ‖f ‖‖x‖.

Theorem (Continuity and Boundedness)

A linear functional f with domain D(f ) in a normed space is continuous if
and only if f is bounded.
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Examples

(Norm) The norm ‖ ·‖ :X →R on a normed space (X ,‖ ·‖) is a
functional on X which is not linear.

(Dot Product) The familiar dot product with one factor kept fixed
defines a functional f :R3 →R by means of

f (x)= x ·a= ξ1α1+ξ2α2+ξ3α3,

where a= (αj) ∈R
3 is fixed.

f is linear.

f is bounded: In fact, |f (x)| = |x ·a| ≤ ‖x‖‖a‖, so that ‖f ‖≤ ‖a‖ follows
if we take the supremum over all x of norm one. On the other hand,

by taking x = a, we obtain ‖f ‖ ≥
|f (a)|
‖a‖

= ‖a‖2

‖a‖
= ‖a‖. Hence the norm of

f is ‖f ‖= ‖a‖.
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Definite Integral

The definite integral is a number, if considered for a single function.

If we consider the integral for all functions in a certain function space,
it becomes a functional on that space, say f .

As a space let us choose C [a,b]. Then f is defined by

f (x)=

∫b

a
x(t)dt, x ∈C [a,b].

f is linear.

We prove that f is bounded and has norm ‖f ‖= b−a: In fact, writing
J = [a,b] and remembering the norm on C [a,b], we obtain

|f (x)| =

∣∣∣∣
∫b

a
x(t)dt

∣∣∣∣ ≤ (b−a)max
t∈J

|x(t)| = (b−a)‖x‖.

Taking the supremum over all x of norm 1, we obtain ‖f ‖ ≤ b−a.

To get ‖f ‖≥ b−a, we choose x = x0 = 1 and note that ‖x0‖ = 1:

‖f ‖≥
|f (x0)|
‖x0‖

=
∫b
a dt = b−a.
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The Space C [a,b]

Another functional on C [a,b] is obtained if we choose a fixed
t0 ∈ J = [a,b] and set

f1(x)= x(t0), x ∈C [a,b].

f1 is linear.

f1 is bounded and has norm ‖f1‖ = 1: In fact, we have
|f1(x)| = |x(t0)| ≤ ‖x‖. This implies ‖f1‖≤ 1.

On the other hand, for x0 = 1, we have ‖x0‖= 1, whence
‖f1‖≥ |f1(x0)| = 1.
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The Space ℓ2

We can obtain a linear functional f on the Hilbert space ℓ2 by
choosing a fixed a= (αj ) ∈ ℓ2 and setting

f (x)=
∞∑

j=1

ξjαj ,

where x = (ξj )∈ ℓ2.

This series converges absolutely and f is bounded, since the
Cauchy-Schwarz inequality gives

|f (x)| =

∣∣∣∣∣
∞∑

j=1

ξjαj

∣∣∣∣∣ ≤
∞∑

j=1

|ξjαj | ≤

√√√√
∞∑

j=1

|ξj |
2

√√√√
∞∑

j=1

|αj |
2 = ‖x‖‖a‖.
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The Algebraic Dual Space

The set of all linear functionals defined on a vector space X can itself
be made into a vector space.

This space is denoted by X ∗ and is called the algebraic dual space

of X .

Its algebraic operations of vector space are defined in a natural way:

The sum f1+ f2 of two functionals f1 and f2 is the functional s whose
value at every x ∈X is

s(x)= (f1+ f2)(x)= f1(x)+ f2(x);

The product αf of a scalar α and a functional f is the functional p
whose value at x ∈X is

p(x)= (αf )(x)=αf (x).

Note that this agrees with the usual way of adding functions and
multiplying them by constants.
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The Second Algebraic Dual Space

We may also consider the algebraic dual (X ∗)∗ of X ∗, whose elements
are the linear functionals defined on X ∗.

We denote (X ∗)∗ by X ∗∗ and call it the second algebraic dual

space of X .

Define the notations:

Space General Element Value at a Point

X x −

X ∗ f f (x)
X ∗∗ g g(f )

A g ∈X ∗∗ can be obtained by choosing a fixed x ∈X and setting

g(f )= gx(f )= f (x), (x ∈X fixed, f ∈X ∗ varable).

gx is linear:
gx(αf1 +βf2)= (αf1+βf2)(x)=αf1(x)+βf2(x)=αgx (f1)+βgx (f2).

Hence gx is an element of X ∗∗, by the definition of X ∗∗.
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The Canonical Mapping

To each x ∈X there corresponds a gx ∈X ∗∗.

