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Subsection 1

Inner Product Spaces. Hilbert Spaces
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Inner Product Spaces

Definition (Inner Product Space)

An inner product on a vector space X is a mapping of X ×X into the
scalar field K of X , i.e., with every pair of vectors x and y , there is
associated a scalar which is written 〈x ,y 〉 and is called the inner product

of x and y , such that, for all vectors x ,y ,z and scalars α, we have:

(IP1) 〈x +y ,z〉 = 〈x ,z〉+〈y ,z〉;
(IP2) 〈αx ,y 〉 =α〈x ,y 〉;
(IP3) 〈x ,y 〉 = 〈y ,x〉;

(IP4)
〈x ,x〉 ≥ 0
〈x ,x〉 = 0⇐⇒ x = 0

An inner product space (or pre-Hilbert space) is a vector space X with
an inner product defined on X .

If X is a real vector space, we have 〈x ,y 〉 = 〈y ,x〉. (Symmetry)
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Hilbert Spaces

Definition (Hilbert Spaces)

An inner product on X defines a norm on X given by

‖x‖ =
√

〈x ,x〉

and a metric on X given by

d(x ,y)= ‖x −y‖ =
√

〈x −y ,x −y 〉.

A Hilbert space is a complete inner product space (complete in the
metric defined by the inner product).

Hence, inner product spaces are normed spaces, and Hilbert spaces are
Banach spaces.

The proof that ‖x‖ above satisfies the axioms (N1) to (N4) of a norm
will be given later.
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Sesquilinearity of the Inner Product

From (IP1) to (IP3) we obtain the formulas

(a) 〈αx +βy ,z〉 =α〈x ,z〉+β〈y ,z〉;
(b) 〈x ,αy〉 =α〈x ,y〉;
(c) 〈x ,αy +βz〉 =α〈x ,y〉+β〈x ,z〉;

(a) shows that the inner product is linear in the first factor.

Since in (c) we have complex conjugates α and β on the right, we say
that the inner product is conjugate linear in the second factor.

Expressing both properties together, we say that the inner product is
sesquilinear.
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The Parallelogram Equality

The reader may show by a simple straightforward calculation that a
norm on an inner product space satisfies the important parallelogram

equality

‖x +y‖2+‖x −y‖2 = 2(‖x‖2+‖y‖2).

If a norm does not satisfy the parallelogram equality, it cannot be
obtained from an inner product.

Such norms do exist:

Not all normed spaces are inner product spaces.

George Voutsadakis (LSSU) Functional Analysis May 2023 7 / 107



Inner Product Spaces and Hilbert Spaces Inner Product Spaces. Hilbert Spaces

Orthogonality

Recall that if the dot product of two vectors in three dimensional
spaces is zero, the vectors are orthogonal, i.e., they are perpendicular
or at least one of them is the zero vector.

Definition (Orthogonality)

An element x of an inner product space X is said to be orthogonal to an
element y ∈X if 〈x ,y 〉 = 0. We also say that x and y are orthogonal, and
we write x ⊥ y .

Similarly, for subsets A,B ⊆X we write:

x ⊥A if x ⊥ a, for all a ∈A;

A⊥B if a⊥ b, for all a ∈A and all b ∈B.
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The Euclidean Space Rn

The space Rn is a Hilbert space with inner product defined by

〈x ,y 〉 = ξ1η1+·· ·+ξnηn,

where x = (ξj )= (ξ1, . . . ,ξn) and y = (ηj)= (η1, . . . ,ηn).

By definition, we obtain

‖x‖ = 〈x ,x〉1/2 = (ξ2
1+·· ·+ξ2

n)
1/2

.

And, also, the Euclidean metric defined by

d(x ,y)= ‖x −y‖= 〈x −y ,x −y 〉1/2 = [(ξ1−η1)
2+·· ·+ (ξn−ηn)

2]1/2.

Completeness has been proved.

If n= 3, we get the usual dot product 〈x ,y 〉 = x ·y = ξ1η1+ξ2η2+ξ3η3

of x = (ξ1,ξ2,ξ3) and y = (η1,η2,η3).

The orthogonality 〈x ,y 〉 = x ·y = 0 agrees with the elementary concept
of perpendicularity.
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The Unitary Space Cn

The space Cn is a Hilbert space with inner product given by

〈x ,y 〉 = ξ1η1+·· ·+ξnηn.

By definition, we obtain the norm defined by

‖x‖= (ξ1ξ1+·· ·+ξnξn)
1/2 = (|ξ1|2+·· ·+ |ξn|2)1/2.

We see why we have to take complex conjugates ηj in the formula.

It entails 〈y ,x〉 = 〈x ,y〉, which is (IP3);
It implies that 〈x ,x〉 is real.
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The Real Space C [a,b]

The norm is defined by

‖x‖=
(∫b

a
x(t)2dt

)1/2

.

It can be obtained from the inner product

〈x ,y 〉 =
∫b

a
x(t)y(t)dt .
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The Complex Space C [a,b]

We may consider complex-valued functions (keeping t ∈ [a,b] real).
These functions form a complex vector space, which becomes an inner
product space if we define

〈x ,y 〉 =
∫b

a
x(t)y(t)dt .

The complex conjugate has the effect that (IP3) holds, so that 〈x ,x〉
is still real.

This property is again needed in connection with the norm, which is
now defined by

‖x‖ =
(∫b

a
|x(t)|2dt

)1/2

since x(t)x(t)= |x(t)|2.
The completion of the metric space corresponding to

real functions is the real space L2[a,b];
complex functions is the complex space L2[a,b].
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The Hilbert Sequence Space ℓ2

The space ℓ2 is a Hilbert space with inner product defined by

〈x ,y 〉 =
∞∑

j=1

ξjηj .

Convergence of this series follows from the Cauchy-Schwarz inequality.

This inner products generalizes 〈x ,y 〉 = ξ1η1+·· ·ξnηn.
The norm is defined by

‖x‖ = 〈x ,x〉1/2 =
(
∞∑

j=1

|ξj |2
)1/2

.

Completeness has already been established.
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The Space ℓp,p 6= 2

The space ℓp, with p 6= 2, is not an inner product space, hence not a
Hilbert space.

This means that the norm of ℓp, with p 6= 2, cannot be obtained from
an inner product.

We prove this by showing that the norm does not satisfy the
parallelogram equality: Take x = (1,1,0,0, . . .) ∈ ℓp and
y = (1,−1,0,0, . . .)∈ ℓp. Calculate

‖x‖= ‖y‖= 21/p
, ‖x +y‖= ‖x −y‖ = 2.

Since, if p 6= 2, 22+22 6= 2(22/p +22/p), we see that the parallelogram
equality is not satisfied if p 6= 2.

Since ℓp is complete, ℓp, with p 6= 2, is a Banach space which is not a
Hilbert space.
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The Space C [a,b]

The space C [a,b] is not an inner product space, hence not a Hilbert
space.

We show that the norm defined by

‖x‖=max
t∈J

|x(t)|, J = [a,b],

cannot be obtained from an inner product since this norm does not
satisfy the parallelogram equality.

Indeed, if we take x(t)= 1 and y(t)= t−a
b−a , we have ‖x‖ = 1, ‖y‖= 1

and

x(t)+y(t)= 1+
t −a

b−a
, x(t)−y(t)= 1−

t−a

b−a
.

Hence ‖x +y‖ = 2, ‖x −y‖= 1 and

‖x +y‖2+‖x −y‖2 = 5, 2(‖x‖2+‖y‖2)= 4.
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The Polarization Identity

To an inner product there corresponds a norm which is given by

‖x‖=
√

〈x ,x〉.

It is remarkable that, conversely, we can “rediscover” the inner product
from the corresponding norm:

For a real inner product space

〈x ,y〉 =
1

4
(‖x +y‖2−‖x −y‖2).

For a complex inner product space

Re〈x ,y〉 = 1
4 (‖x +y‖2−‖x −y‖2)

Im〈x ,y〉 = 1
4 (‖x + iy‖2−‖x − iy‖2).

This formula is sometimes called the polarization identity.
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Subsection 2

Further Properties of Inner Product Spaces
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The Norm Induced by an Inner Product

Given an inner product 〈·, ·〉, ‖x‖ =
p
〈x ,x〉 defines a norm:

(N1) and (N2) follow from (IP4).
(N3) is obtained by the use of (IP2) and (IP3): In fact,
‖αx‖2 = 〈αx ,αx〉 =αα〈x ,x〉 = |α|2‖x‖2.

(N4) is included in the following:

Lemma (Schwarz Inequality, Triangle Inequality)

An inner product and the corresponding norm satisfy the Schwarz
inequality and the triangle inequality:

(a) We have
|〈x ,y〉| ≤ ‖x‖‖y‖ (Schwarz Inequality)

where the equality sign holds if and only if {x ,y } is a linearly dependent set.

(b) That norm also satisfies

‖x +y‖≤ ‖x‖+‖y‖ (Triangle Inequality)

where the equality sign holds if and only it y = 0 or x = cy (c real and ≥ 0).
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Proof of the Schwarz Inequality

If y = 0, then |〈x ,y 〉| ≤ ‖x‖‖y‖ holds, since 〈x ,0〉 = 0.

Let y 6= 0. For every scalar α, we have

0≤‖x −αy‖2 = 〈x −αy ,x −αy 〉
= 〈x ,x〉−α〈x ,y 〉−α[〈y ,x〉−α〈y ,y 〉].

