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Approximation Theory Approximation in Normed Spaces

Introducing Approximation Theory

Approximation theory is concerned with the approximation of
functions of a certain kind (e.g., continuous functions on some
interval) by other (probably simpler) functions (e.g., polynomials).

E.g., in calculus, if a function has a Taylor series, we may regard and
use the partial sums of the series as approximations.

To get information about the quality of such approximations, we
would have to estimate the corresponding remainders.

More generally, one may want to set up practically useful criteria for

the quality of approximations.
Given a set X of functions to be approximated and a set Y of
functions by which the elements of X are to be approximated, one
may consider the problems of:

existence,
uniqueness, and
construction

of a “best approximation” in the sense of such a criterion.
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Approximation Theory Approximation in Normed Spaces

An Approximation Framework

Let X = (X ,‖·‖) be a normed space and suppose that any given x ∈X

is to be approximated by a y ∈Y , where Y is a fixed subspace of X .

Let δ denote the distance from x to Y :

δ= δ(x ,Y )= inf
y∈Y

‖x −y‖.

Clearly, δ depends on both x and Y , which we keep fixed, so that the
simple notation δ makes sense.

If there exists a y0 ∈Y , such that ‖x −y0‖= δ, then y0 is called a best

approximation to x out of Y .

We see that a best approximation y0 is an element of minimum
distance from the given x .

Such a y0 ∈Y may or may not exist; this raises the problem of
existence.
The problem of uniqueness is of practical interest, too, since for given
x and Y , there may be more than one best approximation.
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Approximation Theory Approximation in Normed Spaces

Existence Theorem

Existence Theorem (Best Approximations)

If Y is a finite dimensional subspace of a normed space X = (X ,‖·‖), then,
for each x ∈X , there exists a best approximation to x out of Y .

Let x ∈X be given. Consider the closed ball B̃ = {y ∈Y : ‖y‖≤ 2‖x‖}.
Then 0 ∈ B̃ , so that for the distance from x to B̃ we obtain

δ(x ,B̃)= inf
ỹ∈B̃

‖x − ỹ‖≤ ‖x −0‖ = ‖x‖.

Now if y 6∈ B̃, then ‖y‖> 2‖x‖ and ‖x −y‖ ≥ ‖y‖−‖x‖ > ‖x‖ ≥ δ(x ,B̃).

This shows that δ(x ,B̃)= δ(x ,Y )= δ, and this value cannot be
assumed by a y ∈Y − B̃ because of the >. Hence if a best
approximation to x exists, it must lie in B̃.

Since B̃ is closed and bounded and Y finite dimensional, B̃ is
compact. The norm is continuous, whence there is a y0 ∈ B̃, such that
‖x −y‖ assumes a minimum at y = y0. By definition, y0 is a best
approximation to x out of Y .
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Approximation Theory Approximation in Normed Spaces

The Space C [a,b]

A finite dimensional subspace of the space C [a,b] is

Y = span{x0, . . . ,xn}, xj(t)= t j , n fixed.

This is the set of all polynomials of degree at most n, together with
x = 0.

The theorem implies that for a given continuous function x on [a,b],
there exists a polynomial pn of degree at most n, such that for every
y ∈Y ,

max
t∈J

|x(t)−pn(t)| ≤max
t∈J

|x(t)−y(t)|,

where J = [a,b].

Approximation in C [a,b] is called uniform approximation.
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Approximation Theory Approximation in Normed Spaces

Necessity of Finite Dimensionality of Y

Finite dimensionality of Y in the theorem is essential.

In fact, let Y be the set of all polynomials on [0,
1
2
] of any degree,

considered as a subspace of C [0,
1
2
].

Then dimY =∞.

Let x(t)= 1
1−t . Then, for every ε> 0, there is an N, such that, setting

yn(t)= 1+ t +·· ·+ tn,

we have ‖x −yn‖< ε, for all n >N. Hence δ(x ,Y )= 0.

