Introduction to Game Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Coalitional Games: The Core

- Coalitional Games with Transferable Payoff
- The Core
- Nonemptiness of the Core
- Markets with Transferable Payoff
- Coalitional Games Without Transferable Payoff
- Exchange Economies

Subsection 1

Coalitional Games with Transferable Payoff

Coalitional Games with Transferable Payoff

- In the simplest version of a coalitional game, each group of players is associated with a single number, the payoff available to the group.
- There are no restrictions on how this payoff may be divided among the members of the group.

Definition (Coalitional Game with Transferable Payoff)

A coalitional game with transferable payoff consists of:

- A finite set N (of **players**);
- A function v that associates with every nonempty subset S of N (a **coalition**) a real number v(S) (the **worth** of S).
- For each coalition S the number v(S) is the total payoff that is available for division among the members of S.
- The set of joint actions that the coalition S can take consists of all possible divisions of v(S) among the members of S.

Suitability of the Model

- In many situations the payoff that a coalition can achieve depends on the actions taken by the other players.
- A coalitional game models best a situation in which the actions of the players who are not part of S do not influence v(S).
- Another interpretation for v(S) is as the most payoff that the coalition S can guarantee independently of the behavior of the coalition N-S.
- The interpretation of the solution concepts defined depend on how the game is interpreted.

Cohesive Coalitional Games with Transferable Payoff

• In the coalitional games with transferable payoff studied here, the worth of the coalition *N* of all players is at least as large as the sum of the worths of the members of any partition of *N*.

Definition (Cohesive Coalitional Game)

A coalitional game $\langle N, v \rangle$ with transferable payoff is **cohesive** if, for every partition $\{S_1, \ldots, S_K\}$ of N,

$$v(N) \geq \sum_{k=1}^{K} v(S_k).$$

This is a special case of the condition of **superadditivity**, which requires that, for all coalitions S and T, with $S \cap T = \emptyset$,

$$v(S \cup T) \geq v(S) + v(T).$$

Subsection 2

The Core

Idea Behind the Core

- The idea behind the core is analogous to that behind a Nash equilibrium of a noncooperative game: An outcome is stable if no deviation is profitable.
- In the case of the core, an outcome is stable if no coalition can deviate and obtain an outcome better for all its members.
- For a coalitional game with transferable payoff, the stability condition is that no coalition can obtain a payoff that exceeds the sum of its members' current payoffs.
- Given our assumption that the game is cohesive, we confine ourselves to outcomes in which the coalition *N* of all players forms.

Feasible Payoff Vectors and Profiles

- Let $\langle N, v \rangle$ be a coalitional game with transferable payoff.
- For any profile $(x_i)_{i \in N}$ of real numbers and any coalition S, we define

$$x(S)=\sum_{i\in S}x_i.$$

• A vector $(x_i)_{i \in S}$ of real numbers is an *S*-feasible payoff vector if

$$x(S)=v(S).$$

• We refer to an *N*-feasible payoff vector as a feasible payoff profile.

The Core

Definition (The Core)

The **core** of the coalitional game with transferable payoff $\langle N, v \rangle$ is the set of feasible payoff profiles $(x_i)_{i \in N}$ for which there is no coalition S and S-feasible payoff vector $(y_i)_{i \in S}$, with $y_i > x_i$, for all $i \in S$.

• Equivalently, the core is the set of feasible payoff profiles $(x_i)_{i \in N}$, such that, for every coalition S,

$$v(S) \leq x(S).$$

- Thus, the core is a set of payoff profiles satisfying a system of weak linear inequalities.
- Consequently, the core is closed and convex.

Example: A Three-Player Majority Game

- Consider the following scenario.
 - Three players can obtain one unit of payoff;
 - Any two of them can obtain $\alpha \in [0,1]$ independently of the actions of the third;
 - Each player alone can obtain nothing, independently of the actions of the remaining two players.

• We can model this situation as the coalitional game $\langle N, v \rangle$ in which:

•
$$N = \{1, 2, 3\};$$

• $v : \mathcal{P}(N) \setminus \{\emptyset\} \rightarrow \mathbb{R} \text{ is defined by}$
• $v(N) = 1;$
• $v(S) = \alpha$, whenever $|S| = 2;$
• $v(\{i\}) = 0$, for all $i \in N$.

- The core of this game is the set of all nonnegative payoff profiles (x_1, x_2, x_3) , for which:
 - x(N) = 1;
 - $x(S) \ge \alpha$, for every two-player coalition S.

• The core is nonempty if and only if $\alpha \leq \frac{2}{3}$.

Example: Sharing a Treasure

- An expedition of *n* people has discovered treasure in the mountains. Each pair of them can carry out one piece.
- A coalitional game that models this situation is $\langle N, v \rangle$, where:

•
$$N = \{1, 2, ..., n\};$$

• $v(S) = \begin{cases} \frac{|S|}{2}, & \text{if } |S| \text{ is even} \\ \frac{|S|-1}{2}, & \text{if } |S| \text{ is odd} \end{cases}$

- If $|N| \ge 4$ is even, then the core consists of the single payoff profile $(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2})$.
- If $|N| \ge 3$ is odd, then the core is empty.