The expression in the brackets is zero if we choose α= 〈y ,x〉
〈y ,y 〉 . The

remaining inequality is

0≤ 〈x ,x〉−
〈y ,x〉
〈y ,y 〉

〈x ,y 〉 = ‖x‖2−
|〈x ,y 〉|2

‖y‖2
,

where we used 〈y ,x〉 = 〈x ,y 〉. Multiplying by ‖y‖2, transferring the last
term to the left and taking square roots, we get the inequality.

Equality holds in this derivation if and only if y = 0 or 0= ‖x −αy‖2.
Hence x −αy = 0, so that x =αy , proving linear dependence.
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Proof of the Triangle Inequality

We have

‖x +y‖2 = 〈x +y ,x +y 〉 = ‖x‖2+〈x ,y 〉+〈y ,x〉+‖y‖2
.

By the Schwarz inequality,

|〈x ,y 〉| = |〈y ,x〉| ≤ ‖x‖‖y‖.

By the triangle inequality for numbers, we thus obtain

‖x +y‖2 ≤ ‖x‖2+2|〈x ,y 〉|+‖y‖2

≤ ‖x‖2+2‖x‖‖y‖+‖y‖2

= (‖x‖+‖y‖)2.

Taking square roots on both sides, we have the inequality.
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Equality in the Triangle Inequality

Equality holds in this derivation if and only if 〈x ,y 〉+〈y ,x〉 = 2‖x‖‖y‖.
The left-hand side is 2Re〈x ,y 〉, where Re denotes the real part. Thus,
Re〈x ,y 〉 = ‖x‖‖y‖≥ |〈x ,y 〉|. Since the real part of a complex number
cannot exceed the absolute value, we must have equality. This implies
linear dependence by part (a), say, y = 0 or x = cy .

We show that c is real and ≥ 0.

We have Re〈x ,y 〉 = |〈x ,y 〉|. But if the real part of a complex number
equals the absolute value, the imaginary part must be zero. Hence
〈x ,y 〉 =Re〈x ,y 〉 ≥ 0. Now we get

0≤ 〈x ,y 〉 = 〈cy ,y 〉 = c‖y‖2
.

Therefore, c ≥ 0.
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Continuity of the Inner Product

Lemma (Continuity of Inner Product)

If in an inner product space, xn → x and yn → y , then 〈xn,yn〉→ 〈x ,y 〉.

Subtracting and adding a term, using the triangle inequality for
numbers and, finally, the Schwarz inequality, we obtain

|〈xn,yn〉−〈x ,y 〉| = |〈xn,yn〉−〈xn,y 〉+〈xn,y 〉−〈x ,y 〉|
≤ |〈xn,yn−y 〉|+ |〈xn−x ,y 〉|
≤ ‖xn‖‖yn−y‖+‖xn−x‖‖y‖ n→∞−→ 0,

since yn−y → 0 and xn−x → 0 as n→∞.
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Isomorphisms of Inner Product Spaces

An isomorphism T of an inner product space X onto an inner
product space X̃ over the same field is a bijective linear operator
T :X → X̃ which preserves the inner product, i.e., for all x ,y ∈X ,

〈Tx ,Ty 〉 = 〈x ,y 〉,

where we denoted inner products on X and X̃ by the same symbol.

X̃ is then called isomorphic with X .

X and X̃ are called isomorphic inner product spaces.

The bijectivity and linearity guarantees that T is a vector space
isomorphism of X onto X̃ ; So T preserves the whole structure of inner
product space.

T is also an isometry of X onto X̃ because distances in X and X̃ are
determined by the norms defined by the inner products on X and X̃ .
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Completion of an Inner Product Space

Theorem (Completion)

For any inner product space X , there exists a Hilbert space H and an
isomorphism A from X onto a dense subspace W ⊆H. The space H is
unique except for isomorphisms.

We know there exists a Banach space H and an isometry A from X

onto a subspace W of H which is dense in H. For reasons of
continuity, under such an isometry, sums and scalar multiples of
elements in X and W correspond to each other. So A is even an
isomorphism of X onto W , both regarded as normed spaces.

The preceding lemma shows that we can define an inner product on H

by setting
〈x̂ , ŷ〉 = lim

n→∞
〈xn,yn〉,

with (xn) and (yn) representatives of x̂ ∈H and ŷ ∈H, respectively.
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Completion of an Inner Product Space

We can see that A is an isomorphism of X onto W , both regarded as
inner product spaces.

The normed space completion theorem also guarantees that H is
unique except for isometries, that is, two completions H and H̃ of X
are related by an isometry T :H → H̃ .

Reasoning as in the case of A, we conclude that T must be an
isomorphism of the Hilbert space H onto the Hilbert space H̃.
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Subspaces

A subspace Y of an inner product space X is defined to be a vector
subspace of X taken with the inner product on X restricted to Y ×Y .

Similarly, a subspace Y of a Hilbert space H is defined to be a
subspace of H, regarded as an inner product space.

Note that Y need not be a Hilbert space because Y may not be
complete.

Theorem (Subspace)

Let Y be a subspace of a Hilbert space H. Then:

(a) Y is complete if and only if Y is closed in H .

(b) If Y is finite dimensional, then Y is complete.

(c) If H is separable, so is Y . More generally, every subset of a separable inner
product space is separable.
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Subspaces (Cont’d)

Parts (a) and (b) follow from results on normed spaces.

Suppose H is separable. Then H has a countable dense subset
{hn}∞n=1

. Let Y ⊆H. For all integers m,n> 0, let ymn ∈Y be such that
‖ymn−hn‖ < 1

m , if such an element exists. Clearly {ymn} is countable.
It suffices to show that it is dense in Y .

Let y ∈Y and ε> 0. Let m be such that 1
m < ε

2
.

Since {hn} is dense in H, there exists n> 0, such that ‖y −hn‖< 1
m .

Note that this shows that ymn ∈Y is defined. Now we get

‖y −ymn‖≤ ‖y −hn‖+‖ymn−hn‖<
1

m
+

1

m
< ε.

Hence {ymn} is dense in Y .
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Subsection 3

Orthogonal Complements and Direct Sums

George Voutsadakis (LSSU) Functional Analysis May 2023 28 / 107



Inner Product Spaces and Hilbert Spaces Orthogonal Complements and Direct Sums

Distance

In a metric space X , the distance δ from an element x ∈X to a
nonempty subset M ⊆X is defined to be

δ= inf
ỹ∈M

d(x , ỹ), M 6= ;.

In a normed space this becomes

δ= inf
ỹ∈M

‖x − ỹ‖, M 6= ;.

It is important to know whether there is a y ∈M, such that
δ=‖x −y‖, i.e., intuitively speaking, a point y ∈M which is closest to
the given x , and if such an element exists, whether it is unique.
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Discussion on Distance

Even in a very simple space such as the Euclidean plane R2, there may
be no y satisfying δ= ‖x −y‖, or precisely one such y , or more than
one y :

And we may expect that other spaces, in particular infinite
dimensional ones, will be much more complicated in that respect.

For general normed spaces this is the case, but for Hilbert spaces the
situation remains relatively simple.
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Segments and Convexity

The segment joining two given elements x and y of a vector space X

is defined to be the set of all z ∈X of the form

z =αx + (1−α)y , α ∈R, 0≤α≤ 1.

A subset M of X is said to be
convex if for every x ,y ∈M, the
segment joining x and y is con-
tained in M.

Every subspace Y of X is convex.

The intersection of convex sets is a convex set.
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Minimizing Vector

Theorem (Minimizing Vector)

Let X be an inner product space and M 6= ; a convex subset which is
complete (in the metric induced by the inner product). Then, for every
x ∈X , there exists unique y ∈M, such that δ= inf ỹ∈M ‖x − ỹ‖= ‖x −y‖.

(a) Existence By the definition of an infimum, there is a sequence (yn) in
M, such that δn → δ where δn =‖x −yn‖. We show that (yn) is
Cauchy. Let yn−x = vn. Then ‖vn‖ = δn and

‖vn+vm‖ = ‖yn+ym−2x‖ = 2

∥∥∥∥
1

2
(yn+ym)−x

∥∥∥∥ ≥ 2δ

because M is convex, so that 1
2
(yn+ym) ∈M. Furthermore, we have

yn−ym = vn−vm. Hence by the parallelogram equality,

‖yn−ym‖2 = ‖vn−vm‖2 = −‖vn+vm‖2+2(‖vn‖2+‖vm‖2)
≤ − (2δ)2 +2(δ2

n +δ2
m).

Hence (yn) is Cauchy.
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Minimizing Vector (Cont’d)

Since (yn) is Cauchy and M is complete, (yn) converges, say,
yn → y ∈M. Since y ∈M, we have ‖x −y‖≥ δ. Also,
‖x −y‖≤ ‖x −yn‖+‖yn−y‖= δn+‖yn−y‖→ δ. So ‖x −y‖= δ.

(b) Uniqueness We assume that y ∈M and y0 ∈M both satisfy
‖x −y‖= δ and ‖x −y0‖= δ and show that then y0 = y . By the
parallelogram equality,

‖y −y0‖2 = ‖(y −x)− (y0 −x)‖2

= 2‖y −x‖2+2‖y0−x‖2−‖(y −x)+ (y0 −x)‖2

= 2δ2+2δ2 −22‖1
2
(y +y0)−x‖2.

