Introduction to Functional Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

1

Fundamental Theorems for Normed and Banach Spaces

- Zorn's Lemma
- Hahn-Banach Theorem
- Hahn-Banach Theorem for Complex and Normed Spaces
- Bounded Linear Functionals on C[a, b]
- Adjoint Operator
- Reflexive Spaces
- Category and Uniform Boundedness Theorems
- Strong and Weak Convergence
- Convergence of Sequences of Operators and Functionals
- Application to Summability of Sequences
- Numerical Integration and Weak* Convergence
- Open Mapping Theorem
- Closed Linear Operators and Closed Graph Theorem

Subsection 1

Zorn's Lemma

Partially Ordered Sets

Definition (Partially Ordered Set)

A partially ordered set is a set M on which there is defined a partial ordering, that is, a binary relation which is written \leq satisfying:

(PO1) $a \le a$, for every $a \in M$; (Reflexivity)

(PO2) If
$$a \le b$$
 and $b \le a$, the $a = b$; (Antisymmetry)

(PO3) If $a \le b$ and $b \le c$, then $a \le c$. (Transitivity)

- Elements a and b for which neither a ≤ b nor b ≤ a holds are called incomparable elements.
- In contrast, two elements a and b are called comparable elements if they satisfy a ≤ b or b ≤ a (or both).

Chains and Bounds

Definition (Totally Ordered Set or Chain)

A **totally ordered set** or **chain** is a partially ordered set such that every two elements of the set are comparable. In other words, a chain is a partially ordered set that has no incomparable elements.

Definition (Upper Bound and Maximal Element)

An **upper bound** of a subset W of a partially ordered set M is an element $u \in M$, such that $x \le u$, for every $x \in W$. (Depending on M and W, such a u may or may not exist.) A **maximal element** of M is an $m \in M$, such that $m \le x$ implies m = x. (Again, M may or may not have maximal elements.)

• Note that a maximal element need not be an upper bound.

Examples of Partial Orderings

- **Real numbers**: Let M be the set of all real numbers and let $x \le y$ have its usual meaning. M is totally ordered. M has no maximal elements.
- Power set: Let 𝒫(X) be the power set (set of all subsets) of a given set X and let A ≤ B mean A ⊆ B, that is, A is a subset of B. Then 𝒫(X) is partially ordered. The only maximal element of 𝒫(X) is X.
- *n*-tuples of numbers: Let *M* be the set of all ordered *n*-tuples $x = (\xi_1, ..., \xi_n), y = (\eta_1, ..., \eta_n), ...,$ of real numbers and let $x \le y$ mean $\xi_j \le \eta_j$, for every j = 1, ..., n, where $\xi_j \le \eta_j$ has its usual meaning. This defines a partial ordering on *M*.
- **Positive integers**: Let $M = \mathbb{N}$, the set of all positive integers. Let $m \le n$ mean that *m* divides *n*. This defines a partial ordering on \mathbb{N} .

Zorn's Lemma

Zorn's Lemma

Let $M \neq \emptyset$ be a partially ordered set. Suppose that every chain $C \subseteq M$ has an upper bound. Then M has at least one maximal element.

- Zorn's Lemma can be derived from the Axiom of Choice: For any given set *E*, there exists a mapping *c* ("choice function") from the power set 𝒫(*E*) into *E*, such that if *B* ⊆ *E*, *B* ≠ Ø, then *c*(*B*) ∈ *B*.
- Conversely, the Axiom of Choice follows from Zorn's Lemma.
- So Zorn's Lemma and the Axiom of Choice can be regarded as equivalent axioms.

Application: Hamel Bases

Hamel Basis

Every vector space $X \neq \{0\}$ has a Hamel basis.

Let M be the set of all linearly independent subsets of X. Since X ≠ {0}, it has an element x ≠ 0 and {x} ∈ M, so that M ≠ Ø. Set inclusion defines a partial ordering on M. Every chain C ⊆ M has an upper bound, namely, the union of all subsets of X which are elements of C. By Zorn's Lemma, M has a maximal element B.

Claim: B is a Hamel basis for X.

Let Y = spanB. Then Y is a subspace of X. Moreover, Y = X: Otherwise, $B \cup \{z\}$, $z \in X$, $z \notin Y$, would be a linearly independent set containing B as a proper subset. And this would contradict the maximality of B.

Application: Total Orthonormal Sets

Total Orthonormal Set

In every Hilbert space $H \neq \{0\}$ there exists a total orthonormal set.

Let *M* be the set of all orthonormal subsets of *H*. Since *H* ≠ {0}, it has an element *x* ≠ 0, and an orthonormal subset of *H* is {*y*}, where *y* = 1/||*x*|| *x*. Hence *M* ≠ Ø. Set inclusion defines a partial ordering on *M*. Every chain *C* ⊆ *M* has an upper bound, namely, the union of all subsets of *X* which are elements of *C*. By Zorn's Lemma, *M* has a maximal element *F*.

Claim: F is total in H.

Suppose that this is false. Then, by a previous theorem, there exists a nonzero $z \in H$, such that $z \perp F$. Hence $F_1 = F \cup \{e\}$, where $e = \frac{1}{\|z\|}z$ is orthonormal, and F is a proper subset of F_1 . This contradicts the maximality of F.

Subsection 2

Hahn-Banach Theorem

Sublinear Functionals

- A sublinear functional is a real-valued functional *p* on a vector space *X* which is:
 - subadditive, that is,

$$p(x+y) \le p(x) + p(y)$$
, for all $x, y \in X$;

• positive-homogeneous, that is,

 $p(\alpha x) = \alpha p(x)$, for all $\alpha \ge 0$ in \mathbb{R} and $x \in X$.

• Note that the norm on a normed space is such a functional.

Idea of the Hahn-Banach Theorem

- In an extension problem one considers a mathematical object (e.g., a mapping) defined on a subset Z of a given set X and the goal is to extend the object from Z to the entire set X in such a way that certain basic properties of the object continue to hold for the extended object.
- In the Hahn-Banach theorem, the object to be extended is a linear functional *f* which is defined on a subspace *Z* of a vector space *X* and has a certain boundedness property which will be formulated in terms of a sublinear functional.
 - We assume that the functional *f* to be extended is majorized on *Z* by such a functional *p* defined on *X*.
 - We extend f from Z to X without losing the linearity and the majorization, so that the extended functional \tilde{f} on X is still linear and still majorized by p.

Hahn-Banach Theorem (Extension of Linear Functionals)

Hahn-Banach Theorem (Extension of Linear Functionals)

Let X be a real vector space and p a sublinear functional on X. Furthermore, let f be a linear functional which is defined on a subspace Z of X and satisfies $f(x) \le p(x)$, for all $x \in Z$. Then f has a linear extension \tilde{f} from Z to X satisfying $\tilde{f}(x) \le p(x)$, for all $x \in X$, that is, \tilde{f} is a linear functional on X, satisfies $\tilde{f}(x) \le p(x)$ on X and $\tilde{f}(x) = f(x)$, for every $x \in Z$.

• Proceeding stepwise, we shall prove:

- (a) The set *E* of all linear extensions *g* of *f* satisfying $g(x) \le p(x)$ on their domain $\mathscr{D}(g)$ can be partially ordered and Zorn's Lemma yields a maximal element \tilde{f} of *E*.
- (b) \tilde{f} is defined on the entire space X.
- (c) An auxiliary relation which was used in (b).

Proof of Part (a)

- (a) Let E be the set of all linear extensions g of f which satisfy the condition g(x) ≤ p(x), for all x ∈ D(g).
 Clearly, E ≠ Ø since f ∈ E.
 On E we can define a partial ordering by g ≤ h iff h is an extension of g, i.e., by definition, D(h) ⊇ D(g) and h(x) = g(x), for every x ∈ D(g).
 - For a chain $C \subseteq E$, we define \hat{g} by $\hat{g}(x) = g(x)$, if $x \in \mathcal{D}(g)$, $g \in C$.
 - \hat{g} is a linear functional, the domain being $\mathscr{D}(\hat{g}) = \bigcup_{g \in C} \mathscr{D}(g)$, which is a vector space since C is a chain.
 - The definition of \hat{g} is unambiguous: For an $x \in \mathscr{D}(g_1) \cap \mathscr{D}(g_2)$, with $g_1, g_2 \in C$, we have $g_1(x) = g_2(x)$, since C is a chain, so that $g_1 \leq g_2$ or $g_2 \leq g_1$.
 - Clearly, $g \leq \hat{g}$ for all $g \in C$. Hence \hat{g} is an upper bound of C.

Since $C \subseteq E$ was arbitrary, by Zorn's Lemma, E has a maximal element \tilde{f} .

By the definition of E, this is a linear extension of f, which satisfies $\tilde{f}(x) \leq p(x)$, for all $x \in \mathcal{D}(\tilde{f})$.

Proof of Part (b)

(b) We show that $\mathscr{D}(\tilde{f})$ is all of X.

Suppose that this is false. Then we can choose a $y_1 \in X - \mathscr{D}(\tilde{f})$. Consider the subspace Y_1 of X spanned by $\mathscr{D}(\tilde{f})$ and y_1 . Note that $y_1 \neq 0$ since $0 \in \mathscr{D}(\tilde{f})$. Any $x \in Y_1$ can be written $x = y + \alpha y_1$, $y \in \mathscr{D}(\tilde{f})$. This representation is unique: In fact, $y + \alpha y_1 = \tilde{y} + \beta y_1$ with $\tilde{y} \in \mathscr{D}(\tilde{f})$ implies $y - \tilde{y} = (\beta - \alpha)y_1$, where $y - \tilde{y} \in \mathscr{D}(\tilde{f})$, whereas $y_1 \notin \mathscr{D}(\tilde{f})$. The only solution is $y - \tilde{y} = 0$ and $\beta - \alpha = 0$. This means uniqueness. A functional g_1 on Y_1 is defined by

$$g_1(y+\alpha y_1)=\widetilde{f}(y)+\alpha c,$$

where c is any real constant. It is not difficult to see that g_1 is linear. Furthermore, for $\alpha = 0$, we have $g_1(y) = \tilde{f}(y)$. Hence g_1 is a proper extension of \tilde{f} , i.e., an extension such that $\mathscr{D}(\tilde{f})$ is a proper subset of $\mathscr{D}(g_1)$. Consequently, if we show $g_1 \in E$ by showing that $g_1(x) \leq p(x)$, contradicting the maximality of \tilde{f} , we get $\mathscr{D}(\tilde{f}) = X$ is true.

George Voutsadakis (LSSU)

Proof of Part (c)

(c) It now suffices to show that g₁, with a suitable c in g₁(y + αy₁) = f̃(y) + αc, satisfies g₁(x) ≤ p(x), for all x ∈ D(g₁). We consider any y and z in D(f̃). We obtain f̃(y)-f̃(z) = f̃(y-z) ≤ p(y-z) = p(y+y₁-y₁-z) ≤ p(y+y₁)+p(-y₁-z). Binging the last term to the left and the term f̃(y) to the right,

$$-p(-y_1-z)-\widetilde{f}(z) \leq p(y+y_1)-\widetilde{f}(y),$$

where y_1 is fixed. Since y does not appear on the left and z not on the right, the inequality continues to hold if we take the supremum over $z \in \mathscr{D}(\tilde{f})$ on the left (call it m_0) and the infimum over $y \in \mathscr{D}(\tilde{f})$ on the right, call it m_1 . Then $m_0 \le m_1$ and for a c, with $m_0 \le c \le m_1$, we have

$$\begin{aligned} -p(-y_1-z) - \widetilde{f}(z) &\leq c, \quad \text{for all } z \in \mathcal{D}(\widetilde{f}), \\ c &\leq p(y+y_1) - \widetilde{f}(y), \quad \text{for all } y \in \mathcal{D}(\widetilde{f}). \end{aligned}$$

Proof of Part (c) (Cont'd)

- We prove $g_1(x) \le p(x)$, for all $x \in \mathcal{D}(g_1)$, first for negative α in $g_1(y + \alpha y_1) = \tilde{f}(y) + \alpha c$ and then for positive α .
 - For $\alpha < 0$ we use $-p(-y_1 z) \tilde{f}(z) \le c$, with z replaced by $\frac{1}{\alpha}y$, that is, $-p(-y_1 - \frac{1}{\alpha}y) - \tilde{f}(\frac{1}{\alpha}y) \le c$. Multiplication by $-\alpha > 0$ gives $\alpha p(-y_1 - \frac{1}{\alpha}y) + \tilde{f}(y) \le -\alpha c$. From this and $g_1(y + \alpha y_1) = \tilde{f}(y) + \alpha c$, using $y + \alpha y_1 = x$, we obtain

$$g_1(x) = \widetilde{f}(y) + \alpha c \leq -\alpha p \left(-y_1 - \frac{1}{\alpha}y\right) = p(\alpha y_1 + y) = p(x).$$

- For $\alpha = 0$, we have $x \in \mathcal{D}(\tilde{f})$ and nothing to prove.
- For $\alpha > 0$ we use $c \le p(y + y_1) \tilde{f}(y)$, with y replaced by $\frac{1}{\alpha}y$ to get $c \le p(\frac{1}{\alpha}y + y_1) \tilde{f}(\frac{1}{\alpha}y)$. Multiplication by $\alpha > 0$ gives

$$\alpha c \leq \alpha p\left(\frac{1}{\alpha}y+y_1\right)-\widetilde{f}(y)=p(x)-\widetilde{f}(y).$$

But $g_1(y + \alpha y_1) = \tilde{f}(y) + \alpha c$. So $g_1(x) = \tilde{f}(y) + \alpha c \le p(x)$.

Necessity of Zorn's Lemma

If, in g₁(y + αy₁) = f̃(y) + αc, we take f instead of f̃, we obtain, for each real c, a linear extension g₁ of f to the subspace Z₁ spanned by D(f) ∪ {y₁}. We can choose c so that g₁(x) ≤ p(x), for all x ∈ Z₁, as may be seen from part (c) of the proof with f̃ replaced by f.

If $X = Z_1$, we are done.

If $X \neq Z_1$, we may take a $y_2 \in X - Z_1$ and repeat the process to extend f to Z_2 spanned by Z_1 and y_2 , etc.

This gives a sequence of subspaces Z_j , each containing the preceding, and such that f can be extended linearly from one to the next and the extension g_j satisfies $g_j(x) \le p(x)$, for all $x \in Z_j$.

- If $X = \bigcup_{i=1}^{n} Z_i$, we are done after *n* steps.
- If $X = \bigcup_{i=1}^{\infty} Z_i$, we can use ordinary induction.
- If X has no such representation, we do need Zorn's lemma in the proof presented here.