Example: A Market for an Indivisible Good

• We consider a market for an indivisible good.

The set of buyers is B and the set of sellers is L.

- Each seller holds one unit of the good and has a reservation price of 0.
- Each buyer wants one unit and has a reservation price of 1.
- We model this marketplace as a coalitional game with transferable payoff $\langle N, \nu \rangle$.

•
$$N = B \cup L;$$

• $v(S) = \min \{ |S \cap B|, |S \cap L| \}$, for each coalition S.

Example: A Market for an Indivisible Good (Cont'd)

If |B| > |L|, then the core consists of the single payoff profile in which every seller receives 1 and every buyer receives 0.
Suppose that the payoff profile x is in the core.
Let b be a buyer whose payoff is minimal among all the buyers.
Let ℓ be a seller whose payoff is minimal among all the sellers.
Since x is in the core, we have:

$$x_b + x_\ell \geq v(\{b,\ell\}) = 1.$$

Therefore,

$$|L| = v(N) = x(N) \ge |B|x_b + |L|x_\ell \ge (|B| - |L|)x_b + |L|.$$

This implies that $x_b = 0$ and $x_\ell \ge 1$. Hence, (using v(N) = |L| and the fact that ℓ is the worst-off seller) $x_i = 1$, for every seller *i*.

Example: A Majority Game

- A group of n players, where n ≥ 3 is odd, has one unit to divide among its members.
 - A coalition consisting of a majority of the players can divide the unit among its members as it wishes.
- This situation is modeled by the coalitional game $\langle N, v \rangle$, with:

•
$$|N| = n;$$

• $v(S) = \begin{cases} 1, & \text{if } |S| \ge \frac{n}{2} \\ 0, & \text{otherwise} \end{cases}$

• We claim that this game has an empty core.

Example: A Majority Game (Cont'd)

• The game has an empty core.

Suppose, to the contrary, that x is in the core.

If
$$|S| = n - 1$$
, then $v(S) = 1$. So

$$\sum_{i\in S} x_i \ge 1.$$

• There are *n* coalitions of size *n* - 1. So we have

$$\sum_{S:|S|=n-1}\sum_{i\in S}x_i\geq n.$$

On the other hand,

$$\sum_{S:|S|=n-1\}} \sum_{i \in S} x_i = \sum_{i \in N} \sum_{\{S:|S|=n-1, S \ni i\}} x_i = \sum_{i \in N} (n-1)x_i = n-1.$$

These contradict each other.

Subsection 3

Nonemptiness of the Core

Notation

- We now derive a condition under which the core of a coalitional game is nonempty.
- Recall that the core is defined by a system of linear inequalities.
- So such a condition could be derived from the conditions for the existence of a solution to a general system of inequalities.
- But the special structure of the system of inequalities that defines the core yields a more specific condition.
- Denote:
 - By ${\mathcal C}$ the set of all coalitions;
 - For any coalition S, by \mathbb{R}^S the |S|-dimensional Euclidian space in which the dimensions are indexed by the members of S;
 - By $1_{S} \in \mathbb{R}^{N}$ the characteristic vector of S, given by

$$(1_S)_i = \left\{ egin{array}{cc} 1, & ext{if } i \in S \ 0, & ext{otherwise} \end{array}
ight.$$

Balanced Games

A collection (λ_S)_{S∈C} of numbers in [0,1] is a balanced collection of weights if, for every player *i*, the sum of λ_S over all the coalitions that contain *i* is 1:

$$\sum_{S\in\mathcal{C}}\lambda_S\mathbf{1}_S=\mathbf{1}_N.$$

Example: Let |N| = 3.

- The collection (λ_S) in which $\lambda_S = \frac{1}{2}$, if |S| = 2, and $\lambda_S = 0$, otherwise, is a balanced collection of weights.
- The collection (λ_S) in which λ_S = 1, if |S| = 1, and λ_S = 0, otherwise, is also a balanced collection of weights.
- A game $\langle N, v \rangle$ is **balanced** if

$$\sum_{S\in\mathcal{C}}\lambda_S v(S) \leq v(N),$$

for every balanced collection of weights $(\lambda_S)_{S \in \mathcal{C}}$.

Interpretation of a Balanced Game

- Each player has one unit of time, which he must distribute among all the coalitions of which he is a member.
- In order for a coalition S to be active for the fraction of time λ_S , all its members must be active in S for this fraction of time, in which case the coalition yields the payoff $\lambda_S v(S)$.
- In this interpretation the condition that the collection of weights be balanced is a feasibility condition on the players' allocation of time.
- A game is balanced if there is no feasible allocation of time that yields the players more than v(N).

The Bondareva-Shapley Theorem

The Bondareva-Shapley Theorem

A coalitional game with transferable payoff has a nonempty core if and only if it is balanced.

