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Partially Ordered Sets

Definition (Partially Ordered Set)

A partially ordered set is a set M on which there is defined a partial
ordering, that is, a binary relation which is written ≤ satisfying:

(PO1) a≤ a, for every a ∈M; (Reflexivity)

(PO2) If a≤ b and b ≤ a, the a= b; (Antisymmetry)

(PO3) If a≤ b and b ≤ c , then a≤ c . (Transitivity)

Elements a and b for which neither a≤ b nor b ≤ a holds are called
incomparable elements.

In contrast, two elements a and b are called comparable elements if
they satisfy a≤ b or b ≤ a (or both).
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Chains and Bounds

Definition (Totally Ordered Set or Chain)

A totally ordered set or chain is a partially ordered set such that every
two elements of the set are comparable. In other words, a chain is a
partially ordered set that has no incomparable elements.

Definition (Upper Bound and Maximal Element)

An upper bound of a subset W of a partially ordered set M is an element
u ∈M, such that x ≤ u, for every x ∈W . (Depending on M and W , such a
u may or may not exist.)
A maximal element of M is an m ∈M, such that m≤ x implies m= x .
(Again, M may or may not have maximal elements.)

Note that a maximal element need not be an upper bound.
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Examples of Partial Orderings

Real numbers: Let M be the set of all real numbers and let x ≤ y

have its usual meaning. M is totally ordered. M has no maximal
elements.

Power set: Let P (X ) be the power set (set of all subsets) of a given
set X and let A≤B mean A⊆B , that is, A is a subset of B . Then
P (X ) is partially ordered. The only maximal element of P (X ) is X .

n-tuples of numbers: Let M be the set of all ordered n-tuples
x = (ξ1, . . . ,ξn), y = (η1, . . . ,ηn), . . ., of real numbers and let x ≤ y mean
ξj ≤ ηj , for every j = 1, . . . ,n, where ξj ≤ ηj has its usual meaning. This
defines a partial ordering on M.

Positive integers: Let M =N, the set of all positive integers. Let
m≤ n mean that m divides n. This defines a partial ordering on N.
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Zorn’s Lemma

Zorn’s Lemma

Let M 6= ; be a partially ordered set. Suppose that every chain C ⊆M has
an upper bound. Then M has at least one maximal element.

Zorn’s Lemma can be derived from the Axiom of Choice:

For any given set E , there exists a mapping c (“choice function")
from the power set P (E ) into E , such that if B ⊆E , B 6= ;, then
c(B) ∈B.

Conversely, the Axiom of Choice follows from Zorn’s Lemma.

So Zorn’s Lemma and the Axiom of Choice can be regarded as
equivalent axioms.

George Voutsadakis (LSSU) Functional Analysis May 2023 7 / 139



Fundamental Theorems for Normed and Banach Spaces Zorn’s Lemma

Application: Hamel Bases

Hamel Basis

Every vector space X 6= {0} has a Hamel basis.

Let M be the set of all linearly independent subsets of X . Since
X 6= {0}, it has an element x 6= 0 and {x} ∈M, so that M 6= ;. Set
inclusion defines a partial ordering on M. Every chain C ⊆M has an
upper bound, namely, the union of all subsets of X which are elements
of C . By Zorn’s Lemma, M has a maximal element B .

Claim: B is a Hamel basis for X .

Let Y = spanB . Then Y is a subspace of X . Moreover, Y =X :
Otherwise, B ∪ {z }, z ∈X , z 6∈Y , would be a linearly independent set
containing B as a proper subset. And this would contradict the
maximality of B .
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Application: Total Orthonormal Sets

Total Orthonormal Set

In every Hilbert space H 6= {0} there exists a total orthonormal set.

Let M be the set of all orthonormal subsets of H. Since H 6= {0}, it has
an element x 6= 0, and an orthonormal subset of H is {y }, where
y = 1

‖x‖x . Hence M 6= ;. Set inclusion defines a partial ordering on M.
Every chain C ⊆M has an upper bound, namely, the union of all
subsets of X which are elements of C . By Zorn’s Lemma, M has a
maximal element F .

Claim: F is total in H.

Suppose that this is false. Then, by a previous theorem, there exists a
nonzero z ∈H, such that z ⊥ F . Hence F1 = F ∪ {e}, where e = 1

‖z‖z is
orthonormal, and F is a proper subset of F1. This contradicts the
maximality of F .
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Subsection 2

Hahn-Banach Theorem
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Sublinear Functionals

A sublinear functional is a real-valued functional p on a vector space
X which is:

subadditive, that is,

p(x +y)≤ p(x)+p(y), for all x ,y ∈X ;

positive-homogeneous, that is,

p(αx)=αp(x), for all α≥ 0 in R and x ∈X .

Note that the norm on a normed space is such a functional.
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Idea of the Hahn-Banach Theorem

In an extension problem one considers a mathematical object (e.g., a
mapping) defined on a subset Z of a given set X and the goal is to
extend the object from Z to the entire set X in such a way that certain
basic properties of the object continue to hold for the extended object.

In the Hahn-Banach theorem, the object to be extended is a linear
functional f which is defined on a subspace Z of a vector space X and
has a certain boundedness property which will be formulated in terms
of a sublinear functional.

We assume that the functional f to be extended is majorized on Z by
such a functional p defined on X .
We extend f from Z to X without losing the linearity and the
majorization, so that the extended functional f̃ on X is still linear and
still majorized by p.
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Hahn-Banach Theorem (Extension of Linear Functionals)

Hahn-Banach Theorem (Extension of Linear Functionals)

Let X be a real vector space and p a sublinear functional on X .
Furthermore, let f be a linear functional which is defined on a subspace Z

of X and satisfies f (x)≤ p(x), for all x ∈Z . Then f has a linear extension
f̃ from Z to X satisfying f̃ (x)≤ p(x), for all x ∈X , that is, f̃ is a linear
functional on X , satisfies f̃ (x)≤ p(x) on X and f̃ (x)= f (x), for every
x ∈Z .

Proceeding stepwise, we shall prove:

(a) The set E of all linear extensions g of f satisfying g(x)≤ p(x) on their
domain D(g) can be partially ordered and Zorn’s Lemma yields a
maximal element f̃ of E .

(b) f̃ is defined on the entire space X .
(c) An auxiliary relation which was used in (b).
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Proof of Part (a)

(a) Let E be the set of all linear extensions g of f which satisfy the
condition g(x)≤ p(x), for all x ∈D(g).

Clearly, E 6= ; since f ∈E .

On E we can define a partial ordering by g ≤ h iff h is an extension of
g , i.e., by definition, D(h)⊇D(g) and h(x)= g(x), for every x ∈D(g).
For a chain C ⊆E , we define ĝ by ĝ(x)= g(x), if x ∈D(g), g ∈C .

ĝ is a linear functional, the domain being D(ĝ)=⋃
g∈C D(g), which is

a vector space since C is a chain.
The definition of ĝ is unambiguous: For an x ∈D(g1)∩D(g2), with
g1,g2 ∈C , we have g1(x)= g2(x), since C is a chain, so that g1 ≤ g2 or
g2 ≤ g1.
Clearly, g ≤ ĝ for all g ∈C . Hence ĝ is an upper bound of C .

Since C ⊆E was arbitrary, by Zorn’s Lemma, E has a maximal
element f̃ .

By the definition of E , this is a linear extension of f , which satisfies
f̃ (x)≤ p(x), for all x ∈D(f̃ ).
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Proof of Part (b)

(b) We show that D(f̃ ) is all of X .

Suppose that this is false. Then we can choose a y1 ∈X −D(f̃ ).
Consider the subspace Y1 of X spanned by D(f̃ ) and y1. Note that
y1 6= 0 since 0 ∈D(f̃ ). Any x ∈Y1 can be written x = y +αy1, y ∈D(f̃ ).
This representation is unique: In fact, y +αy1 = ỹ +βy1 with ỹ ∈D(f̃ )
implies y − ỹ = (β−α)y1, where y − ỹ ∈D(f̃ ), whereas y1 6∈D(f̃ ). The
only solution is y − ỹ = 0 and β−α= 0. This means uniqueness.

A functional g1 on Y1 is defined by

g1(y +αy1)= f̃ (y)+αc ,

where c is any real constant. It is not difficult to see that g1 is linear.
Furthermore, for α= 0, we have g1(y)= f̃ (y). Hence g1 is a proper
extension of f̃ , i.e., an extension such that D(f̃ ) is a proper subset of
D(g1). Consequently, if we show g1 ∈E by showing that g1(x)≤ p(x),
contradicting the maximality of f̃ , we get D(f̃ )=X is true.
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Proof of Part (c)

(c) It now suffices to show that g1, with a suitable c in
g1(y +αy1)= f̃ (y)+αc , satisfies g1(x)≤ p(x), for all x ∈D(g1).

We consider any y and z in D(f̃ ). We obtain
f̃ (y)−f̃ (z)= f̃ (y−z)≤ p(y−z)= p(y+y1−y1−z)≤ p(y+y1)+p(−y1−z).

Binging the last term to the left and the term f̃ (y) to the right,

−p(−y1−z)− f̃ (z)≤ p(y +y1)− f̃ (y),

where y1 is fixed. Since y does not appear on the left and z not on the
right, the inequality continues to hold if we take the supremum over
z ∈D(f̃ ) on the left (call it m0) and the infimum over y ∈D(f̃ ) on the
right, call it m1. Then m0 ≤m1 and for a c , with m0 ≤ c ≤m1, we have

−p(−y1−z)− f̃ (z)≤ c , for all z ∈D(f̃ ),

c ≤ p(y +y1)− f̃ (y), for all y ∈D(f̃ ).
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Proof of Part (c) (Cont’d)

We prove g1(x)≤ p(x), for all x ∈D(g1), first for negative α in
g1(y +αy1)= f̃ (y)+αc and then for positive α.

For α< 0 we use −p(−y1−z)− f̃ (z)≤ c , with z replaced by 1
αy , that is,

−p(−y1− 1
αy)− f̃ ( 1

αy)≤ c . Multiplication by −α> 0 gives

αp(−y1− 1
αy)+ f̃ (y)≤−αc . From this and g1(y +αy1)= f̃ (y)+αc ,

using y +αy1 = x , we obtain

g1(x)= f̃ (y)+αc ≤−αp
(
−y1−

1

α
y

)
= p(αy1+y)= p(x).

For α= 0, we have x ∈D(f̃ ) and nothing to prove.
For α> 0 we use c ≤ p(y +y1)− f̃ (y), with y replaced by 1

αy to get

c ≤ p( 1
αy +y1)− f̃ ( 1

αy). Multiplication by α> 0 gives

αc ≤αp

(
1

α
y +y1

)
− f̃ (y)= p(x)− f̃ (y).

But g1(y +αy1)= f̃ (y)+αc . So g1(x)= f̃ (y)+αc ≤ p(x).
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Necessity of Zorn’s Lemma

If, in g1(y +αy1)= f̃ (y)+αc , we take f instead of f̃ , we obtain, for
each real c , a linear extension g1 of f to the subspace Z1 spanned by
D(f )∪ {y1}. We can choose c so that g1(x)≤ p(x), for all x ∈Z1, as
may be seen from part (c) of the proof with f̃ replaced by f .

If X =Z1, we are done.

If X 6=Z1, we may take a y2 ∈X −Z1 and repeat the process to extend
f to Z2 spanned by Z1 and y2, etc.

This gives a sequence of subspaces Zj , each containing the preceding,
and such that f can be extended linearly from one to the next and the
extension gj satisfies gj (x)≤ p(x), for all x ∈Zj .

If X =
⋃n
j=1

Zj , we are done after n steps.

If X =⋃∞
j=1

Zj , we can use ordinary induction.

If X has no such representation, we do need Zorn’s lemma in the proof
presented here.
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Subsection 3

Hahn-Banach Theorem for Complex and Normed Spaces
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Hahn-Banach Theorem (Generalized)

Hahn-Banach Theorem (Generalized)

Let X be a real or complex vector space and p a real-valued functional on
X which is subadditive, i.e., for all x ,y ∈X , p(x +y)≤ p(x)+p(y), and for
every scalar α satisfies p(αx)= |α|p(x). Furthermore, let f be a linear
functional which is defined on a subspace Z of X and satisfies
|f (x)| ≤ p(x), for all x ∈Z . Then f has a linear extension f̃ from Z to X

satisfying |f̃ (x)| ≤ p(x), for all x ∈X .