However, since x is not a polynomial, we see that there is no y0 ∈Y

satisfying
δ=δ(x ,Y )=‖x −y0‖ = 0.
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Approximation Theory Uniqueness, Strict Convexity

Examples

If X =R
3 and Y is the ξ1ξ2-plane (ξ3 = 0), then we know that, for a

given point x0 = (ξ10,ξ20,ξ30), a best approximation out of Y is the
point y0 = (ξ10,ξ20,0), the distance from x0 to Y is δ= |ξ30| and that
the best approximation y0 is unique.

Let X = (X ,‖·‖1) be the vector space of ordered pairs x = (ξ1,ξ2), . . . of
real numbers with norm defined by ‖x‖1 = |ξ1|+ |ξ2|.

Let us take the point x = (1,−1) and the sub-
space Y shown in the figure, that is, Y = {y =

(η,η) : η real}. Then, for all y ∈Y , we clearly
have ‖x −y‖1 = |1−η|+ |−1−η| ≥ 2. The dis-
tance from x to Y is δ(x ,Y )= 2. All y = (η,η)
with |η| ≤ 1, are best approximations to x out
of Y .
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Convex Subsets

A subset M of a vector space X is said to be convex if, for all
y ,z ∈M, the set

W = {v =αy + (1−α)z : 0≤α≤ 1}

is a subset of M.

This set W is called a closed

segment.

y and z are called the boundary

points of the segment W .

Any other point of W is called an
interior point of W .
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Approximation Theory Uniqueness, Strict Convexity

The Convexity Lemma

Lemma (Convexity)

In a normed space (X ,‖·‖) the set M of best approximations to a given
point x out of a subspace Y of X is convex.

Let δ denote the distance from x to Y . The statement holds if M is
empty or has just one point. Suppose that M has more than one
point. Then for y ,z ∈M, we have, by definition, ‖x −y‖= ‖x −z‖ =δ.

We show that w =αy + (1−α)z ∈M.

We have ‖x −w‖ ≥δ, since w ∈Y .

Also ‖x −w‖ ≤δ, since

‖x −w‖ = ‖α(x −y)+ (1−α)(x −z)‖
≤ α‖x −y‖+ (1−α)‖x −z‖

= αδ+ (1−α)δ = δ.

Here we used that α≥ 0 as well as 1−α≥ 0.

Together, ‖x −w‖= δ, whence w ∈M.
George Voutsadakis (LSSU) Functional Analysis May 2023 12 / 44



Approximation Theory Uniqueness, Strict Convexity

Best Approximations and the Unit Sphere

If there are several best approximations to x out of Y , then each of
them lies in Y , of course, and has distance δ from x , by definition.

Moreover, by the lemma, Y and the closed ball

B̃(x ;δ)= {v : ‖v −x‖ ≤ δ}

must have a segment W in common.

Obviously, W lies on the boundary sphere S(x ;δ) of that closed ball,
since every w ∈W has distance ‖w −x‖= δ from x .
Furthermore, to each w ∈W , there corresponds a unique v =

1
δ (w −x)

of norm ‖v‖ = 1
δ‖w −x‖ = 1.

This means that to each best approximation w ∈W , there corresponds
a unique v on the unit sphere {x : ‖x‖= 1}.

George Voutsadakis (LSSU) Functional Analysis May 2023 13 / 44



Approximation Theory Uniqueness, Strict Convexity

Uniqueness Theorem

For obtaining uniqueness of best approximations, we must exclude
norms for which the unit sphere contains segments of straight lines:

Definition (Strict Convexity)

A strictly convex norm is a norm such that, for all x ,y of norm 1,

‖x +y‖ < 2, x 6= y .

A normed space with such a norm is called a strictly convex normed

space.

Note that for ‖x‖ = ‖y‖= 1, the triangle inequality gives

‖x +y‖ ≤ ‖x‖+‖y‖ = 2

and strict convexity excludes the equality sign, except when x = y .

Uniqueness Theorem (Best Approximation)

In a strictly convex normed space X , there is at most one best
approximation to an x ∈X out of a given subspace Y .
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Approximation Theory Uniqueness, Strict Convexity

The Strict Convexity Lemma

Lemma (Strict Convexity)

We have:

(a) Hilbert space is strictly convex.

(b) The space C [a,b] is not strictly convex.

