Introduction to Game Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Rationalizability and Iterated Elimination of Dominated Actions

- Rationalizability
- Iterated Elimination of Strictly Dominated Actions
- Iterated Elimination of Weakly Dominated Actions

Subsection 1

Rationalizability

Knowledge of Other Players' Equilibrium Behavior

- In the previous sets, we discussed solution concepts for strategic games under certain hypotheses.
 - Each player knows the other players' equilibrium behavior.
 - Each player's choice is required to be optimal given this knowledge.
- Concerning knowing the other players' equilibrium behavior, we remark the following:
 - If the players participate repeatedly in the situation that the game models, then they can obtain this knowledge from the steady state behavior that they observe.
 - If the game is a one-shot event in which all players choose their actions simultaneously, then it is not clear how each player can know the other players' equilibrium actions.
- The need arises for solution concepts that do not presuppose knowledge of the other players' equilibrium behavior.

Rationality Assumptions without Correctness

- We study some solution concepts, in which:
 - The players' beliefs about each other's actions may not be correct;
 - The player's beliefs are constrained by considerations of rationality.
- The resulting solution concepts are weaker than Nash equilibrium.
- In many games they do not exclude any action from being used.
- The approach explores the logical implications of assumptions about the players' knowledge that are weaker than those adopted in previous discussions.

Beliefs and Best Responses

- Fix a strategic game ⟨N, (A_i), (u_i)⟩ in which the expectation of u_i represents player i's preferences over lotteries on A = X_{j∈N} A_j for each i ∈ N.
- We assume that A_i is finite (even though it is not necessary).
- A belief of player *i* (about the actions of the other players) is a probability measure on A_{−i} = X_{i∈N−{i}} A_j.
 - A belief is not necessarily a product of independent probability measures on each of the action sets A_j, for j ∈ N − {i}.
 - So a player may believe that the other players' actions are correlated.
- An action a_i ∈ A_i of player i is a **best response** to a belief if there is no other action that yields player i a higher payoff given the belief.
- Here, "rationality" means that Player *i* thinks that whatever action Player *j* chooses is a best response to player *j*'s belief about the actions of players other than *j*.

Rationality Assumption Regarding Other Palyers

- Suppose Player *i* thinks that every other player *j* is rational.
- Then he must be able to rationalize his belief μ_i about the other players' actions as follows:

Every action of any other player j to which the belief μ_i assigns positive probability must be a best response to a belief of player j.

- Supose Player *i* also thinks that every other player *j* thinks that every player $h \neq j$ (including player *i*) is rational.
- Then Player *i* must also have a view about Player *j*'s view about Player *h*'s beliefs.
- If Player *i*'s reasoning has unlimited depth, then the following definition applies.

Rationalizable Actions

Definition (Rationalizable Action)

An action $a_i \in A_i$ is **rationalizable** in $\langle N, (A_i), (u_i) \rangle$ if there exist:

- A collection $((X_i^t)_{j \in N})_{t=1}^{\infty}$ of sets, with $X_i^t \subseteq A_j$, for all j and t;
- A belief μ_i^1 of player *i* whose support is a subset of X_{-i}^1 ;
- For each j ∈ N, each t ≥ 1, and each a_j ∈ X^t_j, a belief µ^{t+1}_j(a_j) of player j whose support is a subset of X^{t+1}_{-i},

satisfying the constraints given in the following slide.

Rationalizable Actions (Cont'd)

Definition (Rationalizable Action)

The sets $X_i^t \subseteq A_j$ and the beliefs μ_i^t must satisfy:

- a_i is a best response to the belief μ_i^1 of player *i*;
- X¹_i = Ø and, for each j ∈ N − {i}, the set X¹_j is the set of all a'_j ∈ A_j, such that there is some a_{-i} in the support of μ¹_i for which a_j = a'_i;
- For every player $j \in N$ and every $t \ge 1$, every action $a_j \in X_j^t$ is a best response to the belief $\mu_i^{t+1}(a_j)$ of player j;
- For each $t \ge 2$ and each $j \in N$, the set X_j^t is the set of all $a'_j \in A_j$ such that there is some player $k \in N - \{j\}$, some action $a_k \in X_k^{t-1}$ and some a_{-k} in the support of $\mu_k^t(a_k)$ for which $a'_j = a_j$.