(a) Real vector space If X is real, then |f (x)| ≤ p(x) implies f (x)≤ p(x),
for all x ∈Z . Hence, by the Hahn-Banach Theorem, there is a linear
extension f̃ from Z to X , such that f̃ (x)≤ p(x), for all x ∈X . From
this and the hypothesis, we obtain

−f̃ (x)= f̃ (−x)≤ p(−x)= |−1|p(x)= p(x).

That is, f̃ (x)≥−p(x). With f̃ (x)≤ p(x), this yields the conclusion.
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Hahn-Banach Theorem (The Complex Case)

(b) Complex vector space Let X be complex. Then Z is a complex
vector space, too. Hence f is complex-valued, and we can write

f (x)= f1(x)+ if2(x), x ∈Z ,

where f1 and f2 are real-valued. For a moment we regard X and Z as
real vector spaces and denote them by Xr and Zr , respectively. This
simply means that we restrict multiplication by scalars to real numbers
(instead of complex numbers). Since f is linear on Z and f1 and f2 are
real-valued, f1 and f2 are linear functionals on Zr . Also f1(x)≤ |f (x)|
because the real part of a complex number cannot exceed the absolute
value. Hence by |f (x)| ≤ p(x), we get f1(x)≤ p(x), for all x ∈Zr . By
the Hahn-Banach Theorem, there is a linear extension f̃1 of f1 from Zr

to Xr , such that f̃1(x)≤ p(x), for all x ∈Xr .
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Hahn-Banach Theorem (The Complex Case Cont’d)

Considering Z and using f = f1+ if2, we have, for every x ∈Z ,

i [f1(x)+ if2(x)]= if (x)= f (ix)= f1(ix)+ if2(ix).

Equating the real parts, f2(x)=−f1(ix), for all x ∈Z . For all x ∈X , we
set

f̃ (x)= f̃1(x)− i f̃1(x), x ∈X .

Then f̃ (x)= f (x) on Z . This shows that f̃ is an extension of f from
Z to X . We must now prove that:

(i) f̃ is a linear functional on the complex vector space X ;
(ii) f̃ satisfies |f̃ (x)| ≤ p(x) on X .
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Hahn-Banach Theorem (Proving (i) and (ii))

f̃ (x)= f̃1(x)− i f̃1(x), x ∈X .

(i) Using f̃ (x)= f̃1(x)− i f̃1(ix), x ∈X , and the linearity of f̃1 on the real
vector space Xr , we get

f̃ ((a+ ib)x) = f̃1(ax + ibx)− i f̃1(iax −bx)

= af̃1(x)+bf̃1(ix)− i [af̃1(ix)−bf̃1(x)]

= (a+ ib)[f̃1(x)− i f̃1(ix)]

= (a+ ib)f̃ (x).

(ii) For any x , such that f̃ (x)= 0, (ii) holds since p(x)≥ 0. Let x be such
that f̃ (x) 6= 0. Then we can write, using the polar form of complex
quantities, f̃ (x)= |f̃ (x)|e iθ . Thus, |f̃ (x)| = f̃ (x)e−iθ = f̃ (e−iθx). Since
|f̃ (x)| is real, the last expression is real. So it is equal to its real part.
Hence |f̃ (x)| = f̃ (e−iθx)= f̃1(e

−iθx)≤ p(e−iθx)= |e−iθ|p(x)= p(x).
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Hahn-Banach Theorem (Normed Spaces)

Hahn-Banach Theorem (Normed Spaces)

Let f be a bounded linear functional on a subspace Z of a normed space
X . Then there exists a bounded linear functional f̃ on X which is an
extension of f to X and has the same norm, ‖f̃ ‖X = ‖f ‖Z , where

‖f̃ ‖X = sup
x∈X
‖x‖=1

|f̃ (x)|, ‖f ‖Z = sup
x∈Z
‖x‖=1

|f (x)|

(and ‖f ‖Z = 0 in the trivial case Z = {0}).

If Z = {0}, then f̃ = 0. The extension is f̃ = 0.
Let Z 6= {0}. To use the theorem, we must first discover a suitable p.
For all x ∈Z , we have |f (x)| ≤ ‖f ‖Z‖x‖. This is of the right form,
where p(x)= ‖f ‖Z‖x‖. We see that p is defined on all of X .

p satisfies subadditivity on X :
p(x +y)= ‖f ‖Z‖x +y‖≤ ‖f ‖Z (‖x‖+‖y‖)= p(x)+p(y).

p satisfies the scalar property on X :
p(αx)= ‖f ‖Z ‖αx‖ = |α|‖f ‖Z‖x‖ = |α|p(x).
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Hahn-Banach Theorem (Normed Spaces Cont’d)

Hence, we can now apply the theorem and conclude that there exists a
linear functional f̃ on X which is an extension of f and satisfies

|f̃ (x)| ≤ p(x)= ‖f ‖Z‖x‖, x ∈X .

Taking the supremum over all x ∈X of norm 1, we obtain the inequality

‖f̃ ‖X = sup
x∈X
‖x‖=1

|f̃ (x)| ≤ ‖f ‖Z .

Since under an extension the norm cannot decrease, we also have

‖f̃ ‖X ≥ ‖f ‖Z .

Together we obtain ‖f̃ ‖X =‖f ‖Z .
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The Case of Hilbert Spaces

If Z is a closed subspace of a Hilbert space X =H, then f has a Riesz
representation, say,

f (x)= 〈x ,z〉, z ∈Z ,

where ‖z‖= ‖f ‖.
Since the inner product is defined on all of H, this gives at once a
linear extension f̃ of f from Z to H.

Moreover, f̃ has the same norm as f because ‖f̃ ‖= ‖z‖= ‖f ‖ by a
preceding theorem.

Hence in this case the extension is immediate.
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Bounded Linear Functionals

Theorem (Bounded Linear Functionals)

Let X be a normed space and let x0 6= 0 be any element of X . Then there
exists a bounded linear functional f̃ on X such that ‖f̃ ‖= 1, f̃ (x0)=‖x0‖.

We consider the subspace Z of X consisting of all elements x =αx0

where α is a scalar. On Z we define a linear functional f by
f (x)= f (αx0)=α‖x0‖. f is bounded and has norm ‖f ‖= 1 because

|f (x)| = |f (αx0)| = |α|‖x0‖= ‖αx0‖= ‖x‖.

The theorem implies that f has a linear extension f̃ from Z to X , of
norm ‖f̃ ‖ = ‖f ‖= 1. Thus, f̃ (x0)= f (x0)=‖x0‖.

George Voutsadakis (LSSU) Functional Analysis May 2023 27 / 139



Fundamental Theorems for Normed and Banach Spaces Hahn-Banach Theorem for Complex and Normed Spaces

Norm, Zero Vector

Corollary (Norm, Zero Vector)

For every x in a normed space X , we have

‖x‖= sup
f ∈X ′

f 6=0

|f (x)|
‖f ‖

.

Hence if x0 is such that f (x0)= 0, for all f ∈X ′, then x0 = 0.

From the preceding theorem, we have, writing x for x0,

sup
f ∈X ′

f 6=0

|f (x)|
‖f ‖

≥
|f̃ (x)|
‖f̃ ‖

=
‖x‖
1

=‖x‖.

But |f (x)| ≤ ‖f ‖‖x‖. So, we also obtain

sup
f ∈X ′

f 6=0

|f (x)|
‖f ‖

≤ ‖x‖.
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Subsection 4

Bounded Linear Functionals on C [a,b]
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Vector Space of Functions of Bounded Variation

A function w defined on [a,b] is said to be of bounded variation on
[a,b] if its total variation Var(w) on [a,b] is finite, where

Var(w)= sup
n∑

j=1

|w(tj)−w(tj−1)|,

the supremum being taken over all partitions a= t0 < t1 < ·· · < tn = b

of the interval [a,b]; both n ∈N and the choice of values t1, . . . ,tn−1 in
[a,b] satisfying the inequalities are arbitrary.

All functions of bounded variation on [a,b] form a vector space.

A norm on this space is given by

‖w‖= |w(a)|+Var(w).

The normed space thus defined is denoted by BV[a,b], where BV
suggests “bounded variation”.
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The Riemann-Stieltjes Integral

Let x ∈C [a,b] and w ∈BV[a,b].

Let Pn be any partition of [a,b] given by a= t0 < t1 < ·· · < tn = b and
denote by η(Pn) the length of a largest interval [tj−1,tj ], that is,

η(Pn)=max(t1− t0, . . . ,tn− tn−1).

For every partition Pn of [a,b], we consider the sum

s(Pn)=
n∑

j=1

x(tj)[w(tj )−w(tj−1)].

There exists a number I with the property that for every ε> 0, there
is a δ> 0, such that

η(Pn)< δ implies |I − s(Pn)| < ε.

I is called the Riemann-Stieltjes integral of x over [a,b] with

respect to w and is denoted by
∫b
a x(t)dw(t).

We can obtain
∫b
a x(t)dw(t) as the limit of the sums s(Pn), for a

sequence (Pn) of partitions of [a,b] satisfying η(Pn)
n→∞−→ 0.
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Two Special Cases

For w(t)= t, the integral
∫b
a x(t)dw(t)=

∫b
a x(t)dt is the familiar

Riemann integral of x over [a,b].

If x is continuous on [a,b] and w has a derivative which is integrable
on [a,b], then ∫b

a
x(t)dw(t)=

∫b

a
x(t)w ′(t)dt,

where the prime denotes differentiation with respect to t.
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Linearity Properties and an Upper Bound

The integral
∫b
a x(t)dw(t) depends linearly on x ∈C [a,b], that is, for

all x1,x2 ∈C [a,b] and scalars α and β we have
∫b

a
[αx1(t)+βx2(t)]dw(t)=α

∫b

a
x1(t)dw(t)+β

∫b

a
x2(t)dw(t).

The integral also depends linearly on w ∈BV[a,b], i.e., for all
w1,w2 ∈BV[a,b] and scalars γ and δ we have

∫b

a
x(t)d(γw1+δw2)(t)= γ

∫b

a
x(t)dw1(t)+δ

∫b

a
x(t)dw2(t).

It also holds that
∣∣∣∣
∫b

a
x(t)dw(t)

∣∣∣∣≤ max
t∈[a,b]

|x(t)|Var(w).

This generalizes the formula
∣∣∣
∫b
a x(t)dt

∣∣∣≤ max
t∈[a,b]

|x(t)|(b−a).
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Riesz’s Theorem for Functionals on C [a,b]

Riesz’s Theorem (Functionals on C [a,b])

Every bounded linear functional f on C [a,b] can be represented by a

Riemann-Stieltjes integral f (x)=
∫b
a x(t)dw(t). where w is of bounded

variation on [a,b] and has the total variation Var(w)= ‖f ‖.

From the Hahn-Banach theorem for normed spaces we see that f has
an extension f̃ from C [a,b] to the normed space B [a,b] consisting of
all bounded functions on [a,b] with norm defined by
‖x‖= supt∈J |x(t)|, J = [a,b]. Furthermore, by that theorem, the linear
functional f̃ is bounded and has the same norm as f , that is,
‖f̃ ‖= ‖f ‖. To define the function w , consider the characteristic

function of the interval [a,t]: xt =
{

1, if a≤ x ≤ t

0, if t < x ≤ b
. Using xt and

the functional f̃ , we define w on [a,b] by w(a)= 0, w(t)= f̃ (xt),
t ∈ (a,b]. We show that w is of bounded variation and Var(w)≤ ‖f ‖.
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Proof: Bounded Variation of w on [a,b]

For a complex quantity we can use the polar form: Setting θ = argζ,

we may write ζ= |ζ|e(ζ), where e(ζ)=
{

1, if ζ= 0

e iθ , if ζ 6= 0
.

We see that if ζ 6= 0, then |ζ| = ζ

e iθ
= ζe−iθ. Hence, for any ζ, zero or

not, we have |ζ| = ζe(ζ). Set εj = e(w(tj )−w(tj−1)) and xtj = xj . Then

∑n
j=1

|w(tj)−w(tj−1)| = |f̃ (x1)|+
∑n

j=2
|f̃ (xj )− f̃ (xj−1)|

= ε1 f̃ (x1)+
∑n

j=2
εj [f̃ (xj)− f̃ (xj−1)]

= f̃ (ε1x1+
∑n

j=2
εj [xj −xj−1])

≤ ‖f̃ ‖
∥∥∥ε1x1+

∑n
j=2

εj [xj −xj−1]
∥∥∥ .