(a) Suppose x 6= y of norm one. Let ‖x −y‖ =α> 0. By the Parallelogram
Equality, ‖x +y‖2 = −‖x −y‖2+2(‖x‖2 +‖y‖2)= −α2 +2(1+1)< 4.

Hence, ‖x +y‖ < 2.

(b) We consider x1 and x2 defined by x1(t)= 1 and x2(t)=
t−a
b−a

, t ∈ [a,b].
Clearly, x1,x2 ∈C [a,b] and x1 6= x2. Also ‖x1‖= ‖x2‖ = 1 and

‖x1+x2‖= max
t∈J

∣∣∣∣1+
t−a

b−a

∣∣∣∣= 2.

This shows that C [a,b] is not strictly convex.
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Consequences of the the Strict Convexity Lemma

The first statement of this lemma had to be expected:

Theorem (Hilbert Space)

For every given x in a Hilbert space H and every given closed subspace Y

of H, there is a unique best approximation to x out of Y (namely, y =Px ,
where P is the projection of H onto Y ).

From the second statement in the Strict Convexity Lemma, we see
that in uniform approximation, additional effort will be necessary to
guarantee uniqueness.
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Subsection 3

Uniform Approximation
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Approximation Theory Uniform Approximation

Introducing Uniform Approximation

Depending on the choice of a norm, we get different types of
approximations:
(A) Uniform approximation uses the norm on C [a,b] defined by

‖x‖=max
t∈J

|x(t)|, J = [a,b].

(B) Least squares approximation uses the norm on L2[a,b] defined by

‖x‖= 〈x ,x〉1/2 =

(∫b

a
|x(t)|2dt

)1/2
.

We look now at uniform approximation (also known as Chebyshev

approximation):
Consider the real space X =C [a,b] (of real-valued and continuous
functions on [a,b]) and an n-dimensional subspace Y ⊆C [a,b].

For every function x ∈X , we show the existence of a best
approximation to x out of Y .
However, since C [a,b] is not strictly convex, the problem of uniqueness
requires a special investigation.
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Approximation Theory Uniform Approximation

Extremal Points and the Haar Condition

Definition (Extremal Point)

An extremal point of an x in C [a,b] is a t0 ∈ [a,b], such that |x(t0)| = ‖x‖.

Hence at an extremal point t0 of x we have either x(t0)=+‖x‖ or
x(t0)=−‖x‖.

The definition of the norm on C [a,b] shows that such a point is a
t0 ∈ [a,b] at which |x(t)| has a maximum.

Definition (Haar Condition)

A finite dimensional subspace Y of the real space C [a,b] is said to satisfy
the Haar condition if every y ∈Y , y 6= 0, has at most n−1 zeros in [a,b],
where n= dimY .

For instance, an n-dimensional subspace Y of C [a,b] satisfying the
Haar Condition is given by the polynomial y = 0 and all polynomials of
degree not exceeding n−1 and with real coefficients.
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Approximation Theory Uniform Approximation

Characterization of the Haar Condition

The Haar condition is equivalent to the condition that, for every basis
{y1, . . . ,yn} ⊆Y and every n-tuple of distinct points t1, . . . ,tn in the

interval J = [a,b],

∣∣∣∣∣∣∣∣∣∣

y1(t1) y1(t2) · · · y1(tn)
y2(t1) y2(t2) · · · y2(tn)

.

.

.

.

.

.

.

.

.

yn(t1) yn(t2) · · · yn(tn)

∣∣∣∣∣∣∣∣∣∣

6= 0.

Every y ∈Y has a representation y =
∑
αkyk . The subspace Y

satisfies the Haar condition if and only if every y =
∑
αkyk ∈Y , with n

or more zeros t1,t2, . . . ,tn, . . . in J = [a,b], is identically zero. This
means that the n conditions

y(tj)=
n∑

k=1

αkyk(tj)= 0, j = 1, . . . ,n,

should imply α1 = ·· · =αn = 0. But this happens if and only if the
determinant is not zero.
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Approximation Theory Uniform Approximation

The Extremal Points Lemma

Lemma (Extremal Points)

Suppose a subspace Y of the real space C [a,b] satisfies the Haar condition.
If, for a given x ∈C [a,b] and a y ∈Y the function x −y has less than n+1
extremal points, then y is not a best approximation to x out of Y , where
n= dimY .