Subsection 3

Hahn-Banach Theorem for Complex and Normed Spaces

Hahn-Banach Theorem (Generalized)

Hahn-Banach Theorem (Generalized)

Let X be a real or complex vector space and p a real-valued functional on X which is subadditive, i.e., for all $x, y \in X$, $p(x+y) \le p(x) + p(y)$, and for every scalar α satisfies $p(\alpha x) = |\alpha|p(x)$. Furthermore, let f be a linear functional which is defined on a subspace Z of X and satisfies $|f(x)| \le p(x)$, for all $x \in Z$. Then f has a linear extension \tilde{f} from Z to X satisfying $|\tilde{f}(x)| \le p(x)$, for all $x \in X$.

(a) Real vector space If X is real, then $|f(x)| \le p(x)$ implies $f(x) \le p(x)$, for all $x \in Z$. Hence, by the Hahn-Banach Theorem, there is a linear extension \tilde{f} from Z to X, such that $\tilde{f}(x) \le p(x)$, for all $x \in X$. From this and the hypothesis, we obtain

$$-\widetilde{f}(x) = \widetilde{f}(-x) \le p(-x) = |-1|p(x) = p(x).$$

That is, $\tilde{f}(x) \ge -p(x)$. With $\tilde{f}(x) \le p(x)$, this yields the conclusion.

Hahn-Banach Theorem (The Complex Case)

(b) **Complex vector space** Let X be complex. Then Z is a complex vector space, too. Hence f is complex-valued, and we can write

$$f(x) = f_1(x) + if_2(x), \quad x \in \mathbb{Z},$$

where f_1 and f_2 are real-valued. For a moment we regard X and Z as real vector spaces and denote them by X_r and Z_r , respectively. This simply means that we restrict multiplication by scalars to real numbers (instead of complex numbers). Since f is linear on Z and f_1 and f_2 are real-valued, f_1 and f_2 are linear functionals on Z_r . Also $f_1(x) \le |f(x)|$ because the real part of a complex number cannot exceed the absolute value. Hence by $|f(x)| \le p(x)$, we get $f_1(x) \le p(x)$, for all $x \in Z_r$. By the Hahn-Banach Theorem, there is a linear extension \tilde{f}_1 of f_1 from Z_r to X_r , such that $\tilde{f}_1(x) \le p(x)$, for all $x \in X_r$.

Hahn-Banach Theorem (The Complex Case Cont'd)

• Considering Z and using $f = f_1 + if_2$, we have, for every $x \in Z$,

$$i[f_1(x) + if_2(x)] = if(x) = f(ix) = f_1(ix) + if_2(ix).$$

Equating the real parts, $f_2(x) = -f_1(ix)$, for all $x \in Z$. For all $x \in X$, we set

$$\widetilde{f}(x)=\widetilde{f_1}(x)-i\widetilde{f_1}(x),\quad x\in X.$$

Then $\tilde{f}(x) = f(x)$ on Z. This shows that \tilde{f} is an extension of f from Z to X. We must now prove that:

- (i) \tilde{f} is a linear functional on the *complex* vector space X;
- (ii) \tilde{f} satisfies $|\tilde{f}(x)| \le p(x)$ on X.

Hahn-Banach Theorem (Proving (i) and (ii))

$$\widetilde{f}(x)=\widetilde{f_1}(x)-i\widetilde{f_1}(x),\quad x\in X.$$

(i) Using $\tilde{f}(x) = \tilde{f}_1(x) - i\tilde{f}_1(ix)$, $x \in X$, and the linearity of \tilde{f}_1 on the real vector space X_r , we get

$$\begin{aligned} \widetilde{f}((a+ib)x) &= \widetilde{f}_1(ax+ibx) - i\widetilde{f}_1(iax-bx) \\ &= a\widetilde{f}_1(x) + b\widetilde{f}_1(ix) - i[a\widetilde{f}_1(ix) - b\widetilde{f}_1(x)] \\ &= (a+ib)[\widetilde{f}_1(x) - i\widetilde{f}_1(ix)] \\ &= (a+ib)\widetilde{f}(x). \end{aligned}$$

(ii) For any x, such that $\tilde{f}(x) = 0$, (ii) holds since $p(x) \ge 0$. Let x be such that $\tilde{f}(x) \ne 0$. Then we can write, using the polar form of complex quantities, $\tilde{f}(x) = |\tilde{f}(x)|e^{i\theta}$. Thus, $|\tilde{f}(x)| = \tilde{f}(x)e^{-i\theta} = \tilde{f}(e^{-i\theta}x)$. Since $|\tilde{f}(x)|$ is real, the last expression is real. So it is equal to its real part. Hence $|\tilde{f}(x)| = \tilde{f}(e^{-i\theta}x) = \tilde{f}_1(e^{-i\theta}x) \le p(e^{-i\theta}x) = |e^{-i\theta}|p(x) = p(x)$.

Hahn-Banach Theorem (Normed Spaces)

Hahn-Banach Theorem (Normed Spaces)

Let f be a bounded linear functional on a subspace Z of a normed space X. Then there exists a bounded linear functional \tilde{f} on X which is an extension of f to X and has the same norm, $\|\tilde{f}\|_X = \|f\|_Z$, where

$$\|\widetilde{f}\|_{X} = \sup_{\substack{x \in X \\ \|x\|=1}} |\widetilde{f}(x)|, \quad \|f\|_{Z} = \sup_{\substack{x \in Z \\ \|x\|=1}} |f(x)|$$

(and $||f||_Z = 0$ in the trivial case $Z = \{0\}$).

If Z = {0}, then f̃ = 0. The extension is f̃ = 0. Let Z ≠ {0}. To use the theorem, we must first discover a suitable p. For all x ∈ Z, we have |f(x)| ≤ ||f||_Z||x||. This is of the right form, where p(x) = ||f||_Z||x||. We see that p is defined on all of X.
p satisfies subadditivity on X: p(x+y) = ||f||_Z||x+y|| ≤ ||f||_Z(||x|| + ||y||) = p(x) + p(y).
p satisfies the scalar property on X: p(αx) = ||f||_Z ||αx|| = |α||f||_Z ||x|| = |α|p(x).

Hahn-Banach Theorem (Normed Spaces Cont'd)

• Hence, we can now apply the theorem and conclude that there exists a linear functional \tilde{f} on X which is an extension of f and satisfies

$$|\tilde{f}(x)| \le p(x) = ||f||_{\mathbb{Z}} ||x||, \quad x \in X.$$

• Taking the supremum over all $x \in X$ of norm 1, we obtain the inequality

$$\|\widetilde{f}\|_X = \sup_{\substack{x \in X \\ \|x\|=1}} |\widetilde{f}(x)| \le \|f\|_Z.$$

• Since under an extension the norm cannot decrease, we also have

$$\|\widetilde{f}\|_X \geq \|f\|_Z.$$

Together we obtain $\|\tilde{f}\|_X = \|f\|_Z$.

The Case of Hilbert Spaces

 If Z is a closed subspace of a Hilbert space X = H, then f has a Riesz representation, say,

$$f(x) = \langle x, z \rangle, \quad z \in \mathbb{Z},$$

where ||z|| = ||f||.

- Since the inner product is defined on all of H, this gives at once a linear extension \tilde{f} of f from Z to H.
- Moreover, \tilde{f} has the same norm as f because $\|\tilde{f}\| = \|z\| = \|f\|$ by a preceding theorem.
- Hence in this case the extension is immediate.

Bounded Linear Functionals

Theorem (Bounded Linear Functionals)

Let X be a normed space and let $x_0 \neq 0$ be any element of X. Then there exists a bounded linear functional \tilde{f} on X such that $\|\tilde{f}\| = 1$, $\tilde{f}(x_0) = \|x_0\|$.

We consider the subspace Z of X consisting of all elements x = αx₀ where α is a scalar. On Z we define a linear functional f by f(x) = f(αx₀) = α||x₀||. f is bounded and has norm ||f|| = 1 because

$$|f(x)| = |f(\alpha x_0)| = |\alpha| ||x_0|| = ||\alpha x_0|| = ||x||.$$

The theorem implies that f has a linear extension \tilde{f} from Z to X, of norm $\|\tilde{f}\| = \|f\| = 1$. Thus, $\tilde{f}(x_0) = f(x_0) = \|x_0\|$.

Norm, Zero Vector

Corollary (Norm, Zero Vector)

For every x in a normed space X, we have

$$||x|| = \sup_{\substack{f \in X' \\ f \neq 0}} \frac{|f(x)|}{||f||}.$$

Hence if x_0 is such that $f(x_0) = 0$, for all $f \in X'$, then $x_0 = 0$.

• From the preceding theorem, we have, writing x for x_0 ,

$$\sup_{\substack{f \in X' \\ f \neq 0}} \frac{|f(x)|}{\|f\|} \ge \frac{|f(x)|}{\|f\|} = \frac{\|x\|}{1} = \|x\|.$$

But $|f(x)| \le ||f|| ||x||$. So, we also obtain

$$\sup_{\substack{f \in X' \\ f \neq 0}} \frac{|f(x)|}{\|f\|} \le \|x\|.$$

Subsection 4

Bounded Linear Functionals on C[a, b]

Vector Space of Functions of Bounded Variation

• A function w defined on [a, b] is said to be of **bounded variation** on [a, b] if its **total variation** Var(w) on [a, b] is finite, where

$$Var(w) = \sup \sum_{j=1}^{n} |w(t_j) - w(t_{j-1})|,$$

the supremum being taken over all **partitions** $a = t_0 < t_1 < \cdots < t_n = b$ of the interval [a, b]; both $n \in \mathbb{N}$ and the choice of values t_1, \ldots, t_{n-1} in [a, b] satisfying the inequalities are arbitrary.

- All functions of bounded variation on [a, b] form a vector space.
- A norm on this space is given by

$$\|w\| = |w(a)| + \operatorname{Var}(w).$$

• The normed space thus defined is denoted by BV[*a*, *b*], where BV suggests "bounded variation".

George Voutsadakis (LSSU)

The Riemann-Stieltjes Integral

- Let $x \in C[a, b]$ and $w \in BV[a, b]$.
- Let P_n be any partition of [a, b] given by $a = t_0 < t_1 < \cdots < t_n = b$ and denote by $\eta(P_n)$ the length of a largest interval $[t_{j-1}, t_j]$, that is,

$$\eta(P_n) = \max(t_1 - t_0, \ldots, t_n - t_{n-1}).$$

• For every partition P_n of [a, b], we consider the sum

$$s(P_n) = \sum_{j=1}^n x(t_j)[w(t_j) - w(t_{j-1})].$$

There exists a number *I* with the property that for every ε > 0, there is a δ > 0, such that

$$\eta(P_n) < \delta$$
 implies $|\mathscr{I} - s(P_n)| < \varepsilon$.

- \mathscr{I} is called the **Riemann-Stieltjes integral** of x over [a, b] with respect to w and is denoted by $\int_a^b x(t)dw(t)$.
- We can obtain ∫_a^b x(t)dw(t) as the limit of the sums s(P_n), for a sequence (P_n) of partitions of [a, b] satisfying η(P_n) ^{n→∞}→ 0.

Two Special Cases

- For w(t) = t, the integral $\int_a^b x(t)dw(t) = \int_a^b x(t)dt$ is the familiar Riemann integral of x over [a, b].
- If x is continuous on [a, b] and w has a derivative which is integrable on [a, b], then

$$\int_{a}^{b} x(t) dw(t) = \int_{a}^{b} x(t) w'(t) dt,$$

where the prime denotes differentiation with respect to t.

Linearity Properties and an Upper Bound

• The integral $\int_a^b x(t) dw(t)$ depends linearly on $x \in C[a, b]$, that is, for all $x_1, x_2 \in C[a, b]$ and scalars α and β we have

$$\int_a^b [\alpha x_1(t) + \beta x_2(t)] dw(t) = \alpha \int_a^b x_1(t) dw(t) + \beta \int_a^b x_2(t) dw(t).$$

The integral also depends linearly on w ∈ BV[a, b], i.e., for all w₁, w₂ ∈ BV[a, b] and scalars γ and δ we have

$$\int_a^b x(t)d(\gamma w_1 + \delta w_2)(t) = \gamma \int_a^b x(t)dw_1(t) + \delta \int_a^b x(t)dw_2(t).$$

It also holds that

$$\left|\int_{a}^{b} x(t) dw(t)\right| \leq \max_{t \in [a,b]} |x(t)| \operatorname{Var}(w).$$

This generalizes the formula $\left|\int_{a}^{b} x(t) dt\right| \leq \max_{t \in [a,b]} |x(t)|(b-a).$

Riesz's Theorem for Functionals on C[a, b]

Riesz's Theorem (Functionals on C[a, b])

Every bounded linear functional f on C[a, b] can be represented by a Riemann-Stieltjes integral $f(x) = \int_a^b x(t)dw(t)$. where w is of bounded variation on [a, b] and has the total variation Var(w) = ||f||.

- From the Hahn-Banach theorem for normed spaces we see that f has an extension \tilde{f} from C[a, b] to the normed space B[a, b] consisting of all bounded functions on [a, b] with norm defined by $\|x\| = \sup_{t \in J} |x(t)|, J = [a, b]$. Furthermore, by that theorem, the linear functional \tilde{f} is bounded and has the same norm as f, that is, $\|\tilde{f}\| = \|f\|$. To define the function w, consider the **characteristic function** of the interval [a, t]: $x_t = \begin{cases} 1, & \text{if } a \le x \le t \\ 0, & \text{if } t < x \le b \end{cases}$. Using x_t and the functional \tilde{f} , we define w on [a, b] by $w(a) = 0, w(t) = \tilde{f}(x_t)$,
 - $t \in (a, b]$. We show that w is of bounded variation and $Var(w) \le ||f||$.

Proof: Bounded Variation of w on [a, b]

• For a complex quantity we can use the polar form: Setting $\theta = \arg \zeta$, we may write $\zeta = |\zeta|e(\zeta)$, where $e(\zeta) = \begin{cases} 1, & \text{if } \zeta = 0\\ e^{i\theta}, & \text{if } \zeta \neq 0 \end{cases}$. We see that if $\zeta \neq 0$, then $|\zeta| = \frac{\zeta}{e^{i\theta}} = \zeta e^{-i\theta}$. Hence, for any ζ , zero or not, we have $|\zeta| = \zeta e(\zeta)$. Set $\varepsilon_i = e(w(t_i) - w(t_{i-1}))$ and $x_{t_i} = x_i$. Then $\sum_{i=1}^{n} |w(t_{j}) - w(t_{j-1})| = |\tilde{f}(x_{1})| + \sum_{i=2}^{n} |\tilde{f}(x_{j}) - \tilde{f}(x_{j-1})|$ $= \varepsilon_1 \tilde{f}(x_1) + \sum_{i=2}^n \varepsilon_i [\tilde{f}(x_j) - \tilde{f}(x_{j-1})]$ $= \tilde{f}(\varepsilon_1 x_1 + \sum_{i=2}^n \varepsilon_i [x_j - x_{j-1}])$ $\leq \|\widetilde{f}\| \|\varepsilon_1 x_1 + \sum_{j=2}^n \varepsilon_j [x_j - x_{j-1}] \|.$

On the right, $\|\tilde{f}\| = \|f\|$ and the other factor $\|\cdots\|$ equals 1 because $|\varepsilon_j| = 1$ and from the definition of the x_j 's we see that for each $t \in [a, b]$ only one of the terms $x_1, x_2 - x_1, \ldots$ is not zero (and of norm 1). On the left we now take the supremum over all partitions of [a, b]. Then we have $Var(w) \le \|f\|$.

