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Introduction
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The Basics Introduction

A Geometric Figure

Consider the angle bisectors AX ,BY

and CZ of the triangle △ABC .

Three facts that seem clear in the figure are:

1. BX <XC , i.e., line segment BX is shorter than line segment XC .
2. The point X , where the bisector of ∠A meets line BC , lies on the line

segment BC .
3. The three angle bisectors are concurrent.
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The Basics Introduction

Meaning of Technical Words and Notation

We assume that the nouns point, line, angle, triangle and bisector

are familiar.

Two lines, unless they happen to be parallel, always meet at a point.

If three or more lines all go through a common point, then we say that
the lines are concurrent.

A line segment is that part of a line that lies between two given
points on the line.
In Assertion 1, the notation BX is used in two different ways:

In the inequality, BX represents the length of the line segment, which
is a number;
Later, BX is used to name the segment itself.
In addition, the notation BX is often used to represent the entire line
containing the points B and X , and not just the segment they
determine.

It will be clear from context which of the three possible meanings is
intended.
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The Basics Introduction

On the Types of Truth of the Three Statements

We need to distinguish among three different types of truth
represented by 1-3:

The fact in 1 that BX <XC is an accident.
The inequality happens to be true in this figure, but it is not an

instance of some general or universal truth.

Even in a particular case, this sort of information can be unreliable

since it depends on the accuracy of the diagram.

Fact 2, that point X lies between points B and C on line BC , is not
accidental.

Indeed, the bisector of each angle of an arbitrary triangle must always

intersect the opposite side of the triangle.

Although this is true about angle bisectors, it can fail for other

important lines associated with a triangle, e.g., the altitude drawn from

A, which is the line through A perpendicular to line BC , may not meet

the segment BC .

It is a fact that for every triangle, the three angle bisectors are
concurrent, as in 3, but we do not consider this to be obvious and
require instead a proof.
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The Basics Introduction

Axioms and Postulates

Unproved assumptions are sometimes called axioms and postulates.

Traditionally, axioms concerned general logical reasoning;
On the other hand, postulates were more specifically geometric.

For example:

An axiom is “things equal to the same thing are equal to each other";
The famous parallel postulate essentially asserts that “given a line
and a point not on that line, there exists one and only one line through
the given point parallel to the given line".
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The Basics Introduction

The Parallel Postulate

The parallel postulate asserting the existence and uniqueness of a line
parallel to a given line through a given point seemed less obvious than
the facts asserted by the other postulates.

Geometers attempted to prove it by trying to deduce it from the
remaining axioms and postulates.

One way to prove it, would be to assume that it is false and then try
to derive some contradictory conclusions:

Assume, for example, that there is some line AB and some point P not
on AB, and there is no line parallel to AB through P .
If by means of this assumption one could deduce the existence of a
triangle △XYZ for which XY >YZ and also XY <YZ , then this
contradiction would prove at least the existence part of the parallel
postulate.

When this was tried, apparent contradictions were derived and the
existence of figures that seem impossible was proved.
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The Basics Introduction

Attempts at the Parallel Postulate

The assumption that no line parallel to AB goes through point P
yields a triangle △XYZ that has three right angles.

Even though, such a conclusion seems “impossible", how can we prove
this impossibility?

It may seem that by proving the existence of a triangle with three
right angles, we have the desired contradiction, but this is wrong.

The proof that, in a triangle △XYZ , ∠X +∠Y +∠Z = 180◦ relies on
the parallel postulate, which should not be assumed.

After repeated attempts to obtain contradictions from the denial of
either the existence or the uniqueness part of the parallel postulate, J.
Bolyai, N. Lobachevski, and C. Gauss in the 19th century realized that
no proof of a contradiction was possible.

In fact, it was proved more generally that no proof of the parallel
postulate (by contradiction or otherwise) is possible.
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The Basics Introduction

Non-Euclidean Geometry

A perfectly consistent deductive geometry can be obtained by
replacing Euclid’s parallel postulate with either one of two alternative
new postulates:

One denies the existence of a parallel to some line through some point;
The other asserts the existence of at least two such parallels.

Each of the two types of geometry that arise in this way is said to be
non-Euclidean, and each has its own set of proved theorems:

The geometry where no parallel exists is called elliptic geometry;
When more than one parallel to a line goes through a point, we have
hyperbolic geometry.

The deductions of each of the two types of non-Euclidean geometry
contradict each other and the theorems of classical Euclidean
geometry, but each appears to be internally consistent.

It is known that if Euclidean geometry is internally consistent, then
the two non-Euclidean geometries are also consistent, but no formal
proof of the consistency of Euclidean geometry has been found.
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Subsection 2

Congruent Triangles
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The Basics Congruent Triangles

Congruence

A rigid motion is one of the following transformations:
a translation or shift;
a rotation in the plane;
a reflection in a line.

Two figures are congruent if one can be subjected to a rigid motion
so as to make it coincide with the other.

Example: The three triangles are congruent:

We write △ABC ∼=△RST to report that the first two triangles are
congruent.
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The Basics Congruent Triangles

Corresponding Points

Note that there is more to the notation △ABC ∼=△RST than may at
first be apparent:

The only way that these two triangles can be made to coincide is for
point R to coincide with point A, for S to coincide with B, and for T
to coincide with C .
We say that A and R , B and S , and C and T are corresponding

points of these two congruent triangles.
The only correct ways to report the congruence is to list corresponding
points in corresponding positions.

It is correct, therefore, to write △ABC ∼=△RST or △BAC ∼=△SRT ;
It is wrong to write △ABC ∼=△SRT .
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The Basics Congruent Triangles

Equality of Corresponding Sides and Angles

Since △RST ∼=△XYZ :
The corresponding sides of these triangles have equal length;
The corresponding angles have equal measure (contain equal numbers
of degrees or radians).

We can thus write, for example, RS =XY and ∠SRT =∠YXZ .

The notation ∠SRT refers to the measure of the angle in some
convenient units, such as degrees or radians.

In other situations ∠SRT may refer to the angle itself.

This mimics the fact that RS can refer either to a line segment or to
its length in some convenient unit.
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The Basics Congruent Triangles

Congruence and the SSS Criterion

Congruence of two triangles implies six equalities:
three of lengths;
and three of measures of angles.

Conversely, given two triangles, if all six equalities hold, then the
triangles can be made to “fit” on top of each other, so are congruent.
However, it is not necessary to know all six equalities to conclude that
two triangles are congruent.

If we know, for example, that the three sides of one triangle equal,
respectively, the three corresponding sides of the other triangle, we can
safely deduce that the triangles are congruent.
Example: If we know that AB =RS , AC =RT , and BC = ST , we can
conclude that △ABC ∼=△RST .
In a proof using this criterion, we say that the triangles are “congruent
by SSS”.
SSS stands for “side-side-side” and refers to the theorem that says that
if the three sides of a triangle are equal in length to the corresponding
sides of another triangle, then the two triangles are congruent.
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The Basics Congruent Triangles

Three More Criteria for Congruence

Other valid criteria that can be used to prove that two triangles are
congruent are

SAS for “side-angle-side”;
ASA for “angle-side-angle”;
SAA for “side-angle-angle”.

Example:

If we somehow know that ST =YZ and that ∠S =∠Y and ∠R =∠X ,
we can write in a proof: “We conclude by SAA that △SRT ∼=△YXZ ”.
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The Basics Congruent Triangles

The Logical Status of the Criteria for Congruence

Each of the congruence criteria SSS, SAS, ASA and SAA, i.e., the fact
that it is sufficient to guarantee the congruence of two triangles is a
theorem, proved by Euclid from his postulates.