By assumption, the function v = x −y has m≤ n extremal points
t1, . . . ,tm. If m< n, we choose any additional points tj in J = [a,b]
until we have n distinct points t1, . . . ,tn. Using these points and a
basis {y1, . . . ,yn} for Y , we consider the nonhomogeneous system of
linear equations

∑n
k=1

βkyk(tj)= v(tj), j = 1, . . . ,n, in the unknowns
β1, . . . ,βn. Since Y satisfies the Haar condition, the determinant is
nonzero. Hence, the system has a unique solution. We use this
solution to define y0 =β1y1+·· ·+βnyn as well as ỹ = y +εy0.
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The Extremal Points Lemma (Cont’d)

Claim: For a sufficiently small ε, the function ṽ = x − ỹ satisfies
‖ṽ‖ < ‖v‖, so that y cannot be a best approximation to x out of Y .

We estimate ṽ , breaking J = [a,b] up into two sets N and K = J −N,
where N contains the extremal points t1, . . . ,tm of v . At the extremal
points, |v(ti )| = ‖v‖ and ‖v‖> 0 since v = x −y 6= 0. Also y0(ti)= v(ti)
by the system and the definition of y0. Hence, by continuity, for each
ti , there is a neighborhood Ni , such that in N =N1∪·· ·∪Nm we have

µ= inf
t∈N

|v(t)| > 0, inf
t∈N

|y0(t)| ≥
1

2
‖v‖.

Since y0(ti)= v(ti) 6= 0, for all t ∈N, we have
y0(t)
v (t)

> 0 and
y0(t)
v (t) =

|y0(t)|
|v (t)| ≥

inf |y0(t)|
‖v‖ ≥

1
2

. Let M0 = supt∈N |y0(t)|. Then, for every

positive ε<
µ
M0

and every t ∈N, we obtain
εy0(t)
v (t)

=
ε|y0(t)|
|v (t)|

≤
εM0

µ
< 1.
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The Extremal Points Lemma (Conclusion)

Recall ṽ = x − ỹ = x −y −εy0 = v −εy0. Using the inequalities, we see
that, for all t ∈N and 0< ε<

µ
M0

,

|ṽ (t)| = |v(t)−εy0(t)| = |v(t)|

(
1−

εy0(t)

v(t)

)
≤‖v‖

(
1−

ε

2

)
<‖v‖.

We turn to the complement K = J −N and define M1 = supt∈K |y0(t)|
and M2 = supt∈K |v(t)|. Since N contains all the extremal points of v ,
we have M2 < ‖v‖. So ‖v‖=M2+η, where η> 0. Choosing a positive
ε<

η
M1

, we have εM1 < η. Thus, for all t ∈K ,

|ṽ (t)| ≤ |v(t)|+ε|y0(t)| ≤M2+εM1 <M2+η= ‖v‖.

We see that |ṽ(t)| does not exceed a bound which is independent of
t ∈K and strictly less than ‖v‖. Similarly in the first case, where t ∈N

and ε> 0 is sufficiently small. Choosing ε<min {
µ
M0

,
η
M1

} and taking
the supremum, we thus have ‖ṽ‖< ‖v‖.
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The Haar Uniqueness Theorem (Sufficiency)

Haar Uniqueness Theorem (Best Approximation)

Let Y be a finite dimensional subspace of the real space C [a,b]. Then the
best approximation out of Y is unique for every x ∈C [a,b] if and only if Y
satisfies the Haar condition.