Proof: The Integration Formula

We show f(x) = ∫_a^b x(t)dw(t), for x ∈ [a, b].
 For every partition P_n, we define a function, denoted simply by z_n (instead of z(P_n) or z_{P_n}), keeping in mind that z_n depends on P_n, not merely on n. The defining formula is

$$z_n = x(t_0)x_1 + \sum_{j=2}^n x(t_{j-1})[x_j - x_{j-1}].$$

Then $z_n \in B[a, b]$. By the definition of w,

$$\begin{split} \widetilde{f}(z_n) &= x(t_0)\widetilde{f}(x_1) + \sum_{j=2}^n x(t_{j-1})[\widetilde{f}(x_j) - \widetilde{f}(x_{j-1})] \\ &= x(t_0)w(t_1) + \sum_{j=2}^n x(t_{j-1})[w(t_j) - w(t_{j-1})] \\ &= \sum_{j=1}^n x(t_{j-1})[w(t_j) - w(t_{j-1})], \end{split}$$

where the last equality follows from $w(t_0) = w(a) = 0$. Choose a (P_n) , such that $\eta(P_n) \to 0$. As $n \to \infty$, the sum on the right approaches $\int_a^b x(t) dw(t)$. So it suffices to show $\tilde{f}(z_n) \to \tilde{f}(x)$, which equals f(x), since $x \in C[a, b]$.

George Voutsadakis (LSSU)
Bounded Linear Functionals on C[a, b]

Proof: $\tilde{f}(z_n) \to \tilde{f}(x)$

• We prove that
$$\tilde{f}(z_n) \to \tilde{f}(x)$$
.
Recall

$$z_n = x(t_0)x_1 + \sum_{j=2}^n x(t_{j-1})[x_j - x_{j-1}].$$

By the definition of x_t , this yields $z_n(a) = x(a) \cdot 1$, since the sum is zero at t = a. Hence, $z_n(a) - x(a) = 0$. Furthermore, if $t_{j-1} < t \le t_j$, then we obtain $z_n(t) = x(t_{j-1}) \cdot 1$. It follows that for those t, $|z_n(t) - x(t)| = |x(t_{j-1}) - x(t)|$. Consequently, if $\eta(P_n) \rightarrow 0$, then $||z_n - x|| \rightarrow 0$ because x is continuous on [a, b], hence uniformly continuous on [a, b], since [a, b] is compact. The continuity of \tilde{f} now implies that $\tilde{f}(z_n) \rightarrow \tilde{f}(x)$.

Proof: Var(w) = ||f||

• Finally, we show $\operatorname{Var}(w) = ||f||$. Recall $f(x) = \int_a^b x(t) dw(t)$ and $\left| \int_a^b x(t) dt \right| \le \max_{t \in [a,b]} |x(t)| \operatorname{Var}(w)$. So

$$|f(x)| \le \max_{t \in [a,b]} |x(t)| \operatorname{Var}(w) = ||x|| \operatorname{Var}(w).$$

Taking the supremum over all $x \in C[a, b]$ of norm one, we obtain $||f|| \le Var(w)$. Combining with $Var(w) \le ||f||$, this yields Var(w) = ||f||.

- We note that w in the theorem is not unique, but can be made unique by imposing the normalizing conditions that:
 - w be zero at a: w(a) = 0;
 - w continuous from the right: w(t+0) = w(t), a < t < b.

Subsection 5

Adjoint Operator

The Adjoint Operator

- Consider a bounded linear operator T : X → Y, where X and Y are normed spaces.
- Let g be any bounded linear functional on Y.
- Setting y = Tx, we obtain a functional on X, call it f:

$$f(x) = g(Tx), \quad x \in X.$$

- f is linear since g and T are linear.
- f is bounded because |f(x)| = |g(Tx)| ≤ ||g|| ||Tx|| ≤ ||g|| ||T|||x||. Taking the supremum over all x ∈ X of norm one, we obtain ||f|| ≤ ||g|| ||T||.
- Thus, $f \in X'$, where X' is the dual space of X.
- For variable g ∈ Y', f(x) = g(Tx) defines an operator from Y' into X', which is called the adjoint operator of T and is denoted by T[×]:

$$X \xrightarrow{T} Y, \qquad X' \xleftarrow{T^{\times}} Y'.$$

The Adjoint Operator and its Norm

Definition (Adjoint operator T^{\times})

Let $T: X \to Y$ be a bounded linear operator, where X and Y are normed spaces. The **adjoint operator** $T^{\times}: Y' \to X'$ is defined by $f(x) = (T^{\times}g)(x) = g(Tx), g \in Y'$, where X' and Y' are the dual spaces of X and Y.

Theorem (Norm of the Adjoint Operator)

The adjoint operator T^{\times} is linear and bounded, and $||T^{\times}|| = ||T||$.

• The operator \mathcal{T}^{\times} is linear since its domain Y' is a vector space and we have

$$(T^{\times}(\alpha g_1 + \beta g_2))(x) = (\alpha g_1 + \beta g_2)(Tx)$$

= $\alpha g_1(Tx) + \beta g_2(Tx)$
= $\alpha(T^{\times}g_1)(x) + \beta(T^{\times}g_2)(x).$

From $f(x) = (T^*g)(x) = g(Tx)$, we have $f = T^*g$. By $||f|| \le ||g|| ||T||$, $||T^*g|| = ||f|| \le ||g|| ||T||$. Taking the supremum over all $g \in Y'$ of norm one, we obtain $||T^*|| \le ||T||$. So we need to see that $||T^*|| \ge ||T||$.

The Adjoint Operator and its Norm

By the Hahn-Banach Theorem, for every nonzero x₀ ∈ X, there is a g₀ ∈ Y', such that ||g₀|| = 1 and g₀(Tx₀) = ||Tx₀||. By the definition of the adjoint, g₀(Tx₀) = (T[×]g₀)(x₀). Writing f₀ = T[×]g₀, we thus obtain

 $\|Tx_0\| = g_0(Tx_0) = f_0(x_0) \le \|f_0\| \|x_0\| = \|T^*g_0\| \|x_0\| \le \|T^*\| \|g_0\| \|x_0\|.$

Since $||g_0|| = 1$, we get, for every $x_0 \in X$, $||Tx_0|| \le ||T^*|| ||x_0||$. This includes $x_0 = 0$ since T0 = 0. But always $||Tx_0|| \le ||T|| ||x_0||$, and here c = ||T|| is the smallest constant c, such that $||Tx_0|| \le c ||x_0||$ holds, for all $x_0 \in X$. Hence, $||T^*||$ cannot be smaller than ||T||, that is, we must have $||T^*|| \ge ||T||$.

The Special Case of Matrices

- In *n*-dimensional Euclidean space \mathbb{R}^n , a linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ can be represented by matrices, where a matrix $T_E = (\tau_{jk})$ depends on the choice of a basis $E = \{e_1, \ldots, e_n\}$ for \mathbb{R}^n , whose elements are arranged in some order which is kept fixed.
- We choose a basis *E*, regard x = (ξ₁,...,ξ_n), y = (η₁,...,η_n) as column vectors and employ the usual notation for matrix multiplication:
 y = T_Ex or in components η_j = Σⁿ_{k=1} τ_{jk}ξ_k.
- Let $F = \{f_1, \dots, f_n\}$ be the dual basis of E.
- This is a basis for $\mathbb{R}^{n'}$ which is also Euclidean *n*-space.
- Then every $g \in \mathbb{R}^{n'}$ has a representation $g = \alpha_1 f_1 + \dots + \alpha_n f_n$.

The Special Case of Matrices (Cont'd)

- By the definition of the dual basis, we have $f_j(y) = f_j(\sum \eta_k e_k) = \eta_j$.
- Hence we obtain $g(y) = g(T_E x) = \sum_{j=1}^n \alpha_j \eta_j = \sum_{j=1}^n \sum_{k=1}^n \alpha_j \tau_{jk} \xi_k$.
- Interchanging the order of summation, $g(T_E x) = \sum_{k=1}^n \beta_k \xi_k$, where $\beta_k = \sum_{j=1}^n \tau_{jk} \alpha_j$.
- We may regard this as the definition of a functional f on X in terms of g: $f(x) = g(T_E x) = \sum_{k=1}^{n} \beta_k \xi_k$.
- Remembering the definition of the adjoint operator, we can write this $f = T_E^{\times} g$ or in components $\beta_k = \sum_{j=1}^n \tau_{jk} \alpha_j$.
- Noting that in β_k we sum with respect to the first subscript, i.e., over all elements of a column of T_E , we have:

If T is represented by a matrix T_E , then the adjoint operator T^{\times} is represented by the transpose of T_E .

Properties of Adjoints

- If $S, T \in B(X, Y)$, then • $(S+T)^{\times} = S^{\times} + T^{\times}$; • $(\alpha T)^{\times} = \alpha T^{\times}$.
- Let X, Y, Z be normed spaces and $T \in B(X, Y)$ and $S \in B(Y, Z)$. Then, for the adjoint of the product ST we have $(ST)^{\times} = T^{\times}S^{\times}$:

• If $T \in B(X, Y)$ and T^{-1} exists and $T^{-1} \in B(Y, X)$, then $(T^{\times})^{-1}$ also exists, $(T^{\times})^{-1} \in B(X', Y')$ and $(T^{\times})^{-1} = (T^{-1})^{\times}$.

The Operators A_1 and A_2

- Let $T: X \to Y$ be a bounded linear operator from a Hilbert space $X = H_1$ to a Hilbert space $Y = H_2$.
- In this case we first have $\begin{array}{c} H_1 & \stackrel{T}{\longrightarrow} & H_2 \\ H'_1 & \stackrel{T^{\times}}{\longleftarrow} & H'_2 \end{array}$ where the adjoint T^{\times} is defined by $T^{\times}g = f$, f(x) = g(Tx), for $f \in H'_1, g \in H'_2$.
- Since f and g are functionals on Hilbert spaces, they have Riesz representations, say, $f(x) = \langle x, x_0 \rangle$, $x_0 \in H_1$, and $g(y) = \langle y, y_0 \rangle$, $y_0 \in H_2$.
- We also know that x_0 and y_0 are uniquely determined by f and g, respectively.
- Thus, we get operators

$$\begin{array}{ll} A_1:H_1' \to H_1; & A_1f = x_0, \\ A_2:H_2' \to H_2; & A_2g = y_0. \end{array}$$

Properties of the Operators A_1 and A_2

- We know that A_1 and A_2 are bijective and isometric since $||A_1f|| = ||x_0|| = ||f||$, and similarly for A_2 .
- Furthermore, the operators A_1 and A_2 are conjugate linear: If we write $f_1(x) = \langle x, x_1 \rangle$ and $f_2(x) = \langle x, x_2 \rangle$, we have, for all x and scalars α, β ,

$$(\alpha f_1 + \beta f_2)(x) = \alpha f_1(x) + \beta f_2(x)$$

= $\alpha \langle x, x_1 \rangle + \beta \langle x, x_2 \rangle$
= $\langle x, \overline{\alpha} x_1 + \overline{\beta} x_2 \rangle.$

By the definition of A_1 , $A_1(\alpha f_1 + \beta f_2) = \overline{\alpha}A_1f_1 + \overline{\beta}A_1f_2$. So A_1 is conjugate linear.

• For A_2 the proof is similar.

Relation Between Adjoint and Hilbert-Adjoint

Composition gives the operator

$$T^* = A_1 T^{\times} A_2^{-1} : H_2 \rightarrow H_1;$$

$$T^* y_0 = x_0.$$

 T^* is linear since it involves two conjugate linear mappings, in addition to the linear operator T^* .

We show T^* is indeed the Hilbert-adjoint operator of T:

$$\langle Tx, y_0 \rangle = g(Tx) = f(x) = \langle x, x_0 \rangle = \langle x, T^*y_0 \rangle.$$

- $T^* = A_1 T^* A_2^{-1} : H_2 \to H_1$; $T^* y_0 = x_0$ represents the Hilbert-adjoint operator T^* of a linear operator T on a Hilbert space in terms of the adjoint operator T^* of T.
- $||T^*|| = ||T||$ follows from $||T^*|| = ||T||$ and the isometry of A_1 and A_2 .

Differences Between T^{*} and T^{*}

- Differences between the adjoint operator T^* of $T: X \to Y$ and the Hilbert-adjoint operator T^* of $T: H_1 \to H_2$, where X, Y are normed spaces and H_1, H_2 are Hilbert spaces:
 - T[×] is defined on the dual of the space which contains the range of T; T^{*} is defined directly on the space which contains the range of T.
 For T[×] we have

$$(\alpha T)^{\times} = \alpha T^{\times};$$

For T^* we have

$$(\alpha T)^* = \overline{\alpha} T^*.$$

- In the finite dimensional case:
 - T^{\times} is represented by the transpose of the matrix representing T;
 - T^* is represented by the complex conjugate transpose of that matrix.

Subsection 6

Reflexive Spaces

Review of Algebraic Reflexivity

- Recall that a vector space X is said to be algebraically reflexive if the canonical mapping $C: X \to X^{**}$ is surjective.
- X^{**} = (X^{*})^{*} is the second algebraic dual space of X and the mapping C is defined by x → g_x, where

$$g_x(f) = f(x), \quad f \in X^*$$
 variable,

i.e., for any $x \in X$, the image is the linear functional g_x defined as above.

• If X is finite dimensional, then X is algebraically reflexive.

The (Normed Space) Dual

- We consider a normed space X, its dual space X' and the dual space (X')', of X'.
- The space (X')' is denoted by X'' and is called the **second dual space** of X (or **bidual space** of X).
- We define a functional g_x on X' by choosing a fixed $x \in X$ and setting

 $g_{X}(f) = f(X), \quad f \in X'$ variable.

• As contrasted to algebraic duality, f here is bounded.

Lemma (Norm of g_x)

For every fixed x in a normed space X, the functional g_x is a bounded linear functional on X', so that $g_x \in X''$, and has the norm $||g_x|| = ||x||$.

• Linearity of
$$g_X$$
 is known. For the norm we have

$$\|g_X\| = \sup_{\substack{f \in X' \\ f \neq 0}} \frac{|g_x(f)|}{\|f\|} = \sup_{\substack{f \in X' \\ f \neq 0}} \frac{|f(x)|}{\|f\|} = \|x\|.$$

George Voutsadakis (LSSU)

The Canonical Mapping

To every x ∈ X, there corresponds a unique bounded linear functional g_x ∈ X" given by g_x(f) = f(x).
 This defines a mapping C : X → X"; x ↦ g_x, called the canonical

mapping of X into X''.