On the right, 1
2
(y +y0) ∈M, so that ‖1

2
(y +y0)−x‖ ≥ δ. This implies

that the right-hand side is less than or equal to 2δ2+2δ2−4δ2 = 0.
Hence, we have the inequality ‖y −y0‖≤ 0. Clearly, ‖y −y0‖≥ 0. So
we must have equality, and y0 = y .
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Orthogonality

In geometry, the unique point y in a given subspace Y closest to a
given x is found by “dropping a perpendicular from x to Y ”.

Lemma (Orthogonality)

Let X be an inner product space and Y 6= ; a complete subspace and x ∈X
fixed. Then z = x −y is orthogonal to Y .

If z ⊥Y were false, there would be a y1 ∈Y such that 〈z ,y1〉 =β 6= 0.
Clearly, y1 6= 0, since otherwise 〈z ,y1〉 = 0. Furthermore, for any scalar
α, ‖z −αy1‖2 = 〈z −αy1,z −αy1〉

= 〈z ,z〉−α〈z ,y1〉−α[〈y1,z〉−α〈y1,y1〉]
= 〈z ,z〉−αβ−α[β−α〈y1,y1〉].

The expression in the brackets is zero if we choose α= β
〈y1,y1〉 . We

now have ‖z‖= ‖x −y‖ =δ. So ‖z −αy1‖2 = ‖z‖2− |β|2
〈y1,y1〉 <δ2. This is

impossible, since z −αy1 = x − (y +αy1) implies ‖z −αy1‖≥ δ by the
definition of δ.
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Direct Sum of Vector Spaces

Definition (Direct Sum)

A vector space X is said to be the direct sum of two subspaces Y and Z

of X , written X =Y
⊕

Z , if each x ∈X has a unique representation

x = y +z , y ∈Y , z ∈Z .

Then Z is called an algebraic complement of Y in X and vice versa.
Y ,Z is called a complementary pair of subspaces in X .

Example: Y =R is a subspace of the Euclidean plane R2. Clearly, Y
has infinitely many algebraic complements in R2, each of which is a
real line. But most convenient is a complement that is perpendicular.

In R3 the situation is the same in principle.

In the case of a general Hilbert space H, the main interest concerns
representations of H as a direct sum of a closed subspace Y and its
orthogonal complement Y ⊥ = {z ∈H : z ⊥Y }, which is the set of all
vectors orthogonal to Y .
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Direct Sum or Projection Theorem

Theorem (Direct Sum)

Let Y be any closed subspace of a Hilbert space H. Then H =Y
⊕

Z ,
Z =Y ⊥.

Since H is complete and Y is closed, Y is complete.

Since Y is convex, by the preceding theorem and lemma, for every
x ∈H, there is a y ∈Y , such that x = y +z , z ∈Z =Y ⊥.

To prove uniqueness, we assume that

x = y +z = y1+z1,

where y ,y1 ∈Y and z ,z1 ∈Z . Then y −y1 = z1−z . Since y −y1 ∈Y
whereas z1−z ∈Z =Y ⊥, we see that y −y1 ∈Y ∩Y ⊥ = {0}. This
implies y = y1. Hence also z = z1.
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The Canonical Projection

In x = y +z , z ∈Z =Y ⊥, the element y is called the orthogonal

projection of x on Y (or, briefly, the projection of x on Y ).

The equation defines a mapping

P :H →Y ;

x 7→ y =Px .

P is called the (orthogonal) projection

(or projection operator) of H onto Y .
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The Canonical Projection and the Null Space Lemma

Obviously, P is a bounded linear operator.

P maps H onto Y , Y onto itself, Z =Y ⊥ onto {0}.

P is idempotent, that is, P2 =P , i.e., for every x ∈H,
P2x =P(Px)=Px . Hence P |Y is the identity operator on Y .

For Z =Y ⊥ our discussion yields

Lemma (Null Space)

The orthogonal complement Y ⊥ of a closed subspace Y of a Hilbert space
H is the null space N (P) of the orthogonal projection P of H onto Y .
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Annihilators

The annihilator M⊥ of a set M 6= ; in an inner product space X is
the set

M⊥ = {x ∈X : x ⊥M}.

Thus, x ∈M⊥ if and only if 〈x ,v 〉 = 0, for all v ∈M.

M⊥ is a vector space since x ,y ∈M⊥ implies, for all v ∈M and all
scalars α,β,

〈ax +βy ,v 〉 =α〈x ,v 〉+β〈y ,v 〉 = 0.

Hence, αx +βy ∈M⊥.

(M⊥)⊥ is written M⊥⊥, etc.
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Annihilators and Closure

Proposition

The annihilator M⊥ of a set M 6= ; in an inner product space X is a closed
subspace of X .

Let x be a limit point of M⊥.

Then there exists a sequence {xn} in M⊥ such that xn → x .

Since the inner product is continuous, it follows that for any fixed y ,
〈xn,y 〉→ 〈x ,y 〉.
But 〈xn,y 〉 = 0, for all y ∈M.

Therefore, 〈x ,y 〉 = 0, for all y ∈M.

Hence, x ∈M⊥ and M⊥ is closed.
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A Space and its Double Complement

In general we have M ⊆M⊥⊥: x ∈M implies x ⊥M⊥ implies
x ∈ (M⊥)⊥.

Lemma (Closed Subspace)

If Y is a closed subspace of a Hilbert space H, then Y =Y ⊥⊥.

In general Y ⊆Y ⊥⊥. We show Y ⊇Y ⊥⊥. Let x ∈Y ⊥⊥. Then
x = y +z , where y ∈Y ⊆Y ⊥⊥. Since Y ⊥⊥ is a vector space and
x ∈Y ⊥⊥ by assumption, we also have z = x −y ∈Y ⊥⊥. Hence, z ⊥Y ⊥.
But z ∈Y ⊥. Together z ⊥ z , hence z = 0, so that x = y , that is, x ∈Y .
Since x ∈Y ⊥⊥ was arbitrary, this proves Y ⊇Y ⊥⊥.

Since Z⊥ =Y ⊥⊥ =Y , we get H =Z
⊕

Z⊥.

So x 7→ z defines a projection PZ :H →Z of H onto Z , whose
properties are quite similar to those of the projection P :H →Y .
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Sets with Dense Span

Lemma (Dense Set)

For any subset M 6= ; of a Hilbert space H, the span of M is dense in H if
and only if M⊥ = {0}.

Let x ∈M⊥ and assume V = spanM is dense in H. Then x ∈V =H.
So, there is a sequence (xn) in V , such that xn → x . Since x ∈M⊥ and
M⊥ ⊥V , we have 〈xn,x〉 = 0. The continuity of the inner product
implies that 〈xn,x〉→ 〈x ,x〉. Together, 〈x ,x〉 = ‖x‖2 = 0, so that x = 0.
Since x ∈M⊥ was arbitrary, this shows that M⊥ = {0}.

Conversely, suppose that M⊥ = {0}. If x ⊥V , then x ⊥M, so that
x ∈M⊥ and x = 0. Hence V ⊥ = {0}. Noting that V is a subspace of H,
we thus obtain V =H.
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Subsection 4

Orthonormal Sets and Sequences
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Orthogonal Families of Vectors

Of particular interest are sets whose elements are orthogonal in pairs.

In the space R3, a set of that kind is the set of the three unit vectors
in the positive directions of the axes of a rectangular coordinate
system, say e1,e2,e3.

These vectors form a basis for R3, so that every x ∈R3 has a unique
representation

x =α1e1+α2e2+α3e3.

A great advantage of the orthogonality is that, given x , we can readily
determine the unknown coefficients α1,α2,α3 by taking inner products
(dot products): To obtain α1, we must multiply that representation of
x by e1:

〈x ,e1〉 =α1〈e1,e1〉+α2〈e2,e1〉+α3〈e3,e1〉 =α1.

and so on.
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Orthonormal Sets and Sequences

Definition (Orthonormal Sets and Sequences)

An orthogonal set M in an inner product space X is a subset M ⊆X

whose elements are pairwise orthogonal.
An orthonormal set M ⊆X is an orthogonal set in X whose elements

have norm 1, that is, for all x ,y ∈M, 〈x ,y 〉 =
{

0, if x 6= y

1, if x = y
.

If an orthogonal or orthonormal set M is countable, we can arrange it in a
sequence (xn) and call it an orthogonal or orthonormal sequence,
respectively.
More generally, an indexed set, or family, (xα),α ∈ I , is called orthogonal if
xα ⊥ xβ, for all α,β ∈ I ,α 6=β. The family is called orthonormal if it is
orthogonal and all xα have norm 1, so that for all α,β ∈ I , we have

〈xα,xβ〉 =δαβ =
{

0, if α 6=β

1, if α=β
.
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The Pythagorean Relation

For orthogonal elements x ,y we have 〈x ,y 〉 = 0.

So we obtain the Pythagorean re-

lation

‖x +y‖2 =‖x‖2+‖y‖2
.

More generally, if {x1, . . . ,xn} is an orthogonal set, then

‖x1+·· ·+xn‖2 = ‖x1‖2+·· ·+‖xn‖2
.

In fact, 〈xj ,xk 〉 = 0 if j 6= k ; consequently,

∥∥∥∥∥
∑

j

xj

∥∥∥∥∥

2

=
〈

∑

j

xj ,
∑

k

xk

〉
=

∑

j

∑

k

〈xj ,xk 〉 =
∑

j

〈xj ,xj〉 =
∑

j

‖xj‖2
.
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Linear Independence

Lemma (Linear Independence)

An orthonormal set is linearly independent.

