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Fixed Points

A fixed point of a mapping T :X →X of a set X into itself is an
x ∈X which is mapped onto itself (is “kept fixed” by T ), that is,

Tx = x ,

the image Tx coincides with x .

Examples:

A translation has no fixed points.
A rotation of the plane has a single fixed point (the center of rotation).
The mapping x 7→ x2 of R into itself has two fixed points (0 and 1).
The projection (ξ1,ξ2) 7→ ξ1 of R2 onto the ξ1-axis has infinitely many
fixed points (all points of the ξ1-axis).
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Banach Fixed Point and Iteration

The Banach fixed point theorem:

is an existence and uniqueness theorem for fixed points of certain
mappings;
gives a constructive procedure, called an iteration, for obtaining better
and better approximations to the fixed point.

By definition, iteration is a method such that we choose an arbitrary
x0 in a given set and calculate recursively a sequence x0,x1,x2, . . . from
a relation of the form

xn+1 =Txn, n= 0,1,2, . . . ;

that is, we choose an arbitrary x0 and determine successively
x1 =Tx0,x2 =Tx1, . . ..

Convergence proofs and error estimates for iteration procedures are
very often obtained by an application of Banach’s Fixed Point
Theorem (or more difficult fixed point theorems).
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Contractions

Definition (Contraction)

Let X = (X ,d) be a metric space. A mapping T :X →X is called a
contraction on X if there is a positive real number α< 1, such that, for
all x ,y ∈X ,

d(Tx ,Ty)≤αd(x ,y), α< 1.

Geometrically this means that any points x and y have images that
are closer together than those points x and y .

More precisely, the ratio
d(Tx ,Ty )
d(x ,y ) does not exceed a constant α which

is strictly less than 1.
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Banach Fixed Point Theorem

Banach Fixed Point Theorem (Contraction Theorem)

Consider a metric space X = (X ,d), where X 6= ;. Suppose that X is
complete and let T :X →X be a contraction on X . Then T has precisely
one fixed point.

We construct a sequence (xn). We show that it is Cauchy, so that it
converges in the complete space X . Then we prove that its limit x is a
fixed point of T and T has no further fixed points.

We choose any x0 ∈X . Define the “iterative sequence” (xn) by

x0, x1 =Tx0, x2 =Tx1 =T 2x0, . . . ,xn =T nx0, . . . .

We show that (xn) is Cauchy:

d(xm+1,xm) = d(Txm,Txm−1)≤αd(xm,xm−1)
= αd(Txm−1,Txm−2)≤α2d(xm−1,xm−2)
≤ ·· · ≤ αmd(x1,x0).
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Banach Fixed Point Theorem: Convergence

Hence by the triangle inequality and the formula for the sum of a
geometric progression we obtain for n>m,

d(xm,xn) ≤ d(xm,xm+1)+d(xm+1,xm+2)+·· ·+d(xn−1,xn)
≤ (αm+αm+1+·· ·+αn−1)d(x0,x1)

= αm 1−αn−m

1−α
d(x0,x1).

Since 0<α< 1, in the numerator we have 1−αn−m < 1. Consequently,

d(xm,xn)≤
αm

1−α
d(x0,x1), n>m.

On the right, 0<α< 1 and d(x0,x1) is fixed, so that we can make the
right-hand side as small as we please by taking m sufficiently large and
n>m. This proves that (xm) is Cauchy. Since X is complete, (xm)
converges, say, xm → x .
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Banach Fixed Point Theorem: Fixed Point

We show that this limit x is a fixed point of the mapping T . We have

d(x ,Tx)≤ d(x ,xm)+d(xm,Tx)≤ d(x ,xm)+αd(xm−1,x).