On the right, ‖f̃ ‖ = ‖f ‖ and the other factor ‖· · ·‖ equals 1 because
|εj | = 1 and from the definition of the xj ’s we see that for each
t ∈ [a,b] only one of the terms x1,x2−x1, . . . is not zero (and of norm
1). On the left we now take the supremum over all partitions of [a,b].
Then we have Var(w)≤ ‖f ‖.
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Proof: The Integration Formula

We show f (x)=
∫b
a x(t)dw(t), for x ∈ [a,b].

For every partition Pn, we define a function, denoted simply by zn
(instead of z(Pn) or zPn

), keeping in mind that zn depends on Pn, not
merely on n. The defining formula is

zn = x(t0)x1+
n∑

j=2

x(tj−1)[xj −xj−1].

Then zn ∈B [a,b]. By the definition of w ,

f̃ (zn) = x(t0)f̃ (x1)+
∑n

j=2
x(tj−1)[f̃ (xj)− f̃ (xj−1)]

= x(t0)w(t1)+
∑n

j=2
x(tj−1)[w(tj )−w(tj−1)]

=
∑n

j=1
x(tj−1)[w(tj)−w(tj−1)],

where the last equality follows from w(t0)=w(a)= 0. Choose a (Pn),
such that η(Pn)→ 0. As n→∞, the sum on the right approaches∫b
a x(t)dw(t). So it suffices to show f̃ (zn)→ f̃ (x), which equals f (x),

since x ∈C [a,b].
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Proof: f̃ (zn)→ f̃ (x)

We prove that f̃ (zn)→ f̃ (x).

Recall

zn = x(t0)x1+
n∑

j=2

x(tj−1)[xj −xj−1].

By the definition of xt , this yields zn(a)= x(a) ·1, since the sum is zero
at t = a. Hence, zn(a)−x(a)= 0.
Furthermore, if tj−1 < t ≤ tj , then we obtain zn(t)= x(tj−1) ·1. It
follows that for those t, |zn(t)−x(t)| = |x(tj−1)−x(t)|.
Consequently, if η(Pn)→ 0, then ‖zn−x‖→ 0 because x is continuous
on [a,b], hence uniformly continuous on [a,b], since [a,b] is compact.
The continuity of f̃ now implies that f̃ (zn)→ f̃ (x).
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Proof: Var(w)= ‖f ‖

Finally, we show Var(w)= ‖f ‖.

Recall f (x)=
∫b
a x(t)dw(t) and

∣∣∣
∫b
a x(t)dt

∣∣∣≤ max
t∈[a,b]

|x(t)|Var(w).

So
|f (x)| ≤ max

t∈[a,b]
|x(t)|Var(w)= ‖x‖Var(w).

Taking the supremum over all x ∈C [a,b] of norm one, we obtain
‖f ‖≤Var(w). Combining with Var(w)≤ ‖f ‖, this yields Var(w)= ‖f ‖.
We note that w in the theorem is not unique, but can be made unique
by imposing the normalizing conditions that:

w be zero at a: w(a)= 0;
w continuous from the right: w(t +0)=w(t), a< t < b.
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Subsection 5

Adjoint Operator
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The Adjoint Operator

Consider a bounded linear operator T :X →Y , where X and Y are
normed spaces.

Let g be any bounded linear functional on Y .

Setting y =Tx , we obtain a functional on X , call it f :

f (x)= g(Tx), x ∈X .

f is linear since g and T are linear.
f is bounded because |f (x)| = |g(Tx)| ≤ ‖g‖‖Tx‖≤ ‖g‖‖T ‖‖x‖. Taking
the supremum over all x ∈X of norm one, we obtain ‖f ‖ ≤ ‖g‖‖T ‖.

Thus, f ∈X ′, where X ′ is the dual space of X .

For variable g ∈Y ′, f (x)= g(Tx) defines an operator from Y ′ into X ′,
which is called the adjoint operator of T and is denoted by T×:

X
T−→Y , X ′ T×

←−Y ′
.
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The Adjoint Operator and its Norm

Definition (Adjoint operator T×)

Let T :X →Y be a bounded linear operator, where X and Y are normed
spaces. The adjoint operator T× :Y ′ →X ′ is defined by f (x)= (T×g)(x)
= g(Tx), g ∈Y ′, where X ′ and Y ′ are the dual spaces of X and Y .

Theorem (Norm of the Adjoint Operator)

The adjoint operator T× is linear and bounded, and ‖T×‖= ‖T‖.

The operator T× is linear since its domain Y ′ is a vector space and we
have

(T×(αg1 +βg2))(x) = (αg1 +βg2)(Tx)
= αg1(Tx)+βg2(Tx)
= α(T×g1)(x)+β(T×g2)(x).

From f (x)= (T×g)(x)= g(Tx), we have f =T×g . By ‖f ‖≤ ‖g‖‖T‖,
‖T×g‖ = ‖f ‖≤ ‖g‖‖T‖. Taking the supremum over all g ∈Y ′ of norm
one, we obtain ‖T×‖≤ ‖T‖. So we need to see that ‖T×‖ ≥ ‖T‖.
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The Adjoint Operator and its Norm

By the Hahn-Banach Theorem, for every nonzero x0 ∈X , there is a
g0 ∈Y ′, such that ‖g0‖ = 1 and g0(Tx0)= ‖Tx0‖. By the definition of
the adjoint, g0(Tx0)= (T×g0)(x0). Writing f0 =T×g0, we thus obtain

‖Tx0‖= g0(Tx0)= f0(x0)≤ ‖f0‖‖x0‖= ‖T×g0‖‖x0‖ ≤ ‖T×‖‖g0‖‖x0‖.

Since ‖g0‖= 1, we get, for every x0 ∈X , ‖Tx0‖≤ ‖T×‖‖x0‖. This
includes x0 = 0 since T0= 0. But always ‖Tx0‖≤ ‖T‖‖x0‖, and here
c = ‖T‖ is the smallest constant c , such that ‖Tx0‖≤ c‖x0‖ holds, for
all x0 ∈X . Hence, ‖T×‖ cannot be smaller than ‖T‖, that is, we must
have ‖T×‖≥ ‖T‖.
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The Special Case of Matrices

In n-dimensional Euclidean space Rn, a linear operator T :Rn →Rn

can be represented by matrices, where a matrix TE = (τjk) depends on
the choice of a basis E = {e1, . . . ,en} for Rn, whose elements are
arranged in some order which is kept fixed.

We choose a basis E , regard x = (ξ1, . . . ,ξn), y = (η1, . . . ,ηn) as column
vectors and employ the usual notation for matrix multiplication:
y =TEx or in components ηj =

∑n
k=1

τjkξk .

Let F = {f1, . . . , fn} be the dual basis of E .

This is a basis for Rn′ which is also Euclidean n-space.

Then every g ∈Rn ′ has a representation g =α1f1+·· ·+αnfn.
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The Special Case of Matrices (Cont’d)

By the definition of the dual basis, we have fj(y)= fj(
∑
ηkek)= ηj .

Hence we obtain g(y)= g(TEx)=
∑n

j=1
αjηj =

∑n
j=1

∑n
k=1

αjτjkξk .

Interchanging the order of summation, g(TE x)=
∑n

k=1
βkξk , where

βk =
∑n

j=1
τjkαj .

We may regard this as the definition of a functional f on X in terms
of g : f (x)= g(TE x)=

∑n
k=1

βkξk .

Remembering the definition of the adjoint operator, we can write this
f =T×

E
g or in components βk =

∑n
j=1

τjkαj .

Noting that in βk we sum with respect to the first subscript, i.e., over
all elements of a column of TE , we have:

If T is represented by a matrix TE , then the adjoint operator T× is
represented by the transpose of TE .
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Properties of Adjoints

If S ,T ∈B(X ,Y ), then

(S +T )× = S×+T×;
(αT )× =αT×.

Let X ,Y ,Z be normed spaces and
T ∈B(X ,Y ) and S ∈B(Y ,Z ). Then,
for the adjoint of the product ST we
have (ST )× =T×S×:

If T ∈B(X ,Y ) and T−1 exists and T−1 ∈B(Y ,X ), then (T×)−1 also
exists, (T×)−1 ∈B(X ′,Y ′) and (T×)−1 = (T−1)×.
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The Operators A1 and A2

Let T :X →Y be a bounded linear operator from a Hilbert space
X =H1 to a Hilbert space Y =H2.

In this case we first have
H1

T−→ H2

H ′
1 ←−

T×
H ′

2

where the adjoint T× is

defined by T×g = f , f (x)= g(Tx), for f ∈H ′
1,g ∈H ′

2.

Since f and g are functionals on Hilbert spaces, they have Riesz
representations, say, f (x)= 〈x ,x0〉, x0 ∈H1, and g(y)= 〈y ,y0〉, y0 ∈H2.

We also know that x0 and y0 are uniquely determined by f and g ,
respectively.

Thus, we get operators

A1 :H
′
1 →H1; A1f = x0,

A2 :H
′
2 →H2; A2g = y0.
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Properties of the Operators A1 and A2

We know that A1 and A2 are bijective and isometric since
‖A1f ‖= ‖x0‖ = ‖f ‖, and similarly for A2.

Furthermore, the operators A1 and A2 are conjugate linear: If we write
f1(x)= 〈x ,x1〉 and f2(x)= 〈x ,x2〉, we have, for all x and scalars α,β,

(αf1 +βf2)(x) = αf1(x)+βf2(x)
= α〈x ,x1〉+β〈x ,x2〉
= 〈x ,αx1+βx2〉.

By the definition of A1, A1(αf1+βf2)=αA1f1+βA1f2. So A1 is
conjugate linear.

For A2 the proof is similar.
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Relation Between Adjoint and Hilbert-Adjoint

Composition gives the operator

T ∗ =A1T
×A−1

2 :H2 → H1;
T ∗y0 = x0.

T ∗ is linear since it involves two con-
jugate linear mappings, in addition to
the linear operator T×.

We show T ∗ is indeed the Hilbert-adjoint operator of T :

〈Tx ,y0〉 = g(Tx)= f (x)= 〈x ,x0〉 = 〈x ,T ∗y0〉.

T ∗ =A1T
×A−1

2 :H2 →H1; T
∗y0 = x0 represents the Hilbert-adjoint

operator T ∗ of a linear operator T on a Hilbert space in terms of the
adjoint operator T× of T .

‖T ∗‖= ‖T‖ follows from ‖T×‖= ‖T‖ and the isometry of A1 and A2.
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Differences Between T× and T ∗

Differences between the adjoint operator T× of T :X →Y and the
Hilbert-adjoint operator T ∗ of T :H1 →H2, where X ,Y are normed
spaces and H1,H2 are Hilbert spaces:

T× is defined on the dual of the space which contains the range of T ;
T ∗ is defined directly on the space which contains the range of T .
For T× we have

(αT )× =αT×;

For T ∗ we have
(αT )∗ =αT ∗

.

In the finite dimensional case:

T
× is represented by the transpose of the matrix representing T ;

T
∗ is represented by the complex conjugate transpose of that matrix.
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Subsection 6

Reflexive Spaces
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Review of Algebraic Reflexivity

Recall that a vector space X is said to be algebraically reflexive if
the canonical mapping C :X →X ∗∗ is surjective.

X ∗∗ = (X ∗)∗ is the second algebraic dual space of X and the mapping
C is defined by x 7→ gx , where

gx(f )= f (x), f ∈X ∗ variable,

i.e., for any x ∈X , the image is the linear functional gx defined as
above.

If X is finite dimensional, then X is algebraically reflexive.
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The (Normed Space) Dual

We consider a normed space X , its dual space X ′ and the dual space
(X ′)′, of X ′.

The space (X ′)′ is denoted by X ′′ and is called the second dual

space of X (or bidual space of X ).

We define a functional gx on X ′ by choosing a fixed x ∈X and setting

gx (f )= f (x), f ∈X ′ variable.

As contrasted to algebraic duality, f here is bounded.

Lemma (Norm of gx )

For every fixed x in a normed space X , the functional gx is a bounded
linear functional on X ′, so that gx ∈X ′′, and has the norm ‖gx‖= ‖x‖.

Linearity of gx is known. For the norm we have

‖gx‖ = sup
f ∈X ′

f 6=0

|gx(f )|
‖f ‖ = sup

f ∈X ′

f 6=0

|f (x)|
‖f ‖ = ‖x‖.
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The Canonical Mapping

To every x ∈X , there corresponds a unique bounded linear functional
gx ∈X ′′ given by gx (f )= f (x).

This defines a mapping C :X →X ′′; x 7→ gx , called the canonical

mapping of X into X ′′.