Let ⟨N, v⟩ be a coalitional game with transferable payoff.
 First, let x be a payoff profile in the core of ⟨N, v⟩.
 Let (λ_S)_{S∈C} be a balanced collection of weights. Then

$$\sum_{S \in \mathcal{C}} \lambda_S v(S) \leq \sum_{S \in \mathcal{C}} \lambda_S x(S)$$

= $\sum_{i \in \mathbb{N}} x_i \sum_{S \ni i} \lambda_S$
= $\sum_{i \in \mathbb{N}} x_i$
= $v(\mathbb{N}).$

So $\langle N, v \rangle$ is balanced.

Proving the Converse

Now assume that ⟨N, ν⟩ is balanced. Then, there is no balanced collection (λ_S)_{S∈C} of weights for which ∑_{S∈C} λ_Sν(S) > ν(N). We show that the convex set

$$\{(1_N, \nu(N) + \epsilon) \in \mathbb{R}^{|N|+1} : \epsilon > 0\}$$

is disjoint from the convex cone

$$\left\{y\in \mathbb{R}^{|\mathcal{N}|+1}: y=\sum_{\mathcal{S}\in \mathcal{C}}\lambda_{\mathcal{S}}(1_{\mathcal{S}},v(\mathcal{S})), \text{ where } \lambda_{\mathcal{S}}\geq \mathsf{0}, \text{ for all } \mathcal{S}\in \mathcal{C}\right\}.$$

Assume that this is not the case. Then $1_N = \sum_{S \in C} \lambda_S 1_S$. So $(\lambda_S)_{S \in C}$ is a balanced collection of weights, with

$$\sum_{S\in\mathcal{C}}\lambda_S v(S) > v(N).$$

Proving the Converse (Cont'd)

• By the Separating Hyperplane Theorem, there is a nonzero vector

$$(\alpha_N, \alpha) \in \mathbb{R}^{|N|} \times \mathbb{R},$$

such that:

- $(\alpha_N, \alpha) \cdot y \ge 0$, for all y in the cone;
- $(\alpha_N, \alpha) \cdot (\mathbf{1}_N, \mathbf{v}(N) + \epsilon) < 0$, for all $\epsilon > 0$.

Now $(1_N, v(N))$ is in the cone. So we have $\alpha < 0$. Let $x = \frac{\alpha_N}{-\alpha}$. Note that $(1_S, v(S))$ is in the cone, for all $S \in C$. Hence, $x(S) = x \cdot 1_S \ge v(S)$, for all $S \in C$, by the first inequality. Moreover, $v(N) \ge 1_N x = x(N)$ by the second inequality. Thus, v(N) = x(N) and the payoff profile x is in the core of $\langle N, v \rangle$.

Example

• Let $N = \{1, 2, 3, 4\}$. Consider the game $\langle N, v \rangle$ in which

$$\nu(S) = \begin{cases} 1, & \text{if } S = N\\ \frac{3}{4}, & \text{if } S = \{1, 2\}, \{1, 3\}, \{1, 4\}, \text{ or } \{2, 3, 4\}\\ 0, & \text{otherwise} \end{cases}$$

We show that $\langle N, v \rangle$ has an empty core.

It suffices to show that the game is not balanced.

Consider the collection $(\lambda_S)_{S \in \mathcal{C}}$ of weights defined by

$$\lambda_{S} = \begin{cases} \frac{1}{3}, & \text{if } S = \{1, 2\}, \{1, 3\} \text{ or } \{1, 4\} \\ \frac{2}{3}, & \text{if } S = \{2, 3, 4\} \\ 0, & \text{otherwise} \end{cases}$$

It is easy to see that $(\lambda_S)_{S \in C}$ is balanced. Moreover, $\sum_{S \in C} \lambda_S v(S) = 3 \cdot \frac{1}{3} \cdot \frac{3}{4} + \frac{2}{3} \cdot \frac{3}{4} = \frac{5}{4} > V(N)$. Therefore, the game is not balanced.

George Voutsadakis (LSSU)

Subsection 4

Markets with Transferable Payoff

A Production Process

- We apply the concept of the core to a classical model of an economy.
- Each of the agents is endowed with a bundle of goods.
- Goods can be used as inputs in a production process that the agent can operate.
- All production processes produce the same output.
- The output can be transferred between the agents.

Markets with Transferable Payoff

• Formally, a market with transferable payoff

 $\langle N, \ell, (\omega_i), (f_i) \rangle$

consists of:

- A finite set *N* (of **agents**);
- A positive integer ℓ (the number of **input goods**);
- For each agent $i \in N$, a vector $\omega_i \in \mathbb{R}^{\ell}_+$ (the **endowment** of agent *i*);
- For each agent *i* ∈ *N*, a continuous, nondecreasing and concave function *f_i* : ℝ^ℓ₊ → ℝ₊ (the **production function** of agent *i*).
- An **input vector** is a member of \mathbb{R}^{ℓ}_+ .
- An **allocation** is a profile $(z_i)_{i \in N}$ of input vectors, such that

$$\sum_{i\in\mathbb{N}}z_i=\sum_{i\in\mathbb{N}}\omega_i.$$

Cooperation and Conflict

- The agents may gain by cooperating.
 - If their endowments are complementary, then in order to maximize total output they may need to exchange inputs.
- On the other hand, the agents' interests conflict.
 They need to distribute the benefits of cooperation.