We can make the sum on the right smaller than any preassigned ε> 0
because xm → x . We conclude that d(x ,Tx)= 0, so that x =Tx . This
shows that x is a fixed point of T .

x is the only fixed point of T because from Tx = x and Tx̃ = x̃ we
obtain d(x , x̃)= d(Tx ,Tx̃)≤αd(x , x̃), which implies d(x , x̃)= 0, since
α< 1. Hence, x = x̃ .
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Prior and Posterior Estimates

Corollary (Iteration, Error Bounds)

Consider a metric space X = (X ,d), where X 6= ;. Suppose that X is
complete and let T :X →X be a contraction on X . The iterative sequence

x0, x1 =Tx0, x2 =Tx1 =T 2x0, . . . ,xn =T nx0, . . . ,

with arbitrary x0 ∈X , converges to the unique fixed point x of T . Error
estimates are the prior estimate

d(xm,x)≤
αm

1−α
d(x0,x1)

and the posterior estimate

d(xm,x)≤
α

1−α
d(xm−1,xm).
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Proof of Prior and Posterior Estimates

The first statement is obvious from the previous proof.

The prior estimate follows from d(xm,xn)≤
αm

1−αd(x0,x1) by letting
n→∞.

We derive the posterior estimate: Taking m= 1 and writing y0 for x0

and y1 for x1, we get from d(xm,x)≤ αm

1−αd(x0,x1) the inequality
d(y1,x)≤ α

1−αd(y0,y1). Setting y0 = xm−1, we have y1 =Ty0 = xm and
we obtain d(xm,x)≤ α

1−αd(xm−1,xm).

The prior error bound can be used at the beginning of a calculation for
estimating the number of steps necessary to obtain a given accuracy.

The posterior can be used at intermediate stages or at the end of a
calculation. It is at least as accurate as the prior and may be better.
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Contraction on a Closed Subspace

Suppose T is a contraction only on a subset Y of X . If Y is closed, it
is complete, so that T has a fixed point x in Y , and xm → x as before,
provided we impose a suitable restriction on the choice of x0, so that
the xm’s remain in Y .

Theorem (Contraction on a Ball)

Let T be a mapping of a complete metric space X = (X ,d) into itself.
Suppose T is a contraction on a closed ball Y = {x : d(x ,x0)≤ r }, that is, T
satisfies d(Tx ,Ty)≤αd(x ,y), for all x ,y ∈Y . Moreover, assume that
d(x0,Tx0)< (1−α)r . Then the iterative sequence xn =T nx0 converges to
an x ∈Y . This x is a fixed point of T and is the only fixed point of T in Y .

We show that all xm’s as well as x lie in Y . We put m= 0 in
d(xm,xn)≤

αm

1−α
d(x0,x1), n>m, to get d(x0,xn)≤

1
1−α

d(x0,x1).
Change n to m to get d(x0,xm)≤

1
1−α

d(x0,x1)< r . Hence all xm’s are
in Y . Also x ∈Y since xm → x and Y is closed. The assertion of the
theorem now follows from the proof of Banach’s theorem.
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Contractions are Continuous

Lemma (Continuity)

A contraction T on a metric space X is a continuous mapping.

Let xn → x . Consider ε> 0.

Since xn → x , there exists an N, such that, for all n>N,

d(x ,xn)<
ε

α
.

Therefore, for all n>N,

d(Tx ,Txn)≤αd(x ,xn)<α
ε

α
= ε.

Therefore, Txn →Tx and T is continuous.
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The Space and the Operator

Consider the set X of all ordered n-tuples of real numbers, written

x = (ξ1, . . . ,ξn),y = (η1, . . . ,ηn),z = (ζ1, . . . ,ζn), etc.

On X we define a metric d by

d(x ,z)=max
j

|ξj −ζj |.

X = (X ,d) is complete.

On X we define T :X →X by

y =Tx =Cx +b,

where C = (cjk) is a fixed real n×n matrix and b ∈X a fixed vector.