This defines a mapping

C :X 7→X ∗∗; x 7→ gx .

C is called the canonical mapping of X into X ∗∗.

C is linear since its domain is a vector space and we have

(C (αx +βy))(f ) = gαx+βy (f )
= f (αx +βy)
= αf (x)+βf (y)
= αgx (f )+βgy (f )
= α(Cx)(f )+β(Cy)(f ).

C is also called the canonical embedding of X into X ∗∗.
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Isomorphism of Vector Spaces

An isomorphism T of a vector space X onto a vector space X̃ over
the same field is a bijective mapping which preserves the two algebraic
operations of vector space:

i.e., for all x ,y ∈X and scalars α,

T (x +y)=Tx +Ty , T (αx)=αTx ,

that is, T :X → X̃ is a bijective linear operator.

X̃ is then called isomorphic with X , and X and X̃ are called
isomorphic vector spaces.
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Embeddability and Algebraic Reflexivity

It can be shown that the canonical mapping C is injective.

Since C is linear, it is an isomorphism of X onto the range
R(C )⊆X ∗∗.

If X is isomorphic with a subspace of a vector space Y , we say that X
is embeddable in Y .

Hence X is embeddable in X ∗∗, and C is also called the canonical

embedding of X into X ∗∗.

If C is surjective (hence bijective), so that R(C )=X ∗∗, then X is said
to be algebraically reflexive.

We will show next that, if X is finite dimensional, then X is
algebraically reflexive.
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Subsection 9

Linear Operators on Finite Dimensional Spaces
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Determining Linear Transformations by Action on Bases

Let X and Y be finite dimensional vector spaces over the same field
and T :X →Y a linear operator.

We choose a basis E = {e1, . . . ,en} for X and a basis B = {b1, . . . ,br } for
Y , with the vectors arranged in a definite order which we keep fixed.

Then every x ∈X has a unique representation x = ξ1e1+·· ·+ξnen.

Since T is linear, x has the image

y =Tx =T (
n∑

k=1

ξkek)=
n∑

k=1

ξkTek .

Lemma

T is uniquely determined if the images yk =Tek of the n basis vectors
e1, . . . ,en are prescribed.
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Expression of the Image Under a Linear Transformation

Since y and yk =Tek are in Y , they have unique representations of
the form

y =
r∑

j=1

ηjbj , Tek =
r∑

j=1

τjkbj .

Substitution into y =
∑n

k=1
ξkTek gives

y =
r∑

j=1

ηjbj =
n∑

k=1

ξkTek =
n∑

k=1

ξk

r∑

j=1

τjkbj =
r∑

j=1

(
n∑

k=1

τjkξk)bj .

Since the bj ’s form a linearly independent set, the coefficients of each
bj on the left and on the right must be the same: ηj =

∑n
k=1

τjkξk ,
j = 1, . . . ,r .

Lemma

The image y =Tx =
∑
ηjbj of x =

∑
ξkek can be obtained from

ηj =
∑n

k=1
τjkξk , where Tek =

∑r
j=1

τjkbj .
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Matrix Representation

The coefficients in ηj =
∑n

k=1
τjkξk form a matrix TEB = (τjk) with r

rows and n columns.

If a basis E for X and a basis B for Y are given, with the elements of
E and B arranged in some definite order, then the matrix TEB is
uniquely determined by the linear operator T .

We say that the matrix TEB represents the operator T with respect
to those bases.

By introducing the column vectors x̃ = (ξk) and ỹ = (ηj) we can write
ỹ =TEB x̃ .

Similarly, Te =T⊤
EB

b, where Te is the column vector with components
Te1, . . . ,Ten (which are themselves vectors) and b is the column vector
with components b1, . . . ,br and we have to use the transpose T⊤

EB
of

TEB because we sum the first subscript.

Conversely, any matrix with r rows and n columns determines a linear
operator which it represents with respect to given bases for X and Y .
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Linear Functionals on Finite Dimensional Spaces

Consider linear functionals on X , where dimX = n and {e1, . . . ,en} is a
basis for X , as before.

These functionals constitute the algebraic dual space X ∗ of X .

For every such functional f and every x =
∑
ξjej ∈X , we have

f (x)= f (
n∑

j=1

ξjej)=
n∑

j=1

ξj f (ej)=
n∑

j=1

ξjαj ,

where αj = f (ej ), j = 1, . . . ,n.

So f is uniquely determined by its values αj at the n basis vectors of
X .