From a Market to a Coalitional Game

- Let $\langle N, \ell, (\omega_i), (f_i) \rangle$ be a market with transferable payoff.
- Let $\langle N, v \rangle$ be the following coalitional game with transferable payoff:
 - N is the set of agents;
 - For each coalition S, we have

$$v(S) = \max_{(z_i)_{i \in S}} \left\{ \sum_{i \in S} f_i(z_i) : z_i \in \mathbb{R}_+^\ell \text{ and } \sum_{i \in S} z_i = \sum_{i \in S} \omega_i \right\}.$$

- Note v(S) is the maximal total output that the members of S can produce by themselves.
- The core of a market is the core of the associated coalitional game.
- Note, also, the importance of the following assumptions:
 - (a) All agents produce the same good;
 - (b) The production of any coalition S is independent of the behavior of N-S.

Nonemptiness of the Core

Proposition

Every market with transferable payoff has a nonempty core.

Let ⟨N, ℓ, (ω_i), (f_i)⟩ be a market with transferable payoff.
 Let ⟨N, v⟩ be the corresponding coalitional game.
 By the Bondareva -Shapley Theorem, it suffices to show that ⟨N, v⟩ is

balanced.

Let $(\lambda_S)_{S \in \mathcal{C}}$ be a balanced collection of weights.

We must show that $\sum_{S \in C} \lambda_S v(S) \leq v(N)$.

For each coalition S, let $(z_i^S)_{i \in S}$ be a solution of the max problem defining v(S). Define

$$z_i^* = \sum_{S \in \mathcal{C}, S \ni i} \lambda_S z_i^S.$$

Nonemptiness of the Core (Cont'd)

We have

$$\sum_{i \in N} z_i^* = \sum_{i \in N} \sum_{S \in \mathcal{C}, S \ni i} \lambda_S z_i^S$$

=
$$\sum_{S \in \mathcal{C}} \sum_{i \in S} \lambda_S z_i^S$$

=
$$\sum_{S \in \mathcal{C}} \lambda_S \sum_{i \in S} z_i^S$$

=
$$\sum_{S \in \mathcal{C}} \lambda_S \sum_{i \in S} \omega_i$$

=
$$\sum_{i \in N} \omega_i \sum_{S \in \mathcal{C}, S \ni i} \lambda_S$$

=
$$\sum_{i \in N} \omega_i \quad ((\lambda_S)_{S \in \mathcal{C}} \text{ balanced})$$

It follows from the definition of v(N) that $v(N) \ge \sum_{i \in N} f_i(z_i^*)$. The concavity of each function f_i and the fact that the collection of weights is balanced imply that

$$\begin{array}{lll} \sum_{i \in N} f_i(z_i^*) & \geq & \sum_{i \in N} \sum_{S \in \mathcal{C}, S \ni i} \lambda_S f_i(z_i^S) \\ & = & \sum_{S \in \mathcal{C}} \lambda_S \sum_{i \in S} f_i(z_i^S) \\ & = & \sum_{S \in \mathcal{C}} \lambda_S v(S). \end{array}$$

An Example

- Consider the market with transferable payoff in which:
 - $N = K \cup M$; • There are two input goods $(\ell = 2)$; • $\omega_i = \begin{cases} (1,0), & \text{if } i \in K \\ (0,1), & \text{if } i \in M \end{cases}$ • $f_i(a,b) = \min\{a,b\}$, for every $i \in N$.
- Then $v(S) = \min \{ |K \cap S|, |M \cap S| \}.$
- By the preceding proposition, the core is nonempty.
- If |K| < |M|, it consists of a single point, in which:
 - Each agent in K receives the payoff of 1;
 - Each agent in *M* receives the payoff of 0.
- The proof is identical to that for the market with an indivisible good.

The Core and the Competitive Equilibria

- Classical economic theory defines the solution of "competitive equilibrium" for a market.
- We show that the core of a market contains its competitive equilibria.
- We begin with the simple case in which:
 - All agents have the same production function *f*;
 - There is only one input.
- Define the average endowment

$$\omega^* = \frac{\sum_{i \in \mathbf{N}} \omega_i}{|\mathbf{N}|}.$$

By hypothesis, f is concave.

It follows that the allocation in which each agent receives the amount ω^* of the input maximizes the total output.

The Core and the Competitive Equilibria (Cont'd)

Let p* be the slope of a tangent to the production function at ω*.
 Let g be the affine function with slope p* for which g(ω*) = f(ω*).
 Then (g(ω_i))_{i∈N} is in the core.

$$\begin{aligned} v(S) &= |S|f\left(\frac{\sum_{i\in S}\omega_i}{|S|}\right) \leq |S|g\left(\frac{\sum_{i\in S}\omega_i}{|S|}\right) = \sum_{i\in S}g(\omega_i); \\ v(N) &= |N|f\left(\frac{\sum_{i\in N}\omega_i}{|N|}\right) = |N|f(\omega^*) = |N|g(\omega^*) = \sum_{i\in N}g(\omega_i). \end{aligned}$$

The payoff profile $(g(\omega_i))_{i \in N}$ can be achieved by each agent trading input for output at the price p^* (each unit of input costs p^* units of output): If trade at p^* is possible, *i* maximizes his payoff by choosing the amount *z* of input to solve $\max_z (f(z) - p^*(z - \omega_i))$, the solution of which is ω^* .