Writing this in components, we have

ηj =
n∑

k=1

cjkξk +βj , j = 1, . . . ,n,

where b = (βj).
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The Space and the Operator

Setting w = (ωj)=Tz , we obtain

d(y ,w) = d(Tx ,Tz)= maxj |ηj −ωj | = maxj |
∑n

k=1
cjk(ξk −ζk)|

≤ maxi |ξi −ζi |maxj
∑n

k=1
|cjk | = d(x ,z)maxj

∑n
k=1

|cjk |.

This can be written d(y ,w)≤αd(x ,z), where α=maxj
∑n

k=1
|cjk |.

Theorem (Linear Equations)

If a system x =Cx +b, with C = (cjk),b given, of n linear equations in n

unknowns ξ1, . . . ,ξn (components of x) satisfies
∑n

k=1
|cjk | < 1, j = 1, . . . ,n, it

has precisely one solution x . This solution can be obtained as the limit of
the iterative sequence (x(0),x(1),x(2), . . .), where x(0) is arbitrary and
x(m+1) =Cx(m)+b, m= 0,1, . . .. Error bounds are

d(x(m)
,x)≤

α

1−α
d(x(m−1)

,x(m))≤
αm

1−α
d(x(0),x(1)).
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Application of the Method

A system of n linear equations in n unknowns is usually written
Ax = c , where A is an n-rowed square matrix.

Many iterative methods with detA 6= 0 are such that one writes
A=B −G , with a suitable nonsingular matrix B .

Then Ax = c becomes Bx =Gx +c , or x =B−1(Gx +c).

This suggests the iteration

x(m+1)
=Cx(m)

+b, where C =B−1G and b =B−1c .

Two standard methods are:

The Jacobi iteration, which is largely of theoretical interest;
The Gauss-Seidel iteration, which is widely used in applied
mathematics.
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Jacobi Iteration

Jacobi iteration is defined by

ξ
(m+1)
j

=
1

ajj


γj −

n∑

k=1
k 6=j

ajkξ
(m)

k


 , j = 1, . . . ,n,

where c = (γj) and we assume ajj 6= 0, for j = 1, . . . ,n.

This iteration is suggested by solving the j-th equation in Ax = c for ξj .

It is not difficult to verify that it can be written in the form

x(m+1)
=Cx(m)

+b, C =−D−1(A−D), b =D−1c ,

where D = diag(ajj) is the diagonal matrix whose nonzero elements are
those of the principal diagonal of A.
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Convergence of the Jacobi Iteration

Condition
∑n

k=1
|cjk | < 1 applied to this C is sufficient for the

convergence of the Jacobi iteration.

Expressing this directly in terms of the elements of A, we get the row
sum criterion for the Jacobi iteration

n∑

k=1
k 6=j

∣∣∣∣
ajk

ajj

∣∣∣∣< 1, j = 1, . . . ,n,

or
∑n

k=1
k 6=j

|ajk | < |ajj |, j = 1, . . . ,n.

This shows that, roughly speaking, convergence is guaranteed if the
elements in the principal diagonal of A are sufficiently large.

In the Jacobi iteration some components of x(m+1) may already be
available at a certain instant but are not used while the computation
of the remaining components is still in progress.

We say the Jacobi iteration is a method of simultaneous corrections.
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Gauss-Seidel Iteration

This is a method of successive corrections: At every instant all of
the latest known components are used.

The method is defined by

ξ
(m+1)
j

=
1

ajj

(
γj −

j−1∑

k=1

ajkξ
(m+1)

k
−

n∑

k=j+1

ajkξ
(m)

k

)
,

where j = 1, . . . ,n and we again assume ajj 6= 0, for all j .

We obtain a matrix form of by writing A=−L+D −U , where D is as
in the Jacobi iteration and L and U are lower and upper triangular,
respectively, with principal diagonal elements all zero:
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Convergence of the Gauss-Seidel Iteration

We now imagine that each equation in

ξ
(m+1)
j

=
1

ajj

(
γj −

j−1∑

k=1

ajkξ
(m+1)

k
−

n∑

k=j+1

ajkξ
(m)

k

)
,

is multiplied by ajj .