George Voutsadakis (LSSU) Functional Analysis May 2023 108 / 124



Normed Spaces, Banach Spaces Linear Operators on Finite Dimensional Spaces

The Converse

Every n-tuple of scalars α1, . . . ,αn determines a linear functional on X

by f (x)=
∑n

j=1
ξjαj , where αj = f (ej ), j = 1, . . . ,n.

In particular, considering the n-tuples

(1,0,0, . . . ,0,0),(0,1,0, . . . ,0,0), . . . ,(0,0,0, . . . ,0,1)

we get n functionals, denoted by f1, . . . , fn, with values

fk(ej )=δjk =

{
0, if j 6= k

1, if j = k
.

fk has the value 1 at the k-th basis vector and 0 at the n−1 other
basis vectors.

δjk is called the Kronecker delta.

{f1, . . . , fn} is called the dual basis of the basis {e1, . . . ,en} for X .
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Dimension of X ∗

Theorem (Dimension of X ∗)

Let X be an n-dimensional vector space and E = {e1, . . . ,en} a basis for X .
Then F = {f1, . . . , fn} given by fk(ej)= δjk is a basis for the algebraic dual
X ∗ of X , and dimX ∗ = dimX = n.

F is a linearly independent set: Suppose
∑n

k=1
βk fk(x)= 0. For x = ej ,∑n

k=1
βk fk(ej)=

∑n
k=1

βkδjk =βj = 0. So all the βk ’s are zero.

We show that every f ∈X ∗ can be represented as a linear combination
of the elements of F in a unique way: We write f (ej )=αj . Then
f (x)=

∑n
j=1

ξjαj , for every x ∈X . Also fj(x)= fj(ξ1e1+·· ·+ξnen)= ξj .

Together, f (x)=
∑n

j=1
αj fj(x). Hence the unique representation of the

arbitrary linear functional f on X in terms of the functionals f1, . . . , fn
is f =α1f1+·· ·αnfn.
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Zero Vector

Lemma (Zero Vector)

Let X be a finite dimensional vector space. If x0 ∈X has the property that
f (x0)= 0, for all f ∈X ∗, then x0 = 0.

Let {e1, . . . ,en} be a basis for X and x0 =
∑n

j=1
ξ0jej . Then

f (x0)=
n∑

j=1

ξ0jαj .

By assumption this is zero for every f ∈X ∗, i.e., for every choice of
α1, . . . ,αn. Hence, all ξ0j must be zero.
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Algebraic Reflexivity

Theorem (Algebraic Reflexivity)

A finite dimensional vector space is algebraically reflexive.

The canonical mapping C :X →X ∗∗ is linear.

If Cx0 = 0, we have, by the definition of C , for all f ∈X ∗,

(Cx0)(f )= gx0(f )= f (x0)= 0.

By the preceding lemma, x0 = 0 . Hence, the mapping C has an
inverse C−1 :R(C )→X , where R(C ) is the range of C .

We also have dimR(C )= dimX . Now dimX ∗∗ = dimX ∗ = dimX .
Together, they yield dimR(C )= dimX ∗∗. Hence R(C )=X ∗∗ because
R(C ) is a vector space and a proper subspace of X ∗∗ has dimension
less than dimX ∗∗.

By definition, this proves algebraic reflexivity.

George Voutsadakis (LSSU) Functional Analysis May 2023 112 / 124



Normed Spaces, Banach Spaces Normed Spaces of Operators and Dual Space

Subsection 10

Normed Spaces of Operators and Dual Space
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The Space B(X ,Y )

We consider two arbitrary normed spaces X and Y (both real or both
complex) and the set B(X ,Y ) consisting of all bounded linear
operators from X into Y .
B(X ,Y ) becomes a vector space if we define:

The sum T1+T2 of two operators T1,T2 ∈B(X ,Y ) in a natural way by

(T1+T2)x =T1x +T2x ;

The product αT of T ∈B(X ,Y ) and a scalar α by

(αT )x =αTx .

Theorem (Space B(X ,Y ))

The vector space B(X ,Y ) of all bounded linear operators from a normed
space X into a normed space Y is itself a normed space with norm defined
by

‖T‖=
∑

x∈X
x 6=0

‖Tx‖

‖x‖
= sup

x∈X
‖x‖=1

‖Tx‖.
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Completeness

Theorem (Completeness)

If Y is a Banach space, then B(X ,Y ) is a Banach space.

Consider an arbitrary Cauchy sequence (Tn) in B(X ,Y ). We show
that (Tn) converges to an operator T ∈B(X ,Y ). Since (Tn) is
Cauchy, for every ε> 0, there is an N, such that ‖Tn−Tm‖< ε,
m,n>N. For all x ∈X and m,n>N, we thus obtain

‖Tnx −Tmx‖= ‖(Tn−Tm)x‖ ≤ ‖Tn−Tm‖‖x‖< ε‖x‖.