These four theorems are among the basic results that we are accepting
as known to be valid and that we are willing to use without providing
proofs.

It is not hard to prove the sufficiency of some of these criteria if we
are willing to accept some of the others:

We deduce, as a first example of a proof, the sufficiency of the SSS
criterion, with the understanding that we may freely use any of the
other three triangle-congruence conditions.
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The Basics Congruent Triangles

Some Preliminary Terminology and Results

Recall that a triangle △UVW is isosceles if two of its sides have
equal lengths.

Example: The following triangle is isosceles because UV =UW .

The third side VW is called the base of the triangle, whether or not it
actually occurs at the bottom of the diagram.

The base angles of an isosceles triangle are the two angles at the
ends of the base.

Theorem (Pons Asinorum)

The base angles of an isosceles triangle are equal.

Example: In the figure, we have ∠UVW =∠UWV .
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The Basics Congruent Triangles

Deriving SSS from SAS and Pons Asinorum

Proposition

Assume that in △ABC and △RST , we know that AB =RS , AC =RT and
BC = ST . Prove that △ABC ∼=△RST without using the SSS congruence
criterion.

By renaming the points, if necessary, we can assume that AC is the
longest side of △ABC . It then follows that RT is the longest side of
△RST . Since we are given that AC =RT , we can move △RST ,
flipping it over, if necessary, so that:

Points A and R coincide and points C and T coincide;
Points B and S lie on opposite sides of line AC .

Now draw line segment BS .
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The Basics Congruent Triangles

Deriving SSS from SAS and Pons Asinorum (Cont’d)

The left diagram is the only possible, since for BS to fail to meet AC ,
as on the right, or for BS to go through one of the points A or C
would require one of BC or BA to be longer than AC . Since
AB =RS , we see that △ABS is isosceles with base BS . Hence, by the
pons asinorum, we deduce that x = y , where we are writing x =∠ABS

and y =∠RSB . Similarly, by a second application of the pons
asinorum, we obtain u = v . It now follows that x +u = y +v , i.e.,
∠ABC =∠RST . Since we already know that AB =RS and BC = ST ,
we can conclude by SAS that △ABC ∼=△RST .
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The Basics Congruent Triangles

Proving the Pons Asinorum

A median of a triangle is the line segment joining a vertex to the
midpoint of the opposite side.

Theorem

Let △ABC be isosceles, with base BC . Then ∠B =∠C .
Also, the median from vertex A, the bisector of ∠A, and the altitude from
vertex A are all the same line.

In the figure, we have drawn the bi-
sector AX of ∠A, and, thus, ∠BAX =
∠CAX . By hypothesis, we know that
AB = AC , and of course, AX = AX .
Thus △BAX ∼=△CAX by SAS.
It follows that ∠B =∠C since these are corresponding angles in the
congruent triangles.

We also need to show that the angle bisector AX is a median and that
it is an altitude too.
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The Basics Congruent Triangles

Proving the Pons Asinorum (Cont’d)

We show that the angle bisector AX is a median and that it is an
altitude too.

To see that it is a median, it suffices to check that X is the midpoint
of segment BC . This is true because BX =XC , since these are
corresponding sides of our congruent triangles.
Finally, to prove that AX is also an altitude, we must show that AX is
perpendicular to BC . In other words, we need to establish that
∠BXA= 90◦. From the congruent triangles, we know that the
corresponding angles ∠BXA and ∠CXA are equal. Thus,
∠BXA=∠CXA= 90◦, since the straight angle ∠BXC = 180◦.
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The Basics Congruent Triangles

Example of Invalid Circular Reasoning

To prove that the angle bisector, median,
and altitude from vertex A are all the same,
we started by drawing the bisector and
showed that it was also a median and an
altitude.

Since there is only one median and one altitude from A, we know that
the bisector is the median and the altitude.

Suppose we had started by drawing the median from A instead of the
bisector of ∠A.

We could deduce that △BAX ∼=△CAX by SSS. We would then have
∠BAX =∠CAX . We would deduce that AX is the angle bisector.

This approach would have been less satisfactory, because it makes the
pons asinorum depend on the SSS congruence criterion.

Since the validity of the SSS criterion was shown using the pons
asinorum, this would be an example of invalid circular reasoning.
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The Basics Congruent Triangles

Invalidity of “SSA"

Suppose we start by drawing altitude AX .

We would then know that ∠BXA = ∠CXA,
since both of these are right angles. We also
know that AB =AC and AX =AX .

At this point, we might be tempted to conclude that △BAX ∼=△CAX

by SSA, but we would resist that temptation, of course, because SSA
is not a valid congruence criterion:

In this figure, the base BC of isosceles
△ABC has been extended to an arbitrary
point D beyond C . The two triangles
△ADC and △ADB are clearly not congruent
because DB >DC .

Yet the triangles agree in side-side-angle since AB =AC , AD =AD,
and ∠D =∠D.
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The Basics Congruent Triangles

The Hypothenuse-Arm Criterion

One case where SSA is a valid criterion is when the angle is a right
angle, called the hypotenuse-arm criterion, abbreviated HA.

The longest side of a right triangle, the side opposite the right angle, is
called the hypotenuse of the triangle.
The other two sides of the triangle are often called its arms.

Theorem

If two right triangles have equal hypotenuses and an arm of one of the
triangles equals an arm of the other, then the triangles are congruent.

We are given triangles △ABC

and △DEF , with right angles
at C and F .

We know that AB =DE and AC =DF , and we want to show that
△ABC ∼=△DEF .
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The Basics Congruent Triangles

The Hypothenuse-Arm Criterion (Cont’d)

Move △DEF , flipping it over if necessary, so
that points A and D and points C and F co-
incide: We have ∠BCE =∠BCA+∠EFD =
90◦+90◦ = 180◦, and thus BCE is a line seg-
ment, which we can now call BE .
Since AB =DE , we see that △ABE is isosceles with base BE . Thus,
altitude AC is a median and hence BC =FE . The desired congruence
now follows by SSS.
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The Basics Congruent Triangles

A Second Proof of Pons Asinorum

Theorem (Pons Asinorum)

The base angles of an isosceles triangle are equal.

We are given isosceles △ABC with base BC ,

and we want to show that ∠B =∠C .

We have AB =AC and AC =AB . Since also ∠A=∠A, we can
conclude that △ABC ∼=△ACB , by SAS. It follows that ∠B =∠C ,
since these are corresponding angles of the congruent triangles.
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Subsection 3

Angles and Parallel Lines
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The Basics Angles and Parallel Lines

Transversal and Corresponding Angles

A transversal is a line that cuts across two given lines.

Example: Line t is a transversal to lines
a and b. Angles that are on the same
side of the transversal and on corre-
sponding sides of the two lines a and b

are said to be corresponding angles.

∠1 and ∠5 are corresponding angles, ∠2 and ∠6 and also
corresponding angles, as are the pairs ∠3 and ∠7 and, of course, ∠4
and ∠8.

It is a theorem that corresponding angles are equal when a transversal
cuts a pair of parallel lines.

Conversely, if any one of the equalities ∠1=∠5, ∠2=∠6, ∠3=∠7, or
∠4=∠8 is known to hold, then it is a theorem that lines a and b are
parallel, and, thus, the other three equalities also hold.
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The Basics Angles and Parallel Lines

Alternate Interior and Alternate Exterior Angles

Pairs of angles such as ∠4 and ∠6 or
∠3 and ∠5 that lie on opposite sides
of the transversal and between the two
given lines are called alternate interior

angles.