Competitive Equilibria

- We define a competitive equilibrium of a market with transferable payoff as a pair (p^{*}, (z^{*}_i)_{i∈N}) consisting of:
 - A vector $p^* \in \mathbb{R}^{\ell}_+$ (the vector of **input prices**);
 - An allocation (z^{*}_i)_{i∈N}, such that for each agent i the vector z^{*}_i solves the problem

$$\max_{z_i\in\mathbb{R}^\ell_+}(f_i(z_i)-p^*(z_i-\omega_i)).$$

• If $(p^*, (z^*_i)_{i \in N})$ is a competitive equilibrium, then the value of the maximum

$$f_i(z_i^*) - p^*(z_i^* - \omega_i)$$

is referred to as a competitive payoff of agent *i*.

The Idea Behind Competitive Equilibria

- The idea is that the agents can trade inputs at fixed prices, which are expressed in terms of units of output.
- Suppose after buying and selling inputs, agent *i* holds the bundle *z_i*.
- Then his net expenditure, in units of output, is

$$p^*(z_i-\omega_i).$$

- Agent *i* can produce $f_i(z_i)$ units of output.
- So his net payoff is

$$f_i(z_i) - p^*(z_i - \omega_i).$$

• A price vector p^* generates a competitive equilibrium if, when each agent chooses his trades to maximize his payoff, the resulting profile $(z_i^*)_{i \in N}$ of input vectors is feasible in the sense that it is an allocation.

Competitive Payoffs and Core

Proposition

Every profile of competitive payoffs in a market with transferable payoff is in the core of the market.

• Let $\langle N, \ell, (\omega_i), (f_i) \rangle$ be a market with transferable payoff.

Let $\langle N, v \rangle$ the associated coalitional game.

Suppose $(p^*, (z_i^*)_{i \in N})$ is a competitive equilibrium of the market.

Suppose, for the sake of obtaining a contradiction, that the profile of associated competitive payoffs is not in the core.

Then, there is a coalition S and a vector $(z_i)_{i \in S}$, such that:

•
$$\sum_{i \in S} z_i = \sum_{i \in S} \omega_i;$$

• $\sum_{i \in S} f_i(z_i) > \sum_{i \in S} (f_i(z_i^*) - p^* z_i^* + p^* \omega_i).$

Competitive Payoffs and Core (Cont'd)

• By the preceding hypotheses,

$$\sum_{i\in S}(f_i(z_i)-p^*z_i)>\sum_{i\in S}(f_i(z_i^*)-p^*z_i^*).$$

Hence, for at least one agent $i \in S$,

$$f_i(z_i) - p^* z_i > f_i(z_i^*) - p^* z_i^*$$

This contradicts the fact that z_i^* is a max problem solution. Now let $(z_i)_{i \in N}$ be such that $\sum_{i \in N} z_i = \sum_{i \in N} \omega_i$. We have

$$\begin{array}{rcl} \sum_{i\in N}f_i(z_i) &\leq & \sum_{i\in N}(f_i(z_i^*)-p^*z_i^*+p^*\omega_i)\\ &= & \sum_{i\in N}f_i(z_i^*). \end{array}$$

Therefore, $v(N) = \sum_{i \in N} f_i(z_i^*)$.

Subsection 5

Coalitional Games Without Transferable Payoff

Coalitional Games and Transferable Payoff

- In a coalitional game with transferable payoff each coalition S is characterized by a single number v(S).
- The interpretation is that v(S) is a payoff that may be distributed in any way among the members of S.
- We now switch to games in which each coalition S:
 - Cannot necessarily achieve all distributions of some fixed payoff;
 - Is characterized, instead, by a set V(S) of consequences.

Coalitional Games Without Transferable Payoff

Definition (Coalitional Game Without Transferable Payoff)

A coalitional game (without transferable payoff)

 $\langle N, X, V, (\succeq_i)_{i \in N} \rangle$

consists of:

- A finite set N (of **players**);
- A set X (of **consequences**);
- A function V that assigns to every nonempty subset S of N (a coalition) a set V(S) ⊆ X;
- For each player $i \in N$, a **preference relation** \succeq_i on X.

Relation Between Coalitional Games

- Let $\langle N, v \rangle$ be a coalitional game with transferable payoff;
- The associated coalitional game

$$\langle N, X, V, (\succeq_i)_{i \in N} \rangle$$

is defined as follows:

•
$$X = \mathbb{R}^N$$
;
• $V(S) = \{x \in \mathbb{R}^N : \sum_{i \in S} x_i = v(S) \text{ and } x_j = 0, \text{ if } j \in N - S\};$
• $x \succeq_i y \text{ if and only if } x_i \ge y_i.$

• Under this association the set of coalitional games with transferable payoff is a subset of the set of all coalitional games.