Let {e1, . . . ,en} be orthonormal and consider the equation

α1e1+·· ·+αnen = 0.

Multiplication by a fixed ej gives

〈
∑

k

αkek ,ej

〉
=

∑

k

αk 〈ek ,ej 〉 =αj 〈ej ,ej 〉 =αj = 0.

This proves linear independence for any finite orthonormal set.

It also implies linear independence if the given orthonormal set is
infinite, by the definition of linear independence.
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The Spaces R3 and ℓ2

(Euclidean Space R3) In the space R3, the three unit vectors
(1,0,0),(0,1,0),(0,0,1) in the direction of the three axes of a
rectangular coordinate system form an orthonormal set.

(Space ℓ2) In the space ℓ2, an orthonormal sequence is (en), where
en = (δnj) has the n-th element 1 and all others zero.
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Continuous Functions

Let X be the inner product space of all real-valued continuous
functions on [0,2π] with inner product 〈x ,y 〉 =

∫2π
0 x(t)y(t)dt.

An orthogonal sequence in X is (un), where un(t)= cosnt, n= 0,1, . . ..

Another orthogonal sequence is (vn), where vn(t)= sinnt, n= 1,2, . . ..

By integration we obtain

〈um,un〉 =
∫2π

0
cosmt cosmt =





0, if m 6= n

π, if m= n= 1,2, . . .

2π, if m= n= 0

Similarly for (vn).

An orthonormal sequence is (en), where

e0 =
1

p
2π

, en(t)=
un(t)

‖un‖
=
cost
p
π

, n= 1,2, . . . .

From (vn) we obtain the orthonormal sequence (ẽn), where

ẽn(t)=
vn(t)
‖vn‖ = sinntp

π
, n = 1,2, . . ..
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Determination of the Coefficients

If (e1,e2, . . .) is an orthonormal sequence in an inner product space X

and we have x ∈ span{e1, . . . ,en}, where n is fixed, then by the
definition of the span x =

∑n
k=1

αkek .

If we take the inner product by a fixed ej , we obtain

〈x ,ej 〉 = 〈
∑

αkek ,ej 〉 =
∑

αk 〈ek ,ej 〉 =αj .

With these coefficients, x =
∑n

k=1
〈x ,ek 〉ek .

Another advantage of orthonormality becomes apparent if we want to
add another term αn+1en+1 to take care of an

x̃ = x +αn+1en+1 ∈ span{e1, . . . ,en+1}.

Then we need to calculate only one more coefficient since the other
coefficients remain unchanged.
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A Perpendicularity Relation

Consider any x ∈X , not necessarily in Yn = span{e1, . . . ,en}.

Define y ∈Yn by setting y =
∑n

k=1
〈x ,ek 〉ek , where n is fixed.

Then define z by setting x = y +z , i.e., z = x −y .

Claim: z = x −y ⊥ y .

By the orthonormality,

‖y‖2 = 〈
∑

〈x ,ek 〉ek ,
∑

〈x ,em〉em〉 =
∑

|〈x ,ek 〉|2.

Using this, we can now show that z ⊥ y :

〈z ,y 〉 = 〈x −y ,y 〉 = 〈x ,y 〉−〈y ,y 〉
= 〈x ,

∑
〈x ,ek 〉ek 〉−‖y‖2

=
∑
〈x ,ek 〉〈x ,ek〉−

∑
|〈x ,ek 〉|2

= 0.
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The Bessel Inequality and the Fourier Coefficients

We showed that, if y =
∑n

k=1
〈x ,ek 〉ek and z = x −y , then z ⊥ y .

The Pythagorean relation gives ‖x‖2 =‖y‖2+‖z‖2. It follows that

‖z‖2 = ‖x‖2−‖y‖2 = ‖x‖2−
∑

|〈x ,ek 〉|2.

Since ‖z‖≥ 0, we have, for every n= 1,2, . . .,
∑n

k=1
|〈x ,ek 〉|2 ≤ ‖x‖2.

These sums have nonnegative terms, so that they form a monotone
increasing sequence. This sequence converges because it is bounded
by ‖x‖2. Thus, the infinite series converges.

Theorem (Bessel Inequality)

Let (ek) be an orthonormal sequence in an inner product space X . Then,
for every x ∈X ,

∞∑

k=1

|〈x ,ek 〉|2 ≤‖x‖2
. (Bessel Inequality).

The inner products 〈x ,ek 〉 are called the Fourier coefficients of x
with respect to the orthonormal sequence (ek).
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The Gram-Schmidt Orthonormalization Process

Let (xj) be a linearly independent sequence in an inner product space.

The Gram-Schmidt orthonormalization process produces an
orthonormal sequence (ej ), such that, for every n,
span{e1, . . . ,en} = span{x1, . . . ,xn}.

1. The first element of (ek ) is e1 = 1
‖x1‖x1.

2. x2 can be written x2 = 〈x2,e1〉e1+v2.

Then v2 = x2−〈x2,e1〉e1 is not the zero
vector, since (xj ) is linearly independent.
Also v2 ⊥ e1 since 〈v2,e1〉 = 0. We can
take, then,

e2 =
1

‖v2‖
v2.
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The Gram-Schmidt Orthonormalization Process

3. The vector v3 = x3−〈x3,e1〉e1−〈x3,e2〉e2 is not the zero vector. v3 ⊥ e1
as well as v3 ⊥ e2. We take e3 = 1

‖v3‖v3.
n.

The vector vn = xn −
∑n−1
k=1

〈xn,ek 〉ek is
not the zero vector. It is orthogonal to
e1, . . . ,en−1. We now obtain

en =
1

‖vn‖
vn.

In each step, the sum subtracted from xn is the projection of xn on
span{e1, . . . ,en−1}. This gives vn, which is then multiplied by 1

‖vn‖ so
that we get a vector of norm one.
vn cannot be the zero vector for any n: Otherwise, the smallest n for
which vn = 0 would give that xn is a linear combination of e1, . . . ,en−1.
Hence, xn would be a linear combination of x1, . . . ,xn−1. But {x1, . . . ,xn}

are linearly independent.
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Subsection 5

Series Related to Orthonormal Sequences and Sets
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Fourier Series

A trigonometric series is a series of the form

a0+
∞∑

k=1

(ak coskt +bk sinkt).

A real-valued function x on R is said to be periodic if there is a
positive number p (called a period of x), such that x(t+p)= x(t), for
all t ∈R.

Let x be of period 2π and continuous. By definition, the Fourier

series of x is the trigonometric series a0+
∑∞

k=1
(ak coskt +bk sinkt)

with coefficients ak and bk given by the Euler formulas:

a0 = 1
2π

∫2π
0 x(t)dt

ak = 1
π

∫2π
0 x(t)cosktdt , k = 1,2, . . .

bk = 1
π

∫2π
0 x(t)sinktdt , k = 1,2, . . .

These coefficients are called the Fourier coefficients of x .
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Fourier Series Expansion: An Example

If the Fourier series of x converges for each t and has the sum x(t),
then we write

x(t)= a0+
∞∑

k=1

(ak coskt +bk sinkt).

Since x is periodic of period 2π, we may replace the interval of
integration [0,2π] by any other interval of length 2π.

Example: Let

x(t)=
{

t , if −π
2
≤ t < π

2

π− t , if π
2
≤ t < 3π

2
and x(t +2π)= x(t).
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Example (Cont’d)

x(t)=
{

t , if −π
2
≤ t < π

2

π− t , if π
2
≤ t < 3π

2

.

Since x(t) is odd and coskt is even, ak = 0, for k = 0,1, . . ..

Choosing [−π
2

,
3π
2
] as a convenient interval of integration and

integrating by parts,

bk = 1
π

∫π/2

−π/2 t sinktdt +
1
π

∫3π/2

π/2
(π− t)sinktdt

= − 1
πk

[t coskt] |π/2−π/2 +
1
πk

∫π/2

−π/2 cosktdt

− 1
πk

[(π− t)coskt] |3π/2
π/2

− 1
πk

∫3π/2

π/2
cosktdt

= 4
πk2 sin

kπ
2

, k = 1,2, . . . .

Hence

x(t)=
4

π

(
sint−

1

32
sin3t+

1

52
sin5t ∓·· ·

)
.
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Fourier Series in the General Setting

We set uk(t)= coskt and vk(t)= sinkt.

Hence the series take the form

x(t)= a0u0(t)+
∞∑

k=1

[akuk(t)+bkvk(t)].

We multiply the series by a fixed uj and integrate over t from 0 to 2π,
which amounts to taking the inner product by uj .

We assume that term wise integration is permissible (uniform
convergence would suffice) and use the orthogonality of (uk) and (vk)
as well as the fact that uj ⊥ vk , for all j ,k .

Then we obtain

〈x ,uj〉 = a0〈u0,uj 〉+
∑
[ak〈uk ,uj 〉+bk 〈vk ,uj 〉]

= aj 〈uj ,uj 〉

= aj‖uj‖2 =
{

2πa0, if j = 0
πaj , if j = 1,2, . . .

.
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Fourier Series in the General Setting (Cont’d)

We found

〈x ,uj〉 = aj‖uj‖2 =
{

2πa0, if j = 0
πaj , if j = 1,2, . . .

.