Then we can write the resulting system in the form

Dx(m+1)
= c +Lx(m+1)

+Ux(m)

or (D −L)x(m+1) = c +Ux(m).

Multiplication by (D −L)−1 gives

x(m+1)
=Cx(m)

+b, C = (D −L)−1U , b = (D −L)−1c .

Condition
∑n

k=1
|cjk | < 1 applied to C = (D −L)−1U is sufficient for the

convergence of the Gauss-Seidel iteration.

Since C is complicated, the remaining practical problem is to get
simpler conditions sufficient for the validity of

∑n
k=1

|cjk | < 1.
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Applications of Banach’s Theorem to Differential Equations
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From Banach’s Theorem to Picard’s Theorem

We consider an explicit ordinary differential equation of the first order
x ′ = f (t ,x), where ′ =

d
dt

.

An initial value problem for such an equation consists of the
equation and an initial condition x(t0)= x0, where t0 and x0 are given
real numbers.

We shall use Banach’s Theorem to prove the famous Picard’s
Theorem:

The initial value problem will be converted to an integral equation,
which defines a mapping T ;
The conditions of the theorem will imply that T is a contraction such
that its fixed point becomes the solution of our problem.

George Voutsadakis (LSSU) Functional Analysis May 2023 23 / 35



Banach Fixed Point Theorem Applications of Banach’s Theorem to Differential Equations

Picard’s Existence and Uniqueness Theorem

Picard’s Existence and Uniqueness Theorem (ODEs)

Let f be continuous on a rectangle
R = {(t ,x) : |t−t0| ≤ a, |x−x0| ≤ b} and,
thus, bounded on R , say |f (t ,x)| ≤ c ,
for all (t ,x) ∈R . Suppose that f satis-
fies a Lipschitz condition on R with
respect to its second argument,
i.e., there is a constant k (Lips-
chitz constant), such that for (t ,x),

(t ,v)∈R ,

|f (t ,x)− f (t ,v)| ≤ k |x −v |.

Then, the initial value problem has a unique solution. This solution exists
on an interval [t0−β,t0+β], where β<min {a,

b
c

,
1
k

}.
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Picard’s Existence and Uniqueness Theorem (Cont’d)

Let C (J) be the metric space of all real-valued continuous functions
on the interval J = [t0−β,t0+β] with metric d defined by
d(x ,y)=maxt∈J |x(t)−y(t)|.

C (J) is complete.

Let C̃ be the subspace of C (J) consisting of all those functions
x ∈C (J) that satisfy |x(t)−x0| ≤ cβ. It is not difficult to see that C̃ is
closed in C (J), so that C̃ is complete.

By integration we see that the equation can be written x =Tx , where
T : C̃ → C̃ is defined by Tx(t)= x0+

∫t
t0
f (τ,x(τ))dτ. Indeed, T is

defined for all x ∈ C̃ , because cβ< b, so that if x ∈C , then τ ∈ J and
(τ,x(τ)) ∈R , and the integral exists since f is continuous on R . To
see that T maps C̃ into itself, we can use the integral form of Tx(t)
and boundedness to obtain

|Tx(t)−x0| =

∣∣∣∣
∫t

t0

f (τ,x(τ))dτ

∣∣∣∣ ≤ c |t− t0| ≤ cβ.
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Picard’s Existence and Uniqueness Theorem (Cont’d)

We show that T is a contraction on C̃ . By the Lipschitz condition,

|Tx(t)−Tv(t)| =

∣∣∣
∫t
t0
[f (τ,x(τ))− f (τ,v(τ))]dτ

∣∣∣
≤ |t − t0|maxτ∈J k |x(τ)−v(τ)|
≤ kβd(x ,v).

Since the last expression does not depend on t, we can take the
maximum on the left and have d(Tx ,Tv)≤αd(x ,v), where α= kβ.