Pairs such as ∠1 and ∠7 or ∠2 and ∠8 that lie on opposite sides of
the transversal and outside of the space between the two parallel lines
are alternate exterior angles.

Alternate interior angles are equal and alternate exterior angles are
equal when a transversal cuts two parallel lines.

It is also true that, conversely, if any one of the equalities ∠1=∠7,
∠2=∠8, ∠3=∠5, or ∠4=∠6 is known to hold, then lines a and b

must be parallel, and, thus, the other three equalities also hold, as do
the four equalities between corresponding angles.
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The Basics Angles and Parallel Lines

Vertical, Supplementary and Complementary Angles

When two lines cross, as do lines a and
t, then ∠1 and ∠3 are said to be verti-

cal angles, as are ∠2 and ∠4.
Vertical angles are always equal.

Two angles whose measures sum to 180◦ are said to be
supplementary.

If the sum is 90◦, the angles are complementary.

An angle of 180◦ is a straight angle.

An angle of 90◦ is a right angle.
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The Basics Angles and Parallel Lines

Exterior and Remote Interior Angles

∠1 and ∠4 are supplementary. If a and
b are parallel, then ∠1=∠5. It follows
that ∠4 and ∠5 are supplementary, as
are ∠3 and ∠6.

We can apply some of this to the angles of a triangle.

Given ∠ABC , extend side BC to
point D. Then, ∠ACD is said to be
an exterior angle of the triangle at
vertex C . The two angles ∠A and
∠B are the remote interior angles

with respect to this exterior angle.
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The Basics Angles and Parallel Lines

Relating Exterior and Remote Interior Angles

Theorem

An exterior angle of a triangle equals the sum of the two remote interior
angles. Also, the sum of all three interior angles of a triangle is 180◦.

We must show ∠ACD =∠A+∠B .
Draw a line CP through C and par-
allel to AB . Now ∠A=∠ACP since
these are alternate interior angles for
parallel lines AB and PC with re-
spect to the transversal AC .
Also, ∠B =∠PCD, since these are corresponding angles. It follows
that ∠ACD =∠ACP +∠PCD =∠A+∠B .

Note that ∠ACD +∠ACB =∠BCD = 180◦.

Substituting ∠A+∠B for ∠ACD in this equation yields the conclusion
that the sum of the three interior angles of ∠ABC is 180◦.
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The Basics Angles and Parallel Lines

Sum of Interior Angles of an n-Gon

Proposition

The sum of the interior angles of an n-gon equals 180(n−2)◦.

Consider the case n= 6.

In the left hexagon, we have
drawn the three diagonals from
vertex A. In general, an n-gon
has exactly n−3 diagonals termi-
nating at each of its n vertices.

This gives a total of
n(n−3)

2
diagonals in all.

A polygon is convex if all of its diagonals lie entirely in the interior.

The interior angles of a polygon are the angles as seen from inside,
and for a convex polygon these angles are all less than 180◦.
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The Basics Angles and Parallel Lines

Sum of Interior Angles of an n-Gon (Cont’d)

In the right hexagon of the figure, which is not convex,

we see that two of its six interior
angles exceed 180◦.
An angle with measure larger
than 180◦ is said to be a reflex

angle.

Suppose we have a convex n-gon such as hexagon ABCDEF . Fix some
particular vertex A and draw the n−3 diagonals from A. This divides
the original polygon into exactly n−2 triangles. It should be clear that
the sum of all the interior angles of all of these triangles is exactly the
sum of all interior angles of the original polygon. It follows that the
sum of the interior angles of a convex polygon is exactly 180(n−2)◦.
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Remarks on the Non-Convex Case

The definition of a convex polygon requires that all diagonals from all
vertices should be interior.

It is conceivable that every polygon has at least one vertex from which
all diagonals are interior, but unfortunately, that is not true.

Example: The right hexagon is a counterexample;

at least one diagonal from every one of its vertices fails to be interior.

It is true, but not easy to prove, that every polygon has at least one
interior diagonal. It is possible to use this hard theorem to prove that
for every n-gon, the sum of the interior angles is 180(n−2)◦ degrees.
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Another Approach to the n-Gon Proposition

Imagine walking clockwise around a convex polygon, starting from
some point other than a vertex on one of the sides.

Each time you reach a vertex, you must turn right by a certain
number of degrees.

If the interior angle at the kth vertex is θk , then it is easy to see that
the right turn at that vertex is a turn through precisely (180−θk)

◦.

When you return to your starting point, you will be facing in the same
direction as when you started, and it should be clear that you have
turned clockwise through a total of exactly 360◦.

Thus, n∑
k=1

(180−θk )= 360.

Since the quantity 180 is added n times in this sum and each quantity
θk is subtracted once, we see that 180n−∑

k θk = 360. Hence∑
k θk = 180n−360= 180(n−2).
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The Walk Argument Does not Require Convexity

If when walking clockwise around the polygon you reach the kth
vertex and see a reflex interior angle there, you actually turn left, and
not right.

In this case, your left turn is easily seen to be through θk −180
degrees, where, as before, θk is the interior angle at the vertex.

If we view a left turn as being a right turn through some negative
number of degrees, we see that at the kth vertex we are turning right
by 180−θk degrees.

This is true regardless of whether θk < 180 as in the convex case or
θk > 180 at a reflex-angle vertex.

It is also clearly true at a straight-angle vertex, where θk = 180.

Thus, this second argument works in all cases, and it shows that
180(n−2) is the sum of the interior angles for every polygon, convex
or not.
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Subsection 4

Parallelograms
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The Basics Parallelograms

Parallelograms

A parallelogram is a quadrilateral ABCD for which AB ∥CD and
AD ∥BC , i.e., the opposite sides of the quadrilateral are parallel.

It is also true that the opposite sides of a parallelogram are equal, but
this is a consequence of the assumption that the opposite sides are
parallel and not part of the definition.

Theorem

Opposite sides of a parallelogram are equal.

We are given that AB ∥CD and AD ∥BC . Our task is to show that
AB =CD and AD =BC .

Draw diagonal BD Note that ∠ABD =
∠CDB since these are alternate interior
angles for the parallel lines AB and CD.
Similarly, ∠DBC =∠ADB . Since BD =BD, we see that
△DAB ∼=△BCD by ASA. Thus, AB =CD and AD =BC .
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The Basics Parallelograms

Sufficient Conditions for Parallelograms

There are two useful converses of the preceding theorem:

Theorem

In quadrilateral ABCD, suppose that AB =CD and AD =BC . Then
ABCD is a parallelogram.

Theorem

In quadrilateral ABCD, suppose that AB =CD and AB ∥CD. Then ABCD

is a parallelogram.

The proofs are left as exercises.
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The Basics Parallelograms

Parallelograms and Diagonals

Theorem

A quadrilateral is a parallelogram if and only if its diagonals bisect each
other.

Let X be the point where diagonals AC

and BD of quadrilateral ABCD cross.
Suppose first that X is the common mid-
point of line segments AC and BD.
Then AX =XC and BX =XD and also ∠AXB =∠CXD because these
are vertical angles. It follows that △AXB ∼=△CXD by SAS. Thus
AB =CD. Similarly, AD =BC . So ABCD is a parallelogram.

Conversely, assume that ABCD is a parallelogram. We have
∠BAX =∠XCD and ∠ABX =∠CDX because in each case, these are
pairs of alternate interior angles for the parallel lines AB and CD.
Also, AB =CD. Thus, △ABX ∼=△CDX by ASA. We deduce that
AX =CX and BX =DX .
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The Basics Parallelograms

Rhombus and Equidistance Between Two Points

A rhombus is a quadrilateral in which all four sides are equal.