Similarly, if we multiply by vj and proceed as before, we arrive at

〈x ,vj 〉 = bj‖vj‖2 =πbj .

Solving for aj and bj and using the orthonormal sequences (ej ) and
(ẽj), where ej = 1

‖uj‖uj and ẽj = 1
‖vj‖vj we obtain

aj = 1
‖uj‖2

〈x ,uj 〉 = 1
‖uj‖〈x ,ej 〉;

bj = 1
‖vj‖2

〈x ,vj〉 = 1
‖vj‖〈x , ẽj 〉.
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Fourier Series in the General Setting (Cont’d)

Thus, in the series

akuk(t) = 1
‖uk‖〈x ,ek 〉uk(t)= 〈x ,ek 〉ek(t);

bkvk(t) = 1
‖vk‖〈x , ẽk 〉vk(t)= 〈x , ẽk 〉ẽk(t).

Hence we may write the Fourier series in the form

x = 〈x ,e0〉e0+
∞∑

k=1

[〈x ,ek 〉ek +〈x , ẽk 〉ẽk ].

This justifies using the term “Fourier coefficients”.
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Convergence of a Series in a Hilbert Space

Given any orthonormal sequence (ek) in a Hilbert space H, we may
consider series of the form

∑∞
k=1

αkek , where α1,α2, . . . are any scalars.

Such a series converges and has the sum s if there exists an s ∈H,
such that the sequence (sn) of the partial sums sn =α1e1+·· ·αnen

converges to s, that is, ‖sn− s‖ n→∞−→ 0.

Theorem (Convergence)

Let (ek) be an orthonormal sequence in a Hilbert space H. Then:

(a) The series converges (in the norm on H) if and only if
∑∞

k=1
|αk |2 converges.

(b) If the series converges, then the coefficients αk are the Fourier coefficients
〈x ,ek 〉, where x is the sum of

∑∞
k=1

αkek . In this case, x =
∑∞

k=1
〈x ,ek 〉ek .

(c) For any x ∈H , the series
∑∞

k=1αkek , with αk = 〈x ,ek 〉 converges (in the
norm of H).
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Proof of the Convergence Theorem

(a) Let sn =α1e1+·· ·+αnen and σn = |α1|2+·· ·+ |αn|2. Then, because of
the orthonormality, for any m and n>m,

‖sn− sm‖2 = ‖αm+1em+1+·· ·+αnen‖2

= |αm+1|2+·· ·+ |αn |2 =σn−σm.

Hence (sn) is Cauchy in H if and only if (σn) is Cauchy in R. Since
H and R are complete, the first statement of the theorem follows.

(b) Taking the inner product of sn and ej and using the orthonormality, we
have 〈sn,ej 〉 =αj , for j = 1, . . . ,k , k ≤ n fixed. By assumption, sn → x .
Since the inner product is continuous, αj = 〈sn,ej 〉→ 〈x ,ej 〉, j ≤ k .
Here we can take k(≤ n) as large as we please because n→∞. So we
have αj = 〈x ,ej 〉, for every j = 1,2, . . ..

(c) From the Bessel inequality, we see that the series
∑∞

k=1
|〈x ,ek 〉|2

converges. From this and Part (a), we conclude that (c) must hold.
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Countability of Nonzero Fourier Coefficients

Lemma (Fourier Coefficients)

Any x in an inner product space X can have at most countably many
nonzero Fourier coefficients 〈x ,eκ〉 with respect to an orthonormal family
(eκ), κ ∈ I , in X .

If an orthonormal family (eκ), κ ∈ I , in an inner product space X is
uncountable (since the index set I is uncountable), we can still form
the Fourier coefficients 〈x ,eκ〉 of an x ∈X , where κ ∈ I . Now we use∑

κ∈I |〈x ,eκ〉|2 ≤ ‖x‖2 to conclude that, for each fixed m= 1,2, . . ., the
number of Fourier coefficients such that |〈x ,eκ〉| > 1

m
must be finite.

Hence with any fixed x ∈H we can associate a series
∑

κ∈I 〈x ,eκ〉eκ.
We can arrange the eκ with 〈x ,eκ〉 6= 0 in a sequence (e1,e2, . . .), so as
to get the series

∑∞
k=1

〈x ,ek 〉ek .
Convergence follows from the Convergence Theorem.
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Order-Independence of the Sum

We show that the sum does not depend on the order in which the eκ
are arranged in a sequence.

Let (wm) be a rearrangement of (en). By definition this means that
there is a bijective mapping n 7→m(n) of N onto itself such that
corresponding terms of the two sequences are equal, i.e., wm(n) = en.

Let αn = 〈x ,en〉, βm = 〈x ,wm〉, x1 =
∑∞

n=1αnen, x2 =
∑∞

m=1βmwm.

Then by Part (b) of the Convergence Theorem, αn = 〈x ,en〉 = 〈x1,en〉,
βm = 〈x ,wm〉 = 〈x2,wm〉. But en =wm(n). Hence, 〈x1−x2,en〉 = 〈x1,en〉
−〈x2,wm(n)〉 = 〈x ,en〉−〈x ,wm(n)〉 = 0. Similarly, 〈x1−x2,wm〉 = 0. This
implies

‖x1−x2‖2 = 〈x1−x2,
∑
αnen−

∑
βmwm〉

=
∑
αn〈x1−x2,en〉−

∑
βm〈x1−x2,wm〉 = 0.

Consequently, x1−x2 = 0 and x1 = x2. Since the rearrangement (wm)
of (en) was arbitrary, this completes the proof.
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Total Orthonormal Sets

Definition (Total Orthonormal Set)

A total set (or fundamental set) in a normed space X is a subset M ⊆X

whose span is dense in X . Accordingly, an orthonormal set (or sequence or
family) in an inner product space X which is total in X is called a total

orthonormal set (or sequence or family, respectively) in X .

M is total in X if and only if spanM =X .

A total orthonormal family in X is sometimes called an orthonormal
basis for X .

This is not a basis for X as a vector space, in the sense of algebra,
unless X is finite dimensional.
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Existence and Cardinality

In every Hilbert space H 6= {0}, there exists a total orthonormal set.

For a finite dimensional H this is clear.
For an infinite dimensional separable H , it follows from the
Gram-Schmidt process by (ordinary) induction.
For a nonseparable H a (nonconstructive) proof requires Zorn’s lemma.

All total orthonormal sets in a given Hilbert space H 6= {0} have the
same cardinality. The latter is called the Hilbert dimension or
orthogonal dimension of H. (If H = {0}, this dimension is defined to
be 0.)

For a finite dimensional H the statement is clear since then the Hilbert
dimension is the dimension in the sense of algebra.
For an infinite dimensional separable H the statement will be proven
shortly.
For a general H the proof would require somewhat more advanced
tools from set theory.
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The Totality Theorem

A total orthonormal set cannot be augmented to a more extensive
orthonormal set by the adjunction of new elements.

Theorem (Totality)

Let M be a subset of an inner product space X . Then:

(a) If M is total in X , then there does not exist a nonzero x ∈X which is
orthogonal to every element of M ; briefly, x ⊥M implies x = 0.

(b) If X is complete, that condition is also sufficient for the totality of M in X .

(a) Let H be the completion of X . Then X , regarded as a subspace of H,
is dense in H. By assumption, M is total in X . So spanM is dense in
X . Hence, it is dense in H. Thus, the orthogonal complement of M in
H is {0}. A fortiori, if x ∈X and x ⊥M, then x = 0.

(b) If X is a Hilbert space and M satisfies that condition, so that
M⊥ = {0}, then M is total in X .

The completeness of X in (b) is essential. If X is not complete, there
may not exist an orthonormal set M ⊆X , such that M is total in X .
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Parseval’s Relation

Consider any given orthonormal set M in a Hilbert space H.

We know that each fixed x ∈H has at most countably many nonzero
Fourier coefficients. So we can arrange these coefficients in a
sequence, say, 〈x ,e1〉,〈x ,e2〉, . . ..

The Bessel inequality is

∑

k

|〈x ,ek 〉|2 ≤ ‖x‖2 (Bessel Inequality)

where the left-hand side is an infinite series or a finite sum.

With the equality sign this becomes

∑

k

|〈x ,ek 〉|2 =‖x‖2 (Parseval Relation).

Parseval’s Relation helps to characterize totality.
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A Second Totality Criterion

Theorem (Totality)

An orthonormal set M in a Hilbert space H is total in H if and only if, for
all x ∈H, the Parseval relation

∑

k

|〈x ,ek 〉|2 = ‖x‖2

holds, where the summation is over all nonzero Fourier coefficients of x
with respect to M.

(a) If M is not total, there is a nonzero x ⊥M in H. Since x ⊥M,
〈x ,ek 〉 = 0, for all k . Thus, the left-hand side is zero, whereas
‖x‖2 6= 0. This shows that Parseval’s relation does not hold.

Hence if Parseval’s relation holds for all x ∈H, then M must be total
in H.
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Proof of the Totality Criterion

(b) Conversely, assume M to be total in H. Consider any x ∈H and its
nonzero Fourier coefficients arranged in a sequence 〈x ,e1〉,〈x ,e2〉, . . .,
or in some definite order if there are only finitely many of them.

Define y by y =
∑

k〈x ,ek 〉ek , noting that in the case of an infinite
series, convergence follows from the convergence theorem.