The Core of a Coalitional Game

• The definition of the core of a general coalitional game is a natural extension of our definition for the core of a game with transferable payoff.

Definition (Core)

The **core** of the coalitional game $\langle N, V, X, (\succeq_i)_{i \in N} \rangle$ is the set of all $x \in V(N)$ for which there is no coalition S and $y \in V(S)$, such that

$$y \succ_i x$$
, for all $i \in S$.

• Under suitable conditions (similar to that of balancedness for a coalitional game with transferable payoff) the core of a general coalitional game is nonempty.

Subsection 6

Exchange Economies

Exchange Economies

- A generalization of the notion of a market with transferable payoff is an exchange economy.
- An exchange economy $\langle N, \ell, (\omega_i), (\succeq_i) \rangle$ consists of:
 - A finite set N (of **agents**);
 - A positive integer ℓ (the number of **goods**);
 - For each agent i ∈ N, a vector ω_i ∈ ℝ^ℓ₊ (the endowment of agent i), such that every component of Σ_{i∈N} ω_i is positive;
 - For each agent *i* ∈ *N* a nondecreasing, continuous and quasi-concave preference relation ≿_i over the set ℝ^ℓ₊ of bundles of goods.
- ω_i represents the bundle of goods that agent *i* owns initially.
- The requirement that $\sum_{i \in N} \omega_i$ be positive means that there is a positive quantity of every good.
- Goods may be transferred between the agents, but there is no payoff that is freely transferable.

Allocations

- An allocation of an exchange economy (N, ℓ, (ω_i), (≿_i)) is a distribution of the total endowment in the economy among the agents.
- That is, an allocation is a profile $(x_i)_{i \in N}$, with $x_i \in \mathbb{R}_+^{\ell}$, for all $i \in N$, such that

$$\sum_{i\in\mathbb{N}}x_i=\sum_{i\in\mathbb{N}}\omega_i.$$

Competitive Equilibria

A competitive equilibrium of an exchange economy is a pair

$$(p^*,(x_i^*)_{i\in N})$$

consisting of A vector p* ∈ ℝ^ℓ₊ with p* ≠ 0 (the price vector); An allocation (x^{*}_i)_{i∈N}, such that, for each agent i, we have: p*x^{*}_i ≤ p*ω_i; x^{*}_i ≿_i x_i, for any x_i for which p*x_i ≤ p*ω_i. If (p*, (x^{*}_i)_{i∈N}) is a competitive equilibrium, then (x^{*}_i)_{i∈N} is referred

to as a **competitive allocation**.

Interpretation of Competitive Equilibria

- The main idea is that the agents can trade goods at fixed prices.
- We can think of p_i^* as the "money" price of good j.
- Given any price vector p, each agent i chooses a bundle that is most desirable (according to his preferences) among all those that are affordable (i.e., satisfy px_i ≤ pω_i).
- Typically an agent chooses a bundle that contains more of some goods and less of others than he initially owns.
- This is interpreted as "demanding" some goods, while "supplying" others.
- The requirement that the profile of chosen bundles be an allocation means that, for every good, the sum of the individuals' demands is equal to the sum of their supplies.
- A standard result in economic theory is that an exchange economy, in which every agent's preference relation is increasing, has a competitive equilibrium and an economy may possess many such equilibria.

George Voutsadakis (LSSU)

Edgeworth Boxes

An exchange economy that contains two agents (|N| = 2) and two goods (l = 2) can be represented in an Edgeworth box.

- Bundles of goods consumed by Agent 1 are measured from O^1 .
- Bundles of goods consumed by Agent 2 are measured from O^2 .
- The width of the box is the total endowment of Good 1.
- The height of the box is the total endowment of Good 2.

George Voutsadakis (LSSU)

Edgeworth Boxes (Cont'd)

- Each point x corresponds to an allocation in which Agent *i* receives the bundle x measured from O^i .
- The point labeled ω corresponds to the pair of endowments.
- The curved lines labeled I_i and I'_i are indifference curves of Agent i: If x and y are points on one of these curves then x ~_i y.
- The straight line passing through ω and x* is (relative to Oⁱ) the set of all bundles xⁱ for which px_i = pω_i.

Edgeworth Boxes (Cont'd)

- The point x^{*} corresponds to a competitive allocation. The most preferred bundle of agent i in the set {x_i : px_i ≤ pω_i} is x^{*} when measured from origin Oⁱ.
- The ratio of the competitive prices is the negative of the slope of the straight line through ω and x^{*}.