By a preceding theorem, a rhombus must be a parallelogram.

In the case of a rhombus, the diagonals not only bisect each other, but
they are also perpendicular.

This is derived as a consequence of the following:

Theorem

Given a line segment BC , the locus of all points equidistant from B and C

is the perpendicular bisector of the segment.

We must show that:

every point on the perpendicular bisector of BC is equidistant from B

and C ;
every point that is equidistant from B and C lies on the perpendicular
bisector of BC .
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The Basics Parallelograms

Equidistance Between Two Points

Assume that AX is the perpendicular bisector of BC .

This means that X is the midpoint of BC and AX is perpendicular to
BC . In other words, we are assuming that AX is simultaneously a
median and an altitude in △ABC , and we want to deduce that
AB =AC . This is an easy exercise.

Assume now that A is equidistant from B and C . Draw median AX of
△ABC . Since AB =AC , this triangle is isosceles. Thus, median AX is
also an altitude. In other words, AX is the perpendicular bisector of
BC , and, of course, A lies on this line.
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The Basics Parallelograms

Diagonals of a Rhombus

Corollary

The diagonals of a rhombus ABCD are perpendicular.

Since AB =AD, we know by the theorem that A lies
on the perpendicular bisector of diagonal BD. Sim-
ilarly, C lies on the perpendicular bisector of BD.
But AC is the only line that contains the two points
A and C . Thus, AC is the perpendicular bisector
of BD. In particular, diagonal AC is perpendicular
to diagonal BD.
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The Basics Parallelograms

Rectangles and Squares

A rectangle is a quadrilateral all of whose angles are right angles.

It is easy it see that the opposite sides of a rectangle are parallel, and
so a rectangle is automatically a parallelogram.

We also know that the sum of the four angles of an arbitrary
quadrilateral is 360◦.

Thus, any quadrilateral with all four angles equal, each angle must be
90◦, and the figure is a rectangle.

We remark also that adjacent vertices of a parallelogram have
supplementary interior angles.

It follows easily that if one angle of a parallelogram is a right angle,
then the parallelogram must be a rectangle.

A square is a quadrilateral that is both a rectangle and a rhombus.
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The Basics Area

Subsection 5

Area
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The Basics Area

Area of a Rectangle, Base and Height

The area of a geometric figure is often denoted K .

We assume known the formula for the area of a rectangle K = bh,
where b is the length of one of the sides of the rectangle and h is the
length of the perpendicular sides.

A side of length b is referred to as the base of the rectangle, and the
height h is the length of the sides perpendicular to the base.

Suppose that we have a parallelo-
gram that is not necessarily a rect-
angle:

We designate one side of the
parallelogram as the base and
write b to denote its length.

But in this case, the height h is the perpendicular distance between
the two parallel sides of length b.
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The Basics Area

Area of a Parallelogram

Claim: The parallelogram and the
rectangle shown have equal areas.
Drop perpendiculars from one end of
each of the sides of length b to the
extensions of the opposite sides.
This results to a rectangle with base b+x and height h, where x

represents the amount that the base of the parallelogram had to be
extended to meet the perpendicular.

The area of this rectangle is (b+x)h.

To obtain the area of the original parallelogram, we need to subtract
from this the area of the two right triangles.

The two right triangles pasted together would form a rectangle with
base x and height h. So the total area of the two triangles is xh.

The area of the parallelogram is therefore (b+x)h−xh = bh.

So the parallelogram and the rectangle have equal areas.
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The Basics Area

Areas of Triangles

Consider a triangle with base b and
height h, where any one of the three
sides can be viewed as the base and
the length of the altitude drawn to
that side is the corresponding height.

To compute the area K , we have constructed a parallelogram by
drawing lines parallel to our base and to one of the other sides of the
triangle.

This parallelogram has base b and height h, so its area is bh.

By SSS, the parallelogram is divided into two congruent triangles by a
diagonal.

So the area of each of these triangles is exactly half the area of the
parallelogram.

Thus, the original triangle has area K = 1
2
bh.
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The Basics Area

Consequence for Isosceles Triangles

By taking any one of the three sides as the base, we obtain three
different formulas for the the area of a triangle △ABC :

KABC = 1
2
AX ·BC

= 1
2
BY ·AC = 1

2
CZ ·AB .

Claim: A triangle △ABC is isosceles with base BC if and only if the
two altitudes BY and CZ are equal.

By the area formula, BY ·AC =CZ ·AB , since each of these quantities
equals twice the area of the triangle. We can cancel the equal
quantities AC and AB to obtain BY =CZ .

Conversely, suppose that altitudes BY and CZ are equal. Since
BY ·AC =CZ ·AB , we get that AB =AC .
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The Basics Area

Area in terms of Sines and Law of Sines

Customarily, we use the symbols a, b and c to denote the lengths of
the sides of △ABC opposite vertices A, B and C , respectively.

Draw the altitude of length h from A. We
have K = 1

2
ah. We see that sin(C ) = h

b . Hence,
h = b sin(C ). If we substitute this into the area
formula K = 1

2
ah, we obtain K = 1

2
ab sin(C ).

Similarly, K = 1
2
ac sin(B) and K = 1

2
bc sin(A).

Thus, for any triangle, the following equations always hold:

ab sin(C )= bc sin(A)= casin(B).

If we divide by abc and take reciprocals, we get the law of sines:

c

sin(C )
=

a

sin(A)
=

b

sin(B)
.
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The Basics Area

Angle Bisector and Opposite Segments

Theorem

Let AX be the bisector of ∠A in △ABC . Then BX
XC = AB

AC .
In other words, X divides BC into pieces proportional to the lengths of the
nearer sides of the triangle.

Let u and v be the lengths of BX and XC , re-
spectively. Let h be the height of △ABC with
respect to the base BC . Then h is also the
height of each of △ABX and △ACX with re-
spect to bases BX and XC , respectively. We
have 1

2
uh=KABX = 1

2
cx sin(α) and, also,

1
2
vh=KACX = 1

2
bx sin(α), where x =AX and α= 1

2
∠A. Division of

the first of these equations by the second yields u
v = c

b .
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The Basics Area

Coincidence of Median and Bisector Implies Isosceles

As an application, we have the following proposition:

Proposition

Suppose that in △ABC , the median from vertex A and the bisector of ∠A
are the same line. Then AB =AC .

We have u = v since the angle bisector AX is
assumed to be a median. Since, by the preceding
theorem, u

v = c
b
, we get that c = b.
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The Basics Area

Review of Formulas and Heron’s Formula

The first type of formula for the area of a triangle uses one side and
an altitude:

KABC = 1

2
aha.

The second type uses two sides and an angle:

KABC =
1

2
bc sin(A).

SSS asserts that a triangle is determined by its three sides.

Thus, there should be a nice way to compute the area of a triangle in
terms of the lengths of its sides:

KABC =
√
s(s −a)(s −b)(s −c), Heron of Alexandria

where s = 1
2
(a+b+c) is called the semiperimeter of the triangle.
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The Basics Area

Subdividing Sides of a Triangle Into Thirds

Proposition

Points P ,Q and R lie on the sides of △ABC . Point P lies one third of the
way from B to C , point Q lies one third of the way from C to A, and point
R lies one third of the way from A to B .

Line segments AP ,BQ and CR subdivide the
interior of the triangle into three quadrilater-
als and four triangles. The area of the only
small triangle having no vertex in common
with △ABC is exactly one seventh of the area
of the original triangle.