(a) Sufficiency: Suppose Y satisfies the Haar condition, but both y1 ∈Y

and y2 ∈Y are best approximations to some fixed x ∈C [a,b]. Then,
setting v1 = x −y1, v2 = x −y2, we have ‖v1‖ = ‖v2‖ = δ, where δ is the
distance from x to Y . Now y = 1

2
(y1+y2) is also a best approximation

to x . Thus, v = x −y = x − 1
2
(y1+y2)=

1
2
(v1+v2) has at least n+1

extremal points t1, . . . ,tn+1. At such a point, |v(tj)| = ‖v‖=δ. We now
get 2v(tj)= v1(tj)+v2(tj)=±2δ. Now |v1(tj)| ≤ ‖v1‖= δ and similarly
for v2. Hence, for the equation to hold, v1(tj)= v2(tj)=±δ, where
j = 1, . . . ,n+1. But this implies that y1−y2 = v2−v1 has n+1 zeros in
[a,b]. Hence y1−y2 = 0 by the Haar condition. Thus, y1 = y2.
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The Haar Uniqueness Theorem (Necessity)

(b) Necessity: Assume that Y does not satisfy the Haar condition. We
show that we do not have uniqueness of best approximations for all
x ∈C [a,b]. There is a basis for Y and n values ti in [a,b], such that
the determinant is zero. Hence, the homogeneous system
γ1yk(t1)+γ2yk(t2)+·· ·+γnyk(tn)= 0, k = 1, . . . ,n, has a nontrivial
solution γ1, . . . ,γn. Using this solution and any y =

∑
αkyk ∈Y ,

n∑

j=1

γjy(tj)=
n∑

k=1

αk

[
n∑

j=1

γjyk(tj)

]
= 0.

The transposed system β1y1(tj)+β2y2(tj )+·· ·+βnyn(tj )= 0,
j = 1, . . . ,n, has a nontrivial solution β1, . . . ,βn. Define y0 =

∑
βkyk .

Then y0 6= 0, and y0 is zero at t1, . . . ,tn. Let λ be such that ‖λy0‖≤ 1.

Take z ∈C [a,b] such that ‖z‖= 1, z(tj)= sgnγj =

{
−1, if γj < 0
1, if γj ≥ 0

.
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The Haar Uniqueness Theorem (Necessity Cont’d)

Define x ∈C [a,b] by x(t)= z(t)(1−|λy0(t)|).

Then x(tj )= z(tj)= sgnγj , since y0(tj)= 0. Also ‖x‖ = 1.

We show that x has infinitely many best approximations out of Y .

Using |z(t)| ≤ ‖z‖= 1 and |λy0(t)| ≤ ‖λy0‖≤ 1, for every ε∈ [−1,1],

|x(t)−ελy0(t)| ≤ |x(t)|+ |ελy0(t)|
= |z(t)|(1−|λy0(t)|)+|ελy0(t)|
≤ 1−|λy0(t)|+ |ελy0(t)|
= 1− (1−|ε|)|λy0(t)| ≤ 1.

Hence every ελy0, −1≤ ε≤ 1, is a best approximation to x , provided
‖x −y‖≥ 1, for all y ∈Y . We prove this for arbitrary y =

∑
αkyk ∈Y .

Suppose that ‖x − ỹ‖< 1, for a ỹ ∈Y . Then x(tj)= sgnγj =±1, and
|x(tj)− ỹ (tj)| ≤ ‖x − ỹ‖ < 1 imply, for all γj 6= 0, sgnỹ(tj)= sgnx(tj)=
sgnγj . This contradicts

∑n
j=1

γjy(tj)= 0, with y = ỹ : Since γj 6= 0, for

some j ,
∑n

j=1
γj ỹ(tj)=

∑n
j=1

γj sgnγj =
∑n

j=1
|γj | 6= 0.
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Polynomial Approximations

Note that if Y is the set of all real polynomials of degree ≤ n, together
with the polynomial y = 0 (for which a degree is not defined in the
usual discussion of degree), then dimY = n+1 and Y satisfies the
Haar condition.

Theorem (Polynomials)

The best approximation to an x in the real space C [a,b] out of Yn is
unique, where Yn is the subspace consisting of y = 0 and all polynomials of
degree not exceeding a fixed given n.

In this theorem, it is worthwhile to compare the approximations for
various n and see what happens as n→∞:

Let δn =‖x −pn‖, where pn ∈Yn is the best approximation to a fixed
given x . Since Y0 ⊆Y1 ⊆ ·· ·, we have δ0 ≥δ1 ≥δ2 ≥ ·· ·. The
Weierstraß approximation theorem implies that lim

n→∞
δn = 0.
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Subsection 4

Chebyshev Polynomials
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Alternating Set

Definition (Alternating Set)

Let x ∈C [a,b] and y ∈Y , where Y is a subspace of the real space C [a,b].
A set of points t0, . . . ,tk in [a,b], where t0 < t1 < ·· · < tk , is called an
alternating set for x −y if x(tj )−y(tj) has alternately the values +‖x −y‖

and −‖x −y‖ at consecutive points tj .