We show that x −y ⊥M: For every ej occurring in the sum y , we
have, using orthonormality,

〈x −y ,ej 〉 = 〈x ,ej 〉−
∑

k

〈x ,ek 〉〈ek ,ej 〉 = 〈x ,ej 〉−〈x ,ej 〉 = 0.

And for every v ∈M not contained in y , we have 〈x ,v 〉 = 0. So

〈x −y ,v 〉 = 〈x ,v 〉−
∑

k

〈x ,ek 〉〈ek ,v 〉 = 0−0= 0.

Hence x −y ⊥M, that is, x −y ∈M⊥. Since M is total in H, we have
M⊥ = {0}. Together, x −y = 0, i.e., x = y . Thus, ‖x‖2 = 〈

∑
k 〈x ,ek〉ek ,∑

m〈x ,em〉em〉 =
∑

k 〈x ,ek〉〈x ,ek 〉.
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Separable Hilbert Spaces

Theorem (Separable Hilbert Spaces)

Let H be a Hilbert space. Then:

(a) If H is separable, every orthonormal set in H is countable.

(b) If H contains an orthonormal sequence which is total in H, then H is
separable.

(a) Let H be separable, B any dense set in H and M any orthonormal set.
Then, for any x 6= y in M, ‖x −y‖2 = 〈x −y ,x −y 〉 = 〈x ,x〉+〈y ,y 〉 = 2.

Hence spherical neighborhoods Nx of x and Ny of y of radius
p

2
3

are
disjoint.

Since B is dense in H, there is a b ∈B in Nx and a b̃ ∈B in Ny and
b 6= b̃, since Nx ∩Ny =;. Hence, if M were uncountable, we would
have uncountably many such pairwise disjoint spherical
neighborhoods, so that B would be uncountable. Thus, H would not
contain a dense set which is countable, contradicting separability.
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Separable Hilbert Spaces (The Converse)

(b) Let (ek) be a total orthonormal sequence in H. Let A be the set of all

linear combinations γ
(n)
1

e1+·· ·+γ
(n)
n en, n= 1,2, . . ., where

γ
(n)

k
=α

(n)

k
+ ib

(n)

k
and a

(n)

k
and b

(n)

k
are rational (b

(n)

k
= 0 if H is real).

Clearly, A is countable. We prove that A is dense in H by showing
that, for every x ∈H and ε> 0, there is a v ∈A, such that ‖x −v‖< ε.

Since (ek) is total in H, there is an n, such that Yn = span{e1, . . . ,en}

contains a point whose distance from x is less than ε
2
. In particular,

‖x −y‖< ε
2
, for the orthogonal projection y of x on Yn, which is given

by y =
∑n

k=1
〈x ,ek 〉ek . Hence, ‖x −

∑n
k=1

〈x ,ek 〉ek‖ < ε
2
. Since the

rationals are dense in R, for each 〈x ,ek 〉, there is a γ
(n)

k
(with rational

real and imaginary parts) s.t. ‖
∑n

k=1
[〈x ,ek 〉−γ

(n)

k
]ek‖ < ε

2
. Hence

v ∈A defined by v =
∑n

k=1
γ
(n)

k
ek satisfies ‖x −v‖ = ‖x −

∑
γ
(n)

k
ek‖≤

‖x −
∑
〈x ,ek 〉ek‖+‖

∑
〈x ,ek〉ek −

∑
γ
(n)

k
ek‖< ε

2
+ ε

2
= ε. This proves that

A is dense in H. Since A is countable, H is separable.
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Isomorphisms of Hilbert Spaces

An isomorphism of a Hilbert space H onto a Hilbert space H̃ over
the same field is a bijective linear operator T :H → H̃, such that for all
x ,y ∈H,

〈Tx ,Ty 〉 = 〈x ,y 〉.

H and H̃ are then called isomorphic Hilbert spaces.

Since T is linear, it preserves the vector space structure, and the
displayed condition shows that T is isometric.

From this and the bijectivity of T it follows that H and H̃ are
algebraically as well as metrically indistinguishable.

They are essentially the same, except for the nature of their elements,
so that we may think of H̃ as being essentially H with a “tag” T

attached to each vector x .
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Isomorphism and Hilbert Dimension

Theorem (Isomorphism and Hilbert Dimension)

Two Hilbert spaces H and H̃ , both real or both complex, are isomorphic if
and only if they have the same Hilbert dimension.

(a) If H is isomorphic with H̃ and T :H → H̃ is an isomorphism, then
orthonormal elements in H have orthonormal images under T . Since
T is bijective, we thus conclude that T maps every total orthonormal
set in H onto a total orthonormal set in H̃ . Hence H and H̃ have the
same Hilbert dimension.

(b) Conversely, suppose that H and H̃ have the same Hilbert dimension.

The case H = {0} and H̃ = {0} is trivial.

Let H 6= {0}. Then H̃ 6= {0}, and any total orthonormal sets M in H and
M̃ in H̃ have the same cardinality. So we can index them by the same
index set {k} and write M = (ek) and M̃ = (ẽk ). To show that H and
H̃ are isomorphic, we construct an isomorphism of H onto H̃.
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Isomorphism and Hilbert Dimension (Cont’d)

For every x ∈H, we have x =
∑

k〈x ,ek 〉ek , where the right-hand side is
a finite sum or an infinite series, and

∑
k |〈x ,ek 〉|2 <∞, by the Bessel

inequality. Define
x̃ =Tx =

∑

k

〈x ,ek 〉ẽk .

We have convergence by the Convergence Theorem. So x̃ ∈ H̃ .

The operator T is linear since the inner product is linear with respect
to the first factor.
T is isometric: ‖x̃‖2 = ‖Tx‖2 =

∑
k |〈x ,ek 〉|2 = ‖x‖2. Thus, T preserves

the inner product.
Injectivity: If Tx =Ty , then ‖x −y‖ = ‖T (x −y)‖ = ‖Tx −Ty‖ = 0. So
x = y and T is injective.
T is surjective: Given any x̃ =

∑
k αk ẽk in H̃ , we have

∑
|αk |2 <∞ by

the Bessel inequality. Hence
∑

k αkek is a finite sum or a series which
converges to an x ∈H , and αk = 〈x ,ek 〉 by the same theorem. We thus
have x̃ =Tx by definition of T .
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Representation of Functionals on Hilbert Spaces
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Functionals on Hilbert Spaces

Riesz’s Theorem (Functionals on Hilbert Spaces)

Every bounded linear functional f on a Hilbert space H can be represented
in terms of the inner product, namely,

f (x)= 〈x ,z〉,

where z depends on f , is uniquely determined by f and has norm ‖z‖= ‖f ‖.
We prove that:
(a) f has the required representation;
(b) z in the representation is unique;
(c) ‖z‖= ‖f ‖.

(a) If f = 0, then we take z = 0. Let f 6= 0. We look at properties z must
have if a representation exists:

First, z 6= 0, since otherwise f = 0.
Second, 〈x ,z〉 = 0, for all x for which f (x)= 0, i.e., for all x in the null
space N (f ) of f . Hence, z ⊥N (f ). This suggests that we consider
N (f ) and its orthogonal complement N (f )⊥.
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Riesz’s Theorem: Part (a)

N (f ) is a vector space and is closed. Furthermore, f 6= 0 implies
N (f ) 6=H, so that N (f )⊥ 6= {0} by the projection theorem. Hence
N (f )⊥ contains a z0 6= 0. For an arbitrary x ∈H, set

v = f (x)z0− f (z0)x .

Then f (v)= f (x)f (z0)− f (z0)f (x)= 0. This shows that v ∈N (f ).

Since z0 ⊥N (f ), we have

0= 〈v ,z0〉 = 〈f (x)z0− f (z0)x ,z0〉 = f (x)〈z0,z0〉− f (z0)〈x ,z0〉.

Noting that 〈z0,z0〉 = ‖z0‖2 6= 0, we can solve for f (x). The result is

f (x)= f (z0)
〈z0,z0〉 〈x ,z0〉 =

〈
x ,

f (z0)
〈z0,z0〉z0

〉
. So, we take z = f (z0)

〈z0,z0〉z0.
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Riesz’s Theorem: Parts (b) and (c)

(b) We prove that z is unique: Suppose that for all x ∈H,

f (x)= 〈x ,z1〉 = 〈x ,z2〉.

Then 〈x ,z1−z2〉 = 0, for all x . Choosing x = z1−z2, we have

〈x ,z1−z2〉 = 〈z1−z2,z1−z2〉 = ‖z1−z2‖2 = 0.

Hence z1−z2 = 0, so that z1 = z2.

(c) We finally prove ‖z‖= ‖f ‖. If f = 0, then z = 0 and the property holds.
Let f 6= 0. Then z 6= 0.

We get ‖z‖2 = 〈z ,z〉 = f (z)≤ ‖f ‖‖z‖. Division by ‖z‖ 6= 0 yields
‖z‖≤ ‖f ‖.
It remains to show that ‖f ‖≤ ‖z‖. By the Schwarz inequality, we see
that |f (x)| = |〈x ,z〉| ≤ ‖x‖‖z‖. This implies ‖f ‖ = sup

‖x‖=1
|〈x ,z〉| ≤ ‖z‖.
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The Equality Lemma

Lemma (Equality)

If 〈v1,w 〉 = 〈v2,w 〉, for all w in an inner product space X , then v1 = v2. In
particular, 〈v1,w 〉 = 0, for all w ∈X , implies v1 = 0.