We need to compute the area KXYZ .

Let KABC = a. Let, also KBYP = k .

We draw line segment YC and start computing areas.
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The Basics Area

Subdividing Sides Into Thirds (Cont’d)

Since △CYP has the same height as
△BYP but its base PC is twice as long,
we deduce that KCYP = 2k . Similarly,
since AQ = 2QC , we see that KABQ =
2KCBQ . Thus, KCBQ = 1

3
KABC = 1

3
a.

So KCYQ = 1
3
a−KBYC = 1

3
a−3k . We also have

KAYQ = 2KCYQ = 2
3
a−6k . We know that KABQ = 2

3
KABC = 2

3
a. Hence,

KABY = 2
3
a−KAYQ = 2

3
a− (2

3
a−6k)= 6k . However,

KABP = 1
3
KABC = 1

3
a. Thus, KBYP = 1

3
a−6k . But we know that

KBYP = k . Hence 1
3
a−6k = k and k = 1

21
a.

Similar reasoning shows that KARX = 1
21
a=KCQZ . Since

KARC = 1
3
KABC = 1

3
a, we deduce that the area of quadrilateral AXZQ

is 1
3
a− 2

21
= 5

21
a. Finally, we recall that KAYQ = 2

3
a− 6

21
a= 8

21
a, and it

follows that KXYZ = 8
21
a− 5

21
a= 1

7
a.
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The Basics Circles and Arcs

Subsection 6

Circles and Arcs
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The Basics Circles and Arcs

Circles

A circle is the locus of all points equidistant from some given point
called the center.

The common distance r from the center to the points of the circle is
the radius.

The word radius is also used to denote any one of the line segments
joining the center to a point of the circle.

A chord is any line segment joining two points of a circle.

A diameter is a chord that goes through the center.

The length d of any diameter is given by d = 2r , and this is the
maximum of the lengths of all chords.

Any two circles with equal radii are congruent;

Any point on one of two congruent circles can be made to correspond
to any point on the other circle.
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The Basics Circles and Arcs

Three Non-collinear Points Determine a Circle

Theorem

There is exactly one circle through any three given non-collinear points.

Call the points A,B and C . Since by hy-
pothesis, there is no line through these
points, we can be sure that we are deal-
ing with three distinct points, and we
draw line segments AB and AC . Let b

and c be the perpendicular bisectors of
these segments. Lines b and c cannot
be parallel because:

AB and AC are neither parallel (AB and AC have point A in common)
nor are they the same line (A,B and C are non-collinear).
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The Basics Circles and Arcs

Three Non-collinear Points Determine a Circle (Cont’d)

Let P be the point where lines b and c meet. Since P lies on the
perpendicular bisector of AB , we know that P is equidistant from A

and B . In other words, PA=PB . Similarly, since P lies on line c , we
deduce that PA=PC . If we let r denote the common length of the
three segments PA,PB and PC , we see that the circle of radius r

centered at P goes through the three given points.

George Voutsadakis (LSSU) College Geometry June 2019 61 / 114



The Basics Circles and Arcs

Uniqueness of the Circle

We show next that the three points cannot lie on any other circle:

If a circle centered at some point Q, say, goes through A,B and C ,
then Q is certainly equidistant from A and B . Hence, it lies on the
perpendicular bisector b of segment AB .

Similarly, we see that Q lies on line c .

Thus, Q =P , because P is the only point common to the two lines.

Since the distance PA= r , it follows that the only circle through A, B
and C is the circle of radius r centered at P .
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The Basics Circles and Arcs

Circumcircles and Inscribed n-Gons

Given △ABC , the unique circle that goes through the three vertices is
called the circumcircle of the triangle.

The triangle is said to be inscribed in the circle.

More generally, any polygon all of whose vertices lie on some given
circle is referred to as being inscribed in that circle.

The circle is circumscribed about the polygon.

Every triangle is inscribed in some circle, but the same cannot be said
for n-gons when n> 3.
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The Basics Circles and Arcs

Arcs

Two points A and B on a circle divide the circle into two pieces, each
of which is called an arc.

We write ÙAB to denote one of these two arcs, usually the smaller.

The ambiguity makes a three-point designation preferable.

Example:

The smaller of the two arcs determined by points
A and B would be designated ÚAXB and the larger
is ÚAYB.

The ambiguity in the notation ÙAB is related to a similar ambiguity in
the notation for angles.

Example: If we write ∠AOB , we generally mean the angle including
point X in its interior and not the reflex angle.

George Voutsadakis (LSSU) College Geometry June 2019 64 / 114



The Basics Circles and Arcs

Measuring Arcs

The most common way to measure the size of an arc is in terms of the
fraction of the circle it is, where the whole circle is taken to be 360◦ or
2π radians.

An arc extending over a quarter of the circle, therefore, is referred to
as a 90◦ arc, and we would write ÙAB ⊜ 90◦ or ÙAB ⊜

π
2

radians in this
case.

This size description for an arc is meaningful only relative to the circle
of which it is a part.

If we are told that we have two 90◦ arcs, we cannot say that they are
congruent or that they have equal length unless we know that these
are two arcs of the same circle or of two circles having equal radii.

To remind us that the number of degrees (or radians) that we assign
to an arc gives only relative information, we use the symbol ⊜, which
we read as “equal in degrees (or radians)", and we avoid the use of =
in this context.

George Voutsadakis (LSSU) College Geometry June 2019 65 / 114



The Basics Circles and Arcs

Central Angles

Given an arc ÙAB on a circle centered at point O, we say that ∠AOB
is the central angle corresponding to the arc.

Since a full circle is 360◦ of arc and one full rotation is 360◦ of angle,
it should be clear that the number of degrees in the measure of central
angle ∠AOB is equal to the number of degrees in ÙAB.

Example: A 90◦ angle at the central point O cuts off a quarter circle,
which is a 90◦ arc.

The termnology for the phrase “cuts off" is subtends.

In general, we can write ∠AOB ⊜ ÙAB, i.e., a central angle is equal in
degrees to the arc it subtends.

We can also say that the arc is measured by the central angle.
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The Basics Circles and Arcs

Inscribed Angles

In a given circle, the angle formed by two chords that
share an endpoint is called an inscribed angle.
Example: Some of the inscribed angles in the figure are
∠APB , ∠AQB and ∠ARB .

Theorem

An inscribed angle in a circle is equal in degrees to one half its subtended
arc. Equivalently, the arc subtended by an inscribed angle is measured by
twice the angle.

Given ∠APB inscribed in a circle centered at point O, the three cases
we need to consider are:
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The Basics Circles and Arcs

Proof of the Inscribed Angle Theorem

We deal with each of the three cases:
O falls on one of the sides of ∠APB: Suppose O lies on PB. Draw
radius AO and observe that △AOP is isosceles with base AP . So by
the pons asinorum, ∠A=∠P . Central ∠AOB is an exterior angle of
△AOP . Hence, it is equal to the sum of the two remote interior angles.
Thus, ÙAB ⊜∠AOB =∠A+∠P = 2∠P .

O lies in the interior of the angle: Draw diameter PQ. By the part of
the theorem that we have already proved, we know that ∠APQ ⊜

1
2
ÙAQ

and ∠QPB ⊜
1
2

ÙQB . Adding these equalities gives ∠APB ⊜
1
2

ÚAQB .