Lemma (Canonical Mapping)

The canonical mapping C is an isomorphism of the normed space X onto
the normed space R(C ), the range of C .

For linearity of C ,

gαx+βy (f )= f (αx +βy)=αf (x)+βf (y)=αgx (f )+βgy (f ).

In particular, gx −gy = gx−y . Since ‖gx‖ = ‖x‖, ‖gx −gy‖ = ‖gx−y‖=
‖x −y‖. Thus, C is isometric, i.e., it preserves the norm.

Isometry implies injectivity.

Hence C is bijective, regarded as a mapping onto its range.
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Embeddability and Reflexivity

X is said to be embeddable in a normed space Z if X is isomorphic
with a subspace of Z .

Isomorphism refers to isomorphisms of normed spaces, that is, vector
space isomorphisms which preserve norm.

By the lemma, X is embeddable in X ′′, and C is also called the
canonical embedding of X into X ′′.

In general, C will not be surjective, so that the range R(C ) will be a
proper subspace of X ′′.

Definition (Reflexivity)

A normed space X is said to be reflexive if

R(C )=X ′′
,

where C is the canonical mapping C :X →X ′′; x 7→ gx , with gx(f )= f (x),
f ∈X ′.
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Reflexivity Implies Completeness

If X is reflexive, it is isomorphic (hence isometric) with X ′′.

The converse does not generally hold (R.C. James 1950, 1951).

Completeness does not imply reflexivity.

Theorem (Completeness)

If a normed space X is reflexive, it is complete (hence a Banach space).

Since X ′′ is the dual space of X ′, it is complete by a previous theorem.
Reflexivity of X means that R(C )=X ′′. Completeness of X now
follows from that of X ′′.
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Examples

Rn is reflexive: This follows directly from preceding work.

If dimX <∞, then every linear functional on X is bounded, so that
X ′ =X ∗ and algebraic reflexivity of X thus implies:

Theorem (Finite Dimension)

Every finite dimensional normed space is reflexive.

ℓp with 1< p <+∞ is reflexive: This also follows from previous work.

Lp[a,b], with 1< p <+∞, is reflexive.

C [a,b], ℓ1, L1[a,b]. ℓ∞ are nonreflexive spaces.

The subspaces c and c0 of ℓ∞, where c is the space of all convergent
sequences of scalars and c0 is the space of all sequences of scalars
converging to zero, are also nonreflexive.
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Reflexivity of Hilbert Spaces

Theorem (Hilbert Space)

Every Hilbert space H is reflexive.

We shall prove surjectivity of the canonical mapping C :H →H ′′ by
showing that, for every g ∈H ′′, there is an x ∈H, such that g =Cx .

As a preparation we define A :H ′ →H by Af = z , where z is given by
the Riesz representation f (x)= 〈x ,z〉. We know that A is bijective and
isometric. A is conjugate linear. Now H ′ is complete and a Hilbert
space with inner product defined by 〈f1, f2〉1 = 〈Af2,Af1〉. Note the
order of f1, f2 on both sides. (IP1) to (IP4) are readily verified; e.g.,
for (IP2), 〈αf1, f2〉1 = 〈Af2,A(αf1)〉 = 〈Af2,αAf1〉 =α〈f1, f2〉1.

Let g ∈H ′′ be arbitrary. Let its Riesz representation be
g(f )= 〈f , f0〉1 = 〈Af0,Af 〉. Recall that f (x)= 〈x ,z〉, where z =Af .
Writing Af0 = x , we thus have 〈Af0,Af 〉 = 〈x ,z〉 = f (x). Together,
g(f )= f (x), that is, g =Cx , by the definition of C . Since g ∈H ′′ was
arbitrary, C is surjective, so that H is reflexive.
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Separability and Reflexivity

We next show that separability of X ′ implies separability of X (the
converse not being generally true).

Hence, if a normed space X is reflexive, X ′′ is isomorphic with X , so
that, in this case, separability of X implies separability of X ′′, and, by
the aforementioned upcoming result, the space X ′ is also separable.

These results imply:

A separable normed space X with a nonseparable dual space X ′ cannot
be reflexive.

Example: ℓ1 is not reflexive.

ℓ1 is separable, as seen before. ℓ1′ = ℓ∞ is not separable. It follows
that ℓ1 cannot be reflexive.
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Existence of a Functional

Lemma (Existence of a Functional)

Let Y be a proper closed subspace of a normed space X . Let x0 ∈X −Y be
arbitrary and δ= inf

ỹ∈Y
‖ỹ −x0‖ the distance from x0 to Y . Then, there exists

an f̃ ∈X ′, such that

‖f̃ ‖= 1, f̃ (y)= 0, for all y ∈Y , f̃ (x0)=δ.

We consider the subspace Z ⊆X spanned by Y and x0 and:

Define on Z a bounded linear functional f
by

f (z)= f (y +αx0)=αδ, for all y ∈Y ;

Show that f satisfies the conditions;

Extend f to X .
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Proof of the Existence of a Functional

Every z ∈Z = span(Y ∪ {x0}) has a unique representation z = y +αx0,
with y ∈Y . This is used to define

f (z)= f (y +αx0)=αδ.

Linearity of f is readily seen.
Since Y is closed, δ> 0, so that f 6= 0.
α= 0 gives f (y)= 0, for all y ∈Y .
For α= 1 and y = 0, we have f (x0)= δ.

We show that f is bounded. α= 0 gives f (z)= 0. Let α 6= 0. Using
the definition of δ and noting that − 1

α
y ∈Y , we obtain

|f (z)| = |α|δ= |α| inf
ỹ∈Y

‖ỹ −x0‖ ≤ |α|
∥∥∥∥−

1

α
y −x0

∥∥∥∥= ‖y +αx0‖,

i.e., |f (z)| ≤ ‖z‖. Hence f is bounded and ‖f ‖ ≤ 1.
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Proof of the Existence of a Functional (Cont’d)

We show that ‖f ‖≥ 1: By the definition of an infimum, Y contains a
sequence (yn), such that ‖yn−x0‖→ δ. Let zn = yn−x0. Then we
have f (zn)=−δ. Also

‖f ‖= sup
z∈Z
z 6=0

|f (z)|
‖z‖

≥
|f (zn)|
‖zn‖

=
δ

‖zn‖
→

δ

δ
= 1.

Hence ‖f ‖ ≥ 1.

By the Hahn-Banach theorem for normed spaces, we can extend f to
X without increasing the norm.
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Separability Theorem

Theorem (Separability)

If the dual space X ′ of a normed space X is separable, then X itself is
separable.

We assume that X ′ is separable. Then the unit sphere

U ′ = {f : ‖f ‖= 1} ⊆X ′

also contains a countable dense subset, say, (fn). Since fn ∈U ′, we
have ‖fn‖= sup‖x‖=1 |fn(x)| = 1. By the definition of a supremum we
can find points xn ∈X of norm 1 such that |fn(xn)| ≥ 1

2
. Let Y be the

closure of span(xn). Then Y is separable because Y has a countable
dense subset, namely, the set of all linear combinations of the xn’s
with coefficients whose real and imaginary parts are rational.

We show that Y =X .
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Separability Theorem (Cont’d)

We show that Y =X .

Suppose Y 6=X . Then, since Y is closed, by the Lemma on the
Existence of a Functional, there exists an f̃ ∈X ′ with ‖f̃ ‖ = 1 and
f̃ (y)= 0, for all y ∈Y . Since xn ∈Y , we have f̃ (xn)= 0 and for all n,

1

2
≤ |fn(xn)| = |fn(xn)− f̃ (xn)| = |(fn− f̃ )(xn)| ≤ ‖fn− f̃ ‖‖xn‖,

where ‖xn‖= 1. Hence ‖fn− f̃ ‖ ≥ 1
2
.

This contradicts the assumption that (fn) is dense in U ′ because, as
‖f̃ ‖= 1, f̃ is itself in U ′.
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Subsection 7

Category and Uniform Boundedness Theorems
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Cornerstone Theorems of Functional Analysis

The corner stones of functional analysis are:

The Hahn-Banach Theorem;
The Uniform Boundedness Theorem;
The Open Mapping Theorem;
The Closed Graph Theorem.

Unlike the Hahn-Banach, the other three require completeness.

We shall obtain all three other theorems from a common source, the
so-called Baire’s Category Theorem.
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Category

Each of the concepts needed for Baire’s Category Theorem has two
names, a new name and an old one given in parentheses.

Definition (Category)

A subset M of a metric space X is said to be:

(a) rare (or nowhere dense) in X if its closure M has no interior points;

(b) meager (or of the first category) in X if M is the union of countably
many sets each of which is rare in X ;

(c) nonmeager (or of the second category) in X if M is not meager in X .
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Baire’s Category Theorem for Complete Metric Spaces

Baire’s Category Theorem (Complete Metric Spaces)

If a metric space X 6= ; is complete, it is nonmeager in itself. Hence, if
X 6= ; is complete and X =

⋃∞
k=1

Ak , Ak closed, then, at least one Ak

contains a nonempty open subset.

The idea is simple: Suppose the complete metric space X 6= ; were
meager in itself. Then X =

⋃∞
k=1

Mk , with each Mk rare in X . We
shall construct a Cauchy sequence (pk) whose limit p (which exists by
completeness) is in no Mk , thereby contradicting X =⋃∞

k=1
Mk .

By assumption, M1 is rare in X . By definition, M1 does not contain a
nonempty open set. But X does (for instance, X itself). This implies

M1 6=X . Hence, the complement M
c

1 =X −M1 of M1 is nonempty

and open. We may thus choose a point p1 in M
c

1 and an open ball

about it, say, B1 =B(p1;ε1)⊆M
c

1 , ε1 < 1
2
.
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Baire’s Category Theorem (Cont’d)

By assumption, M2 is rare in X . So M2 does not contain a nonempty
open set. Hence it does not contain the open ball B(p1;

1
2
ε1). This

implies that M
c

2 ∩B(p1;
1
2
ε1) is nonempty and open. Thus, we may

choose an open ball B2 =B(p2;ε2)⊆M
c

2 ∩B(p1;
1
2
ε1), with ε2 < 1

2
ε1.

By induction, we get a sequence of balls Bk =B(pk ;εk), with εk < 1
2k

,

such that Bk ∩Mk =; and Bk+1 ⊆B(pk ;
1
2
εk)⊆Bk , k = 1,2, . . ..

Since εk < 1
2k

, the sequence (pk) is Cauchy and converges, say,
pk → p ∈X because X is complete. Now, for all m, n>m, we have
Bn ⊆B(pm;

1
2
εm). So d(pm,p)≤ d(pm,pn)+d(pn,p)< 1

2
εm+d(pn,p)

n→∞→ 1
2
εm. Hence p ∈Bm, for all m. Since Bm ⊆M

c

m, we get p 6∈Mm,
for all m. So p 6∈⋃

Mm =X , a contradiction.

We note that the converse of Baire’s theorem is not generally true, i.e.,
there exists an incomplete normed space which is nonmeager in itself.
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Uniform Boundedness Theorem

We use Baire’s Theorem to obtain the Uniform Boundedness Theorem.

Uniform Boundedness Theorem

Let (Tn) be a sequence of bounded linear operators Tn :X →Y from a
Banach space X into a normed space Y such that (‖Tnx‖) is bounded for
every x ∈X , say, ‖Tnx‖ ≤ cx , for all n = 1,2, . . ., where cx is a real number.
Then the sequence of the norms ‖Tn‖ is bounded, that is, there is a c ,
such that ‖Tn‖ ≤ c , n= 1,2, . . ..

For every k ∈N, let Ak ⊆X be the set of all x , such that ‖Tnx‖ ≤ k ,
for all n.

Ak is closed: Let x ∈Ak . Then, there is a sequence (xj) in Ak

converging to x . This means that, for every fixed n, ‖Tnxj‖≤ k . We
obtain ‖Tnx‖≤ k , because Tn is continuous and so is the norm.
Hence x ∈Ak , and Ak is closed.
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Uniform Boundedness Theorem (Cont’d)

By hypothesis, each x ∈X belongs to some Ak . Hence X =⋃∞
k=1

Ak .
Since X is complete, Baire’s Theorem implies that some Ak contains
an open ball, say, B0 =B(x0;r)⊆Ak0

. Let x ∈X be arbitrary, nonzero.
We set

z = x0+γx , γ=
r

2‖x‖
.