These k+1 points in the definition are extremal points of x−y and the
values of x −y at these points are alternating positive and negative.

The following lemma states that the existence of a sufficiently large
alternating set for x −y implies that y is the best approximation to x .

This condition is also necessary for y to be the best approximation to
x , but this will not be proven.
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The Best Approximation Lemma

Lemma (Best Approximation)

Let Y be a subspace of the real space C [a,b] satisfying the Haar condition.
Given x ∈C [a,b], let y ∈Y such that for x −y , there exists an alternating
set of n+1 points, where n= dimY . Then y is the best uniform
approximation to x out of Y .

We know that there is a unique best approximation to x out of Y . If
this is not y , it is some other y0 ∈Y and then ‖x −y‖> ‖x −y0‖. At
the n+1 extremal points the function y0−y = (x −y)−(x −y0) has the
same sign as x −y :

x −y equals ±‖x −y‖ at such a point;
the other term on the right, x −y0, can never exceed ‖x −y0‖ in
absolute value, which is strictly less than ‖x −y‖.

Thus, y0−y is alternating positive and negative at those n+1 points.
So it must have at least n zeros in [a,b]. But this is impossible unless
y0−y = 0, since y0−y ∈Y and Y satisfies the Haar condition. Hence
y must be the best approximation to x out of Y .
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A Classical Approximation Problem

An application of this lemma is the approximation of x ∈C [−1,1]
defined by x(t)= tn, n ∈N fixed, out of Y = span{y0, . . . ,yn−1}, where
yj(t)= t j , j = 0, . . . ,n−1.

Obviously, this means that we want to approximate x on [−1,1] by a
real polynomial y of degree less than n.

Such a polynomial is of form y(t)=αn−1t
n−1+αn−2t

n−2+·· ·+α0.

For z = x −y , we have z(t)= tn− (αn−1t
n−1+αn−2t

n−2+·· ·+α0).

We want to find y such that ‖z‖ becomes as small as possible.

Since z is a polynomial of degree n with leading coefficient 1, our
original problem is equivalent to:

Find the polynomial z which, among all polynomials of degree n and
with leading coefficient 1, has the smallest maximum deviation from 0
on the interval [−1,1] under consideration.
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Introducing Trigonometric Expressions

Set t = cosθ and let θ vary from 0 to π.

Then t varies on the interval [−1,1].

On [0,π] the function defined by cosnθ has n+1 extremal points, the
values being ±1 in alternating order.

Because of the lemma, we hope that cosnθ will help to solve our
problem, provided we are able to write cosnθ as a polynomial in
t = cosθ.
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Expression for cosnθ

Claim: There is a representation of the form

cosnθ= 2n−1 cosn θ+
n−1∑

j=0

βnj cos
j θ, n= 1,2, . . . ,

where the βnj ’s are constants.

This is true for n= 1 (take β10 = 0). Assuming it to be true for any n,
we show that it holds for n+1. We use The addition formula for the
cosine cos(n±1)θ = cosnθcosθ∓ sinnθ sinθ. Adding, we have
cos(n+1)θ+cos(n−1)θ = 2cosnθcosθ. Consequently, by the
induction hypothesis,

cos(n+1)θ = 2cosθcosnθ−cos(n−1)θ

= 2cosθ(2n−1 cosn θ+
∑n−1

j=0
βnjcos

jθ)

−2n−2 cosn−1θ−
∑n−2

j=0
βn−1,j cos

j θ.

This yields cos(n+1)θ = 2n cosn+1θ+
∑n

j=0
βn+1,j cos

j θ.
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The Chebyshev Polynomials

The functions defined by

Tn(t)= cosnθ, θ= arccos t , n = 0,1, . . . ,

are called Chebyshev polynomials of the first kind of order n.