O is exterior to the angle: Draw diameter PQ. We get ∠APQ ⊜
1
2
ÙAQ

and ∠QPB ⊜
1
2

ÙQB . Subtraction yields the result.
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The Basics Circles and Arcs

Applying the Inscribed Angle Theorem

Example: ∠APB ⊜
1
2

ÚARB and ∠AQB ⊜
1
2

ÚARB . So we
have ∠APB =∠AQB .
In general, any two inscribed angles that subtend the
same arc in a circle are equal.

Now consider ∠ARB . This too is an inscribed angle formed by chords
through A and B , but ∠ARB is not necessarily equal to the other two
angles because it subtends the other arc determined by A and B .

Corollary

Opposite angles of an inscribed quadrilateral are supplementary.

We have ∠ARB ⊜
1
2

ÚAPB : So we get

∠ARB+∠APB = 1
2
(ÚAPB + ÚARB)= 1

2
360◦ = 180◦.

Thus, ∠ARB and ∠AQB are supplementary.
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The Basics Circles and Arcs

Angle Between Two Secants

A line segment that extends a chord beyond a circle is called a secant.

Corollary

The angle between two secants drawn to a circle from an exterior point is
equal in degrees to half the difference of the two subtended arcs.

Consider point X , outside a given circle.
∠APB is an exterior angle of △APX .
Thus, ∠AXB =∠APB −∠XAP . Notice
that ∠XAP = ∠UAP ⊜

1
2
ÙUP . We see

that ∠AXB ⊜
1
2
(ÙAB −ÙUP).
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The Basics Circles and Arcs

Angle Between Two Chords

Corollary

The angle between two chords that intersect in the interior of a circle is
equal in degrees to half the sum of the two subtended arcs.

Consider point Y , inside a given circle.
∠AYB is an exterior angle of △AYP .
Thus, ∠AYB−∠APB =∠PAY ⊜

1
2
ÙPV .

Thus, ∠AYB ⊜
1
2
(ÙAB +ÙPV ).
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The Basics Circles and Arcs

The Art Lover Problem

Proposition

A 6-foot-tall rectangular painting is hung high on a wall, with its bottom
edge 7 feet above the floor. An art lover whose eyes are 5 feet above the
floor wants as good a view as possible, and so she wants to maximize the
angular separation from her eye to the top and the bottom of the painting.
Show that she should stand 4 feet away from the wall.

Horizontal line e represents the possible
positions of the viewer’s eye, 5 feet above
the floor. Line TB is the wall on which
the picture is hung, and T and B repre-
sent, respectively, the top and bottom of
the picture. We seek a point P on line e

that maximizes ∠BPT .
Point B is 2 feet above e and T is 8 feet above e.
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The Basics Circles and Arcs

The Art Lover Problem (Cont’d)

The midpoint M of TB is thus at the average
height 2+8

2
= 5 feet above e. Draw the perpen-

dicular bisector b of TB so that b is horizontal
and 5 feet above e and choose point O on b so
that OB = 5. Draw the circle of radius 5 centered
at O, tangent to e at some point P .

Claim: Point P solves the problem.

Every other point on e lies outside the circle and thus “sees" the
picture TB with a smaller angle than does P . Thus, ∠BPT is the
maximum we seek.

We now must find how far point P is from the wall. This distance is
equal to OM, and so we examine the right triangle △OMB . We know
that hypotenuse OB = 5 because OB is a radius of the circle. Also,
MB = 3. By the Pythagorean theorem, we see that OM = 4.
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The Basics Circles and Arcs

The Pythagorean Theorem

Theorem (Pythagoras)

If a right triangle has arms of lengths a and b and its hypotenuse has
length c , then a2+b2 = c2.

The given triangle is on the left:.
The right diagram shows a square
of side a+ b. Each of the right
triangles has arms of length a and
b, and so each is congruent to the
original triangle by SAS.

The two smaller squares have side lengths a and b, and so the area
remaining in the big square of side a+b when four copies of our given
triangle are removed is exactly a2+b2.
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The Basics Circles and Arcs

The Pythagorean Theorem (Cont’d)

On the right, each of the right triangles is congruent to the given one
by SAS. The quadrilateral of side c is a rhombus. The angle of the
rhombus together with ∠1 and ∠2 make a straight angle of 180◦. In
the original triangle, we know that ∠1, ∠2, and a right angle sum to
180◦. It follows that the angle of the rhombus is 90◦. So the rhombus
is a square. Its side length is exactly c . It follows that the area
remaining when four copies of our triangle are removed from a square
of side a+b is c2.

By the preceding slide a2+b2 = c2.
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The Basics Circles and Arcs

Right Inscribed Angles

We look at a special case of the inscribed angle theorem:

Corollary

Given △ABC , the angle at vertex C is a right angle if and only if side AB

is a diameter of the circumcircle.

We know that the circumcircle exists. In this circle, ÙAB is measured
by 2∠C . Here, ÙAB denotes the arc not containing C that these points
determine. Chord AB is a diameter precisely when ÙAB ⊜ 180◦, or
equivalently, when ∠C = 90◦.

This is an example of an “if and only if" statement:

The “if part" of the statement asserts that if AB is a diameter, then
∠C is a right angle.
The “only if part" tells us that if ∠C is a right angle, then AB must be
a diameter.
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The Basics Circles and Arcs

Acute and Obtuse Angles and Tangents

Any line segment AB , defines a unique circle having AB as a diameter
(the circle centered at the midpoint of AB and having radius 1

2
AB).

Thus, ∠C is a right angle in △ABC if and only if point C lies on the
unique circle having side AB as a diameter.
∠C < 90◦ if C lies outside of this circle.
∠C > 90◦ if C is in the interior.

Angles smaller than 90◦ are said to be acute.

Angles between 90◦ and 180◦ are obtuse.
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The Basics Circles and Arcs

Tangents to a Circle

A line is tangent to a circle if it meets the circle in exactly one point.

Through every point P on a circle, there is a unique tangent line,
which is necessarily perpendicular to the radius terminating at P .

Consider the tangent line PT . We want to compute ∠APT , where
AP is the diameter that extends radius OP .

Choose a point Q on the circle near P and draw
the secant line PQ. If we move Q closer and
closer to P , we see that ∠APT is the limit of
∠APQ ⊜

1
2
ÙAQ. But as Q approaches P , we ob-

serve that ÙAQ approaches 180◦ since ÚAQP is a
semicircle. It follows that ∠APQ approaches 90◦.
So AP is perpendicular to the tangent.
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The Basics Circles and Arcs

Measure of Angle Formed by Tangent and Chord

Theorem

The angle between a chord and the tangent at one of its endpoints is equal
in degrees to half the subtended arc.

∠QPT between chord PQ and tangent PT

is the complement of ∠APQ. Thus, we
have: ∠QPT = 90◦−∠APQ ⊜ 90◦− 1

2
ÙAQ ⊜

1
2
(180◦−ÙAQ)⊜ 1

2
ÙPQ .

Corollary

The angle between a secant and a tangent meeting at a point outside a
circle is equal in degrees to half the difference of the subtended arcs.
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The Basics Circles and Arcs

Mutually Tangent Circles

Two circles are said to be mutually tangent at a point P if P lies on
both circles and the same line through P is tangent to both circles .
Mutual tangency can happen:

externally: circles on opposite sides of the tangent line;
internally, circles are on the same side of the tangent and one circle is
inside the other.

Proposition

Given two externally mutually tangent circles with common point P , draw
two common secants AD and BC through P . Then AB and CD are
parallel.

Since BC is a transversal to the two lines AB
and CD, it suffices to show that the alternate
interior angles ∠B and ∠C are equal.
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The Basics Circles and Arcs

Mutually Tangent Circles (Cont’d)

Since BC is a transversal to the two lines
AB and CD, it suffices to show that the
alternate interior angles ∠B and ∠C are
equal. Draw the common tangent ST and
note that ∠DPT ⊜

1
2
ÙPD.