Lemma (Canonical Mapping)

The canonical mapping C is an isomorphism of the normed space X onto the normed space $\mathscr{R}(C)$, the range of C.

• For linearity of C,

$$g_{\alpha x+\beta y}(f) = f(\alpha x+\beta y) = \alpha f(x) + \beta f(y) = \alpha g_x(f) + \beta g_y(f).$$

In particular, $g_x - g_y = g_{x-y}$. Since $||g_x|| = ||x||$, $||g_x - g_y|| = ||g_{x-y}|| = ||x - y||$. Thus, *C* is isometric, i.e., it preserves the norm. Isometry implies injectivity. Hence *C* is bijective, regarded as a mapping onto its range.

Embeddability and Reflexivity

- X is said to be **embeddable** in a normed space Z if X is isomorphic with a subspace of Z.
- Isomorphism refers to isomorphisms of normed spaces, that is, vector space isomorphisms which preserve norm.
- By the lemma, X is embeddable in X", and C is also called the canonical embedding of X into X".
- In general, C will not be surjective, so that the range $\mathscr{R}(C)$ will be a proper subspace of X".

Definition (Reflexivity)

A normed space X is said to be **reflexive** if

$$\mathscr{R}(C)=X'',$$

where C is the canonical mapping $C: X \to X''; x \mapsto g_x$, with $g_x(f) = f(x)$, $f \in X'$.

Reflexivity Implies Completeness

- If X is reflexive, it is isomorphic (hence isometric) with X''.
 - The converse does not generally hold (R.C. James 1950, 1951).
- Completeness does not imply reflexivity.

Theorem (Completeness)

If a normed space X is reflexive, it is complete (hence a Banach space).

• Since X'' is the dual space of X', it is complete by a previous theorem. Reflexivity of X means that $\mathscr{R}(C) = X''$. Completeness of X now follows from that of X''.

Examples

- \mathbb{R}^n is reflexive: This follows directly from preceding work.
- If dim $X < \infty$, then every linear functional on X is bounded, so that $X' = X^*$ and algebraic reflexivity of X thus implies:

Theorem (Finite Dimension)

Every finite dimensional normed space is reflexive.

- ℓ^p with 1 is reflexive: This also follows from previous work.
- $L^p[a, b]$, with 1 , is reflexive.
- $C[a, b], \ell^1, L^1[a, b], \ell^\infty$ are nonreflexive spaces.
- The subspaces c and c_0 of ℓ^{∞} , where c is the space of all convergent sequences of scalars and c_0 is the space of all sequences of scalars converging to zero, are also nonreflexive.

Reflexivity of Hilbert Spaces

Theorem (Hilbert Space)

Every Hilbert space H is reflexive.

• We shall prove surjectivity of the canonical mapping $C: H \rightarrow H''$ by showing that, for every $g \in H''$, there is an $x \in H$, such that g = Cx. As a preparation we define $A: H' \to H$ by Af = z, where z is given by the Riesz representation $f(x) = \langle x, z \rangle$. We know that A is bijective and isometric. A is conjugate linear. Now H' is complete and a Hilbert space with inner product defined by $\langle f_1, f_2 \rangle_1 = \langle Af_2, Af_1 \rangle$. Note the order of f_1, f_2 on both sides. (IP1) to (IP4) are readily verified; e.g., for (IP2), $\langle \alpha f_1, f_2 \rangle_1 = \langle A f_2, A(\alpha f_1) \rangle = \langle A f_2, \overline{\alpha} A f_1 \rangle = \alpha \langle f_1, f_2 \rangle_1$. Let $g \in H''$ be arbitrary. Let its Riesz representation be $g(f) = \langle f, f_0 \rangle_1 = \langle Af_0, Af \rangle$. Recall that $f(x) = \langle x, z \rangle$, where z = Af. Writing $Af_0 = x$, we thus have $\langle Af_0, Af \rangle = \langle x, z \rangle = f(x)$. Together, g(f) = f(x), that is, g = Cx, by the definition of C. Since $g \in H''$ was arbitrary, C is surjective, so that H is reflexive.

George Voutsadakis (LSSU)

Separability and Reflexivity

- We next show that separability of X' implies separability of X (the converse not being generally true).
- Hence, if a normed space X is reflexive, X" is isomorphic with X, so that, in this case, separability of X implies separability of X", and, by the aforementioned upcoming result, the space X' is also separable.
- These results imply:

A separable normed space X with a nonseparable dual space X' cannot be reflexive.

Example: ℓ^1 is not reflexive.

 ℓ^1 is separable, as seen before. $\ell^{1'} = \ell^\infty$ is not separable. It follows that ℓ^1 cannot be reflexive.

Existence of a Functional

Lemma (Existence of a Functional)

Let Y be a proper closed subspace of a normed space X. Let $x_0 \in X - Y$ be arbitrary and $\delta = \inf_{\widetilde{y} \in Y} \|\widetilde{y} - x_0\|$ the distance from x_0 to Y. Then, there exists an $\widetilde{f} \in X'$, such that

$$\|\widetilde{f}\| = 1, \quad \widetilde{f}(y) = 0, \text{ for all } y \in Y, \quad \widetilde{f}(x_0) = \delta.$$

• We consider the subspace $Z \subseteq X$ spanned by Y and x_0 and:

• Define on Z a bounded linear functional f by

$$f(z) = f(y + \alpha x_0) = \alpha \delta$$
, for all $y \in Y$;

- Show that f satisfies the conditions;
- Extend f to X.

Proof of the Existence of a Functional

• Every $z \in Z = \text{span}(Y \cup \{x_0\})$ has a unique representation $z = y + \alpha x_0$, with $y \in Y$. This is used to define

$$f(z) = f(y + \alpha x_0) = \alpha \delta.$$

- Linearity of *f* is readily seen.
- Since Y is closed, $\delta > 0$, so that $f \neq 0$.
- $\alpha = 0$ gives f(y) = 0, for all $y \in Y$.
- For $\alpha = 1$ and y = 0, we have $f(x_0) = \delta$.

We show that f is bounded. $\alpha = 0$ gives f(z) = 0. Let $\alpha \neq 0$. Using the definition of δ and noting that $-\frac{1}{\alpha}y \in Y$, we obtain

$$|f(z)| = |\alpha|\delta = |\alpha|\inf_{\widetilde{y}\in Y} \|\widetilde{y} - x_0\| \le |\alpha| \left\| -\frac{1}{\alpha}y - x_0 \right\| = \|y + \alpha x_0\|,$$

i.e., $|f(z)| \le ||z||$. Hence f is bounded and $||f|| \le 1$.

Proof of the Existence of a Functional (Cont'd)

• We show that $||f|| \ge 1$: By the definition of an infimum, Y contains a sequence (y_n) , such that $||y_n - x_0|| \to \delta$. Let $z_n = y_n - x_0$. Then we have $f(z_n) = -\delta$. Also

$$||f|| = \sup_{\substack{z \in Z \\ z \neq 0}} \frac{|f(z)|}{||z||} \ge \frac{|f(z_n)|}{||z_n||} = \frac{\delta}{||z_n||} \to \frac{\delta}{\delta} = 1.$$

Hence $||f|| \ge 1$.

By the Hahn-Banach theorem for normed spaces, we can extend f to X without increasing the norm.

Separability Theorem

Theorem (Separability)

If the dual space X' of a normed space X is separable, then X itself is separable.

• We assume that X' is separable. Then the unit sphere

$$U' = \{f : ||f|| = 1\} \subseteq X'$$

also contains a countable dense subset, say, (f_n) . Since $f_n \in U'$, we have $||f_n|| = \sup_{||x||=1} |f_n(x)| = 1$. By the definition of a supremum we can find points $x_n \in X$ of norm 1 such that $|f_n(x_n)| \ge \frac{1}{2}$. Let Y be the closure of span (x_n) . Then Y is separable because Y has a countable dense subset, namely, the set of all linear combinations of the x_n 's with coefficients whose real and imaginary parts are rational.

We show that Y = X.

Separability Theorem (Cont'd)

• We show that Y = X.

Suppose $Y \neq X$. Then, since Y is closed, by the Lemma on the Existence of a Functional, there exists an $\tilde{f} \in X'$ with $\|\tilde{f}\| = 1$ and $\tilde{f}(y) = 0$, for all $y \in Y$. Since $x_n \in Y$, we have $\tilde{f}(x_n) = 0$ and for all n,

$$\frac{1}{2} \le |f_n(x_n)| = |f_n(x_n) - \tilde{f}(x_n)| = |(f_n - \tilde{f})(x_n)| \le ||f_n - \tilde{f}|| ||x_n||,$$

where $||x_n|| = 1$. Hence $||f_n - \tilde{f}|| \ge \frac{1}{2}$.

This contradicts the assumption that (f_n) is dense in U' because, as $\|\tilde{f}\| = 1$, \tilde{f} is itself in U'.

Subsection 7

Category and Uniform Boundedness Theorems

Cornerstone Theorems of Functional Analysis

- The corner stones of functional analysis are:
 - The Hahn-Banach Theorem;
 - The Uniform Boundedness Theorem;
 - The Open Mapping Theorem;
 - The Closed Graph Theorem.
- Unlike the Hahn-Banach, the other three require completeness.
- We shall obtain all three other theorems from a common source, the so-called *Baire's Category Theorem*.

Category

• Each of the concepts needed for Baire's Category Theorem has two names, a new name and an old one given in parentheses.

Definition (Category)

A subset M of a metric space X is said to be:

- (a) rare (or nowhere dense) in X if its closure \overline{M} has no interior points;
- (b) **meager** (or **of the first category**) in X if M is the union of countably many sets each of which is rare in X;
- (c) nonmeager (or of the second category) in X if M is not meager in X.

Baire's Category Theorem for Complete Metric Spaces

Baire's Category Theorem (Complete Metric Spaces)

If a metric space $X \neq \emptyset$ is complete, it is nonmeager in itself. Hence, if $X \neq \emptyset$ is complete and $X = \bigcup_{k=1}^{\infty} A_k$, A_k closed, then, at least one A_k contains a nonempty open subset.

The idea is simple: Suppose the complete metric space X ≠ Ø were meager in itself. Then X = ∪_{k=1}[∞] M_k, with each M_k rare in X. We shall construct a Cauchy sequence (p_k) whose limit p (which exists by completeness) is in no M_k, thereby contradicting X = ∪_{k=1}[∞] M_k. By assumption, M₁ is rare in X. By definition, M₁ does not contain a nonempty open set. But X does (for instance, X itself). This implies M₁ ≠ X. Hence, the complement M₁^c = X - M₁ of M₁ is nonempty and open. We may thus choose a point p₁ in M₁^c and an open ball about it, say, B₁ = B(p₁; ε₁) ⊆ M₁^c, ε₁ < ½.

Baire's Category Theorem (Cont'd)

- By assumption, M_2 is rare in X. So M_2 does not contain a nonempty open set. Hence it does not contain the open ball $B(p_1; \frac{1}{2}\varepsilon_1)$. This implies that $\overline{M}_2^c \cap B(p_1; \frac{1}{2}\varepsilon_1)$ is nonempty and open. Thus, we may choose an open ball $B_2 = B(p_2; \varepsilon_2) \subseteq \overline{M}_2^c \cap B(p_1; \frac{1}{2}\varepsilon_1)$, with $\varepsilon_2 < \frac{1}{2}\varepsilon_1$. By induction, we get a sequence of balls $B_k = B(p_k; \varepsilon_k)$, with $\varepsilon_k < \frac{1}{2k}$, such that $B_k \cap M_k = \emptyset$ and $B_{k+1} \subseteq B(p_k; \frac{1}{2}\varepsilon_k) \subseteq B_k, \ k = 1, 2, \dots$ Since $\varepsilon_k < \frac{1}{2^k}$, the sequence (p_k) is Cauchy and converges, say, $p_k \rightarrow p \in X$ because X is complete. Now, for all m, n > m, we have $B_n \subseteq B(p_m; \frac{1}{2}\varepsilon_m)$. So $d(p_m, p) \le d(p_m, p_n) + d(p_n, p) < \frac{1}{2}\varepsilon_m + d(p_n, p)$ $\stackrel{n\to\infty}{\to} \frac{1}{2}\varepsilon_m$. Hence $p\in B_m$, for all *m*. Since $B_m\subseteq \overline{M}_m^c$, we get $p\notin M_m$, for all *m*. So $p \notin \bigcup M_m = X$, a contradiction.
- We note that the converse of Baire's theorem is not generally true, i.e., there exists an incomplete normed space which is nonmeager in itself.

Uniform Boundedness Theorem

• We use Baire's Theorem to obtain the Uniform Boundedness Theorem.

Uniform Boundedness Theorem

Let (T_n) be a sequence of bounded linear operators $T_n: X \to Y$ from a Banach space X into a normed space Y such that $(||T_nx||)$ is bounded for every $x \in X$, say, $||T_nx|| \le c_x$, for all n = 1, 2, ..., where c_x is a real number. Then the sequence of the norms $||T_n||$ is bounded, that is, there is a c, such that $||T_n|| \le c$, n = 1, 2, ...

• For every $k \in \mathbb{N}$, let $A_k \subseteq X$ be the set of all x, such that $||T_n x|| \le k$, for all n.

 A_k is closed: Let $x \in \overline{A}_k$. Then, there is a sequence (x_j) in A_k converging to x. This means that, for every fixed n, $||T_nx_j|| \le k$. We obtain $||T_nx|| \le k$, because T_n is continuous and so is the norm. Hence $x \in A_k$, and A_k is closed.

Uniform Boundedness Theorem (Cont'd)

• By hypothesis, each $x \in X$ belongs to some A_k . Hence $X = \bigcup_{k=1}^{\infty} A_k$. Since X is complete, Baire's Theorem implies that some A_k contains an open ball, say, $B_0 = B(x_0; r) \subseteq A_{k_0}$. Let $x \in X$ be arbitrary, nonzero. We set

$$z = x_0 + \gamma x, \quad \gamma = \frac{\gamma}{2\|x\|}.$$

Then $||z - x_0|| < r$, so that $z \in B_0$. Since $B_0 \subseteq A_{k_0}$, $||T_n z|| \le k_0$, for all n. Also $||T_n x_0|| \le k_0$, since $x_0 \in B_0$. Since $x = \frac{1}{\gamma}(z - x_0)$, for all n,

$$||T_n x|| = \frac{1}{\gamma} ||T_n(z - x_0)|| \le \frac{1}{\gamma} (||T_n z|| + ||T_n x_0||) \le \frac{4}{r} ||x|| k_0.$$

Hence, for all n, $||T_n|| = \sup_{||x||=1} ||T_nx|| \le \frac{4}{r}k_0$. This is the conclusion with

 $c=\frac{4}{r}k_0.$

Application: Space of Polynomials

• The normed space X of all polynomials with norm defined by

 $||x|| = \max_{j} |\alpha_{j}|, \quad \alpha_{0}, \alpha_{1}, \dots$ the coefficients of x

is not complete.

