Introduction to Game Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

- Game Theory
- Games and Solutions
- Rational Behavior
- The Steady State and Deductive Interpretations
- Bounded Rationaliy
- Terminology and Notation

Game Theory

Introducing Game Theory

- Game theory is concerned with the interaction of decision makers.
- It assumes that decision makers:
 - Pursue well-defined objectives (are rational);
 - Take into account their knowledge or expectations of other decision makers' behavior (they reason strategically).
- The models are highly abstract to ensure wide real-life applicability.
 - Nash equilibria have been used in economic and political competition.
 - Mixed strategy equilibria explain the distributions of biological features.
 - Repeated games illuminate social phenomena like threats and promises.

Introducing Game Theory (Cont'd)

• Game theory uses mathematics to express its ideas formally so that:

- It is precise;
- It is logically consistent;
- It can deduce formal conclusions based on solid assumptions.
- Game theory is also a social science whose aim is to understand the behavior of interacting decision-makers.
 - Mathematical results should be confirmed by intuition;
 - Mathematical results should support and enhance the intuition.

Games and Solutions

Games, Solutions and Classification

- A game is described by:
 - The constraints on the actions or moves that the players can make;
 - The players' interests or goals.
- A solution:
 - Specifies the moves that achieve the goals;
 - Describes the outcomes that may emerge.
- Game theory:
 - Discovers reasonable solutions for classes of games;
 - Examines their properties.
- Games are classified as:
 - Cooperative and Noncooperative Games;
 - Strategic and Extensive Games;
 - Games with Perfect or Imperfect Information.

Classification of Games

- In game theory, a player may be interpreted as an individual or as a group of individuals making a decision.
 - In noncooperative games we focus on the actions of individual players;
 - In cooperative games we focus on joint actions of groups of players.
- During gaming, a plan of actions can be decided either in advance or as the game develops.
 - In a strategic game each player chooses his plan of action in advance, simultaneously with all other players and independent of the plan of action chosen by the other players.
 - In an extensive game each player can consider his plan of action whenever he has to make a decision throughout the game.
- Depended on how informed players are, we distinguish between games:
 - With perfect information, in which players are fully informed about each others' moves;
 - With imperfect information, where some information about the other participants' actions is lacking.

George Voutsadakis (LSSU)

Game Theory

Rational Behavior

Deterministic Model of Rational Choice

- Given a deterministic environment, a model of rational choice consists of:
 - A set A of actions from which the decision maker makes a choice;
 - A set C of possible **consequences** of these actions;
 - A consequence function

$$g:A \to C$$

that associates a consequence with each action;

A preference relation (a complete transitive reflexive binary relation)

 ∼ on the set C.

Deterministic Model of Rational Choice (Cont'd)

• Alternatively, the decision maker's preferences are specified by giving a **utility function** $U: C \to \mathbb{R}$, which defines a preference relation by the condition

$$x \succeq y$$
 if and only if $U(x) \ge U(y)$.

• Given feasible $B \subseteq A$, a rational decision maker chooses an action $a^* \in B$ that is optimal, in the sense that

 $g(a^*) \succeq g(a)$, for all $a \in B$.

• I.e., the rational decision maker solves the problem

 $\max_{a\in B} U(g(a)).$

• The preference relation is independent of which $B \subseteq A$ is considered.

Nondeterministic Environments

• Nondeterministic environments are created when:

- The players are uncertain about parameters of the environment;
- Imperfectly informed about events that happen in the game;
- Uncertain about actions of other players that are not deterministic;
- Uncertain about the reasoning of the other players.

Nondeterministic Model of Rational Choice

- Consider the probabilities of the consequences of an action.
 - If they are known, players behave as if they maximize the expected value of a utility function that attaches a number to each consequence.
 - If they are not known, players behave as if they:
 - Subjectively create a "state space" Ω ;
 - Evaluate a probability measure over Ω ;
 - Attach consequences to pairs of actions and states using some function

$$g: A imes \Omega \to C;$$

• Associate a utility function $u: C \to \mathbb{R}$.

The choice then maximizes the expected value of $u(g(a, \omega))$ with respect to the probability measure.

The Steady State and Deductive Interpretations

Steady State versus Deductive Interpretation

- There are two conflicting interpretations of solutions for strategic and extensive games.
 - The steady state interpretation treats a game as a model designed to explain regularities observed in similar situations.
 - Each participant recognizes, based on experience, the equilibrium.
 - He tests the optimality of his behavior given this knowledge.
 - The deductive interpretation treats a game in isolation and attempts to infer the restrictions that rationality imposes on the outcome.
 - It assumes that each player deduces how the other players will behave simply from principles of rationality.

Bounded Rationaliy

Rationality

- Game theory assumes that:
 - The players' knowledge of the rules of the game is perfect;
 - Their ability to analyze it is ideal.
- Game theoretic results imply, e.g., that chess is a trivial game in the sense that an algorithm exists that can be used to "solve" the game.
- The algorithm defines a strategy for each player, that leads to an "equilibrium" outcome.
- The outcome for a player who follows the strategy will be at least as good as the equilibrium outcome.