Now for any fixed x and given ε̃ we may choose ε= εx so that
εx‖x‖ < ε̃. Then we have ‖Tnx −Tmx‖< ε̃ and see that (Tnx) is
Cauchy in Y . Since Y is complete, (Tnx) converges, say, Tnx → y .
Clearly, the limit y ∈Y depends on the choice of x ∈X . This defines
an operator T :X →Y , where y =Tx .
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Completeness (Cont’d)

The operator T is linear:

limTn(αx +βz)= lim(αTnx +βTnz)=α limTnx +β limTnz .

We prove that T is bounded and Tn →T , i.e., ‖Tn−T‖→ 0.

Since ‖Tnx −Tmx‖≤ ε‖x‖, for every m>N and Tmx →Tx , we may let
m→∞. Using the continuity of the norm, we then obtain, for every
n>N and all x ∈X ,

‖Tnx −Tx‖= ‖Tnx − lim
m→∞

Tmx‖= lim
m→∞

‖Tnx −Tmx‖≤ ε‖x‖.

This shows that (Tn−T ), with n>N , is a bounded linear operator.
Since Tn is bounded, T =Tn− (Tn−T ) is bounded, i.e., T ∈B(X ,Y ).
Furthermore, if in ‖Tnx −Tx‖≤ ε‖x‖, we take the supremum over all x
of norm 1, we obtain ‖Tn−T ‖≤ ε, n>N . Hence ‖Tn−T ‖→ 0.
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The Dual Space X
′

Definition (Dual space X ′)

Let X be a normed space. Then the set of all bounded linear functionals on
X constitutes a normed space with norm defined by

‖f ‖ = sup
x∈X
x 6=0

|f (x)|

‖x‖
= sup

x∈X
‖x‖=1

|f (x)|

which is called the dual space of X and is denoted by X ′.

Since a linear functional on X maps X into R or C (the scalar field of
X ), and since R or C, taken with the usual metric, is complete, we see
that X ′ is B(X ,Y ), with the complete space Y =R or C.

Theorem (Dual Space)

The dual space X ′ of a normed space X is a Banach space (whether or not
X is).
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Isomorphisms of Normed Spaces

An isomorphism of a normed space X onto a normed space X̃ is a
bijective linear operator T :X → X̃ which preserves the norm, that is,
for all x ∈X , ‖Tx‖= ‖x‖ (hence, T is isometric).

X is then called isomorphic with X̃ .

X and X̃ are called isomorphic normed spaces.

From an abstract point of view, X and X̃ are then identical, the
isomorphism merely amounting to renaming of the elements
(attaching a “tag” T to each point).
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The Space Rn

The dual space of Rn is Rn.

We have Rn′=Rn∗, and every f ∈Rn∗ has a representation
f (x)=

∑
ξkγk , γk = f (ek ). By the Cauchy-Schwarz inequality,

|f (x)| ≤
∑

|ξkγk | ≤ (
∑

ξ2
j )

1/2(
∑

γ2
k)

1/2 = ‖x‖(
∑

γ2
k)

1/2
.

Taking the supremum over all x of norm 1 we obtain ‖f ‖ ≤ (
∑
γ2
k
)1/2.

Since for x = (γ1, . . . ,γn), equality is achieved in the Cauchy-Schwarz
inequality, we must have ‖f ‖= (

∑n
k=1

γ2
k
)1/2. This proves that the

norm of f is the Euclidean norm, and ‖f ‖= ‖c‖, where c = (γk) ∈R
n.

Hence the mapping of Rn′, onto Rn defined by

f 7→ c = (γk), γk = f (ek),

is norm preserving. Since it is linear and bijective, it is an isomorphism.
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The Space ℓ1

The dual space of ℓ1 is ℓ∞.

A Schauder basis for ℓ1 is (ek), where ek = (δkj) has 1 in the k-th
place and zeros elsewhere. Then, every x ∈ ℓ1 has a unique
representation x =

∑∞
k=1

ξkek . Consider any f ∈ ℓ1′, where ℓ1′ is the
dual space of ℓ1. Since f is linear and bounded, f (x)=

∑∞
k=1

ξkγk ,
γk = f (ek), where the numbers γk = f (ek ) are uniquely determined by
f . Also, ‖ek‖= 1 and |γk | = |f (ek )| ≤ ‖f ‖‖ek‖ = ‖f ‖, supk |γk | ≤ ‖f ‖.
Hence (γk) ∈ ℓ∞.