Exchange Economies and Coalitional Games

- An exchange economy is closely related to a market.
- In a market, payoff can be directly transferred between agents.
- In an exchange economy only goods can be directly transferred.
- Let $\langle N, \ell, (\omega_i), (\succeq_i) \rangle$ be an exchange economy.
- The associated coalitional game $\langle N, X, V, (\succeq_i) \rangle$ is defined by:

•
$$X = \{(x_i)_{i \in \mathbb{N}} : x_i \in \mathbb{R}^\ell_+, \text{ for all } i \in \mathbb{N}\};$$

- $V(S) = \{(x_i)_{i \in N} \in X : \sum_{i \in S} x_i = \sum_{i \in S} \omega_i \text{ and } x_j = \omega_j, \text{ for all } j \in N S\}$, for each coalition S;
- Each preference relation \succeq_i is defined by

$$(x_j)_{j\in N} \succeq_i (y_j)_{j\in N}$$
 if and only if $x_i \succeq_i y_i$.

 The third condition expresses the assumption that each agent cares only about his own consumption.

The Core

- We define the core of an exchange economy (N, ℓ, (ω_i), (≿_i)) to be the core of the associated coalitional game (N, X, V, (≿_i)).
 - The set V(N) is the set of all allocations.
 - For each $j \in N$, we have

$$V(\{j\}) = \{(\omega_i)_{i \in \mathbb{N}}\}.$$

- The core of a two-agent economy is the set of all allocations (x_i)_{i∈N}, such that:
 - $x_j \succeq_j \omega_j$, for each agent j;
 - There is no allocation $(x'_i)_{i \in N}$, such that

 $x'_j \succ_j x_j$, for both agents j.

The Core of a Two-Agent Economy

- The core corresponds to the locus of points in the area bounded by l'_1 and l'_2 for which an indifference curve of Agent 1 and an indifference curve of Agent 2 share a common tangent.
- I.e., it is the curved line passing through y', x^* , and y''.
- In particular, the core contains the competitive allocation.

Competitive Allocations and the Core

Proposition

Every competitive allocation in an exchange economy is in the core.

 Let E = ⟨N, ℓ, (ω_i), (≿_i)⟩ be an exchange economy. Let (p*, (x_i*)_{i∈N}) be a competitive equilibrium of E. Assume that (x_i*)_{i∈N} is not in the core of E. Then there is a coalition S and (y_i)_{i∈S}, such that:

•
$$\sum_{i \in S} y_i = \sum_{i \in S} \omega_i$$
;
• $y_i \succ_i x_i^*$, for all $i \in S$

Thus, we get $p^*y_i > p^*\omega_i$, for all $i \in S$. Hence, $p^* \sum_{i \in S} y_i > p^* \sum_{i \in S} \omega_i$. This contradicts $\sum_{i \in S} y_i = \sum_{i \in S} \omega_i$.

• It follows from this result that an economy that has a competitive equilibrium has a nonempty core.

Competitive Equilibria and the Core in Large Economies

- We now show that as the number of agents increases, the core shrinks to the set of competitive allocations.
- This shows that, in a large enough economy, the following kinds of predictions are tightly connected.
 - Those relying on the competitive equilibrium, which is based on agents who trade at fixed prices;
 - Those relying on the core, which is based on the ability of a group of agents to improve its lot by forming an autonomous subeconomy, without reference to prices.
- Put differently, in a large enough economy, the only outcomes that are immune to deviations by groups of agents are competitive equilibrium allocations.

Derived Economies and Types

• To state the announced result precisely, let

$$\mathsf{E} = \langle \mathsf{N}, \ell, (\omega_i), (\succeq_i) \rangle$$

be an exchange economy in which there are n agents.

- For any positive integer k let kE be the economy derived from E in which there are kn agents k copies of each agent in E.
- An agent j in kE who is a copy of Agent i in E is of type $i = \iota(j)$.

Equal Treatment in the Core

Lemma (Equal Treatment in the Core)

Let E be an exchange economy in which the preference relation of every agent is increasing and strictly quasi-concave, and let k be a positive integer. In any allocation in the core of kE, all agents of the same type obtain the same bundle.

Let E = ⟨N, ℓ, (ω_i), (≿_i)⟩ and let x be an allocation in the core of kE in which there are two agents of type t^{*} whose bundles are different.

We show that there is a distribution of the endowment of the coalition consisting of the worst-off agent of each type that makes every member of the coalition better off than he is in x.

For each type t, select one agent, i_t , in kE who is least well off (according to \gtrsim_t) in x among all agents of type t.

Let S be the coalition (of size |N|) of these agents.

Equal Treatment in the Core (Cont'd)

• For each type *t*, let *z_t* be the average bundle of the agents of type *t* in the allocation *x*,

$$z_t = \frac{\sum_{\{j:\iota(j)=t\}} x_j}{k}.$$

Then we have:

•
$$\sum_{t \in N} z_t = \sum_{t \in N} \omega_t;$$

• $Z_t \gtrsim_t X_{i_t};$

If not, for every *j*, such that $\iota(j) = t$, $z_t \prec_t x_j$.

So, by the quasi-concavity of \succeq_t , we have $z_t \prec_t z_t$.

This yields a contradiction.

• $z_{t^*} \succ_{t^*} x_{i_{t^*}};$

Preference relations are strictly quasi-concave.