We construct a sequence of bounded linear operators on X which satisfies $||T_nx|| \le c_x$ but not $||T_n|| \le c$, so that X cannot be complete. Write $x \ne 0$ of degree N_x as $x(t) = \sum_{j=0}^{\infty} \alpha_j t^j$, $\alpha_j = 0$, for $j > N_x$. As a sequence of operators on X, take $T_n = f_n$ defined by $T_n 0 = f_n(0) = 0$, $T_n x = f_n(x) = \alpha_0 + \alpha_1 + \dots + \alpha_{n-1}$. f_n is linear. f_n is bounded since $|f_n(x)| = |\alpha_0 + \dots + \alpha_{n-1}| \le n ||x||$.

- For each fixed x ∈ X, the sequence (|f_n(x)|) satisfies ||T_nx|| ≤ c_x: A polynomial x of degree N_x has N_x + 1 coefficients. So |f_n(x)| ≤ (N_x + 1)max_j |α_j| = c_x.
- We show there is no c such that $||T_n|| = ||f_n|| \le c$, for all n. For f_n , we choose x defined by $x(t) = 1 + t + \dots + t^n$. Then $||f_n|| \ge \frac{|f_n(x)|}{||x||} = n$. So $(||f_n||)$ is unbounded.

George Voutsadakis (LSSU)

Application: Fourier Series

• The Fourier series of a given periodic function x of period 2π is of the form

$$\frac{1}{2}a_0 + \sum_{m=1}^{\infty} (a_m \cos mt + b_m \sin mt)$$

with the Fourier coefficients of x given by the Euler formulas

$$a_m = \frac{1}{\pi} \int_0^{2\pi} x(t) \cos mt dt, \quad b_m = \frac{1}{\pi} \int_0^{2\pi} x(t) \sin mt dt.$$

It is well-known that the series may converge even at points where x is discontinuous. Thus, continuity is not necessary for convergence. Surprising enough, continuity is not sufficient either:

Claim: There exist real-valued continuous functions whose Fourier series diverge at a given point t_0 .

Let X be the normed space of all real-valued continuous functions of period 2π with norm defined by $||x|| = \max |x(t)|$. X is a Banach space. We may take $t_0 = 0$, without restricting generality.

George Voutsadakis (LSSU)
Fourier Series (Cont'd)

• To prove our statement, we shall apply the uniform boundedness theorem to $T_n = f_n$, where $f_n(x)$ is the value at t = 0 of the *n*-th partial sum of the Fourier series of x. Since for t = 0 the sine terms are zero and the cosine is one, we get

$$f_n(x) = \frac{1}{2}a_0 + \sum_{m=1}^n a_m = \frac{1}{\pi} \int_0^{2\pi} x(t) \left[\frac{1}{2} + \sum_{m=1}^n \cos mt \right] dt.$$

We want to determine the function represented by the sum under the integral sign. For this purpose we calculate

$$2\sin\frac{1}{2}t\sum_{m=1}^{n}\cos mt = \sum_{m=1}^{n}2\sin\frac{1}{2}t\cos mt \\ = \sum_{m=1}^{n}[-\sin(m-\frac{1}{2})t+\sin(m+\frac{1}{2})t] \\ = -\sin\frac{1}{2}t+\sin(n+\frac{1}{2})t.$$

Dividing this by $\sin \frac{1}{2}t$ and adding 1 on both sides, we have $1+2\sum_{m=1}^{n}\cos mt = \frac{\sin(n+\frac{1}{2})t}{\sin \frac{1}{2}t}.$

The Linear Functional f_n is Bounded

• Now the formula for $f_n(x)$ can be written in the simple form

$$f_n(x) = \frac{1}{2\pi} \int_0^{2\pi} x(t) q_n(t) dt, \quad q_n(t) = \frac{\sin(n + \frac{1}{2})t}{\sin\frac{1}{2}t}.$$

Using this, we can show that the linear functional f_n is bounded: Using $||x|| = \max |x(t)|$ and the preceding relations,

$$|f_n(x)| \leq \frac{1}{2\pi} \max |x(t)| \int_0^{2\pi} |q_n(t)| dt = \frac{\|x\|}{2\pi} \int_0^{2\pi} |q_n(t)| dt.$$

From this we see that f_n is bounded. Furthermore, by taking the supremum over all x of norm 1, we obtain $||f_n|| \le \frac{1}{2\pi} \int_0^{2\pi} |q_n(t)| dt$.

$||f_n|| = \frac{1}{2\pi} \int_0^{2\pi} |q_n(t)| dt$

• We showed $||f_n|| \le \frac{1}{2\pi} \int_0^{2\pi} |q_n(t)| dt$. Actually, the equality sign holds: To see this, first write $|q_n(t)| = y(t)q_n(t)$, where y(t) = +1 at every t at which $q_n(t) \ge 0$ and y(t) = -1 elsewhere. y is not continuous, but, for any given $\varepsilon > 0$, it may be modified to a continuous x of norm 1 such that, for this x, we have $\frac{1}{2\pi} |\int_0^{2\pi} [x(t) - y(t)]q_n(t)dt| < \varepsilon$. Writing this as two integrals, we obtain

$$\frac{1}{2\pi} \left| \int_0^{2\pi} x(t) q_n(t) dt - \int_0^{2\pi} y(t) q_n(t) dt \right| \\ = \left| f_n(x) - \frac{1}{2\pi} \int_0^{2\pi} |q_n(t)| dt \right| < \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary and ||x|| = 1, this proves

$$\|f_n\| = \frac{1}{2\pi} \int_0^{2\pi} |q_n(t)| dt.$$

The Sequence $(||f_n||)$ is Unbounded

• Substituting $q_n(t) = \frac{\sin(n+\frac{1}{2})t}{\sin\frac{1}{2}t}$ into $||f_n|| = \frac{1}{2\pi} \int_0^{2\pi} |q_n(t)| dt$, using the fact that $|\sin\frac{1}{2}t| < \frac{1}{2}t$ for $t \in (0, 2\pi]$ and substituting $v = (n+\frac{1}{2})t$,

$$\begin{split} \|f_n\| &= \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{\sin(n+\frac{1}{2})t}{\sin\frac{1}{2}t} \right| dt > \frac{1}{\pi} \int_0^{2\pi} \frac{|\sin(n+\frac{1}{2})t|}{t} dt \\ &= \frac{1}{\pi} \int_0^{(2n+1)\pi} \frac{|\sin v|}{v} dv = \frac{1}{\pi} \sum_{k=0}^{2n} \int_{k\pi}^{(k+1)\pi} \frac{|\sin v|}{v} dv \\ &\ge \frac{1}{\pi} \sum_{k=0}^{2n} \frac{1}{(k+1)\pi} \int_{k\pi}^{(k+1)\pi} |\sin v| dv = \frac{2}{\pi^2} \sum_{k=0}^{2n} \frac{1}{k+1} \to \infty. \end{split}$$

Hence $(||f_n||)$ is unbounded. Thus, with $T_n = f_n$, $||T_n|| \le c$ does not hold. Since X is complete, this implies that $||T_nx|| \le c_x$ cannot hold for all x. Hence, there must be an $x \in X$, such that $(|f_n(x)|)$ is unbounded. But, by the definition of the f_n 's, this means that the Fourier series of that x diverges at t = 0.

Subsection 8

Strong and Weak Convergence

Introducing Weak Convergence

- In calculus one defines different types of convergence:
 - ordinary;
 - conditional;
 - absolute;
 - uniform.
- This yields greater flexibility in the theory and application of sequences and series.
- In functional analysis one has an even greater variety of possibilities that turn out to be of practical interest.
 - "Weak convergence" is a basic concept whose theory makes essential use, and is one of the major applications, of the uniform boundedness theorem.

Strong Convergence

• Convergence of sequences of elements in a normed space, as defined previously, will be called strong convergence, to distinguish it from "weak convergence" to be introduced on the following slide.

Definition (Strong Convergence)

A sequence (x_n) in a normed space X is said to be **strongly convergent** (or **convergent in the norm**) if there is an $x \in X$, such that

$$\lim_{n\to\infty}\|x_n-x\|=0.$$

This is written $\lim_{n\to\infty} x_n = x$ or simply $x_n \to x$. x is called the **strong limit** of (x_n) , and we say that (x_n) **converges strongly to** x.

Weak Convergence

• Weak convergence is defined in terms of bounded linear functionals on *X* as follows:

Definition (Weak Convergence)

A sequence (x_n) in a normed space X is said to be weakly convergent if there is an $x \in X$, such that, for every $f \in X'$,

$$\lim_{n\to\infty}f(x_n)=f(x).$$

This is written $x_n \stackrel{\text{w}}{\rightarrow} x$ or $x_n \rightarrow x$. The element x is called the **weak limit** of (x_n) , and we say that (x_n) **converges weakly to** x.

 Note that weak convergence means convergence of the sequence of numbers a_n = f(x_n), for every f ∈ X'.

The Weak Convergence Lemma

Lemma (Weak Convergence)

Let (x_n) be a weakly convergent sequence in a normed space X, say, $x_n \stackrel{\text{w}}{\rightarrow} x$. Then:

- (a) The weak limit x of (x_n) is unique.
- (b) Every subsequence of (x_n) converges weakly to x.
- (c) The sequence $(||x_n||)$ is bounded.
- (a) Suppose that x_n → x as well as x_n → y. Then f(x_n) → f(x) as well as f(x_n) → f(y). Since (f(x_n)) is a sequence of numbers, its limit is unique. Hence f(x) = f(y), that is, for every f ∈ X', we have f(x) f(y) = f(x y) = 0. This implies x y = 0 and shows that the weak limit is unique.

The Weak Convergence Lemma (Cont'd)

- (b) follows from the fact that $(f(x_n))$ is a convergent sequence of numbers, so that every subsequence of $(f(x_n))$ converges and has the same limit as the sequence.
- (c) Since (f(x_n)) is a convergent sequence of numbers, it is bounded, say, |f(x_n)| ≤ c_f, for all n, where c_f is a constant depending on f but not on n. Using the canonical mapping C : X → X", we can define g_n ∈ X" by g_n(f) = f(x_n), for all f ∈ X'. (We write g_n instead of g_{x_n}.) Then for all n, |g_n(f)| = |f(x_n)| ≤ c_f, that is, the sequence (|g_n(f)|) is bounded for every f ∈ X'. Since X' is complete, by the Uniform Boundedness Theorem, (||g_n||) is bounded. Now ||g_n|| = ||x_n||, so that (c) is proved.

Relation Between Strong and Weak Convergence

• In finite dimensional normed spaces the distinction between strong and weak convergence disappears completely.

Theorem (Strong and Weak Convergence)

Let (x_n) be a sequence in a normed space X. Then:

- (a) Strong convergence implies weak convergence with the same limit.
- (b) The converse of (a) is not generally true.
- (c) If dim $X < \infty$, then weak convergence implies strong convergence.
- (a) By definition, $x_n \rightarrow x$ means $||x_n x|| \rightarrow 0$. This implies, for all $f \in X'$,

$$|f(x_n) - f(x)| = |f(x_n - x)| \le ||f|| ||x_n - x|| \to 0.$$

This shows that $x_n \xrightarrow{w} x$.

Relation Between Strong and Weak Convergence: Part (b)

(b) can be seen from an orthonormal sequence (e_n) in a Hilbert space H. In fact, every $f \in H'$ has a Riesz representation $f(x) = \langle x, z \rangle$. Hence, $f(e_n) = \langle e_n, z \rangle$. Now the Bessel inequality is $\sum_{n=1}^{\infty} |\langle e_n, z \rangle|^2 \le ||z||^2$. Hence, the series on the left converges, so that its terms must approach zero as $n \to \infty$. This implies $f(e_n) = \langle e_n, z \rangle \to 0$. Since $f \in H'$ was arbitrary, we see that $e_n \stackrel{\text{w}}{\to} 0$. However, (e_n) does not converge strongly because, for all $m \neq n$,

$$||e_m - e_n||^2 = \langle e_m - e_n, e_m - e_n \rangle = 2.$$

Relation Between Strong and Weak Convergence: Part (c)

(c) Suppose that $x_n \stackrel{\text{w}}{\to} x$ and $\dim X = k$. Let $\{e_1, \dots, e_k\}$ be any basis for Xand, say, $x_n = \alpha_1^{(n)} e_1 + \dots + \alpha_k^{(n)} e_k$ and $x = \alpha_1 e_1 + \dots + \alpha_k e_k$. By assumption, $f(x_n) \to f(x)$, for every $f \in X'$. We take in particular f_1, \dots, f_k defined by $f_j(e_j) = 1$, $f_j(e_m) = 0$, for $m \neq j$. This is the dual basis of $\{e_1, \dots, e_k\}$. Then $f_j(x_n) = \alpha_j^{(n)}$, $f_j(x) = \alpha_j$. Hence, $f_j(x_n) \to f_j(x)$ implies $\alpha_j^{(n)} \to \alpha_j$. From this we readily obtain

$$\|x_n - x\| = \left\|\sum_{j=1}^k (\alpha_j^{(n)} - \alpha_j) e_j\right\| \leq \sum_{j=1}^k |\alpha_j^{(n)} - \alpha_j| \|e_j\| \xrightarrow{n \to \infty} 0.$$

This shows that (x_n) converges strongly to x.

• It is interesting to note that there also exist infinite dimensional spaces such that strong and weak convergence are equivalent concepts.

The Weak Convergence Lemma

Lemma (Weak Convergence)

In a normed space X we have $x_n \xrightarrow{w} x$ if and only if:

- (A) The sequence $(||x_n||)$ is bounded.
 - B) For every element f of a total subset $M \subseteq X'$, we have $f(x_n) \rightarrow f(x)$.
 - In the case of weak convergence, a preceding lemma gives (A), and (B) is trivial.

Conversely, suppose that (A) and (B) hold. Let us consider any $f \in X'$ and show that $f(x_n) \to f(x)$, which is weak convergence, by definition. By (A), $||x_n|| \le c$, for all n, and $||x|| \le c$, where c is sufficiently large. Since M is total in X', for every $f \in X'$, there is a sequence (f_j) in spanM, such that $f_j \to f$. Hence, for any given $\varepsilon > 0$, we can find a j, such that $||f_j - f|| < \frac{\varepsilon}{3c}$. Moreover, since $f_j \in \text{span} M$, by (B), there is an N, such that, for all n > N, $|f_j(x_n) - f_j(x)| < \frac{\varepsilon}{3}$.