Bounded Rationality

- Despite these results, in reality, chess remains a very popular and interesting game.
 - The reason is that its equilibrium outcome is yet to be calculated, since it is still impossible to do so using the algorithm.
 - While the abstract model of chess allows us to deduce a significant fact about the game, it does not factor in the players' "abilities".
- Modeling asymmetries in abilities and in perceptions of a situation by different players requires models of "bounded rationality", a newer area of game theory.

Terminology and Notation

Sets and Inequalities

- The set of real numbers is denoted \mathbb{R} .
- The set of nonnegative real numbers by \mathbb{R}_+ .
- The set of vectors of n real numbers by \mathbb{R}^n .
- The set of vectors of *n* nonnegative real numbers by \mathbb{R}^n_+ .
- For $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$, we use:
 - $x \ge y$ to mean $x_i \ge y_i$, for $i = 1, \ldots, n$;
 - x > y to mean $x_i > y_i$, for $i = 1, \ldots, n$.

Monotonicity, Concavity, Maximizers and Images

• A function $f : \mathbb{R} \to \mathbb{R}$ is **increasing** if

$$x > y$$
 implies $f(x) > f(y)$.

• A function $f : \mathbb{R} \to \mathbb{R}$ is **nondecreasing** if

$$x > y$$
 implies $f(x) \ge f(y)$.

• A function $f : \mathbb{R} \to \mathbb{R}$ is **concave** if, for all $x, x' \in \mathbb{R}$, and all $\alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)x') \ge \alpha f(x) + (1 - \alpha)f(x').$$

Given a function f : X → ℝ we denote by argmax_{x∈X} f(x) the set of maximizers of f.

• For any $Y \subseteq X$ we write $f(Y) := \{f(x) : x \in Y\}$.

Profiles

- Throughout we use N to denote the set of players.
- A profile is a collection of values of some variable, one for each player.
- Such a profile is written $(x_i)_{i \in N}$, or, if the qualifier $i \in N$ is clear, (x_i) .
- For any profile $x = (x_j)_{j \in N}$ and any $i \in N$, we let

$$x_{-i} := (x_j)_{j \in N - \{i\}},$$

the list of elements of the profile x for all players except player i.

- Given a list $x_{-i} = (x_j)_{j \in N \{i\}}$ and an element x_i , we denote by (x_{-i}, x_i) the profile $(x_i)_{i \in N}$.
- If X_i is a set, for each $i \in N$, then we denote by

$$X_{-i} := \bigvee_{j \in N - \{i\}} X_j.$$

Preference Relations

- A binary relation \succeq on a set A is:
 - **Complete** if $a \succeq b$ or $b \succeq a$, for every $a \in A$ and $b \in A$;
 - **Reflexive** if $a \succeq a$, for every $a \in A$;
 - **Transitive** if $a \succeq c$ whenever $a \succeq b$ and $b \succeq c$.
- A **preference relation** is a complete reflexive transitive binary relation.
- If $a \succeq b$, but not $b \succeq a$, then we write $a \succ b$.
- If $a \succeq b$ and $b \succeq a$, then we write $a \sim b$.

Continuous and Quasi-Concave Preference Relations

A preference relation ≿ on A is continuous if for all sequences (a^k)_k and (b^k)_k in A that converge to a and b, respectively,

$$a^k \succeq b^k$$
, for all k , imply $a \succeq b$.

- A preference relation ≿ on ℝⁿ is quasi-concave if for every b ∈ ℝⁿ, the set {a ∈ ℝⁿ : a ≿ b} is convex.
- A preference relation ≿ on ℝⁿ is strictly quasi-concave if every such set is strictly convex.

Partitions and Pareto Efficiency

- Let X be a set.
- We denote by |X| the number of members of X.
- A **partition** of X is a collection of disjoint subsets of X whose union is X.
- Let N be a finite set and let $X \subseteq \mathbb{R}^N$ be a set.
- $x \in X$ is **Pareto efficient** if there is no $y \in X$ for which

 $y_i > x_i$, for all $i \in N$.

- $x \in X$ is strongly Pareto efficient if there is no $y \in X$ for which:
 - $y_i \ge x_i$, for all $i \in N$;
 - $y_i > x_i$, for some $i \in N$.

Probability Measures

• A **probability measure** μ on a finite (or countable) set X is a function

$$\mu: 2^X \to \mathbb{R}$$

that satisfies:

μ(A) ≥ 0, for every A ⊆ X;
 If B, C ⊆ X, with B ∩ C = Ø,

$$\mu(B\cup C)=\mu(B)+\mu(C);$$

• $\mu(X) = 1.$

 We do occasionally work with probability measures over spaces that are not necessarily finite.