Also ∠C ⊜
1
2
ÙPD . It follows that ∠C =∠DPT . Similarly, ∠B =∠APS .

But ∠DPT and ∠APS are vertical angles. So they are equal. Hence
∠C =∠B .
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The Basics Polygons in Circles

Subsection 7

Polygons in Circles
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The Basics Polygons in Circles

Regular n-Gons

A polygon is said to be regular if all of its sides are equal and also all
of its angles are equal.

Example:

An equilateral triangle has equal sides, by definition.
By two applications of the pons asinorum, all three angles must be
equal too.
So an equilateral triangle is a regular 3-gon.
An equilateral 4-gon is a rhombus.
A rhombus need not have equal angles, and so it is not necessarily a
regular polygon.
A square, however, is a regular 4-gon.
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The Basics Polygons in Circles

Regular Inscribed n-Gons

For n≥ 3, a regular n-gon can be drawn by marking n equally spaced
points around a circle and then drawing the n chords connecting
consecutive points.

The n chords are equal in length.
The n angles are all equal:
Each of the n arcs is clearly equal in degrees to 360

n
degrees.

Each angle of the polygon subtends an arc consisting of n−2 of these
small arcs.
So each of these angles is equal to

1

2
(n−2)(

360

n
)=

180(n−2)

n
degrees.
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The Basics Polygons in Circles

Area of a Regular n-Gon

Draw the n radii joining the center of the circle
to the n equally spaced points. This subdivides
the interior of the n-gon into n isosceles trian-
gles with equal bases of length s, the common
side length of the polygon. These n triangles
are all congruent by SSS.

Thus, the lengths of the altitudes of these triangles (drawn from the
center of the circle) are all equal.

Any one of these altitudes is said to be an apothegm of the regular
polygon, and we write a to denote their common length.

Since the area of each of the isosceles triangles is 1
2
sa, the area of the

entire regular n-gon is
1

2
nsa=

1

2
pa,

where p = ns is the perimeter of the polygon.
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Maximization of the Area

Proposition

For an integer n≥ 3, and a circle, the regular n-gon is the n-gon that has
the maximum area among all n-gons with points on the circle.

The following figure illustrates the case n= 5.

In the left diagram, ÙAB ,
ÙBC ,

ÙCD,
ÙDE

and ØEA are all equal. Thus, each is
72◦. The circle in the right diagram has
an equal radius, but the five points are
placed so that not all of the arcs are
equal.

We need to show that the area of the regular pentagon ABCDE is
strictly greater than that of pentagon RSTUV .
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Proof of the Area Maximization

Claim: Given any n-gon inscribed in a circle and having arcs that are
not all equal, there exists another n-gon with larger area inscribed in
the same circle.

Since the arcs are not all equal, we can find two consecutive unequal
arcs. Hence, we can find three consecutive vertices R ,S and T of our
n-gon where ØRS and ÙST are unequal.

We show that it is possible to
move point S , leaving all of the
remaining n−1 points fixed, so
that the area is increased.

The area of the whole polygon can be viewed as the area of △RST

plus the area of the part that lies on the other side of chord RT . We
are assuming that S is not the midpoint of ÚRST , and we label the
midpoint S ′.
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Proof of the Area Maximization (Cont’d)

The perpendicular distance h from S to line RT is less than the
distance h′ from S ′ to RT . As h is the height of △RST with respect
to the base RT and h′ is the height of △RS ′T with respect to the
same base, it follows that the area of △RST is less than that of
△RS ′T . If we move point S to S ′, the effect is to increase the area of
the triangle without affecting the rest of the polygon, and the effect
on the area of the whole polygon is thus an increase. This shows that
an n -gon inscribed in a circle where the arcs are unequal cannot have
the maximum possible area.
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Existence of Maximum Area Inscribed n-Gon

We must also show that among all possible n-gons inscribed in a given
circle, there is one for which the area is a maximum.

We use a general principle called compactness.

From calculus, if f (x) is a function of a real variable x , defined for
a≤ x ≤ b, and f (x) is continuous in this interval, then the function
necessarily takes on a maximum value at some point c in the interval.

Similarly, a continuous function, even of several variables, takes on a
maximum value if each variable runs over a closed and bounded set.
We think of the area of an n-gon inscribed in a circle as a function of
n variables consisting of the n-points.

This function is continuous since small perturbation in the locations of
the points results in at most a small change in the area.
Each point is required to lie on our circle, which as we shall see, is
closed and bounded.

It follows that for some choice of n points on the circle, the area
function takes on a maximum value.
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Bounded Sets on the Plane

A set of points is bounded if it is contained in the interior of some
circle, possibly a very large circle.

Example:
Bounded Sets:

A line segment;

A circle;

The interior of a circle.

Unbounded Sets:

A line;

The exterior of a circle;

The interior of an angle.
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Points Adjacent to a Set

Given a set S of points in the plane, we say that a point P is
adjacent to S if every circle centered at P , no matter how small,
contains at least one point of S in its interior.

If P is actually a member of S , then P is adjacent to S .

It is also possible for a point to be adjacent to a set without actually
being in the set.

Example: An endpoint of a line segment is not in the interior of the
segment, but it is adjacent to the interior.
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Closed Sets on the Plane

A plane set is closed if every point adjacent to the set is actually a
member of the set.

The interior of a circle is not a closed set because the points of the
circle are adjacent and yet are not in the set.
The disk formed by a circle together with its interior is a closed set.
The circle itself is a closed set.
A line is a closed set.
A line segment including the endpoints is a closed set.
A line segment without its endpoints is not closed.
A circle with one point deleted is not closed.
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Compact Sets on the Plane

A set that is both closed and bounded is said to be compact.

If we take into account the theorem that a real-valued continuous
function of several variables, each of which runs over a compact set,
attains a maximum and also a minimum value, then the n-gon area
maximization problem is solved.

This is because the domain of choice for each point is a circle, which
is a compact set.
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The Constant π

The number π= 3.1415 . . . is by definition the ratio of the perimeter,
also called the circumference, of a circle to its diameter.

This ratio is the same for all circles, independent of size.

The number π is also involved in the formula K =πr2 giving the area
of a circle in terms of its radius r .

Fix a circle of radius r and let Kn denote the area of a regular n-gon
inscribed in the circle. The area K of the circle is the limit of the
polygon areas Kn as n→∞. We have seen that Kn = 1

2
pnan, where pn

and an are, respectively, the perimeter and apothegm of a regular
n-gon inscribed in our given circle. Observe that as n gets large, pn
approaches the circumference c = 2πr of the circle and an approaches
the radius r . Thus, K = lim

n→∞
Kn = 1

2
( lim
n→∞

pn)( lim
n→∞

an)=
1
2
(2πr)(r)=πr2

.

The surface area and volume of a sphere in terms of its radius also
involve the seemingly ubiquitous number π: S = 4πr2 and V = 4

3
πr3.
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Algebraic Numbers

Recall that the decimal expansions of rational numbers either
terminate or eventually repeat, e.g., 1

3
= 0.3 and 2

7
= 0.285714.

The number π is irrational, and its decimal expansion never repeats.

The same can be said of numbers such as
p

2= 1.4142 . . ., but in a
certain sense, π is even more unlike numbers such as

p
2.

A polynomial is an expression of the form f (x)= anx
n+an−1x

n−1+
·· ·+a1x +a0, where the constants ai are called the coefficients of the
polynomial f (x) and we assume that an 6= 0.