The Weak Convergence Lemma (Cont'd)

We have

$$||f_j - f|| < \frac{\varepsilon}{3c}$$
 and $|f_j(x_n) - f_j(x)| < \frac{\varepsilon}{3}$, all $n > N$.

Using these two inequalities and applying the triangle inequality, we obtain for n > N,

$$\begin{aligned} |f(x_n) - f(x)| &\leq |f(x_n) - f_j(x_n)| + |f_j(x_n) - f_j(x)| + |f_j(x) - f(x)| \\ &< \|f - f_j\| \|x_n\| + \frac{\varepsilon}{3} + \|f_j - f\| \|x\| \\ &< \frac{\varepsilon}{3c}c + \frac{\varepsilon}{3} + \frac{\varepsilon}{3c}c = \varepsilon. \end{aligned}$$

Since $f \in X'$ was arbitrary, this shows that the sequence (x_n) converges weakly to x.

Examples

- **Hilbert Space**: In a Hilbert space, $x_n \stackrel{\text{w}}{\rightarrow} x$ if and only if $\langle x_n, z \rangle \rightarrow \langle x, z \rangle$, for all z in the space.
- Space ℓ^p: In ℓ^p, where 1 n</sub> → x if and only if:
 (A) The sequence (||x_n||) is bounded.
 - (B) For every fixed j, $\xi_j^{(n)} \xrightarrow{n \to \infty} \xi_j$, where $x_n = (\xi_j^{(n)})$ and $x = (\xi_j)$.

The dual space of ℓ^p is ℓ^q . A Schauder basis of ℓ^q is (e_n) , where $e_n = (\delta_{nj})$ has 1 in the *n*-th place and zeros elsewhere. Span (e_n) is dense in ℓ^q , so the conclusion results from the Weak Convergence Lemma.

Subsection 9

Convergence of Sequences of Operators and Functionals

Sequences of Operators

- For sequences of elements in a normed space, strong and weak convergence as defined in the previous section are useful.
- For sequences of operators $T_n \in B(X, Y)$, three types of convergence turn out to be of theoretical as well as practical value:
 - (1) Convergence in the norm on B(X, Y);
 - (2) Strong convergence of $(T_n x)$ in Y;
 - (3) Weak convergence of $(T_n x)$ in Y.

Convergence of Sequences of Operators

Definition (Convergence of Sequences of Operators)

Let X and Y be normed spaces. A sequence (T_n) of operators $T_n \in B(X, Y)$ is said to be:

- (1) **uniformly operator convergent** if (T_n) converges in the norm on B(X, Y);
- (2) strongly operator convergent if (*T_nx*) converges strongly in *Y*, for every *x* ∈ *X*;
- (3) weakly operator convergent if $(T_n x)$ converges weakly in Y, for every $x \in X$.

In formulas, this means that there is an operator $T: X \rightarrow Y$, such that:

$$(1) ||T_n - T|| \to 0;$$

- (2) $||T_n x Tx|| \rightarrow 0$, for all $x \in X$;
- (3) $|f(T_nx)-f(Tx)| \rightarrow 0$, for all $x \in X$ and all $f \in Y'$.

T is called the uniform, strong and weak operator limit of (T_n) , resp.

Uniform versus Strong Operator Convergence

• It is not difficult to show that

uniform \Rightarrow strong \Rightarrow weak operator convergence.

- The converse is not generally true:
- Example (Space ℓ^2) In the space ℓ^2 , we consider a sequence (T_n) , where $T_n: \ell^2 \to \ell^2$ is defined by

$$T_n x = (0, 0, \dots, 0, \xi_{n+1}, \xi_{n+2}, \dots),$$

where, $x = (\xi_1, \xi_2, ...) \in \ell^2$.

This operator T_n is linear and bounded.

Clearly, (T_n) is strongly operator convergent to 0 since $T_n x \rightarrow 0 = 0x$. However, (T_n) is not uniformly operator convergent since we have $||T_n - 0|| = ||T_n|| = 1$.

Strong versus Weak Operator Convergence

• Example (Space ℓ^2): Another sequence (T_n) of operators $T_n: \ell^2 \to \ell^2$ is defined by

$$T_n x = (\underbrace{0, 0, \dots, 0}_{n \text{ zeros}}, \xi_1, \xi_2, \dots),$$

where
$$x = (\xi_1, \xi_2, ...) \in \ell^2$$
.

This operator T_n is linear and bounded.

 (T_n) is weakly operator convergent to 0 but not strongly:

• Every bounded linear functional f on ℓ^2 has a Riesz representation $f(x) = \langle x, z \rangle = \sum_{j=1}^{\infty} \xi_j \overline{\zeta}_j$, where $z = (\zeta_j) \in \ell^2$.

Strong versus Weak Operator Convergence (Cont'd)

Hence, setting j = n + k and using the definition of T_n , we have

$$f(T_n x) = \langle T_n x, z \rangle = \sum_{j=n+1}^{\infty} \xi_{j-n} \overline{\zeta}_j = \sum_{k=1}^{\infty} \xi_k \overline{\zeta}_{n+k}.$$

By the Cauchy-Schwarz inequality

$$|f(T_nx)|^2 = |\langle T_nx,z\rangle|^2 \leq \sum_{k=1}^{\infty} |\xi_k|^2 \sum_{m=n+1}^{\infty} |\zeta_m|^2.$$

The last series is the remainder of a convergent series. Hence, the right-hand side approaches 0 as $n \to \infty$. So $f(T_n x) \to 0 = f(0x)$ and (T_n) is weakly operator convergent to 0.

• (T_n) is not strongly operator convergent because for x = (1, 0, 0, ...), we have, for all $m \neq n$, $||T_m x - T_n x|| = \sqrt{1^2 + 1^2} = \sqrt{2}$.

The Case of Linear Functionals

- Linear functionals are linear operators (with range in the scalar field \mathbb{R} or \mathbb{C}), so that the previous definitions apply immediately.
- In this case (2) and (3) become equivalent for the following reason: We had T_nx ∈ Y, but we now have f_n(x) ∈ ℝ (or ℂ). Hence, convergence in (2) and (3) now takes place in the finite dimensional (one-dimensional) space ℝ (or ℂ).
 So the equivalence of (2) and (3) follows from a preceding theorem.

Strong and Weak* Convergence

Definition (Strong and Weak* Convergence)

Let (f_n) be a sequence of bounded linear functionals on a normed space X. Then:

- (a) **Strong convergence** of (f_n) means that there is an $f \in X'$, such that $||f_n f|| \to 0$. This is written $f_n \to f$.
- (b) Weak* convergence of (f_n) means that there is an $f \in X'$, such that $f_n(x) \to f(x)$, for all $x \in X$. This is written $f_n \stackrel{\text{w}^*}{\to} f$.

f in (a) and (b) is called the **strong limit** and **weak**^{*} **limit** of (f_n) , respectively.

Properties of the Limit Operators

- Considering the limit operator $T: X \to Y$ of the sequence $T_n \in B(X, Y)$:
 - If the convergence is uniform, $T \in B(X, Y)$; otherwise, $||T_n - T||$ would not make sense.
 - If the convergence is strong or weak, *T* is still linear but may be unbounded if *X* is not complete.

Example: The space X of all sequences $x = (\xi_j)$ in ℓ^2 with only finitely many nonzero terms, taken with the metric on ℓ^2 , is not complete. A sequence of bounded linear operators T_n on X is defined by

$$T_n x = (\xi_1, 2\xi_2, 3\xi_3, \dots, n\xi_n, \xi_{n+1}, \xi_{n+2}, \dots),$$

so that $T_n x$ has terms $j\xi_j$ if $j \le n$ and ξ_j if j > n.

This sequence (T_n) converges strongly to the unbounded linear operator T defined by $Tx = (\eta_j)$, where $\eta_j = j\xi_j$.

Strong Operator Convergence (Complete Domain)

• If X is complete, the situation illustrated by the example cannot occur:

Lemma (Strong Operator Convergence)

Let $T_n \in B(X, Y)$, where X is a Banach space and Y a normed space. If (T_n) is strongly operator convergent with limit T, then $T \in B(X, Y)$.

Linearity of T follows readily from that of T_n. Since T_nx → Tx, for every x ∈ X, the sequence (T_nx) is bounded for every x. Since X is complete, (||T_n||) is bounded by the Uniform Boundedness Theorem, say, ||T_n|| ≤ c, for all n. Hence,

$$||T_n x|| \le ||T_n|| ||x|| \le c ||x||.$$

```
This implies ||Tx|| \le c ||x||.
```

Criterion of Strong Operator Convergence

Theorem (Strong Operator Convergence)

A sequence (T_n) of operators $T_n \in B(X, Y)$, where X and Y are Banach spaces, is strongly operator convergent if and only if:

- (A) The sequence $(||T_n||)$ is bounded.
- (B) The sequence $(T_n x)$ is Cauchy in Y, for every x in a total subset M of X.
 - If T_nx → Tx, for every x ∈ X, then (A) follows from the Uniform Boundedness Theorem (since X is complete), and (B) is trivial. Conversely, suppose that (A) and (B) hold, so that, say,

 $||T_n|| \le c$, for all n.

We consider any $x \in X$ and show that $(T_n x)$ converges strongly in Y.

Criterion of Strong Operator Convergence (Cont'd)

• Let $\varepsilon > 0$ be given. Since spanM is dense in X, there is a $y \in \text{span}M$, such that $||x - y|| < \frac{\varepsilon}{3c}$. Since $y \in \text{span}M$, the sequence $(T_n y)$ is Cauchy by (B). Hence, there is an N, such that $||T_n y - T_m y|| < \frac{\varepsilon}{3}$, for all m, n > N. Using these two inequalities and applying the triangle inequality, we readily see that $(T_n x)$ is Cauchy in Y: For m, n > N,

$$\begin{split} \|T_n x - T_m x\| &\leq \|T_n x - T_n y\| + \|T_n y - T_m y\| + \|T_m y - T_m x\| \\ &< \|T_n\| \|x - y\| + \frac{\varepsilon}{3} + \|T_m\| \|x - y\| \\ &< c \frac{\varepsilon}{3c} + \frac{\varepsilon}{3} + c \frac{\varepsilon}{3c} = \varepsilon. \end{split}$$

Since Y is complete, $(T_n x)$ converges in Y. Since $x \in X$ was arbitrary, this proves strong operator convergence of (T_n) .

Criterion for Weak* Convergence of Functionals

Corollary (Functionals)

A sequence (f_n) of bounded linear functionals on a Banach space X is weak^{*} convergent, the limit being a bounded linear functional on X, if and only if:

- (A) The sequence $(||f_n||)$ is bounded.
- (B) The sequence $(f_n(x))$ is Cauchy for every x in a total subset M of X.

Subsection 10

Application to Summability of Sequences

Summability Methods

- A divergent sequence has no limit in the usual sense.
- The theory of divergent sequences aims at associating with certain divergent sequences a "limit" in a generalized sense.
- A procedure for that purpose is called a summability method.
 Example: A divergent sequence x = (ξ_k) being given, we may calculate the sequence y = (η_n) of the arithmetic means

$$\eta_1 = \xi_1, \ \eta_2 = \frac{1}{2}(\xi_1 + \xi_2), \dots, \eta_n = \frac{1}{n}(\xi_1 + \dots + \xi_n), \dots$$

If y converges with limit η (in the usual sense), we say that x is summable by the present method and has the generalized limit η . For instance, if x = (0, 1, 0, 1, 0, ...), then $y = (0, \frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \frac{2}{5}, ...)$ and x has the generalized limit $\frac{1}{2}$.

Matrix Summability Methods

- A summability method is called a matrix method if it can be represented in the form y = Ax, where x = (ξ_k) and y = (η_n) are written as infinite column vectors and A = (α_{nk}) is an infinite matrix.
- In the formula y = Ax we used matrix multiplication, that is, y has the terms

$$\eta_n = \sum_{k=1}^{\infty} \alpha_{nk} \xi_k, \quad n = 1, 2, \dots$$

- The preceding example illustrates a matrix method.
- The method given here is briefly called an *A*-**method** because the corresponding matrix is denoted by *A*.
- If the series η_n converges, for all n, and $y = (\eta_n)$ converges in the usual sense, its limit is called the *A*-limit of *x*, and *x* is said to be *A*-summable.
- The set of all *A*-summable sequences is called the **range** of the *A*-method.

George Voutsadakis (LSSU)

Regular Matrix Summability Methods

- An A-method is said to be regular (or permanent) if its range includes all convergent sequences and if, for every such sequence, the A-limit equals the usual limit, that is, if ξ_k → ξ implies η_n → ξ.
- A method which is not applicable to certain convergent sequences or alters their limit would be of no practical use.

Toeplitz Limit Theorem (Regular Summability Methods)

An A-summability method with matrix $A = (\alpha_{nk})$ is regular if and only if:

- (1) $\lim_{n \to \infty} \alpha_{nk} = 0$, for k = 1, 2, ...;
- (2) $\lim_{n \to \infty} \sum_{k=1}^{\infty} \alpha_{nk} = 1;$
- (3) $\sum_{k=1}^{\infty} |\alpha_{nk}| \le \gamma$, for n = 1, 2, ..., where γ is a constant which does not depend on n.

Necessity of the Conditions

- (a) Suppose that the A-method is regular. Let x_k have 1 as the k-th term and all other terms zero. For x_k we have η_n = α_{nk}. Since x_k is convergent and has the limit 0, this shows that (1) must hold. Furthermore, x = (1,1,1,...) has the limit 1. Now η_n equals the series in (2). Consequently, (2) must hold. We prove that (3) is necessary for regularity: Let c be the Banach space of all convergent sequences with norm defined by ||x|| = sup_i |ξ_i|.
 - Linear functionals f_{nm} on c are defined by $f_{nm}(x) = \sum_{k=1}^{m} \alpha_{nk} \xi_k$, $m, n = 1, 2, \dots$ Each f_{nm} is bounded since

$$|f_{nm}(x)| \le \sup_{j} |\xi_{j}| \sum_{k=1}^{m} |\alpha_{nk}| = \left(\sum_{k=1}^{m} |\alpha_{nk}|\right) ||x||.$$

Regularity implies the convergence of the series η_n , for all $x \in C$.