Then ‖z −x0‖< r , so that z ∈B0. Since B0 ⊆Ak0
, ‖Tnz‖≤ k0, for all

n. Also ‖Tnx0‖≤ k0, since x0 ∈B0. Since x = 1
γ(z −x0), for all n,

‖Tnx‖ =
1

γ
‖Tn(z −x0)‖≤

1

γ
(‖Tnz‖+‖Tnx0‖)≤

4

r
‖x‖k0.

Hence, for all n, ‖Tn‖= sup
‖x‖=1

‖Tnx‖ ≤ 4
r k0. This is the conclusion with

c = 4
r
k0.
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Application: Space of Polynomials

The normed space X of all polynomials with norm defined by

‖x‖ =max
j

|αj |, α0,α1, . . . the coefficients of x

is not complete.

We construct a sequence of bounded linear operators on X which
satisfies ‖Tnx‖ ≤ cx but not ‖Tn‖≤ c , so that X cannot be complete.

Write x 6= 0 of degree Nx as x(t)=
∑∞

j=0
αj t

j , αj = 0, for j >Nx .

As a sequence of operators on X , take Tn = fn defined by
Tn0= fn(0)= 0, Tnx = fn(x)=α0+α1+·· ·+αn−1. fn is linear. fn is
bounded since |fn(x)| = |α0+·· ·+αn−1| ≤ n‖x‖.

For each fixed x ∈X , the sequence (|fn(x)|) satisfies ‖Tnx‖≤ cx : A
polynomial x of degree Nx has Nx +1 coefficients. So |fn(x)| ≤
(Nx +1)maxj |αj | = cx .

We show there is no c such that ‖Tn‖= ‖fn‖≤ c , for all n. For fn, we

choose x defined by x(t)= 1+ t+·· ·+ tn. Then ‖fn‖≥
|fn(x)|
‖x‖ = n. So

(‖fn‖) is unbounded.
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Application: Fourier Series

The Fourier series of a given periodic function x of period 2π is of
the form

1

2
a0+

∞∑

m=1

(am cosmt +bm sinmt)

with the Fourier coefficients of x given by the Euler formulas

am =
1

π

∫2π

0
x(t)cosmtdt, bm =

1

π

∫2π

0
x(t)sinmtdt .

It is well-known that the series may converge even at points where x is
discontinuous. Thus, continuity is not necessary for convergence.
Surprising enough, continuity is not sufficient either:

Claim: There exist real-valued continuous functions whose Fourier
series diverge at a given point t0.

Let X be the normed space of all real-valued continuous functions of
period 2π with norm defined by ‖x‖=max |x(t)|. X is a Banach
space. We may take t0 = 0, without restricting generality.
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Fourier Series (Cont’d)

To prove our statement, we shall apply the uniform boundedness
theorem to Tn = fn, where fn(x) is the value at t = 0 of the n-th
partial sum of the Fourier series of x . Since for t = 0 the sine terms
are zero and the cosine is one, we get

fn(x)=
1

2
a0+

n∑

m=1

am =
1

π

∫2π

0
x(t)

[
1

2
+

n∑

m=1

cosmt

]
dt .

We want to determine the function represented by the sum under the
integral sign. For this purpose we calculate

2sin 1
2
t
∑n

m=1 cosmt =
∑n

m=1 2sin 1
2
t cosmt

=
∑n

m=1[−sin(m− 1
2
)t + sin(m+ 1

2
)t]

= − sin 1
2
t + sin(n+ 1

2
)t .

Dividing this by sin 1
2
t and adding 1 on both sides, we have

1+2
∑n

m=1 cosmt = sin(n+ 1
2 )t

sin 1
2 t

.
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The Linear Functional fn is Bounded

Now the formula for fn(x) can be written in the simple form

fn(x)=
1

2π

∫2π

0
x(t)qn(t)dt , qn(t)=

sin(n+ 1
2
)t

sin 1
2
t

.

Using this, we can show that the linear functional fn is bounded:
Using ‖x‖=max |x(t)| and the preceding relations,

|fn(x)| ≤
1

2π
max |x(t)|

∫2π

0
|qn(t)|dt =

‖x‖
2π

∫2π

0
|qn(t)|dt .

From this we see that fn is bounded. Furthermore, by taking the
supremum over all x of norm 1, we obtain ‖fn‖≤ 1

2π

∫2π
0 |qn(t)|dt.
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‖fn‖ = 1
2π

∫2π
0 |qn(t)|dt

We showed ‖fn‖ ≤ 1
2π

∫2π
0 |qn(t)|dt. Actually, the equality sign holds:

To see this, first write |qn(t)| = y(t)qn(t), where y(t)=+1 at every t

at which qn(t)≥ 0 and y(t)=−1 elsewhere. y is not continuous, but,
for any given ε> 0, it may be modified to a continuous x of norm 1
such that, for this x , we have 1

2π
|
∫2π
0 [x(t)−y(t)]qn(t)dt | < ε. Writing

this as two integrals, we obtain

1
2π

∣∣∣
∫2π
0 x(t)qn(t)dt −

∫2π
0 y(t)qn(t)dt

∣∣∣
=

∣∣∣fn(x)− 1
2π

∫2π
0 |qn(t)|dt

∣∣∣ < ε.

Since ε> 0 was arbitrary and ‖x‖= 1, this proves

‖fn‖ =
1

2π

∫2π

0
|qn(t)|dt .
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The Sequence (‖fn‖) is Unbounded

Substituting qn(t)=
sin(n+ 1

2 )t

sin 1
2 t

into ‖fn‖= 1
2π

∫2π
0 |qn(t)|dt, using the

fact that
∣∣sin 1

2
t
∣∣< 1

2
t for t ∈ (0,2π] and substituting v = (n+ 1

2
)t,

‖fn‖ = 1
2π

∫2π

0

∣∣∣∣
sin(n+ 1

2 )t

sin 1
2 t

∣∣∣∣dt >
1
π

∫2π

0

|sin(n+ 1
2 )t|

t dt

= 1
π

∫(2n+1)π

0

|sinv |
v dv = 1

π

2n∑

k=0

∫(k+1)π

kπ

|sinv |
v dv

≥ 1
π

2n∑

k=0

1
(k+1)π

∫(k+1)π

kπ
|sinv |dv = 2

π2

2n∑

k=0

1
k+1

→∞.

Hence (‖fn‖) is unbounded. Thus, with Tn = fn, ‖Tn‖≤ c does not
hold. Since X is complete, this implies that ‖Tnx‖ ≤ cx cannot hold
for all x . Hence, there must be an x ∈X , such that (|fn(x)|) is
unbounded. But, by the definition of the fn’s, this means that the
Fourier series of that x diverges at t = 0.
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Subsection 8

Strong and Weak Convergence
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Introducing Weak Convergence

In calculus one defines different types of convergence:

ordinary;
conditional;
absolute;
uniform.

This yields greater flexibility in the theory and application of sequences
and series.

In functional analysis one has an even greater variety of possibilities
that turn out to be of practical interest.

“Weak convergence” is a basic concept whose theory makes essential
use, and is one of the major applications, of the uniform boundedness
theorem.
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Strong Convergence

Convergence of sequences of elements in a normed space, as defined
previously, will be called strong convergence, to distinguish it from
“weak convergence” to be introduced on the following slide.

Definition (Strong Convergence)

A sequence (xn) in a normed space X is said to be strongly convergent

(or convergent in the norm) if there is an x ∈X , such that

lim
n→∞

‖xn−x‖ = 0.

This is written lim
n→∞

xn = x or simply xn → x .

x is called the strong limit of (xn), and we say that (xn) converges

strongly to x .
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Weak Convergence

Weak convergence is defined in terms of bounded linear functionals on
X as follows:

Definition (Weak Convergence)

A sequence (xn) in a normed space X is said to be weakly convergent if
there is an x ∈X , such that, for every f ∈X ′,

lim
n→∞

f (xn)= f (x).

This is written xn
w→ x or xn* x .

The element x is called the weak limit of (xn), and we say that (xn)
converges weakly to x .

Note that weak convergence means convergence of the sequence of
numbers an = f (xn), for every f ∈X ′.
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The Weak Convergence Lemma

Lemma (Weak Convergence)

Let (xn) be a weakly convergent sequence in a normed space X , say,
xn

w→ x . Then:

(a) The weak limit x of (xn) is unique.

(b) Every subsequence of (xn) converges weakly to x .

(c) The sequence (‖xn‖) is bounded.

(a) Suppose that xn
w→ x as well as xn

w→ y . Then f (xn)→ f (x) as well as
f (xn)→ f (y). Since (f (xn)) is a sequence of numbers, its limit is
unique. Hence f (x)= f (y), that is, for every f ∈X ′, we have
f (x)− f (y)= f (x −y)= 0. This implies x −y = 0 and shows that the
weak limit is unique.

George Voutsadakis (LSSU) Functional Analysis May 2023 81 / 139



Fundamental Theorems for Normed and Banach Spaces Strong and Weak Convergence

The Weak Convergence Lemma (Cont’d)

(b) follows from the fact that (f (xn)) is a convergent sequence of
numbers, so that every subsequence of (f (xn)) converges and has the
same limit as the sequence.

(c) Since (f (xn)) is a convergent sequence of numbers, it is bounded, say,
|f (xn)| ≤ cf , for all n, where cf is a constant depending on f but not
on n. Using the canonical mapping C :X →X ′′, we can define gn ∈X ′′

by gn(f )= f (xn), for all f ∈X ′. (We write gn instead of gxn .) Then for
all n, |gn(f )| = |f (xn)| ≤ cf , that is, the sequence (|gn(f )|) is bounded
for every f ∈X ′. Since X ′ is complete, by the Uniform Boundedness
Theorem, (‖gn‖) is bounded. Now ‖gn‖ = ‖xn‖, so that (c) is proved.
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Relation Between Strong and Weak Convergence

In finite dimensional normed spaces the distinction between strong and
weak convergence disappears completely.

Theorem (Strong and Weak Convergence)

Let (xn) be a sequence in a normed space X . Then:

(a) Strong convergence implies weak convergence with the same limit.

(b) The converse of (a) is not generally true.

(c) If dimX <∞, then weak convergence implies strong convergence.

(a) By definition, xn → x means ‖xn−x‖→ 0. This implies, for all f ∈X ′,

|f (xn)− f (x)| = |f (xn−x)| ≤ ‖f ‖‖xn−x‖→ 0.

This shows that xn
w→ x .
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Relation Between Strong and Weak Convergence: Part (b)

(b) can be seen from an orthonormal sequence (en) in a Hilbert space H.
In fact, every f ∈H ′ has a Riesz representation f (x)= 〈x ,z〉. Hence,
f (en)= 〈en,z〉. Now the Bessel inequality is

∑∞
n=1 |〈en,z〉|2 ≤‖z‖2.

Hence, the series on the left converges, so that its terms must
approach zero as n→∞. This implies f (en)= 〈en,z〉→ 0. Since f ∈H ′

was arbitrary, we see that en
w→ 0. However, (en) does not converge

strongly because, for all m 6= n,

‖em−en‖2 = 〈em−en,em−en〉 = 2.
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Relation Between Strong and Weak Convergence: Part (c)

(c) Suppose that xn
w→ x and dimX = k . Let {e1, . . . ,ek } be any basis for X

and, say, xn =α
(n)
1

e1+·· ·+α
(n)

k
ek and x =α1e1+·· ·+αkek . By

assumption, f (xn)→ f (x), for every f ∈X ′. We take in particular
f1, . . . , fk defined by fj(ej )= 1, fj(em)= 0, for m 6= j . This is the dual

basis of {e1, . . . ,ek }. Then fj(xn)=α
(n)
j

, fj(x)=αj . Hence,

fj(xn)→ fj(x) implies α
(n)
j

→αj . From this we readily obtain

‖xn−x‖ =

∥∥∥∥∥
k∑

j=1

(α
(n)

j
−αj )ej

∥∥∥∥∥ ≤
k∑

j=1

|α(n)

j
−αj |‖ej‖

n→∞−→ 0.

This shows that (xn) converges strongly to x .

It is interesting to note that there also exist infinite dimensional spaces
such that strong and weak convergence are equivalent concepts.
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The Weak Convergence Lemma

Lemma (Weak Convergence)

In a normed space X we have xn
w→ x if and only if:

(A) The sequence (‖xn‖) is bounded.

(B) For every element f of a total subset M ⊆X ′, we have f (xn)→ f (x).

In the case of weak convergence, a preceding lemma gives (A), and
(B) is trivial.

Conversely, suppose that (A) and (B) hold. Let us consider any f ∈X ′

and show that f (xn)→ f (x), which is weak convergence, by definition.