On the other hand, for every b = (βk) ∈ ℓ∞, we can obtain a
corresponding bounded linear functional g on ℓ1. In fact, we may
define g on ℓ1 by g(x)=

∑∞
k=1

ξkβk , where x = (ξk) ∈ ℓ1. Then g is
linear. Boundedness follows from

|g(x)| ≤
∑

|ξkβk | ≤ sup
j

|βj |
∑

|ξk | = ‖x‖sup
j

|βj |.

Hence g ∈ ℓ1′.
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The Space ℓ1 (Cont’d)

We finally show that the norm of f is the norm on the space ℓ∞.
From f (x)=

∑∞
k=1

ξkγk , γk = f (ek ), we have

|f (x)| = |
∑

ξkγk | ≤ sup
j

|γj |
∑

|ξk | = ‖x‖sup
j

|γj |.

Taking the supremum over all x of norm 1, we see that ‖f ‖≤ supj |γj |.
From this, it follows ‖f ‖= supj |γj |, which is the norm on ℓ∞.

Hence this formula can be written ‖f ‖= ‖c‖∞, where c = (γj) ∈ ℓ∞.

It shows that the bijective linear mapping of ℓ1′ onto ℓ∞ defined by
f 7→ c = (γj) is an isomorphism.
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The Space ℓp

The dual space of ℓp is ℓq; here, 1< p <+∞ and q is the conjugate of
p, that is, 1

p + 1
q = 1.

A Schauder basis for ℓp is (ek), where ek = (δkj ). Then, every x ∈ ℓp

has a unique representation x =
∑∞

k=1
ξkek . We consider any f ∈ ℓp ′,

where ℓp ′ is the dual space of ℓp. Since f is linear and bounded,
f (x)=

∑∞
k=1

ξkγk , γk = f (ek). Let q be the conjugate of p. Consider

xn = (ξ
(n)

k
) with ξ

(n)

k
=

{
|γk |

q

γk
, if k ≤ n and γk 6= 0

0, if k > n or γk = 0
. Now we get

f (xn)=
∑∞

k=1
ξ
(n)

k
γk =

∑n
k=1

|γk |
q . We also have, using (q−1)p = q,

f (xn)≤‖f ‖‖xn‖ = ‖f ‖(
∑
|ξ
(n)

k
|p)1/p =‖f ‖(

∑
|γk |

(q−1)p)1/p =

‖f ‖(
∑
|γk |

q)1/p . Together, f (xn)=
∑
|γk |

q ≤ ‖f ‖(
∑
|γk |

q)1/p. Dividing
by the last factor and using 1− 1

p = 1
q , we get

(
∑n

k=1
|γk |

q)1−1/p = (
∑n

k=1
|γk |

q)1/q ≤ ‖f ‖. Since n is arbitrary, letting

n→∞, we obtain (
∑∞

k=1
|γk |

q)1/q ≤ ‖f ‖. Hence (γk) ∈ ℓq.
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The Space ℓp (Cont’d)

Conversely, for any b = (βk) ∈ ℓq we can get a corresponding bounded
linear functional g on ℓp. In fact, we may define g on ℓp by setting
g(x)=

∑∞
k=1

ξkβk , where x = (ξk) ∈ ℓp. Then g is linear, and
boundedness follows from the Hölder inequality. Hence g ∈ ℓp ′.

We finally prove that the norm of f is the norm on the space ℓq.
From the Hölder inequality we have

|f (x)| = |
∑

ξkγk | ≤ (
∑

|ξk |
p)1/p(

∑
|γk |

q)1/q = ‖x‖(
∑

|γk |
q)1/q .

Hence by taking the supremum over all x of norm 1 we obtain
‖f ‖≤ (

∑
|γk |

q)1/q. The equality sign must hold, that is,
‖f ‖= (

∑∞
k=1

|γk |
q)1/q . This can be written ‖f ‖ = ‖c‖q, where

c = (γk) ∈ ℓq and γk = f (ek ).

The mapping of ℓp ′ onto ℓq defined by f 7→ c is linear and bijective.
Since it is norm preserving, it is an isomorphism.
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Comments on Duals and Double Duals

In applications it is frequently quite useful to know the general form of
bounded linear functionals on spaces of practical importance:

We gave general representations of bounded linear functionals on Rn,
ℓ1 and ℓp with p > 1.
The space C [a,b] will be considered later, after establishing the
Hahn-Banach Theorem.

Furthermore, it is worthwhile to consider X ′′ = (X ′)′, the second dual
space of X .

We have to postpone this discussion for after having developed
suitable tools for obtaining substantial results in that direction.
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