Comments on the Definition

- The second and fourth conditions in the second part of this definition are superfluous.
- They are included so that the definition corresponds more closely to the motivation given before the definition.
- We include the set X_i^1 in the collection $((X_i^t)_{i \in N})_{t=1}^\infty$, even though it is required to be empty, to simplify the notation.
- If $|N| \ge 3$ then X_i^1 is the only such superfluous set.
- If |N| = 2 there are many superfluous sets:

• For $j \neq i$, X_i^t , for any even t.

Comments on the Definition (Cont'd)

- The set X_i^1 for $j \in N \{i\}$ is interpreted to be the set of actions of Player *j* that are assigned positive probability by the belief μ_i^1 of Player *i* about the actions of the players other than *i* that justifies *i* choosing a_i .
- For any $j \in N$ the interpretation of X_i^2 is that it is the set of all actions a; of Player j such that there exists at least one action $a_k \in X_k^1$ of some player $k \neq j$ that is justified by the belief $\mu_k^2(a_k)$ that assigns positive probability to a_i .

Illustration of the Definition

- To illustrate what the definition entails, suppose there are three players, each of whom has two possible actions, *A* and *B*.
- Assume that:
 - The action A of Player 1 is rationalizable
 - Player 1's belief μ_1^1 used in the rationalization assigns positive probability to the choices of Players 2 and 3 being either (A, A) or (B, B).
- Then $X_2^1 = X_3^1 = \{A, B\}.$
- The beliefs $\mu_2^2(A)$ and $\mu_2^2(B)$ of Player 2 that justify his choices of A and B concern the actions of Players 1 and 3.
- The beliefs $\mu_3^2(A)$ and $\mu_3^2(B)$ of Player 3 concern Players 1 and 2.
- These four beliefs do not have to induce the same beliefs about player 1 and do not have to assign positive probability to the action A.
- The set X₁² consists of all the actions of player 1 that are assigned positive probability by μ₂²(A), μ₃²(A), μ₂²(B), or μ₃²(B).

An Alternative Equivalent Definition

An equivalent definition of rationalizability is the following.

Definition (Rationalizable Action)

An action $a_i \in A_i$ is **rationalizable** in the strategic game $\langle N, (A_i), (u_i) \rangle$ if, for each $j \in N$ there is a set $Z_j \subseteq A_j$, such that

• $a_i \in Z_i$

- Every action a_j ∈ Z_j is a best response to a belief μ_j(a_j) of player j whose support is a subset of Z_{-j}.
- Note that, if $(Z_j)_{j \in N}$ and $(Z'_j)_{j \in N}$ satisfy the definition, then so does $(Z_j \cup Z'_j)_{j \in N}$.
- It follows that the set of profiles of rationalizable actions is the largest set X_{j∈N} Z_j for which (Z_j)_{j∈N} satisfies the definition.

Equivalence of the Definitions

Lemma (Equivalence of Definitions)

The two definitions of rationalizability are equivalent.

 Suppose a_i ∈ A_i is rationalizable according to the first definition. Then define

$$Z_i = \{a_i\} \cup (\cup_{t=1}^{\infty} X_i^t), \quad Z_j = (\cup_{t=1}^{\infty} X_j^t), \quad j \in N - \{i\}.$$

Suppose $a_i \in A_i$ is rationalizable according to the second definition. Then define:

µ_i¹ = µ_i(a_i);
µ_j^t(a_j) = µ_j(a_j), for each j ∈ N and each integer t ≥ 2.
Let X_j^t, j ∈ N, t = 1, 2, ..., be the sets defined in the second and fourth parts of the first definition. Then we have:

- $X_j^t \subseteq Z_j$, for all $j \in N$, t = 1, 2, ...;
- The sets X_i^t satisfy the conditions in the first and third parts.

- Consider a finite game.
- Any action that a player uses with positive probability in some mixed strategy Nash equilibrium is rationalizable.
- E.g., we may take Z_i to be the support of player j's mixed strategy.
- The same is true for actions used with positive probability in some correlated equilibrium.
- This will be shown in the next slide.