Equal Treatment in the Core (Cont'd)

We showed that:

- (i) It is feasible for the coalition S to assign to each agent $j \in S$ the bundle $z_{\iota(j)}$, since $\sum_{j \in S} z_{\iota(j)} = \sum_{t \in N} z_t = \sum_{j \in S} \omega_j$;
- (ii) For every agent $j \in S$, the bundle $z_{\iota(j)}$ is at least as desirable as x_j ;
- (iii) For the agent $j \in S$ of type t^* , the bundle $z_{\iota(j)}$ is preferable to x_j .

By hypothesis, each agent's preference relation is increasing.

So we can modify the allocation $(z_t)_{t \in N}$ by reducing t^* 's bundle by a small amount and distributing this amount equally among the other members of S so that we have a profile $(z'_t)_{t \in N}$ with:

•
$$\sum_{t \in N} z'_t = \sum_{t \in N} \omega_t;$$

•
$$z'_{\iota(j)} \succ_{\iota(j)} x_j$$
, for all $j \in S$.

This contradicts the fact that x is in the core of kE.

Core of kE Shrinking to Competitive Allocations of E

- For any positive integer k we can identify the core of kE with a profile of |N| bundles, one for each type.
- Under this identification, it is clear that the core of *kE* is a subset of the core of *E*.
- We now show that the core of *kE* shrinks to the set of competitive allocations of *E* as *k* increases.

Proposition (Core of kE Shrinking to Competitive Allocations of E)

Let *E* be an exchange economy in which every agent's preference relation is increasing and strictly quasi-concave and every agent's endowment of every good is positive. Let *x* be an allocation in *E*. If, for every positive integer *k*, the allocation in *kE* in which every agent of each type *t* receives the bundle x_t is in the core of *kE*, then *x* is a competitive allocation of *E*.

Core Shrinking to Competitive Allocations: Proof

• Let
$$E = \langle N, \ell, (\omega_i), (\succeq_i) \rangle$$
. Let

$$Q = \left\{ \sum_{t \in N} \alpha_t z_t : \sum_{t \in N} \alpha_t = 1, \alpha_t \ge 0 \text{ and } z_t + \omega_t \succ_t x_t \text{ for all } t \right\}.$$

Under our assumptions, Q is convex.

Claim: $0 \notin Q$. Suppose $0 = \sum_{t \in N} \alpha_t z_t$, for some (α_t) and (z_t) , with: • $\sum_{t \in N} \alpha_t = 1, \alpha_t \ge 0$; • $z_t + \omega_t \succ_t x_t$, for all t.

Suppose that every α_t is a rational number (otherwise, approximate). Choose an integer K large enough that $K\alpha_t$ is an integer for all t. Let S be a coalition in KE that consists of $K\alpha_t$ agents of each type t. Let $x'_i = z_{\iota(i)} + \omega_i$, for each $i \in S$. We have: • $\sum_{i \in S} x'_i = \sum_{t \in N} K\alpha_t z_t + \sum_{i \in S} \omega_i = \sum_{i \in S} \omega_i$; • $x'_i \succ_i x_i$, for all $i \in S$.

This contradicts the fact that x is in the core of KE.

Core Shrinking to Competitive Allocations (Cont'd)

• The Separating Hyperplane Theorem, yields a $0
eq p \in \mathbb{R}^\ell$, such that

$$pz \ge 0$$
, for all $z \in Q$.

Since all agents' preferences are increasing, each unit vector is in Q. Indeed, let $1_{\{m\}}$ be the *m*th unit vector in \mathbb{R}^{ℓ} . Take:

•
$$z_t = x_t - \omega_t + \mathbb{1}_{\{m\}};$$

• $\alpha_t = \frac{1}{|N|}$ for each t .

Thus, $p \ge 0$.

Now, for every agent *i*, $x_i - \omega_i + \epsilon \in Q$, for every $\epsilon > 0$. So $p(x_i - \omega_i + \epsilon) \ge 0$.

Taking ϵ small, we conclude that $px_i \ge p\omega_i$, for all *i*.

But x is an allocation, so $px_i = p\omega_i$, for all i.

Core Shrinking to Competitive Allocations (Cont'd)

Finally, we argue that, if y_i ≻_i x_i, for some i ∈ N, then py_i > pω_i, so that x is a competitive allocation of E.

Suppose that $y_i \succ_i x_i$. Then $y_i - \omega_i \in Q$.

So, by the choice of p, we have $py_i \ge p\omega_i$.

Furthermore, $\theta y_i \succ_i x_i$, for some $\theta < 1$.

So $\theta y_i - \omega_i \in Q$. Hence, $\theta p y_i \ge p \omega_i$.

Also, $p\omega_i > 0$, since every component of ω_i is positive.

Thus, $py_i > p\omega_i$.

• In any competitive equilibrium of *kE* all agents of the same type consume the same bundle, so that any such equilibrium is naturally associated with a competitive equilibrium of *E*.

Thus, the result shows a sense in which the larger k is, the closer are the core and the set of competitive allocations of kE.