By (A), ‖xn‖ ≤ c , for all n, and ‖x‖≤ c , where c is sufficiently large.
Since M is total in X ′, for every f ∈X ′, there is a sequence (fj) in
spanM, such that fj → f . Hence, for any given ε> 0, we can find a j ,
such that ‖fj − f ‖ < ε

3c
. Moreover, since fj ∈ spanM, by (B), there is an

N, such that, for all n>N, |fj(xn)− fj(x)| < ε
3
.
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The Weak Convergence Lemma (Cont’d)

We have

‖fj − f ‖<
ε

3c
and |fj(xn)− fj (x)| <

ε

3
, all n >N .

Using these two inequalities and applying the triangle inequality, we
obtain for n>N,

|f (xn)− f (x)| ≤ |f (xn)− fj (xn)|+ |fj (xn)− fj (x)|+ |fj (x)− f (x)|
< ‖f − fj‖‖xn‖+ ε

3
+‖fj − f ‖‖x‖

< ε
3c c +

ε
3
+ ε

3c c = ε.

Since f ∈X ′ was arbitrary, this shows that the sequence (xn) converges
weakly to x .
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Examples

Hilbert Space: In a Hilbert space, xn
w→ x if and only if

〈xn,z〉→ 〈x ,z〉, for all z in the space.

Space ℓp: In ℓp, where 1< p <+∞, we have xn
w→ x if and only if:

(A) The sequence (‖xn‖) is bounded.

(B) For every fixed j , ξ
(n)
j

n→∞−→ ξj , where xn = (ξ
(n)
j

) and x = (ξj ).

The dual space of ℓp is ℓq. A Schauder basis of ℓq is (en), where
en = (δnj) has 1 in the n-th place and zeros elsewhere. Span(en) is
dense in ℓq, so the conclusion results from the Weak Convergence
Lemma.
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Sequences of Operators

For sequences of elements in a normed space, strong and weak
convergence as defined in the previous section are useful.

For sequences of operators Tn ∈B(X ,Y ), three types of convergence
turn out to be of theoretical as well as practical value:

(1) Convergence in the norm on B(X ,Y );
(2) Strong convergence of (Tnx) in Y ;
(3) Weak convergence of (Tnx) in Y .
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Convergence of Sequences of Operators

Definition (Convergence of Sequences of Operators)

Let X and Y be normed spaces. A sequence (Tn) of operators
Tn ∈B(X ,Y ) is said to be:

(1) uniformly operator convergent if (Tn) converges in the norm on
B(X ,Y );

(2) strongly operator convergent if (Tnx) converges strongly in Y , for
every x ∈X ;

(3) weakly operator convergent if (Tnx) converges weakly in Y , for
every x ∈X .

In formulas, this means that there is an operator T :X →Y , such that:

(1) ‖Tn−T‖→ 0;

(2) ‖Tnx −Tx‖→ 0, for all x ∈X ;

(3) |f (Tnx)− f (Tx)| → 0, for all x ∈X and all f ∈Y ′.

T is called the uniform, strong and weak operator limit of (Tn), resp.
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Uniform versus Strong Operator Convergence

It is not difficult to show that

uniform ⇒ strong ⇒ weak operator convergence.

The converse is not generally true:

Example (Space ℓ2) In the space ℓ2, we consider a sequence (Tn),
where Tn : ℓ

2 → ℓ2 is defined by

Tnx = (0,0, . . . ,0,ξn+1,ξn+2, . . .),

where, x = (ξ1,ξ2, . . .) ∈ ℓ2.

This operator Tn is linear and bounded.

Clearly, (Tn) is strongly operator convergent to 0 since Tnx → 0= 0x .

However, (Tn) is not uniformly operator convergent since we have
‖Tn−0‖= ‖Tn‖= 1.
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Strong versus Weak Operator Convergence

Example (Space ℓ2): Another sequence (Tn) of operators
Tn : ℓ

2 → ℓ2 is defined by

Tnx = (0,0, . . . ,0︸ ︷︷ ︸
n zeros

,ξ1,ξ2, . . .),

where x = (ξ1,ξ2, . . .) ∈ ℓ2.

This operator Tn is linear and bounded.

(Tn) is weakly operator convergent to 0 but not strongly:

Every bounded linear functional f on ℓ2 has a Riesz representation
f (x)= 〈x ,z〉 =

∑∞
j=1ξjζj , where z = (ζj ) ∈ ℓ2.
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Strong versus Weak Operator Convergence (Cont’d)

Hence, setting j = n+k and using the definition of Tn, we have

f (Tnx)= 〈Tnx ,z〉 =
∞∑

j=n+1

ξj−nζj =
∞∑

k=1

ξkζn+k .

By the Cauchy-Schwarz inequality

|f (Tnx)|2 = |〈Tnx ,z〉|2 ≤
∞∑

k=1

|ξk |2
∞∑

m=n+1

|ζm|2.

The last series is the remainder of a convergent series. Hence, the
right-hand side approaches 0 as n→∞. So f (Tnx)→ 0= f (0x) and
(Tn) is weakly operator convergent to 0.
(Tn) is not strongly operator convergent because for x = (1,0,0, . . .), we

have, for all m 6= n, ‖Tmx −Tnx‖ =
√

12+12 =
p

2.
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The Case of Linear Functionals

Linear functionals are linear operators (with range in the scalar field R

or C), so that the previous definitions apply immediately.

In this case (2) and (3) become equivalent for the following reason:

We had Tnx ∈Y , but we now have fn(x) ∈R (or C).

Hence, convergence in (2) and (3) now takes place in the finite
dimensional (one-dimensional) space R (or C).

So the equivalence of (2) and (3) follows from a preceding theorem.
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Strong and Weak∗ Convergence

Definition (Strong and Weak∗ Convergence)

Let (fn) be a sequence of bounded linear functionals on a normed space X .
Then:

(a) Strong convergence of (fn) means that there is an f ∈X ′, such that
‖fn− f ‖→ 0. This is written fn → f .

(b) Weak∗ convergence of (fn) means that there is an f ∈X ′, such that

fn(x)→ f (x), for all x ∈X . This is written fn
w∗
→ f .

f in (a) and (b) is called the strong limit and weak∗ limit of (fn),
respectively.
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Properties of the Limit Operators

Considering the limit operator T :X →Y of the sequence
Tn ∈B(X ,Y ):

If the convergence is uniform, T ∈B(X ,Y );
otherwise, ‖Tn−T ‖ would not make sense.
If the convergence is strong or weak, T is still linear but may be
unbounded if X is not complete.

Example: The space X of all sequences x = (ξj) in ℓ2 with only finitely
many nonzero terms, taken with the metric on ℓ2, is not complete.

A sequence of bounded linear operators Tn on X is defined by

Tnx = (ξ1,2ξ2,3ξ3, . . . ,nξn,ξn+1,ξn+2, . . .),

so that Tnx has terms jξj if j ≤ n and ξj if j > n.

This sequence (Tn) converges strongly to the unbounded linear
operator T defined by Tx = (ηj), where ηj = jξj .
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Strong Operator Convergence (Complete Domain)

If X is complete, the situation illustrated by the example cannot occur:

Lemma (Strong Operator Convergence)

Let Tn ∈B(X ,Y ), where X is a Banach space and Y a normed space. If
(Tn) is strongly operator convergent with limit T , then T ∈B(X ,Y ).

Linearity of T follows readily from that of Tn. Since Tnx →Tx , for
every x ∈X , the sequence (Tnx) is bounded for every x . Since X is
complete, (‖Tn‖) is bounded by the Uniform Boundedness Theorem,
say, ‖Tn‖≤ c , for all n. Hence,

‖Tnx‖≤ ‖Tn‖‖x‖≤ c‖x‖.

This implies ‖Tx‖≤ c‖x‖.
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Criterion of Strong Operator Convergence

Theorem (Strong Operator Convergence)

A sequence (Tn) of operators Tn ∈B(X ,Y ), where X and Y are Banach
spaces, is strongly operator convergent if and only if:

(A) The sequence (‖Tn‖) is bounded.

(B) The sequence (Tnx) is Cauchy in Y , for every x in a total subset M
of X .

If Tnx →Tx , for every x ∈X , then (A) follows from the Uniform
Boundedness Theorem (since X is complete), and (B) is trivial.

Conversely, suppose that (A) and (B) hold, so that, say,

‖Tn‖≤ c , for all n.

We consider any x ∈X and show that (Tnx) converges strongly in Y .
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Criterion of Strong Operator Convergence (Cont’d)

Let ε> 0 be given. Since spanM is dense in X , there is a y ∈ spanM,
such that ‖x −y‖< ε

3c
. Since y ∈ spanM, the sequence (Tny) is

Cauchy by (B). Hence, there is an N, such that ‖Tny −Tmy‖< ε
3
, for

all m,n>N. Using these two inequalities and applying the triangle
inequality, we readily see that (Tnx) is Cauchy in Y : For m,n>N,

‖Tnx −Tmx‖ ≤ ‖Tnx −Tny‖+‖Tny −Tmy‖+‖Tmy −Tmx‖
< ‖Tn‖‖x −y‖+ ε

3
+‖Tm‖‖x −y‖

< c ε
3c

+ ε
3
+c ε

3c
= ε.

Since Y is complete, (Tnx) converges in Y . Since x ∈X was arbitrary,
this proves strong operator convergence of (Tn).
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Criterion for Weak∗ Convergence of Functionals

Corollary (Functionals)

A sequence (fn) of bounded linear functionals on a Banach space X is
weak∗ convergent, the limit being a bounded linear functional on X , if and
only if:

(A) The sequence (‖fn‖) is bounded.

(B) The sequence (fn(x)) is Cauchy for every x in a total subset M of X .
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Summability Methods

A divergent sequence has no limit in the usual sense.

The theory of divergent sequences aims at associating with certain
divergent sequences a “limit” in a generalized sense.

A procedure for that purpose is called a summability method.

Example: A divergent sequence x = (ξk) being given, we may calculate
the sequence y = (ηn) of the arithmetic means

η1 = ξ1, η2 =
1

2
(ξ1+ξ2), . . . ,ηn =

1

n
(ξ1+·· ·+ξn), . . .

If y converges with limit η (in the usual sense), we say that x is
summable by the present method and has the generalized limit η.

For instance, if x = (0,1,0,1,0, . . .), then y = (0,
1
2

,
1
3

,
1
2

,
2
5

, . . .) and x has
the generalized limit 1

2
.
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Matrix Summability Methods

A summability method is called a matrix method if it can be
represented in the form y =Ax , where x = (ξk) and y = (ηn) are
written as infinite column vectors and A= (αnk) is an infinite matrix.

In the formula y =Ax we used matrix multiplication, that is, y has the
terms

ηn =
∞∑

k=1

αnkξk , n= 1,2, . . . .

The preceding example illustrates a matrix method.

The method given here is briefly called an A-method because the
corresponding matrix is denoted by A.

If the series ηn converges, for all n, and y = (ηn) converges in the
usual sense, its limit is called the A-limit of x , and x is said to be
A-summable.

The set of all A-summable sequences is called the range of the
A-method.
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Regular Matrix Summability Methods

An A-method is said to be regular (or permanent) if its range
includes all convergent sequences and if, for every such sequence, the
A-limit equals the usual limit, that is, if ξk → ξ implies ηn → ξ.

A method which is not applicable to certain convergent sequences or
alters their limit would be of no practical use.

Toeplitz Limit Theorem (Regular Summability Methods)

An A-summability method with matrix A= (αnk) is regular if and only if:

(1) lim
n→∞

αnk = 0, for k = 1,2, . . .;

(2) lim
n→∞

∑∞
k=1

αnk = 1;

(3)
∑∞
k=1

|αnk | ≤ γ, for n= 1,2, . . ., where γ is a constant which does not depend
on n.
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Necessity of the Conditions

(a) Suppose that the A-method is regular. Let xk have 1 as the k-th term
and all other terms zero. For xk we have ηn =αnk . Since xk is
convergent and has the limit 0, this shows that (1) must hold.

Furthermore, x = (1,1,1, . . .) has the limit 1. Now ηn equals the series
in (2). Consequently, (2) must hold.

We prove that (3) is necessary for regularity: Let c be the Banach
space of all convergent sequences with norm defined by ‖x‖= supj |ξj |.
Linear functionals fnm on c are defined by fnm(x)=

∑m
k=1

αnkξk ,
m,n= 1,2, . . .. Each fnm is bounded since

|fnm(x)| ≤ sup
j

|ξj |
m∑

k=1

|αnk | =
(

m∑

k=1

|αnk |
)
‖x‖.