Rationalizability in Correlated Equilibria

Lemma

Every action used with positive probability by some player in a correlated equilibrium of a finite strategic game is rationalizable.

• Denote the game by $\langle N, (A_i), (u_i) \rangle$.

Choose a correlated equilibrium.

For each player $i \in N$, let Z_i be the set of actions that Player i uses with positive probability in the equilibrium.

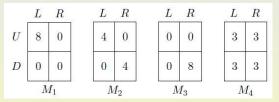
Then any $a_i \in Z_i$ is a best response to the distribution over A_{-i} generated by the strategies of the players other than *i*, conditional on Player *i* choosing a_i .

The support of this distribution is a subset of Z_{-i} .

Hence, by the second definition, a_i is rationalizable.

Example

Consider the game:



In this game there are three players:

- Player 1 chooses one of the two rows;
- Player 2 chooses one of the two columns;
- Player 3 chooses one of the four tables.

All three players obtain the same payoffs, given by the numbers in the boxes.

Example (Claim)

- Claim: The action M_2 of Player 3:
 - Is rationalizable if a player may believe that his opponent's actions are correlated;
 - Is not rationalizable if players are restricted to beliefs that are products of independent probability distributions.

Note that:

- The action U of Player 1 is a best response to a belief that assigns probability one to (L, M_2) ;
- The action D is a best response to the belief that assigns probability one to (R, M_2) .

Similarly, both actions of Player 2 are best responses to beliefs that assign positive probability only to U, D and M_2 .

Further, the action M_2 of Player 3 is a best response to the belief in which Players 1 and 2 play (U, L) and (D, R) with equal probabilities. Thus, M_2 is rationalizable, with $Z_1 = \{U, D\}$, $Z_2 = \{L, R\}$, $Z_3 = \{M_2\}$.

Example (Cont'd)

• We now show that M_2 is not rationalizable if players are restricted to beliefs that are products of independent probability distributions.

To see this, we must show that M_2 is not a best response to any pair of (independent) mixed strategies.

Suppose that:

- (p, 1-p) is a mixed strategy of Player 1;
- (q, 1 q) is a mixed strategy of Player 2.

In order for M_2 to be a best response we need

$$4pq + 4(1-p)(1-q) \ge \max \{8pq, 8(1-p)(1-q), 3\}.$$

However, this is not satisfied for any values of p and q.

Subsection 2

Iterated Elimination of Strictly Dominated Actions

Idea of Iterated Elimination

- We assume that players exclude from consideration actions that are not best responses whatever the other players do.
- So we eliminate actions that a player should definitely not take.
- A player who knows that the other players are rational can assume that they too will exclude such actions from consideration.
- Next, we consider the game G' obtained from the original game G by eliminating all such actions.
- A player should not choose an action that is not a best response whatever the other players do in G'.
- Moreover, she knows that other players will not choose actions that are never best responses in G' either.
- Continuing to argue in this way suggests that the outcome of *G* must survive an unlimited number of such elimination rounds.

Never-best Responses and Strictly Dominated Actions

Definition (Never-best Response)

An action of Player *i* in a strategic game is a **never-best response** if it is not a best response to any belief of Player *i*.

- Clearly any action that is a never-best response is not rationalizable.
- If an action a_i of Player *i* is a never-best response, then, for every belief of Player *i*, there is some action, which may depend on the belief, that is better for Player *i* than a_i .
- We now show that if a_i is a never-best response in a finite game, then there is a mixed strategy that is better for Player *i* than a_i .

Strictly Dominated Actions and Mixed Strategies

Definition (Strictly Dominated Action)

The action $a_i \in A_i$ of Player *i* in the strategic game $\langle N, (A_i), (u_i) \rangle$ is **strictly dominated** if, there is a mixed strategy α_i of Player *i*, such that $U_i(a_{-i}, \alpha_i) > u_i(a_{-i}, a_i)$, for all $a_{-i} \in A_{-i}$, where $U_i(a_{-i}, \alpha_i)$ is the payoff of Player *i* if he uses the mixed strategy α_i and the other players' vector of actions is a_{-i} .

- We show that, in a game in which the set of actions of each player is finite, an action is a never-best response if and only if it is strictly dominated.
- Thus, in such games, the notion of strict domination has a decision-theoretic basis that does not involve mixed strategies.
- It follows that even if one rejects the idea that mixed strategies can be objects of choice, one can still argue that a player will not use an action that is strictly dominated.