The leading coefficient in cosnθ= 2n−1 cosn θ+
∑n−1

j=0
βnj cos

j θ is not 1,

as we want it, but 2n−1.

Hence, we obtain the following formulation of our result, which
expresses the minimum property of the Chebyshev polynomials:

Theorem (Chebyshev Polynomials)

The polynomial defined by

T̃n(t)=
1

2n−1
Tn(t)=

1

2n−1
cos(narccos t), n≥ 1,

has the smallest maximum deviation from 0 on the interval [−1,1], among
all real polynomials considered on [−1,1] which have degree n and leading
coefficient 1.
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An Alternative Formulation

The best uniform approximation to the function x ∈C [−1,1] defined by

x(t)= tn,

out of Y = span{y0, . . . ,yn−1} with yj(t)= t j , j = 0, . . . ,n−1, (that is,
the approximation by a real polynomial of degree less than n) is y

defined by

y(t)= x(t)−
1

2n−1
Tn(t), n≥ 1.
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A Generalization

Let x̃ be a real polynomial of degree n with leading term βnt
n.

We are looking for the best approximation ỹ to x̃ on [−1,1], where ỹ

is a polynomial of lower degree, at most n−1.

We may write x̃ =βnx .

We see that x has the leading term tn.

From the theorem we conclude that ỹ must satisfy 1
βn
(x̃ − ỹ)= T̃n.

The solution is

ỹ(t)= x̃ −
βn

2n−1
Tn(t), n≥ 1.
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The Formula for Chebyshev Polynomials

Explicit expressions of the first few Chebyshev polynomials can be
readily obtained as follows:

T0(t)= cos0= 1;
T1(t)= cosθ = t;
Since Tn(t)= cosnθ and cos(n+1)θ+cos(n−1)θ = 2cosnθ cosθ, we
get Tn+1(t)+Tn−1(t)= 2tTn(t).
Hence, we get the recursion formula

Tn+1(t)= 2tTn(t)−Tn−1(t), n= 1,2, . . . .

Therefore, we have

T0(t)= 1, T1(t)= t,

T2(t)= 2t2−1, T3(t)= 4t3−3t,

T4(t)= 8t4−8t2+1, T5(t)= 16t5−20t3+5t.

In general,

Tn(t)=
n

2

⌊n/2⌋∑

j=0

(−1)j
(n− j −1)!

j!(n−2j)!
(2t)n−2j

, n= 1,2, . . . .
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Subsection 5

Approximation in Hilbert Space
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The Case of Hilbert Space

For any given x in a Hilbert space H and a closed subspace Y ⊆H,
there exists a unique best approximation to x out of Y :

We have
H =Y ⊕Z , Z =Y ⊥

,

so that, for each x ∈H,
x = y +z ,

where z = x −y ⊥ y , hence 〈x −y ,y 〉 = 0.

Suppose Y is finite dimensional, say, dimY = n, with basis {y1, . . . ,yn}.

We have a unique representation y =α1y1+·· ·+αnyn.

Then x −y ⊥Y gives the n conditions

0 = 〈yj ,x −y 〉

= 〈yj ,x −
∑n

k=1
αkyk〉

= 〈yj ,x〉−α1〈yj ,y1〉− · · ·−αn〈yj ,yn〉.
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The Gram Determinant

〈yj ,x〉−α1〈yj ,y1〉− · · ·−αn〈yj ,yn〉 = 0, where j = 1, . . . ,n, is a
nonhomogeneous system of n linear equations in n unknowns
α1, . . . ,αn.

The determinant of the coefficients is

G(y1, . . . ,yn)=

∣∣∣∣∣∣∣∣∣∣

〈y1,y1〉 〈y1,y2〉 · · · 〈y1,yn〉

〈y2,y1〉 〈y2,y2〉 · · · 〈y2,yn〉
.
.
.

.

.

.

.

.

.

〈yn,y1〉 〈yn,y2〉 · · · 〈yn,yn〉

∣∣∣∣∣∣∣∣∣∣

.

Since y exists and is unique, that system has a unique solution.
Hence, G (y1, . . . ,yn) must be different from 0. The determinant
G :=G (y1, . . . ,yn) is called the Gram determinant of y1, . . . ,yn.