By assumption, for all w ,

〈v1−v2,w 〉 = 〈v1,w 〉−〈v2,w 〉 = 0.

For w = v1−v2, we get ‖v1−v2‖2 = 0. Hence v1−v2 = 0. So v1 = v2.
In particular, 〈v1,w 〉 = 0, with w = v1, gives ‖v1‖2 = 0. So v1 = 0.
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Sesquilinear Forms over Vector Spaces

Definition (Sesquilinear Form)

Let X and Y be vector spaces over the same field K (=R or C). Then a
sesquilinear form (or sesquilinear functional) h on X ×Y is a mapping
h :X ×Y →K , such that, for all x ,x1,x2 ∈X and y ,y1,y2 ∈Y and all scalars
α,β,

(a) h(x1+x2,y)= h(x1,y)+h(x2,y);

(b) h(x ,y1+y2)= h(x ,y1)+h(x ,y2);

(c) h(αx ,y)=αh(x ,y);

(d) h(x ,βy)=βh(x ,y).

Hence h is linear in the first argument and conjugate linear in the second
one.
If X and Y are real (K =R), then (d) is simply h(x ,βy)=βh(x ,y) and h is
called bilinear since it is linear in both arguments.
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Bounded Sesquilinear Forms over Normed Spaces

Definition (Bounded Sesquilinear Form)

If X and Y are normed spaces and if there is a real number c , such that for
all x ,y , |h(x ,y)| ≤ c‖x‖‖y‖, then h is said to be bounded, and the number

‖h‖= sup
x∈X−{0}

y∈Y−{0}

|h(x ,y)|
‖x‖‖y‖

= sup
‖x‖=1
‖y‖=1

|h(x ,y)|

is called the norm of h.

Example: The inner product is sesquilinear and bounded.

By the conditions in the definition, we have

|h(x ,y)| ≤ ‖h‖‖x‖‖y‖.
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Riesz Representation

Theorem (Riesz Representation)

Let H1,H2 be Hilbert spaces and h :H1×H2 →K a bounded sesquilinear
form. Then h has a representation

h(x ,y)= 〈Sx ,y 〉,

where S :H1 →H2 is a bounded linear operator. S is uniquely determined
by h and has norm ‖S‖= ‖h‖.

We consider h(x ,y). This is linear in y , because of the bar. To exploit
the preceding representation, we keep x fixed. Then, we get a
representation in which y is variable, say, h(x ,y)= 〈y ,z〉. Hence,
h(x ,y)= 〈z ,y 〉. Here z ∈H2 is unique but, of course, depends on our
fixed x ∈H1. It follows that this representation with variable x defines
an operator given by z = Sx . Substituting z = Sx , h(x ,y)= 〈Sx ,y 〉.
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Linearity of S

S is linear:

In fact, its domain is the vector space H1. From sesquilinearity, we
obtain, for all y in H2,

〈S(αx1+βx2),y 〉 = h(αx1+βx2,y)
= αh(x1,y)+βh(x2,y)
= a〈Sx1,y 〉+β〈Sx2,y 〉
= 〈αSx1+βSx2,y 〉.

So by the Equality Lemma,

S(αx1+βx2)=αSx1+βSx2.
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Boundedness and Uniqueness of S

S is bounded: Leaving aside the trivial case S = 0, we have

‖h‖= sup
x 6=0
y 6=0

|〈Sx ,y 〉|
‖x‖‖y‖

≥ sup
x 6=0
Sx 6=0

|〈Sx ,Sx〉|
‖x‖‖Sx‖

= sup
x 6=0

‖Sx‖
‖x‖

= ‖S‖.

This proves boundedness. Moreover, ‖h‖≥ ‖S‖. But, note that

‖h‖= sup
x 6=0
y 6=0

‖〈Sx ,y 〉‖
‖x‖‖y‖

≤ sup
x 6=0

‖Sx‖‖y‖
‖x‖‖y‖

= ‖S‖.

Now, we obtain ‖S‖= ‖h‖.
S is unique: Assume that there is a linear operator T :H1 →H2, such
that, for all x ∈H1 and y ∈H2, we have

h(x ,y)= (Sx ,y)= (Tx ,y).

Then Sx =Tx , for all x ∈H1, by the Equality Lemma. Hence S =T ,
by definition.
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Subsection 8

Hilbert-Adjoint Operator
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Hilbert-Adjoint Operators

Definition (Hilbert-Adjoint Operator T ∗)

Let T :H1 →H2 be a bounded linear operator, where H1 and H2 are Hilbert
spaces. Then the Hilbert-adjoint operator T ∗ of T is the operator

T ∗ :H2 →H1

such that, for all x ∈H1 and y ∈H2,

〈Tx ,y 〉 = 〈x ,T ∗y 〉.
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Existence of Hilbert-Adjoint Operators

Theorem (Existence)

The Hilbert-adjoint operator T ∗ of a bounded linear operator T exists, is
unique and is a bounded linear operator with norm ‖T ∗‖= ‖T‖.

The formula h(y ,x)= 〈y ,Tx〉 defines a sesquilinear form on H2×H1

because the inner product is sesquilinear and T is linear. In fact,
conjugate linearity of the form is seen from

h(y ,αx1+βx2) = 〈y ,T (αx1+βx2)〉
= 〈y ,αTx1+βTx2〉
= α〈y ,Tx1〉+β〈y ,Tx2〉
= αh(y ,x1)+βh(y ,x2).

.
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Existence of Hilbert-Adjoint Operators (Cont’d)

h is bounded: Indeed, by the Schwarz inequality,

|h(y ,x)| = |〈y ,Tx〉| ≤ ‖y‖‖Tx‖≤ ‖T‖‖x‖‖y‖.

This also implies ‖h‖≤ ‖T‖. Moreover

‖h‖= sup
x 6=0
y 6=0

|〈y ,Tx〉|
‖y‖‖x‖

≥ sup
x 6=0
Tx 6=0

|〈Tx ,Tx〉|
‖Tx‖‖x‖

= ‖T‖,

whence ‖h‖≥ ‖T‖. Together, ‖h‖= ‖T‖.
We obtain a Riesz representation h(y ,x)= 〈T ∗y ,x〉. We know that
T ∗ :H2 →H1 is a uniquely determined bounded linear operator with
norm ‖T ∗‖ = ‖h‖= ‖T‖.
Also 〈y ,Tx〉 = 〈T ∗y ,x〉. By taking conjugates, 〈Tx ,y 〉 = 〈x ,T ∗y 〉.
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The Zero Operator Lemma

Lemma (Zero Operator)

Let X and Y be inner product spaces and Q :X →Y a bounded linear
operator. Then:

(a) Q = 0 if and only if 〈Qx ,y 〉 = 0, for all x ∈X and y ∈Y .

(b) If Q :X →X , where X is complex, and 〈Qx ,x〉 = 0, for all x ∈X , then
Q = 0.

(a) Q = 0 means Qx = 0, for all x and implies 〈Qx ,y 〉 = 〈0,y 〉 = 0〈w ,y 〉 = 0.

Conversely, 〈Qx ,y 〉 = 0, for all x and y implies Qx = 0, for all x , by
Equality, so that Q = 0, by definition.

(b) By assumption, 〈Qv ,v 〉 = 0, for every v =αx +y ∈X , that is,
0= 〈Q(αx +y),αx +y 〉 = |α|2〈Qx ,x〉+〈Qy ,y 〉+α〈Qx ,y 〉+α〈Qy ,x〉.
The first two terms on the right are zero by assumption. α= 1 gives
〈Qx ,y 〉+〈Qy ,x〉 = 0. α= i gives α=−i and 〈Qx ,y 〉−〈Qy ,x〉 = 0. By
addition, 〈Qx ,y 〉 = 0, and Q = 0 follows from (a).
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Remark on the Zero Operator Lemma

In part (b), it is essential that X be complex: Indeed, the conclusion
may not hold if X is real.

A counterexample is a rotation Q of the plane R2 through a right
angle:

Q is linear, and Qx ⊥ x , hence 〈Qx ,x〉 = 0, for all x ∈R2;
Q 6= 0.
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Properties of Hilbert-Adjoint Operators

Theorem (Properties of Hilbert-Adjoint Operators)

Let H1,H2 be Hilbert spaces, S :H1 →H2 and T :H1 →H2 bounded linear
operators and α any scalar. Then we have:

(a) 〈T ∗y ,x〉 = 〈y ,Tx〉, x ∈H1,y ∈H2;

(b) (S +T )∗ =S∗+T ∗;

(c) (αT )∗ =αT ∗;

(d) (T ∗)∗ =T ;

(e) ‖T ∗T‖= ‖TT ∗‖ = ‖T‖2;

(f) T ∗T = 0 iff T = 0;

(g) (ST )∗ =T ∗S∗ (Assuming H2 =H1).

(a) We have
〈T ∗y ,x〉 = 〈x ,T ∗y 〉 = 〈Tx ,y 〉 = 〈y ,Tx〉.
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Property (b)

(b) For all x and y ,

〈x ,(S +T )∗y 〉 = 〈(S +T )x ,y 〉
= 〈Sx ,y 〉+〈Tx ,y 〉
= 〈x ,S∗y 〉+〈x ,T ∗y 〉
= 〈x ,(S∗+T ∗)y 〉.