Necessity of the Conditions (Cont'd)

 Hence, it defines linear functionals f₁, f₂,... on c given by η_n = f_n(x) = Σ_{k=1}[∞] α_{nk}ξ_k, n = 1,2,.... Thus, f_{nm}(x) → f_n(x) as m→∞, for all x ∈ c. This is weak* convergence, and f_n is bounded. Also, (f_n(x)) converges for all x ∈ c, and (||f_n||) is bounded, say, ||f_n|| ≤ γ. For an arbitrary fixed m ∈ N, define

$$\xi_k^{(n,m)} = \begin{cases} \frac{|\alpha_{nk}|}{\alpha_{nk}}, & \text{if } k \le m \text{ and } \alpha_{nk} \ne 0\\ 0, & \text{if } k > m \text{ or } \alpha_{nk} = 0 \end{cases}$$

Then $x_{nm} = (\xi_k^{(n,m)}) \in c$. Also $||x_{nm}|| = 1$, if $x_{nm} \neq 0$, and $||x_{nm}|| = 0$, if $x_{nm} = 0$. Furthermore, for all m,

$$f_{nm}(x_{nm}) = \sum_{k=1}^{m} \alpha_{nk} \xi_k^{(n,m)} = \sum_{k=1}^{m} |\alpha_{nk}|.$$

Hence, $\sum_{k=1}^{m} |\alpha_{nk}| = f_{nm}(x_{nm}) \le ||f_{nm}||$ and $\sum_{k=1}^{\infty} |\alpha_{nk}| \le ||f_n||$. This shows that the series in (3) converges.

Sufficiency of the Conditions

• We prove that (1) to (3) is sufficient for regularity.

We define a linear functional f on c by $f(x) = \xi = \lim_{k \to \infty} \xi_k$, where $x = (\xi_k) \in c$. Boundedness of f can be seen from $|f(x)| = |\xi| \le \sup_j |\xi_j| = ||x||$. Let $M \subseteq c$ be the set of all sequences whose terms are equal from some term on, say, $x = (\xi_k)$, where $\xi_j = \xi_{j+1} = \xi_{j+2} = \cdots = \xi$, and j depends on x. Then $f(x) = \xi$, and we obtain

$$\eta_n = f_n(x) = \sum_{k=1}^{j-1} \alpha_{nk} \xi_k + \xi \sum_{k=j}^{\infty} \alpha_{nk} = \sum_{k=1}^{j-1} \alpha_{nk} (\xi_k - \xi) + \xi \sum_{k=1}^{\infty} \alpha_{nk}.$$

Hence by (1) and (2), for all $n \in M$, $\eta_n = f_n(x) \rightarrow 0 + \xi \cdot 1 = \xi = f(x)$.
Application to Summability of Sequences

Sufficiency of the Conditions (Cont'd)

• We show next that the set M on which we have the convergence $\eta_n = f_n(x) \to f(x)$ is dense in c. Let $x = (\xi_k) \in c$ with $\xi_k \to \xi$. Then, for every $\varepsilon > 0$, there is an N, such that $|\xi_k - \xi| < \varepsilon$, for all $k \ge N$. Clearly, $\tilde{x} = (\xi_1, \dots, \xi_{N-1}, \xi, \xi, \dots) \in M$ and $x - \tilde{x} = (0, \dots, 0, \xi_N - \xi, \xi_{N+1} - \xi, \dots)$. It follows that $||x - \tilde{x}|| \le \varepsilon$. Since $x \in c$ was arbitrary, this shows that M is dense in c. Finally, by (3), $|f_n(x)| \le ||x|| \sum_{k=1}^{\infty} |\alpha_{nk}| \le \gamma ||x||$, for all $x \in c$ and all n. Hence, $||f_n|| \le \gamma$, that is, $(||f_n||)$ is bounded. Furthermore, $f(x_n) \rightarrow f(x)$ gives convergence for all x in a dense M. By a preceding corollary, this implies weak^{*} convergence $f_n \stackrel{\text{w}^*}{\to} f$. Thus, we have shown that, if $\xi = \lim \xi_k$ exists, it follows that $\eta_n \to \xi$. By definition, this means regularity and the theorem is proved.

Subsection 11

Numerical Integration and Weak* Convergence

Integral Approximation Methods

- We consider numerical integration, that is, the problem of obtaining approximate values for a given integral $\int_a^b x(t) dt$.
- Various methods have been developed, e.g., the trapezoidal rule, Simpson's rule, Newton-Cotes and the Gauss methods.
- The common feature of those methods:
 - We choose points in [a, b], called **nodes**;
 - We approximate the unknown value of the integral by a linear combination of the values of x at the nodes.
- The nodes and the coefficients of that linear combination depend on the method but not on the integrand *x*.
- The usefulness of a method is determined by its **accuracy**, and one may want the accuracy to increase as the number of nodes gets larger.
- We employ functional analysis to describe a general setting for those methods and consider the problem of convergence as the number of nodes increases.

George Voutsadakis (LSSU)

The General Method

- We deal with continuous functions, so introduce the Banach space X = C[a, b] of all continuous real-valued functions on J = [a, b], with norm defined by ||x|| = max_{t∈J} |x(t)|.
- Then $f(x) = \int_a^b x(t) dt$ defines a linear functional f on X.
- For each positive integer *n*, we choose n+1 real numbers (called **nodes**) $t_0^{(n)}, \ldots, t_n^{(n)}$, such that $a \le t_0^{(n)} < \cdots < t_n^{(n)} \le b$.
- Then we choose n+1 real numbers (called **coefficients**) $\alpha_0^{(n)}, \ldots, \alpha_n^{(n)}$.
- We define linear functionals f_n on X by setting

$$f_n(x) = \sum_{k=0}^n \alpha_k^{(n)} x(t_k^{(n)}), \quad n = 1, 2, \dots$$

The Norm of f_n

Each f_n is bounded since |x(t_k⁽ⁿ⁾)| ≤ ||x|| by the definition of the norm.
Consequently,

$$|f_n(x)| \le \sum_{k=0}^n |\alpha_k^{(n)}| |x(t_k^{(n)})| \le \left(\sum_{k=0}^n |\alpha_k^{(n)}|\right) ||x||.$$

Claim: f_n has norm $||f_n|| = \sum_{k=0}^n |\alpha_k^{(n)}|$.

The preceding inequality shows that $||f_n|| \le \sum_{k=0}^n |\alpha_k^{(n)}|$. Equality follows if we take an $x_0 \in X$, such that $|x_0(t)| \le 1$ on J and

$$x_0(t_k^{(n)}) = \operatorname{sgn} \alpha_k^{(n)} = \begin{cases} 1, & \text{if } \alpha_k^{(n)} \ge 0 \\ -1, & \text{if } \alpha_k^{(n)} < 0 \end{cases}$$

Then $||x_0|| = 1$ and $f_n(x_0) = \sum_{k=0}^n \alpha_k^{(n)} \operatorname{sgn} \alpha_k^{(n)} = \sum_{k=0}^n |\alpha_k^{(n)}|.$

Convergence and Requirement on Polynomials

Definition (Convergence)

The numerical process of integration defined by $f_n(x) = \sum_{k=0}^n \alpha_k^{(n)} x(t_k^{(n)})$ is said to be **convergent** for an $x \in X$ if, for that x, $f_n(x) \xrightarrow{n \to \infty} f(x)$, where f is defined by $f(x) = \int_a^b x(t) dt$.

• Given that exact integration of polynomials is easy, it is natural to make the following

Requirement

For every *n*, if *x* is a polynomial of degree $\leq n$, then $f_n(x) = f(x)$.

Simplifying the Requirement

• Since the *f_n*'s are linear, it suffices to impose the preceding requirement for the *n*+1 powers defined by

$$x_0(t) = 1, x_1(t) = t, ..., x_n(t) = t^n.$$

Then, for a polynomial of degree *n* given by $x(t) = \sum \beta_j t^j$, we get

$$f_n(x) = \sum_{j=0}^n \beta_j f_n(x_j) = \sum_{j=0}^n \beta_j f(x_j) = f(x).$$

We thus have the n+1 conditions $f_n(x_j) = f(x_j), j = 0, 1, ..., n$.

Feasibility of the Requirement

- We show that $f_n(x_j) = f(x_j), j = 0, 1, ..., n$, can be fulfilled.
- Since we have 2n+2 parameters (n+1 nodes and n+1 coefficients), we can choose some of them in an arbitrary fashion. Claim: If we choose the $t_k^{(n)}$, we can determine the $\alpha_k^{(n)}$ uniquely. In $f_n(x_j) = f(x_j)$, we have $x_j(t_k^{(n)}) = (t_k^{(n)})^j$. So, for j = 0, ..., n, $\sum_{k=0}^n \alpha_k^{(n)}(t_k^{(n)})^j = \int_a^b t^j dt = \frac{1}{j+1}(b^{j+1} - a^{j+1})$. For each fixed n, this is a nonhomogeneous system of n+1 linear equations in the n+1unknowns $\alpha_0^{(n)}, ..., \alpha_n^{(n)}$. A unique solution exists if:
 - The homogeneous system $\sum_{k=0}^{n} (t_k^{(n)})^j \gamma_k = 0, j = 0, ..., n$, has only the trivial solution $\gamma_0 = 0, ..., \gamma_n = 0$;
 - Equivalently, if the same holds for the system $\sum_{j=0}^{n} (t_k^{(n)})^j \gamma_j = 0$, k = 0, ..., n, whose coefficient matrix is the transpose of the coefficient matrix of the previous system.

This holds, since $\sum_{j=0}^{n} \gamma_j t^j$, which is of degree *n*, being zero at the n+1 nodes, must be identically zero, i.e., $\gamma_j = 0$.

Weierstraß Approximation Theorem for Polynomials

Weierstraß Approximation Theorem (Polynomials)

The set W of all polynomials with real coefficients is dense in the real space C[a, b]. Hence, for every $x \in C[a, b]$ and, given $\varepsilon > 0$, there exists a polynomial p, such that $|x(t) - p(t)| < \varepsilon$, for all $t \in [a, b]$.

Every x ∈ C[a, b] is uniformly continuous on J = [a, b] since J is compact. Hence, for any ε > 0, there is a y whose graph is an arc of a polygon such that max_{t∈J} |x(t) - y(t)| < ^ε/₃. Assume, first, that x(a) = x(b) and y(a) = y(b).

Since y is piecewise linear and continuous, by applying integration by parts to the formulas for the Fourier coefficients a_m and b_m , we get bounds of the form

$$|a_0| < k$$
, $|a_m| < \frac{k}{m^2}$, $|b_m| < \frac{k}{m^2}$.

Weierstraß Approximation Theorem (Cont'd)

• Hence for the Fourier series of y (representing the periodic extension of y, of period b-a), we have, writing $\kappa = \frac{2\pi}{b-a}$ for simplicity,

$$\begin{aligned} a_0 + \sum_{m=1}^{\infty} (a_m \cos \kappa mt + b_m \sin \kappa mt) | \\ &\leq 2k (1 + \sum_{m=1}^{\infty} \frac{1}{m^2}) = 2k (1 + \frac{1}{6}\pi^2). \end{aligned}$$

This shows that the series converges uniformly on J.

Consequently, for the *n*-th partial sum s_n , with sufficiently large n,

$$\max_{t\in J}|y(t)-s_n(t)|<\frac{\varepsilon}{3}.$$

The Taylor series of the cosine and sine functions in s_n also converge uniformly on J. So there is a polynomial p (obtained, for instance, from suitable partial sums of those series) such that $\max_{t \in J} |s_n(t) - p(t)| < \frac{\varepsilon}{3}$.

Weierstraß Approximation Theorem (Cont'd)

Now we get

$$|x(t) - p(t)| \le |x(t) - y(t)| + |y(t) - s_n(t)| + |s_n(t) - p(t)|,$$

whence

$$\max_{t\in J} |x(t) - p(t)| < \varepsilon.$$

This takes care of every $x \in C[a, b]$, such that x(a) = x(b). Suppose, next, that $x(a) \neq x(b)$. Take $u(t) = x(t) - \gamma(t-a)$, with γ such that u(a) = u(b). For u there is a polynomial q satisfying $|u(t) - q(t)| < \varepsilon$ on J. $p(t) = q(t) + \gamma(t-a)$ satisfies $\max_{t \in J} |x(t) - p(t)| < \varepsilon$ (since

x-p=u-q).

Since $\varepsilon > 0$ was arbitrary, we have shown that W is dense in C[a, b].

George Voutsadakis (LSSU)

Pólya Convergence Theorem (Numerical Integration)

• We showed that for every choice of nodes $t_k^{(n)}$, $a \le t_0^{(n)} < \cdots < t_n^{(n)} \le b$, there are uniquely determined $\alpha_k^{(n)}$, such that $f_n(x) = f(x)$. Hence, the corresponding process is convergent for all polynomials.

Pólya Convergence Theorem (Numerical Integration)

A process of numerical integration $f_n(x) = \sum_{k=1}^n \alpha_k^{(n)} x(t_k^{(n)})$ which satisfies $f_n(x) = f(x)$, for every *n* and polynomial *x* of degree not exceeding *n*, converges for all real-valued continuous functions on [a, b] if and only if there is a number *c*, such that $\sum_{k=0}^n |\alpha_k^{(n)}| \le c$, for all *n*.

• The set W of all polynomials with real coefficients is dense in the real space X = C[a, b], by the Weierstraß approximation theorem, and, for every $x \in W$, we have convergence by the Requirement. Since $\|f_n\| = \sum_{k=0}^n |\alpha_k^{(n)}|$, $(\|f_n\|)$ is bounded if and only if $\sum_{k=0}^n |\alpha_k^{(n)}| \le c$ holds for some real number c. The theorem now follows, since convergence $f_n(x) \to f(x)$, for all $x \in X$, is weak* convergence $f_n \stackrel{\text{w}^*}{\to} f$.

Steklov's Theorem for Numerical Integration

• In this theorem we may replace the polynomials by any other set which is dense in the real space C[a, b].

Steklov's Theorem (Numerical Integration)

A process of numerical integration f_n which satisfies the Requirement and has nonnegative coefficients $\alpha_k^{(n)}$, converges for every continuous function.

 Suppose that the coefficients are all nonnegative. Taking x = 1, we then have

$$\sum_{k=0}^{n} |\alpha_{k}^{(n)}| = \sum_{k=0}^{n} \alpha_{k}^{(n)} = f_{n}(1) = f(1) = \int_{a}^{b} dt = b - a.$$
$$\sum_{k=0}^{n} |\alpha_{k}^{(n)}| \le c \text{ holds.}$$

So

Subsection 12

Open Mapping Theorem

Open Mapping

Definition (Open Mapping)

Let X and Y be metric spaces. Then $T : \mathcal{D}(T) \to Y$ with domain $\mathcal{D}(T) \subseteq X$ is called an **open mapping** if for every open set in $\mathcal{D}(T)$ the image is an open set in Y.

- If a mapping is not surjective, one must distinguish between the assertions that the mapping is open as a mapping from its domain
 - (a) into Y;
 - (b) onto its range.
 - (b) is weaker than (a): For instance, if $X \subseteq Y$:
 - The mapping x → x of X into Y is open if and only if X is an open subset of Y;
 - The mapping $x \mapsto x$ of X onto its range (which is X) is open in any case.

Open Mappings versus Continuous Mappings

- A continuous mapping T : X → Y has the property that for every open set in Y the inverse image is an open set in X.
- This does not imply that T maps open sets in X onto open sets in Y.
 Example: The mapping ℝ → ℝ given by t → sin t is continuous but maps (0,2π) onto [-1,1].