Regularity implies the convergence of the series ηn, for all x ∈C .
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Necessity of the Conditions (Cont’d)

Hence, it defines linear functionals f1, f2, . . . on c given by
ηn = fn(x)=

∑∞
k=1

αnkξk , n= 1,2, . . .. Thus, fnm(x)→ fn(x) as m→∞,
for all x ∈ c . This is weak∗ convergence, and fn is bounded. Also,
(fn(x)) converges for all x ∈ c , and (‖fn‖) is bounded, say, ‖fn‖≤ γ.
For an arbitrary fixed m ∈N, define

ξ
(n,m)

k
=

{
|αnk |
αnk

, if k ≤m and αnk 6= 0

0, if k >m or αnk = 0
.

Then xnm = (ξ
(n,m)

k
) ∈ c . Also ‖xnm‖= 1, if xnm 6= 0, and ‖xnm‖ = 0, if

xnm = 0. Furthermore, for all m,

fnm(xnm)=
m∑

k=1

αnkξ
(n,m)

k
=

m∑

k=1

|αnk |.

Hence,
∑m

k=1
|αnk | = fnm(xnm)≤ ‖fnm‖ and

∑∞
k=1

|αnk | ≤ ‖fn‖. This
shows that the series in (3) converges.
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Sufficiency of the Conditions

We prove that (1) to (3) is sufficient for regularity.

We define a linear functional f on c by f (x)= ξ= lim
k→∞

ξk , where

x = (ξk) ∈ c .
Boundedness of f can be seen from |f (x)| = |ξ| ≤ supj |ξj | = ‖x‖.

Let M ⊆ c be the set of all sequences whose terms are equal from
some term on, say, x = (ξk), where ξj = ξj+1 = ξj+2 = ·· · = ξ, and j

depends on x . Then f (x)= ξ, and we obtain

ηn = fn(x)=
j−1∑

k=1

αnkξk +ξ
∞∑

k=j
αnk =

j−1∑

k=1

αnk(ξk −ξ)+ξ
∞∑

k=1

αnk .

Hence by (1) and (2), for all n ∈M, ηn = fn(x)→ 0+ξ ·1= ξ= f (x).
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Sufficiency of the Conditions (Cont’d)

We show next that the set M on which we have the convergence
ηn = fn(x)→ f (x) is dense in c .

Let x = (ξk)∈ c with ξk → ξ. Then, for every ε> 0, there is an N, such
that |ξk −ξ| < ε, for all k ≥N. Clearly, x̃ = (ξ1, . . . ,ξN−1,ξ,ξ, . . .) ∈M
and x − x̃ = (0, . . . ,0,ξN −ξ,ξN+1−ξ, . . .). It follows that ‖x − x̃‖≤ ε.
Since x ∈ c was arbitrary, this shows that M is dense in c .

Finally, by (3), |fn(x)| ≤ ‖x‖
∑∞

k=1
|αnk | ≤ γ‖x‖, for all x ∈ c and all n.

Hence, ‖fn‖≤ γ, that is, (‖fn‖) is bounded.

Furthermore, f (xn)→ f (x) gives convergence for all x in a dense M.

By a preceding corollary, this implies weak∗ convergence fn
w∗
→ f .

Thus, we have shown that, if ξ= limξk exists, it follows that ηn → ξ.

By definition, this means regularity and the theorem is proved.
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Integral Approximation Methods

We consider numerical integration, that is, the problem of obtaining
approximate values for a given integral

∫b
a x(t)dt.

Various methods have been developed, e.g., the trapezoidal rule,
Simpson’s rule, Newton-Cotes and the Gauss methods.

The common feature of those methods:

We choose points in [a,b], called nodes;
We approximate the unknown value of the integral by a linear
combination of the values of x at the nodes.

The nodes and the coefficients of that linear combination depend on
the method but not on the integrand x .

The usefulness of a method is determined by its accuracy, and one
may want the accuracy to increase as the number of nodes gets larger.

We employ functional analysis to describe a general setting for those
methods and consider the problem of convergence as the number of
nodes increases.
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The General Method

We deal with continuous functions, so introduce the Banach space
X =C [a,b] of all continuous real-valued functions on J = [a,b], with
norm defined by ‖x‖=maxt∈J |x(t)|.
Then f (x)=

∫b
a x(t)dt defines a linear functional f on X .

For each positive integer n, we choose n+1 real numbers (called

nodes) t
(n)
0

, . . . ,t
(n)
n , such that a≤ t

(n)
0

< ·· · < t
(n)
n ≤ b.

Then we choose n+1 real numbers (called coefficients) α
(n)
0

, . . . ,α
(n)
n .

We define linear functionals fn on X by setting

fn(x)=
n∑

k=0

α
(n)

k
x(t

(n)

k
), n= 1,2, . . . .
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The Norm of fn

Each fn is bounded since |x(t(n)
k

)| ≤ ‖x‖ by the definition of the norm.

Consequently,

|fn(x)| ≤
n∑

k=0

|α(n)

k
||x(t(n)

k
)| ≤

(
n∑

k=0

|α(n)

k
|
)
‖x‖.

Claim: fn has norm ‖fn‖=
∑n

k=0
|α(n)

k
|.

The preceding inequality shows that ‖fn‖≤
∑n

k=0
|α(n)

k
|.

Equality follows if we take an x0 ∈X , such that |x0(t)| ≤ 1 on J and

x0(t
(n)

k
)= sgnα

(n)

k
=

{
1, if α

(n)

k
≥ 0

−1, if α
(n)

k
< 0

.

Then ‖x0‖= 1 and fn(x0)=
∑n

k=0
α
(n)

k
sgnα

(n)

k
=

∑n
k=0

|α(n)

k
|.
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Convergence and Requirement on Polynomials

Definition (Convergence)

The numerical process of integration defined by fn(x)=
∑n

k=0
α
(n)

k
x(t

(n)

k
) is

said to be convergent for an x ∈X if, for that x , fn(x)
n→∞−→ f (x), where f

is defined by f (x)=
∫b
a x(t)dt.

Given that exact integration of polynomials is easy, it is natural to
make the following

Requirement

For every n, if x is a polynomial of degree ≤ n, then fn(x)= f (x).
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Simplifying the Requirement

Since the fn’s are linear, it suffices to impose the preceding
requirement for the n+1 powers defined by

x0(t)= 1, x1(t)= t , . . . , xn(t)= tn.

Then, for a polynomial of degree n given by x(t)=
∑
βj t

j , we get

fn(x)=
n∑

j=0

βj fn(xj)=
n∑

j=0

βj f (xj)= f (x).

We thus have the n+1 conditions fn(xj)= f (xj), j = 0,1, . . . ,n.
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Feasibility of the Requirement

We show that fn(xj)= f (xj), j = 0,1, . . . ,n, can be fulfilled.

Since we have 2n+2 parameters (n+1 nodes and n+1 coefficients),
we can choose some of them in an arbitrary fashion.

Claim: If we choose the t
(n)

k
, we can determine the α

(n)

k
uniquely.

In fn(xj)= f (xj ), we have xj(t
(n)

k
)= (t

(n)

k
)j . So, for j = 0, . . . ,n,

∑n
k=0

α
(n)

k
(t

(n)

k
)j =

∫b
a t jdt = 1

j+1
(bj+1−aj+1). For each fixed n, this is a

nonhomogeneous system of n+1 linear equations in the n+1

unknowns α
(n)
0 , . . . ,α

(n)
n . A unique solution exists if:

The homogeneous system
∑n
k=0

(t
(n)
k

)jγk = 0, j = 0, . . . ,n, has only the
trivial solution γ0 = 0, . . . ,γn = 0;

Equivalently, if the same holds for the system
∑n
j=0(t

(n)
k

)jγj = 0,

k = 0, . . . ,n, whose coefficient matrix is the transpose of the coefficient
matrix of the previous system.

This holds, since
∑n

j=0
γj t

j , which is of degree n, being zero at the
n+1 nodes, must be identically zero, i.e., γj = 0.
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Weierstraß Approximation Theorem for Polynomials

Weierstraß Approximation Theorem (Polynomials)

The set W of all polynomials with real coefficients is dense in the real
space C [a,b]. Hence, for every x ∈C [a,b] and, given ε> 0, there exists a
polynomial p, such that |x(t)−p(t)| < ε, for all t ∈ [a,b].

Every x ∈C [a,b] is uniformly continuous on J = [a,b] since J is
compact. Hence, for any ε> 0, there is a y whose graph is an arc of a
polygon such that maxt∈J |x(t)−y(t)| < ε

3
.

Assume, first, that x(a)= x(b) and y(a)= y(b).

Since y is piecewise linear and continuous, by applying integration by
parts to the formulas for the Fourier coefficients am and bm, we get
bounds of the form

|a0| < k , |am| <
k

m2
, |bm| <

k

m2
.
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Weierstraß Approximation Theorem (Cont’d)

Hence for the Fourier series of y (representing the periodic extension
of y , of period b−a), we have, writing κ= 2π

b−a for simplicity,

∣∣a0+
∑∞

m=1(am cosκmt +bm sinκmt)
∣∣

≤ 2k(1+
∑∞

m=1
1
m2 )= 2k(1+ 1

6
π2).

This shows that the series converges uniformly on J.

Consequently, for the n-th partial sum sn, with sufficiently large n,

max
t∈J

|y(t)− sn(t)| <
ε

3
.

The Taylor series of the cosine and sine functions in sn also converge
uniformly on J. So there is a polynomial p (obtained, for instance,
from suitable partial sums of those series) such that
maxt∈J |sn(t)−p(t)| < ε

3
.
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Weierstraß Approximation Theorem (Cont’d)

Now we get

|x(t)−p(t)| ≤ |x(t)−y(t)|+ |y(t)− sn(t)|+ |sn(t)−p(t)|,

whence
max
t∈J

|x(t)−p(t)| < ε.

This takes care of every x ∈C [a,b], such that x(a)= x(b).

Suppose, next, that x(a) 6= x(b).

Take u(t)= x(t)−γ(t −a), with γ such that u(a)= u(b).
For u there is a polynomial q satisfying |u(t)−q(t)| < ε on J.
p(t)= q(t)+γ(t −a) satisfies maxt∈J |x(t)−p(t)| < ε (since
x −p = u−q).

Since ε> 0 was arbitrary, we have shown that W is dense in C [a,b].
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Pólya Convergence Theorem (Numerical Integration)

We showed that for every choice of nodes t
(n)

k
, a≤ t

(n)
0

< ·· · < t
(n)
n ≤ b,

there are uniquely determined α
(n)

k
, such that fn(x)= f (x).

Hence, the corresponding process is convergent for all polynomials.

Pólya Convergence Theorem (Numerical Integration)

A process of numerical integration fn(x)=
∑n

k=α
(n)

k
x(t

(n)

k
) which satisfies

fn(x)= f (x), for every n and polynomial x of degree not exceeding n,
converges for all real-valued continuous functions on [a,b] if and only if

there is a number c , such that
∑n

k=0
|α(n)

k
| ≤ c , for all n.

The set W of all polynomials with real coefficients is dense in the real
space X =C [a,b], by the Weierstraß approximation theorem, and, for
every x ∈W , we have convergence by the Requirement. Since

‖fn‖ =
∑n

k=0
|α(n)

k
|, (‖fn‖) is bounded if and only if

∑n
k=0

|α(n)

k
| ≤ c

holds for some real number c . The theorem now follows, since
convergence fn(x)→ f (x), for all x ∈X , is weak∗ convergence fn

w∗
→ f .
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Steklov’s Theorem for Numerical Integration

In this theorem we may replace the polynomials by any other set
which is dense in the real space C [a,b].

Steklov’s Theorem (Numerical Integration)

A process of numerical integration fn which satisfies the Requirement and

has nonnegative coefficients α
(n)

k
, converges for every continuous function.

Suppose that the coefficients are all nonnegative.

Taking x = 1, we then have

n∑

k=0

|α(n)

k
| =

n∑

k=0

α
(n)

k
= fn(1)= f (1)=

∫b

a
dt = b−a.

So
∑n

k=0
|α(n)

k
| ≤ c holds.
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Subsection 12

Open Mapping Theorem
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Open Mapping

Definition (Open Mapping)

Let X and Y be metric spaces. Then T :D(T )→Y with domain
D(T )⊆X is called an open mapping if for every open set in D(T ) the
image is an open set in Y .