From the assumption on β, we see that α= kβ< 1, so that T is
indeed a contraction on C̃ . Banach’s Theorem thus implies that T has
a unique fixed point x ∈ C̃ , that is, a continuous function x on J

satisfying x =Tx . Writing x =Tx out, x(t)= x0+
∫t
t0
f (τ,x(τ))dτ.

Since (τ,x(τ)) ∈R , where f is continuous, this expression may be
differentiated. Hence x is even differentiable and satisfies the given
equation. Conversely, every solution of the equation must satisfy
x(t)= x0+

∫t
t0
f (τ,x(τ))dτ.
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Remarks on the Initial Value Problem

Banach’s Theorem also implies that the solution x of

{
x ′ = f (t ,x)
x(t0)= x0

is

the limit of the sequence (x0,x1, . . .) obtained by the Picard Iteration

xn+1(t)= x0+

∫t

t0

f (τ,xn(τ))dτ, n = 0,1, . . . .

The practical usefulness of this way of obtaining approximations to the
solution and corresponding error bounds is rather limited because of
the integrations involved.

It can be shown that continuity of f is sufficient (but not necessary)
for the existence of a solution of the initial value problem, but not
sufficient for uniqueness.

A Lipschitz condition is sufficient (as Picard’s Theorem shows), but
not necessary.

George Voutsadakis (LSSU) Functional Analysis May 2023 27 / 35



Banach Fixed Point Theorem Application of Banach’s Theorem to Integral Equations

Subsection 4

Application of Banach’s Theorem to Integral Equations
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Fredholm Equation of the Second Kind

An integral equation of the form

x(t)−µ

∫b

a
k(t ,τ)x(τ)dτ= v(t)

is called a Fredholm equation of the second kind.

Here:
[a,b] is a given interval;

x is a function on [a,b] which is
unknown;

µ is a parameter;

The kernel k of the equation is a
given function on the square
G = [a,b]× [a,b];

v is a given function on [a,b].
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Fredholm Integral Equation Theorem

Theorem (Fredholm Integral Equation)

Suppose k and v in the Fredholm Equation are continuous on J ×J and
J = [a,b], respectively, and assume that µ satisfies |µ| < 1

c(b−a)
with c

defined by |k(t ,τ)| ≤ c , for all (t ,τ) ∈ J×J. Then the Equation has a unique
solution x on J. This function x is the limit of the iterative sequence
(x0,x1, . . .), where x0 is any continuous function on J and for n= 0,1, . . .,

xn+1 = v(t)+µ

∫b

a
k(t ,τ)xn(τ)dτ.

We consider the integral equation on C [a,b], the space of all
continuous functions defined on the interval J = [a,b], with metric d

given by d(x ,y)=maxt∈J |x(t)−y(t)|. Note that C [a,b] is complete.
Assume that v ∈C [a,b] and k is continuous on G . Then k is a
bounded function on G , say, |k(t ,τ)| ≤ c , for all (t ,τ) ∈G .
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Fredholm Integral Equation Theorem

Obviously, x(t)−µ
∫b
a k(t ,τ)x(τ)dτ= v(t) can be written x =Tx ,

where

Tx(t)= v(t)+µ

∫b

a
k(t ,τ)x(τ)dτ.

Since v and k are continuous, this formula defines an operator
T :C [a,b]→C [a,b].

We use the bound on µ to show that T is a contraction:

d(Tx ,Ty) = maxt∈J |Tx(t)−Ty(t)|

= |µ|maxt∈J

∣∣∣
∫b
a k(t ,τ)[x(τ)−y(τ)]dτ

∣∣∣
≤ |µ|maxt∈J

∫b
a |k(t ,τ)||x(τ)−y(τ)|dτ

≤ |µ|cmaxσ∈J |x(σ)−y(σ)|
∫b
a dτ

= |µ|cd(x ,y)(b−a).

This can be written d(Tx ,Ty)≤αd(x ,y), where α= |µ|c(b−a)< 1.