Never-Best Responses vs. Strictly Dominated Actions

Lemma

An action of a player in a finite strategic game is a never-best response if and only if it is strictly dominated.

- Let the strategic game be G = ⟨N, (A_i), (u_i)⟩ and let a_i^{*} ∈ A_i.
 We consider the auxiliary strictly competitive game G' in which:
 - The set of actions of Player 1 is $A_i \{a_i^*\}$;
 - The set of actions of Player 2 is A_{-i} ;
 - The preferences of Player 1 are represented by the payoff function

$$v_1(a_i, a_{-i}) = u_i(a_{-i}, a_i) - u_i(a_{-i}, a_i^*).$$

Note that:

- The argument (a_i, a_{-i}) of v_1 is a pair of actions in G';
- The arguments (a_{-i}, a_i) and (a_{-i}, a_i^*) are action profiles in G.

For any given mixed strategy profile (m_1, m_2) in G' we denote by $v_1(m_1, m_2)$ the expected payoff of Player 1.

Proof of the Equivalence

• The action a_i^* is a never-best response in G if and only if, for any mixed strategy of Player 2 in G', there is an action of Player 1 that yields a positive payoff.

In other words, if and only if

 $\min_{m_2} \max_{a_i} v_1(a_i, m_2) > 0.$

This is so, by the linearity of v_1 in m_1 , if and only if

 $\min_{m_2} \max_{m_1} v_1(m_1, m_2) > 0.$

Now, by a preceding result, the game G' has a mixed strategy Nash equilibrium. Therefore,

 $\min_{m_2} \max_{m_1} v_1(m_1, m_2) > 0 \quad \text{iff} \quad \max_{m_1} \min_{m_2} v_1(m_1, m_2) > 0.$

Proof of the Equivalence (Cont'd)

- The latter holds if and only if, there exists a mixed strategy m₁^{*} of Player *i* in G', for which v₁(m₁^{*}, m₂) > 0, for all m₂ (that is, for all beliefs on A_{-i}).
 - Since m_1^* is a probability measure on $A_i \{a_i^*\}$, it is a mixed strategy of Player 1 in G.
 - The condition $v_1(m_1^*, m_2) > 0$, for all m_2 , is equivalent to

$$U_i(a_{-i}, m_1^*) - U_i(a_{-i}, a_i^*) > 0,$$

for all $a_{-i} \in A_{-i}$.

Thi is equivalent to a_i^* being strictly dominated.

Surviving Elimination of Strictly Dominated Actions

Definition (Outcomes Surviving Iterated Elimination)

The set $X \subseteq A$ of outcomes of a finite strategic game $\langle N, (A_i), (u_i) \rangle$ survives iterated elimination of strictly dominated actions if $X = \bigotimes_{j \in N} X_j$ and there is a collection $((X_j^t)_{j \in N})_{t=0}^T$ of sets that satisfies the following conditions for each $j \in N$:

•
$$X_j^0 = A_j$$
 and $X_j^T = X_j$;
• $X_j^{t+1} \subseteq X_j^t$, for each $t = 0, \dots, T-1$

For each t = 0,..., T − 1 every action of player j in X_j^t − X_j^{t+1} is strictly dominated in the game ⟨N, (X_i^t), (u_i^t)⟩, where, for each i ∈ N, u_i^t is the function u_i restricted to ×_{j∈N} X_j^t;

• No action in X_j^T is strictly dominated in the game $\langle N, (X_i^T), (u_i^T) \rangle$.

Example of Iterated Elimination

Consider the game

l	L	R
Т	3,0	0,1
М	0,0	3,1
В	1,1	1,0

- The action B is dominated by the mixed strategy in which T and M are each used with probability ¹/₂.
- After B is eliminated from the game, L is dominated by R.
- After L is eliminated, T is dominated by M.
- Thus (*M*, *R*) is the only outcome that survives iterated elimination of strictly dominated actions.

Surviving Outcomes are Profiles of Rationalizable Actions

- We now show that, in a finite game:
 - A set of outcomes that survives iterated elimination of strictly dominated actions exists;
 - Moreover, it coincides with the set of profiles of rationalizable actions.