If a mapping is not surjective, one must distinguish between the
assertions that the mapping is open as a mapping from its domain

(a) into Y ;
(b) onto its range.

(b) is weaker than (a): For instance, if X ⊆Y :

The mapping x 7→ x of X into Y is open if and only if X is an open
subset of Y ;
The mapping x 7→ x of X onto its range (which is X ) is open in any
case.
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Open Mappings versus Continuous Mappings

A continuous mapping T :X →Y has the property that for every open
set in Y the inverse image is an open set in X .

This does not imply that T maps open sets in X onto open sets in Y .

Example: The mapping R→R given by t 7→ sint is continuous but
maps (0,2π) onto [−1,1].
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Open Unit Ball Lemma

Lemma (Open Unit Ball)

A bounded linear operator T from a Banach space X onto a Banach space
Y has the property that the image T (B0) of the open unit ball
B0 =B(0;1)⊆X contains an open ball about 0 ∈Y .

Proceeding stepwise, we prove:

(a) The closure of the image of the open ball B1 =B(0; 1
2 ) contains an

open ball B∗.

(b) T (Bn) contains an open ball Vn about 0 ∈Y , where Bn =B(0; 1
2n )⊆X .

(c) T (B0) contains an open ball about 0 ∈Y .
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Proof of Open Unit Ball Part (a)

(a) In connection with subsets A⊆X we shall write αA (α a scalar) and
A+w (w ∈X ) to mean

(1) αA= {x ∈X : x =αa,a ∈
A};

(2) A+w = {x ∈X : x =
a+w ,a ∈A};

and, similarly, for subsets of Y .

We consider the open ball B1 =B(0; 1
2
)⊆X . Any fixed x ∈X is in kB1

with real k sufficiently large (k > 2‖x‖). Hence X =
⋃∞
k=1

kB1.

Since T is surjective and linear,

Y =T (X )=T

(
∞⋃

k=1

kB1

)
=

∞⋃

k=1

kT (B1)=
∞⋃

k=1

kT (B1).
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Proof of Open Unit Ball Part (a) (Cont’d)

Y =T (X )=T (
⋃∞
k=1

kB1)=
⋃∞
k=1

kT (B1)=
⋃∞
k=1

kT (B1).

Note that by taking closures we did not add further points to the
union since that union was already the whole space Y .

Since Y is complete, by Baire’s Category, it is nonmeager in itself.

Hence, we conclude that a kT (B1) must contain some open ball.

This implies that T (B1) also contains an open ball, say,

B∗ =B(y0;ε)⊆T (B1).

It follows that
B∗−y0 =B(0;ε)⊆T (B1)−y0.
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Proof of Open Unit Ball Part (b)

(b) We prove that B∗−y0 ⊆T (B0), where B0 is given in the theorem.

This we do by showing that T (B1)−y0 ⊆T (B0).

Let y ∈T (B1)−y0. Then y +y0 ∈T (B1), and we remember that

y0 ∈T (B1), too. Thus, there are

un =Twn ∈T (B1), such that un → y +y0,

vn =Tzn ∈T (B1), such that vn → y0.

Since wn,zn ∈B1 and B1 has radius 1
2 , it follows that

‖wn−zn‖ ≤ ‖wn‖+‖zn‖ <
1

2
+

1

2
= 1.

So wn−zn ∈B0. From T (wn−zn)=Twn−Tzn = un−vn → y , we see

that y ∈T (B0). This proves T (B1)−y0 ⊆T (B0).

From (a), we thus have B∗−y0 =B(0;ε)⊆T (B0). Let

Bn =B(0; 1
2n
)⊆X . Since T is linear, T (Bn)= 1

2n
T (B0). Since

B∗−y0 =B(0;ε)⊆T (B0), we thus obtain Vn =B(0; ε
2n
)⊆T (Bn).
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Proof of Open Unit Ball Part (c)

(c) We prove V1 =B(0; ε
2
)⊆T (B0) by showing that y ∈V1 is in T (B0).

Let y ∈V1. From Vn =B(0; ε
2n
)⊆T (Bn), with n = 1, we have

V1 ⊆T (B1). Hence, y ∈T (B1). So, there exists v ∈T (B1) close to y ,
say, ‖y −v‖< ε

4
. Now v ∈T (B1) implies v =Tx1, for some x1 ∈B1.

Hence, ‖y −Tx1‖ < ε
4
.

From this and (b), with n= 2, we see that y −Tx1 ∈V2 ⊆T (B2). As
before, there is an x2 ∈B2, such that ‖(y −Tx1)−Tx2‖< ε

8
. Hence

y −Tx1−Tx2 ∈V3 ⊆T (B3), and so on. In the n-th step we can choose
an xn ∈Bn, such that ‖y −

∑n
k=1

Txk‖ < ε
2n+1 , n= 1,2, . . .. Let

zn = x1+·· ·+xn. Since xk ∈Bk , we have ‖xk‖< 1
2k

. This yields for

n>m, ‖zn−zm‖ ≤
∑n

k=m+1
‖xk‖<

∑∞
k=m+1

1
2k

m→∞−→ 0. Hence (zn) is
Cauchy. (zn) converges, say, zn → x , since X is complete. Also x ∈B0,
since B0 has radius 1 and

∑∞
k=1

‖xk‖<
∑∞

k=1
1
2k

= 1. Since T is
continuous, Tzn →Tx , and ‖y −

∑n
k=1

Txk‖< ε
2n+1 shows that Tx = y .
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The Open Mapping Theorem

Open Mapping Theorem, Bounded Inverse Theorem

A bounded linear operator T from a Banach space X onto a Banach space
Y is an open mapping. Hence if T is bijective, T−1 is continuous and thus
bounded.

We prove that for every open set A⊆X , the image T (A) is open in
Y . It suffices to show that, for every y =Tx ∈T (A), the set T (A)
contains an open ball about y =Tx .

Let y =Tx ∈T (A). Since A is open, it contains an open ball with
center x . Hence A−x contains an open ball B(0;r). Set k = 1

r
, so

that r = 1
k
. Then k(A−x) contains the open unit ball B(0;1). By the

lemma, T (k(A−x))= k[T (A)−Tx ] contains an open ball about 0,
and so does T (A)−Tx . Hence T (A) contains an open ball about
Tx = y . Since y ∈T (A) was arbitrary, T (A) is open.

Finally, if T−1 :Y →X exists, it is continuous because T is open.
Since T−1 is linear, it is bounded.
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Subsection 13

Closed Linear Operators and Closed Graph Theorem
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Closed Linear Operator

Definition (Closed Linear Operator)

Let X and Y be normed spaces and T :D(T )→Y a linear operator with
domain D(T )⊆X . Then T is called a closed linear operator if its graph

G (T )= {(x ,y) : x ∈D(T ),y =Tx}

is closed in the normed space X ×Y , where the two algebraic operations of
a vector space in X ×Y are defined as usual, that is,

(x1,y1)+ (x2,y2) = (x1+x2,y1+y2),

α(x ,y) = (αx ,αy), α a scalar,

and the norm on X ×Y is defined by

‖(x ,y)‖= ‖x‖+‖y‖.
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Closed Graph Theorem

Closed Graph Theorem

Let X and Y be Banach spaces and T :D(T )→Y a closed linear operator,
where D(T )⊆X . Then, if D(T ) is closed in X , the operator T is bounded.

We first show that X ×Y is complete. Let (zn) be Cauchy in X ×Y ,
where zn = (xn,yn). Then, for every ε> 0, there is an N, such that

‖zn−zm‖ = ‖xn−xm‖+‖yn−ym‖< ε, m,n>N.

Hence (xn) and (yn) are Cauchy in X and Y , respectively, and
converge, say, xn → x and yn → y , because X and Y are complete.
This implies that zn → z = (x ,y) since, by the inequality above with
m→∞, we have ‖zn−z‖≤ ε, for n >N. Since the Cauchy sequence
(zn) was arbitrary, X ×Y is complete.
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Closed Graph Theorem (Cont’d)

By assumption, G (T ) is closed in X ×Y and D(T ) is closed in X .
Hence G (T ) and D(T ) are complete. We now consider the mapping

P : G (T ) → D(T );
(x ,Tx) 7→ x .

P is linear.

P is bounded because ‖P(x ,Tx)‖ = ‖x‖≤ ‖x‖+‖Tx‖ = ‖(x ,Tx)‖.

P is bijective: The inverse mapping is P−1 :D(T )→G (T );
x 7→ (x ,Tx).

Since G (T ) and D(T ) are complete, we can apply the Bounded
Inverse Theorem and see that P−1 is bounded, say, ‖(x ,Tx)‖ ≤ b‖x‖,
for some b and all x ∈D(T ). Hence T is bounded, as for all x ∈D(T ),

‖Tx‖≤ ‖Tx‖+‖x‖ = ‖(x ,Tx)‖ ≤ b‖x‖.
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Criterion for Closedness

Theorem (Closed Linear Operator)

Let T :D(T )→Y be a linear operator, where D(T )⊆X and X and Y are
normed spaces. Then T is closed if and only if it has the following property:
If xn → x , where xn ∈D(T ), and Txn → y , then x ∈D(T ) and Tx = y .

G (T ) is closed if and only if z = (x ,y) ∈G (T ) implies z ∈G (T ).

We know that:

z = (x ,y) ∈G (T ) if and only if there are zn = (xn ,Txn) ∈G (T ), such
that zn → z , i.e., xn → x , Txn → y ;
z = (x ,y) ∈G (T ) if and only if x ∈D(T ) and y =Tx .

Putting these together, we get the conclusion.
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Closedness versus Continuity

The following property of a bounded linear operator is different:

If a linear operator T is bounded and thus continuous, and if (xn) is a
sequence in D(T ) which converges in D(T ), then (Txn) also converges.

This need not hold for a closed linear operator.

However, if T is closed and two sequences (xn) and (x̃n) in the domain
of T converge with the same limit and if the corresponding sequences
(Txn) and (Tx̃n) both converge, then the latter have the same limit.
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Example: Differential Operator

Let X =C [0,1] and T :D(T )→X ; x 7→ x ′, where the prime denotes
differentiation and D(T ) is the subspace of functions x ∈X which
have a continuous derivative. Then T is not bounded, but is closed.

We see, using the sequence xn(t)= tn, that T is not bounded.

We prove that T is closed by applying the preceding theorem.

Let (xn) in D(T ) be such that both (xn) and (Txn) converge, say,
xn → x and Txn = x ′n → y . Since convergence in the norm of C [0,1] is
uniform convergence on [0,1], from x ′n → y , we have

∫t

0
y(τ)dτ=

∫t

0
lim
n→∞

x ′n(τ)dτ= lim
n→∞

∫t

0
x ′n(τ)dτ= x(t)−x(0),

i.e., x(t)= x(0)+
∫t
0 y(τ)dτ. This shows that x ∈D(T ) and x ′ = y .

Hence, T is closed.

Note that in this example, D(T ) is not closed in X , since T would
then be bounded by the closed graph theorem.
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Independence of Closedness and Boundedness

Closedness does not imply boundedness of a linear operator.
Conversely, boundedness does not imply closedness.

The first statement is illustrated by the Differential Operator.

The second one by the following example:

Let T :D(T )→D(T )⊆X be the identity operator on D(T ), where
D(T ) is a proper dense subspace of a normed space X .

It is trivial that T is linear and bounded.
However, T is not closed.
This follows immediately from the preceding theorem, if we take an
x ∈X −D(T ) and a sequence (xn) in D(T ) which converges to x .
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The Closed Operator Lemma

Lemma (Closed Operator)

Let T :D(T )→Y be a bounded linear operator with domain D(T )⊆X ,
where X and Y are normed spaces. Then:

(a) If D(T ) is a closed subset of X , then T is closed.

(b) If T is closed and Y is complete, then D(T ) is a closed subset of X .

(a) If (xn) is in D(T ) and converges, say, xn → x , and is such that (Txn)
also converges, then

x ∈D(T )=D(T ) since D(T ) is closed;
Txn →Tx , since T is continuous.

Hence T is closed.

(b) For x ∈D(T ), there is a sequence (xn) in D(T ), such that xn → x .
Since T is bounded, ‖Txn−Txm‖= ‖T (xn−xm)‖ ≤ ‖T‖‖xn−xm‖.

This shows that (Txn) is Cauchy. (Txn) converges, say, Txn → y ∈Y
because Y is complete. Since T is closed, x ∈D(T ) and Tx = y .
Hence D(T ) is closed.
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