Now we apply Banach’s Fixed Point Theorem.
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The Fixed Point Lemma

Lemma (Fixed Point)

Let T :X →X be a continuous mapping on a complete metric space
X = (X ,d), and suppose that Tm is a contraction on X , for some positive
integer m. Then T has a unique fixed point.

B =Tm is a contraction on X , i.e., d(Bx ,By)≤αd(x ,y), for all
x ,y ∈X , where α< 1. Hence, for every x0 ∈X ,

d(BnTx0,Bnx0)≤αd(Bn−1Tx0,Bn−1x0)≤ ·· · ≤αnd(Tx0,x0)
n→∞
−→ 0.

Banach’s theorem implies that B has a unique fixed point, call it x ,
and Bnx0 → x .

Since the mapping T is continuous, this implies BnTx0 =TBnx0 →Tx .
Hence d(BnTx0,Bnx0)→ d(Tx ,x), so that d(Tx ,x)= 0. This shows
that x is a fixed point of T . Since every fixed point of T is also a fixed
point of B , we see that T cannot have more than one fixed point.
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The Volterra Integral Equation

We now consider the Volterra integral equation

x(t)−µ

∫t

a
k(t ,τ)x(τ)dτ= v(t).

The difference with the Fredholm equation is that the upper limit of
integration in the Volterra equation is variable.

Theorem (Volterra Integral Equation)

Suppose that v in the Volterra Equation is continuous
on [a,b] and the kernel k is continuous on the triangular
region R in the tτ-plane given by a ≤ τ ≤ t, a ≤ t ≤ b.
Then the equation has a unique solution x on [a,b], for
every µ.

The equation can be written x =Tx , with T :C [a,b]→C [a,b] defined
by Tx(t)= v(t)+µ

∫t
a k(t ,τ)x(τ)dτ.
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The Volterra Integral Equation (Cont’d)

Since k is continuous on R and R is closed and bounded, k is a
bounded function on R , say, |k(t ,τ)| ≤ c , for all (t ,τ) ∈R .
Using d(x ,y)=maxt∈J |x(t)−y(t)|, we have, for all x ,y ∈C [a,b],

|Tx(t)−Ty(t)| = |µ|
∣∣∣
∫t
a k(t ,τ)[x(τ)−y(τ)]dτ

∣∣∣
≤ |µ|cd(x ,y)

∫t
a dτ= |µ|c(t −a)d(x ,y).

We show by induction that

|Tmx(t)−Tmy(t)| ≤ |µ|mcm
(t −a)m

m!
d(x ,y).

For m= 1 this is the preceding inequality.
Assuming that it holds for any m, we obtain

|Tm+1x(t)−Tm+1y(t)| = |µ|
∣∣∣
∫t
a k(t,τ)[Tmx(τ)−Tmy(τ)]dτ

∣∣∣
≤ |µ|c

∫t
a |µ|mcm

(τ−a)m

m! dτd(x ,y)

= |µ|m+1cm+1 (t−a)m+1

(m+1)!
d(x ,y).
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The Volterra Integral Equation (Cont’d)

Using t−a≤ b−a on the right-hand side and then taking the maximum
over t ∈ J on the left, we obtain d(Tmx ,Tmy)≤αmd(x ,y), where

αm = |µ|mcm
(b−a)m

m!
.

For any fixed µ and sufficiently large m, we have αm < 1. Hence, the
corresponding Tm is a contraction on C [a,b]. Now we apply the Fixed
Point Lemma.

We finally note that a Volterra equation can be regarded as a special
Fredholm equation whose kernel k is zero in the part of the square
[a,b]× [a,b] where τ> t and may not be continuous at points on the
diagonal τ= t.

George Voutsadakis (LSSU) Functional Analysis May 2023 35 / 35


	Outline
	Banach Fixed Point Theorem
	Banach Fixed Point Theorem
	Application of Banach's Theorem to Linear Equations
	Applications of Banach's Theorem to Differential Equations
	Application of Banach's Theorem to Integral Equations