Cramer’s rule now yields αj =
G j

G
, where Gj is obtained from G by

replacing the j-th column of G by the column with elements
〈y1,x〉, . . . ,〈yn,x〉.
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Linear Independence and Gram Determinants

Theorem (Linear Independence)

Elements y1, . . . ,yn of a Hilbert space H constitute a linearly independent
set in H if and only if

G (y1, . . . ,yn) 6= 0.

The preceding discussion shows that in the case of linear
independence, G 6= 0.

If {y1, . . . ,yn} is linearly dependent, one of the vectors, say yj , is a linear
combination of the others. Then the j-th column of G is a linear
combination of the other columns, whence G = 0.
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Distance and Gram Determinants

The distance ‖z‖= ‖x −y‖ between x and the best approximation y to
x can also be expressed by Gram determinants:

Theorem (Distance)

If dimY <∞ and {y1, . . . ,yn} is any basis for Y , then

‖z‖2
=
G (x ,y1, . . . ,yn)

G (y1, . . . ,yn)
, where G(x ,y1 , . . . ,yn)=

∣∣∣∣∣∣∣∣∣∣

〈x ,x〉 〈x ,y1〉 · · · 〈x ,yn〉

〈y1,x〉 〈y1,y1〉 · · · 〈y1,yn〉
.
.
.

.

.

.

.

.

.

〈yn,x〉 〈yn,y1〉 · · · 〈yn,yn〉

∣∣∣∣∣∣∣∣∣∣

.

We have 〈y ,z〉 = 0, where z = x −y , so that
‖z‖2 = 〈z ,z〉+〈y ,z〉= 〈x ,x −y 〉 = 〈x ,x〉−〈x ,

∑
αkyk 〉. This can be

written −‖z‖2+〈x ,x〉−α1〈x ,y1〉− · · ·−αn〈x ,yn〉 = 0. We now
remember the n equations

〈yj ,x〉−α1〈yj ,y1〉− · · ·−αn〈yj ,yn〉 = 0, j = 1, . . . ,n.
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Distance and Gram Determinants (Cont’d)

The equations

−‖z‖2+〈x ,x〉−α1〈x ,y1〉− · · ·−αn〈x ,yn〉 = 0
〈yj ,x〉−α1〈yj ,y1〉− · · ·−αn〈yj ,yn〉 = 0, j = 1, . . . ,n,

form a homogeneous system of n+1 linear equations in the n+1
“unknowns” 1,−α1, . . . ,−αn.

Since the system has a nontrivial solution, the determinant of its

coefficients must be zero, i.e.,

∣∣∣∣∣∣∣∣∣∣

〈x ,x〉−‖z‖2 〈x ,y1〉 · · · 〈x ,yn〉

〈y1,x〉+0 〈y1,y1〉 · · · 〈y1,yn〉
.
.
.

.

.

.

.

.

.

〈yn,x〉+0 〈yn,y1〉 · · · 〈yn,yn〉

∣∣∣∣∣∣∣∣∣∣

= 0.

We can write this determinant as the sum of:
G(x ,y1, . . . ,yn);
the determinant that has elements −‖z‖2,0, . . . ,0 in its first column.

Developing by the first column, G (x ,y1, . . . ,yn)−‖z‖2G (y1, . . . ,yn)= 0.
This concludes the proof, since G (y1, . . . ,yn) 6= 0.
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The Case of Orthonormal Basis

If the basis {y1, . . . ,yn} in

‖z‖2
=
G (x ,y1, . . . ,yn)

G (y1, . . . ,yn)

is orthonormal, then G (y1, . . . ,yn)= 1.

By developing G (x ,y1, . . . ,yn) by its first row and noting that
〈x ,y1〉〈y1,x〉 = |〈x ,y1〉|

2, etc., we obtain

‖z‖2
= ‖x‖2

−

n∑

k=1

|〈x ,yk 〉|
2

.

This agrees with

‖z‖2
= ‖x‖2

−

n∑

k=1

|〈x ,ek 〉|
2

,

where Y = span{e1, . . . ,en}.
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