Open Mapping Theorem

Open Unit Ball Lemma

Lemma (Open Unit Ball)

A bounded linear operator T from a Banach space X onto a Banach space Y has the property that the image $T(B_0)$ of the open unit ball $B_0 = B(0;1) \subseteq X$ contains an open ball about $0 \in Y$.

• Proceeding stepwise, we prove:

- (a) The closure of the image of the open ball $B_1 = B(0; \frac{1}{2})$ contains an open ball B^* .
- (b) $\overline{T(B_n)}$ contains an open ball V_n about $0 \in Y$, where $B_n = B(0; \frac{1}{2^n}) \subseteq X$.
- (c) $T(B_0)$ contains an open ball about $0 \in Y$.

Proof of Open Unit Ball Part (a)

(a) In connection with subsets $A \subseteq X$ we shall write αA (α a scalar) and A + w ($w \in X$) to mean

(1)
$$\alpha A = \{x \in X : x = \alpha a, a \in A\};$$

(2)
$$A + w = \{x \in X : x = a + w, a \in A\};$$

and, similarly, for subsets of Y.

We consider the open ball B₁ = B(0; ¹/₂) ⊆ X. Any fixed x ∈ X is in kB₁ with real k sufficiently large (k > 2||x||). Hence X = ∪[∞]_{k=1} kB₁. Since T is surjective and linear,

$$Y = T(X) = T\left(\bigcup_{k=1}^{\infty} kB_1\right) = \bigcup_{k=1}^{\infty} kT(B_1) = \bigcup_{k=1}^{\infty} \overline{kT(B_1)}.$$

Proof of Open Unit Ball Part (a) (Cont'd)

• $Y = T(X) = T(\bigcup_{k=1}^{\infty} kB_1) = \bigcup_{k=1}^{\infty} kT(B_1) = \bigcup_{k=1}^{\infty} \overline{kT(B_1)}.$

Note that by taking closures we did not add further points to the union since that union was already the whole space Y. Since Y is complete, by Baire's Category, it is nonmeager in itself. Hence, we conclude that a $\overline{kT(B_1)}$ must contain some open ball.

This implies that $\overline{T(B_1)}$ also contains an open ball, say,

$$B^* = B(y_0; \varepsilon) \subseteq \overline{T(B_1)}.$$

It follows that

$$B^* - y_0 = B(0; \varepsilon) \subseteq \overline{T(B_1)} - y_0.$$

Proof of Open Unit Ball Part (b)

(b) We prove that $B^* - y_0 \subseteq T(B_0)$, where B_0 is given in the theorem. This we do by showing that $T(B_1) - y_0 \subseteq T(B_0)$. Let $y \in \overline{T(B_1)} - y_0$. Then $y + y_0 \in \overline{T(B_1)}$, and we remember that $y_0 \in \overline{T(B_1)}$, too. Thus, there are $u_n = Tw_n \in T(B_1)$, such that $u_n \to y + y_0$, $v_n = Tz_n \in T(B_1)$, such that $v_n \to v_0$. Since $w_n, z_n \in B_1$ and B_1 has radius $\frac{1}{2}$, it follows that $||w_n - z_n|| \le ||w_n|| + ||z_n|| < \frac{1}{2} + \frac{1}{2} = 1.$ So $w_n - z_n \in B_0$. From $T(w_n - z_n) = Tw_n - Tz_n = u_n - v_n \rightarrow y$, we see that $v \in T(B_0)$. This proves $T(B_1) - v_0 \subseteq T(B_0)$. From (a), we thus have $B^* - y_0 = B(0; \varepsilon) \subseteq T(B_0)$. Let $B_n = B(0; \frac{1}{2n}) \subseteq X$. Since T is linear, $\overline{T(B_n)} = \frac{1}{2n} \overline{T(B_0)}$. Since $B^* - y_0 = B(0; \varepsilon) \subseteq \overline{T(B_0)}$, we thus obtain $V_n = B(0; \frac{\varepsilon}{2n}) \subseteq \overline{T(B_n)}$.

Proof of Open Unit Ball Part (c)

- (c) We prove $V_1 = B(0; \frac{\varepsilon}{2}) \subseteq T(B_0)$ by showing that $y \in V_1$ is in $T(B_0)$.
 - Let $y \in V_1$. From $V_n = B(0; \frac{\varepsilon}{2^n}) \subseteq \overline{T(B_n)}$, with n = 1, we have $V_1 \subseteq \overline{T(B_1)}$. Hence, $y \in \overline{T(B_1)}$. So, there exists $v \in T(B_1)$ close to y, say, $||y v|| < \frac{\varepsilon}{4}$. Now $v \in T(B_1)$ implies $v = Tx_1$, for some $x_1 \in B_1$. Hence, $||y Tx_1|| < \frac{\varepsilon}{4}$.

From this and (b), with n = 2, we see that $y - Tx_1 \in V_2 \subseteq \overline{T(B_2)}$. As before, there is an $x_2 \in B_2$, such that $||(y - Tx_1) - Tx_2|| < \frac{\varepsilon}{8}$. Hence $y - Tx_1 - Tx_2 \in V_3 \subseteq \overline{T(B_3)}$, and so on. In the *n*-th step we can choose an $x_n \in B_n$, such that $||y - \sum_{k=1}^n Tx_k|| < \frac{\varepsilon}{2^{n+1}}$, n = 1, 2, ... Let $z_n = x_1 + \cdots + x_n$. Since $x_k \in B_k$, we have $||x_k|| < \frac{1}{2^k}$. This yields for n > m, $||z_n - z_m|| \le \sum_{k=m+1}^n ||x_k|| < \sum_{k=m+1}^\infty \frac{1}{2^k} \xrightarrow{m \to \infty} 0$. Hence (z_n) is Cauchy. (z_n) converges, say, $z_n \to x$, since X is complete. Also $x \in B_0$, since B_0 has radius 1 and $\sum_{k=1}^\infty ||x_k|| < \sum_{k=1}^\infty \frac{1}{2^k} = 1$. Since T is continuous, $Tz_n \to Tx$, and $||y - \sum_{k=1}^n Tx_k|| < \frac{\varepsilon}{2^{n+1}}$ shows that Tx = y.

The Open Mapping Theorem

Open Mapping Theorem, Bounded Inverse Theorem

A bounded linear operator T from a Banach space X onto a Banach space Y is an open mapping. Hence if T is bijective, T^{-1} is continuous and thus bounded.

 We prove that for every open set A⊆X, the image T(A) is open in Y. It suffices to show that, for every y = Tx ∈ T(A), the set T(A) contains an open ball about y = Tx.

Let $y = Tx \in T(A)$. Since A is open, it contains an open ball with center x. Hence A - x contains an open ball B(0; r). Set $k = \frac{1}{r}$, so that $r = \frac{1}{k}$. Then k(A - x) contains the open unit ball B(0; 1). By the lemma, T(k(A - x)) = k[T(A) - Tx] contains an open ball about 0, and so does T(A) - Tx. Hence T(A) contains an open ball about Tx = y. Since $y \in T(A)$ was arbitrary, T(A) is open. Finally, if $T^{-1}: Y \to X$ exists, it is continuous because T is open. Since T^{-1} is linear, it is bounded.

George Voutsadakis (LSSU)

Subsection 13

Closed Linear Operators and Closed Graph Theorem

Closed Linear Operator

Definition (Closed Linear Operator)

Let X and Y be normed spaces and $T : \mathcal{D}(T) \to Y$ a linear operator with domain $\mathcal{D}(T) \subseteq X$. Then T is called a **closed linear operator** if its **graph**

$$\mathscr{G}(T) = \{(x, y) : x \in \mathscr{D}(T), y = Tx\}$$

is closed in the normed space $X \times Y$, where the two algebraic operations of a vector space in $X \times Y$ are defined as usual, that is,

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

 $\alpha(x, y) = (\alpha x, \alpha y), \quad \alpha \text{ a scalar}$

and the norm on $X \times Y$ is defined by

$$||(x,y)|| = ||x|| + ||y||.$$

Closed Graph Theorem

Closed Graph Theorem

Let X and Y be Banach spaces and $T : \mathcal{D}(T) \to Y$ a closed linear operator, where $\mathcal{D}(T) \subseteq X$. Then, if $\mathcal{D}(T)$ is closed in X, the operator T is bounded.

• We first show that $X \times Y$ is complete. Let (z_n) be Cauchy in $X \times Y$, where $z_n = (x_n, y_n)$. Then, for every $\varepsilon > 0$, there is an N, such that

$$||z_n - z_m|| = ||x_n - x_m|| + ||y_n - y_m|| < \varepsilon, \quad m, n > N.$$

Hence (x_n) and (y_n) are Cauchy in X and Y, respectively, and converge, say, $x_n \to x$ and $y_n \to y$, because X and Y are complete. This implies that $z_n \to z = (x, y)$ since, by the inequality above with $m \to \infty$, we have $||z_n - z|| \le \varepsilon$, for n > N. Since the Cauchy sequence (z_n) was arbitrary, $X \times Y$ is complete.

Closed Graph Theorem (Cont'd)

By assumption, 𝒢(𝒯) is closed in 𝑋 × 𝑌 and 𝒯(𝒯) is closed in 𝑋.
 Hence 𝒢(𝒯) and 𝒯(𝒯) are complete. We now consider the mapping

$$\begin{array}{rcl} P: & \mathscr{G}(T) & \to & \mathscr{D}(T); \\ & & (x, Tx) & \mapsto & x. \end{array}$$

P is linear.

- *P* is bounded because $||P(x, Tx)|| = ||x|| \le ||x|| + ||Tx|| = ||(x, Tx)||$. *P* is bijective: The inverse mapping is $P^{-1}: \mathcal{D}(T) \to \mathcal{G}(T)$; $x \mapsto (x, Tx)$. Since $\mathcal{G}(T)$ and $\mathcal{D}(T)$ are complete, we can apply the Bounded Inverse Theorem and see that P^{-1} is bounded, say, $||(x, Tx)|| \le b||x||$,
- for some b and all $x \in \mathcal{D}(T)$. Hence T is bounded, as for all $x \in \mathcal{D}(T)$,

$$||Tx|| \le ||Tx|| + ||x|| = ||(x, Tx)|| \le b||x||.$$

Criterion for Closedness

Theorem (Closed Linear Operator)

Let $T: \mathcal{D}(T) \to Y$ be a linear operator, where $\mathcal{D}(T) \subseteq X$ and X and Y are normed spaces. Then T is closed if and only if it has the following property: If $x_n \to x$, where $x_n \in \mathcal{D}(T)$, and $Tx_n \to y$, then $x \in \mathcal{D}(T)$ and Tx = y.

- $\mathscr{G}(T)$ is closed if and only if $z = (x, y) \in \overline{\mathscr{G}(T)}$ implies $z \in \mathscr{G}(T)$. We know that:
 - $z = (x, y) \in \overline{\mathscr{G}(T)}$ if and only if there are $z_n = (x_n, Tx_n) \in \mathscr{G}(T)$, such that $z_n \to z$, i.e., $x_n \to x$, $Tx_n \to y$;
 - $z = (x, y) \in \mathcal{G}(T)$ if and only if $x \in \mathcal{D}(T)$ and y = Tx.

Putting these together, we get the conclusion.

Closedness versus Continuity

• The following property of a bounded linear operator is different:

If a linear operator T is bounded and thus continuous, and if (x_n) is a sequence in $\mathcal{D}(T)$ which converges in $\mathcal{D}(T)$, then (Tx_n) also converges. This need not hold for a closed linear operator.

• However, if T is closed and two sequences (x_n) and (\tilde{x}_n) in the domain of T converge with the same limit and if the corresponding sequences (Tx_n) and $(T\tilde{x}_n)$ both converge, then the latter have the same limit.

Example: Differential Operator

Let X = C[0,1] and T: D(T) → X; x ↦ x', where the prime denotes differentiation and D(T) is the subspace of functions x ∈ X which have a continuous derivative. Then T is not bounded, but is closed. We see, using the sequence x_n(t) = tⁿ, that T is not bounded. We prove that T is closed by applying the preceding theorem. Let (x_n) in D(T) be such that both (x_n) and (Tx_n) converge, say, x_n → x and Tx_n = x'_n → y. Since convergence in the norm of C[0,1] is uniform convergence on [0,1], from x'_n → y, we have

$$\int_0^t y(\tau)d\tau = \int_0^t \lim_{n\to\infty} x'_n(\tau)d\tau = \lim_{n\to\infty} \int_0^t x'_n(\tau)d\tau = x(t) - x(0),$$

i.e., $x(t) = x(0) + \int_0^t y(\tau) d\tau$. This shows that $x \in \mathcal{D}(T)$ and x' = y. Hence, T is closed.

 Note that in this example, D(T) is not closed in X, since T would then be bounded by the closed graph theorem.

George Voutsadakis (LSSU)

Independence of Closedness and Boundedness

• Closedness does not imply boundedness of a linear operator. Conversely, boundedness does not imply closedness.

The first statement is illustrated by the Differential Operator.

The second one by the following example:

Let $T: \mathcal{D}(T) \to \mathcal{D}(T) \subseteq X$ be the identity operator on $\mathcal{D}(T)$, where $\mathcal{D}(T)$ is a proper dense subspace of a normed space X.

- It is trivial that T is linear and bounded.
- However, *T* is not closed.

This follows immediately from the preceding theorem, if we take an $x \in X - \mathcal{D}(T)$ and a sequence (x_n) in $\mathcal{D}(T)$ which converges to x.

The Closed Operator Lemma

Lemma (Closed Operator)

Let $T : \mathcal{D}(T) \to Y$ be a bounded linear operator with domain $\mathcal{D}(T) \subseteq X$, where X and Y are normed spaces. Then:

- (a) If $\mathcal{D}(T)$ is a closed subset of X, then T is closed.
- (b) If T is closed and Y is complete, then $\mathscr{D}(T)$ is a closed subset of X.
- (a) If (x_n) is in $\mathcal{D}(T)$ and converges, say, $x_n \to x$, and is such that (Tx_n) also converges, then
 - $x \in \overline{\mathscr{D}(T)} = \mathscr{D}(T)$ since $\mathscr{D}(T)$ is closed;
 - $Tx_n \rightarrow Tx$, since T is continuous.

Hence T is closed.

(b) For x∈ D(T), there is a sequence (x_n) in D(T), such that x_n→ x. Since T is bounded, ||Tx_n - Tx_m|| = ||T(x_n - x_m)|| ≤ ||T|| ||x_n - x_m||. This shows that (Tx_n) is Cauchy. (Tx_n) converges, say, Tx_n→ y ∈ Y because Y is complete. Since T is closed, x ∈ D(T) and Tx = y. Hence D(T) is closed.

George Voutsadakis (LSSU)