Proposition

If $X = \bigotimes_{j \in N} X_j$ survives iterated elimination of strictly dominated actions in a finite strategic game $\langle N, (A_i), (u_i) \rangle$, then X_j is the set of Player j's rationalizable actions, for each $j \in N$.

Suppose, first, that a_i ∈ A_i is rationalizable.
Let (Z_j)_{j∈N} be the profile of sets that supports a_i.
Each action in Z_j is a best response to some belief over Z_{-j}.
Hence, it is not strictly dominated in ⟨N, (X^t_i), (u^t_i)⟩.
So, for any value of t, we have Z_j ⊆ X^t_i. Hence, a_i ∈ X_i.

The Reverse Inclusion

 We now show that, for every j ∈ N, every member of X_j is rationalizable. By definition, no action in X_j is strictly dominated in the game in which the set of actions of each player i is X_i,

By a preceding lemma, every action in X_j is a best response among the members of X_j to some belief on X_{-j} .

We need to show that every action in X_j is a best response among all the members of the set A_j to some belief on X_{-j} .

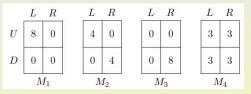
Suppose $a_j \in X_j$ is not a best response among all the members of A_j . Then, there is a value of t, such that a_j :

- Is a best response among the members of X_i^t to a belief μ_j on X_{-j} ;
- Is not a best response among the members of X_i^{t-1} .

Thus, there is an action $b_j \in X_j^{t-1} - X_j^t$ that is a best response among the members of X_j^{t-1} to μ_j , contradicting the fact that b_j is eliminated at the *t*th stage of the procedure.

Iterated Elimination and Independent Beliefs

• The preceding lemmas fail if the definition of rationalizability requires the players to believe that their opponents' actions are independent. Example: Consider the following game.



The action M_2 is a best response to the belief of Player 3 in which Players 1 and 2 play (U, L) and (D, R) with equal probabilities.

Thus, M_2 is not strictly dominated.

However, it is not a best response to any pair of (independent) mixed strategies. So it is not rationalizable if each player's belief is restricted to be a product of independent beliefs.

Subsection 3

Iterated Elimination of Weakly Dominated Actions

Weakly Dominated Actions

- We say that a player's action is weakly dominated if the player has another action that is:
 - At least as good no matter what the other players do;
 - Better for at least some vector of actions of the other players.

Definition (Weakly Dominated Action)

The action $a_i \in A_i$ of player *i* in the strategic game $\langle N, (A_i), (u_i) \rangle$ is **weakly dominated** if, there is a mixed strategy α_i of Player *i*, such that:

$$U_i(a_{-i}, \alpha_i) \ge u_i(a_{-i}, a_i)$$
, for all $a_{-i} \in A_{-i}$;

• $U_i(a_{-i}, \alpha_i) > u_i(a_{-i}, a_i)$, for some $a_{-i} \in A_{-i}$,

where $U_i(a_{-i}, \alpha_i)$ is the payoff of Player *i* if he uses the mixed strategy α_i and the other players' vector of actions is a_{-i} .

Iterated Elimination of Weakly Dominated Actions

- By a preceding lemma, an action that is weakly dominated but not strictly dominated is a best response to some belief.
- There is no advantage to using a weakly dominated action.
- So it seems natural to eliminate such actions in the process of simplifying a complicated game.
- The notion of weak domination leads to a procedure analogous to iterated elimination of strictly dominated actions.
- This procedure is less compelling since the set of actions that survive iterated elimination of weakly dominated actions may depend on the order in which actions are eliminated.

Example

• Consider the following game.

	L	R
Т	1,1	0,0
М	1, 1	2,1
В	0,0	2,1

• Consider the sequence in which:

- We eliminate T, which is weakly dominated by M;
- We eliminate *L*, which is weakly dominated by *R*.

In the outcome, Player 2 chooses R and the payoff profile is (2, 1).

- Consider the sequence in which:
 - We eliminate *B*, which is weakly dominated by *M*;
 - We eliminate R, which is weakly dominated by L.

In the outcome, Player 2 chooses L and the payoff profile is (1, 1).