Hence, for all y ,
(S +T )∗y = (S∗+T ∗)y .
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Properties (c)-(d)

(c) Calculate

〈(αT )∗y ,x〉 = 〈y ,(αT )x〉 = 〈y ,α(Tx)〉
= α〈y ,Tx〉 =α〈T ∗y ,x〉
= 〈αT ∗y ,x〉.

Now apply the Zero Operator Lemma with Q = (αT )∗−αT ∗.

(d) (T ∗)∗ is written T ∗∗ and equals T , since, for all x ∈H1 and y ∈H2,
we have

〈(T ∗)∗x ,y 〉 = 〈x ,T ∗y 〉 = 〈Tx ,y 〉.

So (d) follows from the Zero Operator Lemma with Q = (T ∗)∗−T .
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Properties (e)-(g)

(e) We see that T ∗T :H1 →H1 but TT ∗ :H2 →H2. By the Schwarz
inequality,

‖Tx‖2 = 〈Tx ,Tx〉 = 〈T ∗Tx ,x〉 ≤ ‖T ∗Tx‖‖x‖≤ ‖T ∗T‖‖x‖2
.

Taking the supremum over all x of norm 1, we obtain ‖T‖2 ≤‖T ∗T‖.
So ‖T‖2 ≤ ‖T ∗T‖≤ ‖T ∗‖‖T‖= ‖T‖2, giving ‖T ∗T‖ = ‖T‖2.
Replacing T by T ∗, we get ‖TT ∗‖= ‖T ∗∗T ∗‖= ‖T ∗‖2 = ‖T‖2.

(f) From (e), we immediately obtain (f).

(g) We have

〈x ,(ST )∗y 〉 = 〈(ST )x ,y 〉 = 〈Tx ,S∗y 〉 = 〈x ,T ∗S∗y 〉.

Hence (ST )∗y =T ∗S∗y , by Equality.
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Subsection 9

Self-Adjoint, Unitary and Normal Operators
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Self-adjoint, Unitary and Normal Operators

Definition (Self-adjoint, Unitary and Normal Operators)

A bounded linear operator T :H →H on a Hilbert space H is said to be:

self-adjoint or Hermitian if T ∗ =T ;

unitary if T is bijective and T ∗ =T−1;

normal if TT ∗ =T ∗T .

The Hilbert-adjoint T ∗ of T was defined by 〈Tx ,y 〉 = 〈x ,T ∗y 〉.
If T is self-adjoint, the formula becomes 〈Tx ,y 〉 = 〈x ,Ty 〉.
If T is self-adjoint or unitary, T is normal.

A normal operator need not be self-adjoint or unitary:

Example: If I :H →H is the identity operator, then:

T = 2iI is normal since T ∗ =−2iI , so that TT ∗ =T ∗T = 4I ;
T ∗ 6=T and T ∗ 6=T−1 =−1

2 iI .
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Matrices of Hilbert-Adjoint Operators

Consider Cn with the inner product 〈x ,y 〉 = x⊤y , where x and y are
written as column vectors, and ⊤ means transposition.

Thus, x⊤ = (ξ1, . . . ,ξn), and we use the ordinary matrix multiplication.

Let T :Cn →Cn be a linear operator (which is bounded). A basis for
Cn being given, we can represent T and its Hilbert-adjoint operator
T ∗ by two n-rowed square matrices, say, A and B , respectively.

Using the inner prodct and the familiar rule (Bx)⊤ = x⊤B⊤, we obtain

〈Tx ,y 〉 = (Ax)⊤y = x⊤A⊤y and 〈x ,T ∗y 〉 = x⊤By .

By definition, the left-hand sides are equal for all x ,y ∈Cn. Hence we

must have A⊤ =B. Consequently, B =A
⊤
.

If a basis for Cn is given and a linear operator on Cn is represented by
a certain matrix, then its Hilbert-adjoint operator is represented by the

complex conjugate transpose of that matrix.

George Voutsadakis (LSSU) Functional Analysis May 2023 100 / 107



Inner Product Spaces and Hilbert Spaces Self-Adjoint, Unitary and Normal Operators

Types of Matrices

Definition

A square matrix A= (αjk) is said to be:

Hermitian if A
⊤
=A (αkj =αjk);

skew-Hermitian if A
⊤
=−A

(αkj =−αjk);

unitary if A
⊤
=A−1;

normal if AA
⊤
=A

⊤
A.

A real square matrix A= (αjk) is said to be:

(real) symmetric if A⊤ =A (αkj =αjk);

(real) skew-symmetric if A⊤ =−A (αkj =−αjk);

orthogonal if A⊤ =A−1.

Hence:
a real Hermitian matrix is a (real) symmetric matrix;
a real skew-Hermitian matrix is a (real) skew-symmetric matrix;
a real unitary matrix is an orthogonal matrix.
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Properties of Operators and Representing Matrices

Representing matrices are:

Hermitian if T is self-adjoint (Hermitian);
unitary if T is unitary;
normal if T is normal.

For a linear operator T :Rn →Rn, representing matrices are:

Real symmetric if T is self-adjoint;
orthogonal if T is unitary.
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Criterion for Self-Adjointness

Theorem (Self-Adjointness)

Let T :H →H be a bounded linear operator on a Hilbert space H. Then:

(a) If T is self-adjoint, 〈Tx ,x〉 is real for all x ∈H.

(b) If H is complex and 〈Tx ,x〉 is real for all x ∈H, the operator T is
self-adjoint.

(a) If T is self-adjoint, then for all x , 〈Tx ,x〉 = 〈x ,Tx〉 = 〈Tx ,x〉. Hence,
〈Tx ,x〉 is equal to its complex conjugate, so that it is real.

(b) If 〈Tx ,x〉 is real for all x , then 〈Tx ,x〉 = 〈Tx ,x〉 = 〈x ,T ∗x〉 = 〈T ∗x ,x〉.
Hence, 0= 〈Tx ,x〉−〈T ∗x ,x〉 = 〈(T −T ∗)x ,x〉 and T −T ∗ = 0 by a
preceding lemma, since H is complex.

In Part (b) it is essential that H be complex: For a real H the inner
product is real-valued, which makes 〈Tx ,x〉 real without any further
assumptions about T .
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Self-Adjointness of Product

Theorem (Self-Adjointness of Product)

The product of two bounded self-adjoint linear operators S and T on a
Hilbert space H is self-adjoint if and only if the operators commute, i.e., if
and only if ST =TS .

We have
(ST )∗ = T ∗S∗

= TS .

Hence ST = (ST )∗ iff ST =TS .
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Sequences of Self-Adjoint Operators

Theorem (Sequences of Self-Adjoint Operators)

Let (Tn) be a sequence of bounded self-adjoint linear operators Tn :H →H

on a Hilbert space H. Suppose that (Tn) converges, say, Tn →T , i.e.,
‖Tn−T‖→ 0, where ‖·‖ is the norm on the space B(H,H). Then the limit
operator T is a bounded self-adjoint linear operator on H.

We must show that T ∗ =T . This follows from ‖T −T ∗‖ = 0. To
prove the latter, we use ‖T ∗

n −T ∗‖= ‖(Tn−T )∗‖ = ‖Tn−T‖. We
obtain by the triangle inequality in B(H,H)

‖T −T ∗‖ ≤ ‖T −Tn‖+‖Tn−T ∗
n ‖+‖T ∗

n −T ∗‖
= ‖T −Tn‖+0+‖Tn−T‖
= 2‖Tn−T‖ n→∞−→ 0.

Hence ‖T −T ∗‖= 0 and T ∗ =T .
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Unitary Operators

Theorem (Unitary Operator)

Let the operators U :H →H and V :H →H be unitary, where H is a
Hilbert space. Then:

(a) U is isometric; thus ‖Ux‖= ‖x‖, for all x ∈H;

(b) ‖U‖= 1, provided H 6= {0};

(c) U−1 (=U∗) is unitary;

(d) UV is unitary;

(e) U is normal.

Furthermore:

(f) A bounded linear operator T on a complex Hilbert space H is unitary
if and only if T is isometric and surjective.

(a) ‖Ux‖2 = 〈Ux ,Ux〉 = 〈x ,U∗Ux〉 = 〈x , Ix〉 = ‖x‖2.

(b) follows immediately from (a).
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Unitary Operators (Cont’d)

(c) Since U is bijective, so is U−1, and (U−1)∗ =U∗∗ =U = (U−1)−1.

(d) UV is bijective, and (UV )∗ =V ∗U∗ =V −1U−1 = (UV )−1.

(e) follows from U−1 =U∗ and UU−1 =U−1U = I .

(f) Suppose that T is isometric and surjective. Isometry implies
injectivity. So T is bijective. We show that T ∗ =T−1. By the
isometry, 〈T ∗Tx ,x〉 = 〈Tx ,Tx〉 = 〈x ,x〉 = 〈Ix ,x〉. Hence,
〈(T ∗T − I )x ,x〉 = 0 and T ∗T − I = 0. So T ∗T = I . From this,
TT ∗ =TT ∗(TT−1)=T (T ∗T )T−1 =TIT−1 = I . Together,
T ∗T =TT ∗ = I . Hence T ∗ =T−1 so that T is unitary.

The converse is clear since T is isometric by (a) and surjective by
definition.

An isometric operator need not be unitary (it may fail to be surjective):

Example: The right shift operator T : ℓ2 → ℓ2, given by
(ξ1,ξ2,ξ3, . . .) 7→ (0,ξ1,ξ2,ξ3, . . .), where x = (ξj) ∈ ℓ2, is isometric but
not unitary.
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