A number r is said to be a root of the polynomial f (x) if we get 0
when we plug in r in place of x .

Example: The number r =
p

2 is a root of the polynomial f (x)= x2−2.

Note that the coefficients of this polynomial are a2 = 1,a1 = 0 and
a0 =−2 and they are all integers.

A number r is said to be algebraic if it is a root of some polynomial
with integer coefficients.
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Transcendental Numbers

A number is transcendental if it is not algebraic, i.e., if it is not a
root of any polynomial with integer coefficients.

π is transcendental, as are “most" numbers, but it is unusual to have
in hand a particular number such as π or e = 2.7182 . . . that is actually
known to be transcendental.

There are many formulas that can be proved to give π exactly, even
though it is not the root of any polynomial equation with integer
coefficients:

π= 4

∫1

0

1

1+x2
dx ; π=

√√√√6
∞∑
n=1

1

n2
; π= 4

∞∑
n=0

(−1)n

2n+1
.
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Subsection 8

Similarity
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Similar Triangles

Similarity is a weaker condition than congruence:
Similarity requires the “same shape".
Congruence requires both the “same shape" and the “same size".

Two triangles are similar if the three angles of one are equal to the
three angles of the other.

Example: If we are given △ABC and △XYZ and we know that
∠A=∠X , ∠B =∠Y and ∠C =∠Z ,

then the two triangles are similar and we write △ABC ∼△XYZ .
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The AA Criterion for Similarity

Theorem

Given △ABC and △XYZ , suppose ∠A=∠X and ∠B =∠Y . Then
∠C =∠Z , and so △ABC ∼△XYZ .

Since the sum of the angles of a triangle is 180◦, we have

∠C = 180◦− (∠A+∠B)= 180◦− (∠X +∠Y )=∠Z .

When the theorem is used to prove that two triangles are similar, we
say that the triangles are similar by AA (“angle-angle").
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Parallelism and Proportionality

Lemma

Let V and U be points on sides AB and AC of
△ABC . Then UV ∥BC if and only if AU

AB = AV
AC .

Write α= UB
AB and β= VC

AC . Then AU =AB −VB = (1−α)AB , and,

similarly, AV = (1−β)AC . Thus, AU
AB

= 1−α and AV
AC

= 1−β.

It follows that the ratios AU
AB and AV

AC are equal if and only if α=β.

It suffices now to show that α=β if and only if UV ∥BC .
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Parallelism and Proportionality

We show α=β if and only if UV ∥BC .

Draw CU and compare the area of △BUC with
that of △ABC . Viewing AB and UB as bases,
we see that these triangles have equal heights.
Thus, KBUC

KABC
= UB

AB
= α. So KBUC = αKABC .

Similarly, KBVC =βKABC . It follows that α=β

if and only if KBUC =KBVC .
We need to show KBUC =KBVC if and only if UV ∥BC .

Since △BUC and △BVC share base BC , their areas are equal if and
only if they have equal heights UE and VF .

So we must show that UE =VF if and only if UV ∥EF .

Observe that UE and VF are parallel since each of these lines is
perpendicular to BC . If UE =VF , it follows by a previous theorem
that UVFE is a parallelogram, and thus UV ∥EF . Conversely, if
UV ∥EF , then UVEF is a parallelogram by definition, and so
UE =VF .
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Similarity Implies Proportionality

Theorem

If △ABC ∼△XYZ , then the lengths of the corresponding sides of these
two triangles are proportional.

We show XY
AB

= XZ
AC

. By similar reasoning XY
AB

= YZ
BC

. Thus, all three
ratios are equal and the sides are proportional.

If XY =AB, then △ABC ∼=△XYZ by ASA. In this case, XZ =AC . So
XY
AB

= 1= XZ
AC

.
We can suppose that XY and AB are unequal. Say XY is the shorter
of these two segments.
Choose point U on side AB of △ABC so that AU =
XY . Draw UV parallel to BC , where V lies on
side AC . Since UV ∥BC , we have ∠AUV =∠B =
∠Y and ∠AVU =∠C =∠Z . But AU =XY , whence
△AUV ∼=△XYZ by SAA. In particular, AV =XZ .

Since UV ∥BC , we know that AU
AB

= AV
AC

. Since AU =XY and

AV =XZ , it follows that XY
AB

= XZ
AC

.
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Application of Similarity

Proposition

In △ABC , draw UV parallel to BC . The in-
tersection of BV and UC lies on the median
of △ABC from point A.

Let P be the intersection point of BV and UC . Draw line AP and let
D and E be the points where this line crosses UV and BC . Denote the
lengths UD ,DV ,BE ,EC ,DP and PE by r ,s ,m,n,x and y , respectively.
Our task is to prove that E is the midpoint of AC . So we need to
show m= n. First, note that because UD ∥BE , ∠AUD =∠ABE and
∠ADU =∠AEB . So ∠AUD ∼△ABE by AA. We conclude that
r
m = AD

AE . Similarly, s
n = AD

AE . This gives r
m = s

n . Hence, n
m = s

r .
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Application of Similarity (Cont’d)

Consider △DUP and △ECP . Because UD ∥EC , we have ∠DUP =
△PCE and ∠UDP =∠CEP . Thus, △DUP ∼△ECP . Hence r

n
= x

y
.

Similar reasoning with △DVP and △EBP yields s
m = x

y .

We conclude that r
n = s

m . Thus, m
n = s

r .

Since we previously had n
m = s

r , we see that m
n = n

m . Therefore, n=m.

George Voutsadakis (LSSU) College Geometry June 2019 104 / 114



The Basics Similarity

Segment Joining the Midpoints of Sides

Corollary

Let U and V be the midpoints of sides AB
and AC , respectively, in △ABC . Then
UV ∥BC and UV = 1

2
BC .

That UV ∥BC is immediate from the lemma, since AU
AB

= 1
2
= AV

AC
. In

this situation, △AUV ∼△ABC by AA. Thus, we obtain that

UV

BC
=
AU

AB
=

1

2
.

It follows that UV = 1
2
BC , as required.
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The SSS Similarity Criterion

Theorem

Suppose that the sides of △ABC are proportional to the corresponding
sides of △XYZ . Then △ABC ∼△XYZ .

By hypothesis, each of XY ,XZ and YZ is equal, respectively, to some
scalar λ times AB ,AC and BC .

If AB =XY , then λ= 1 and all three sides of △ABC are equal to the
corresponding sides of △XYZ . Thus, by SSS, we get congruence and,
a fortiori, similarity.
Assume that AB and XY are un-
equal, say XY is the shorter of these
two segments. Choose point U on
segment AB such that AU = XY

and draw UV parallel to BC with
V on AC .
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The SSS Similarity Criterion (Cont’d)

By AA, △AUV ∼△ABC . Hence, the corresponding sides of these two
triangles are proportional. The scale factor for this proportionality is
AU
AB

= XY
AB

=λ. Thus AV =λAC =XZ and UV =λBC =YZ . It follows
that △AUV ∼=△XYZ by SSS. Hence, ∠AUV =∠Y and ∠AVU =∠Z .

Thus, ∠B =∠Y and ∠C =∠Z . Hence △ABC ∼△XYZ by AA.
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Similarity of Arbitrary Figures on the Plane

Two arbitrary figures are similar if for each point in one of them,
there is a corresponding point in the other so that all distances in the
first figure are proportional, with some particular scale factor λ, to the
corresponding distances in the second figure.

Caution: This is not how we defined similarity for triangles, but we
proved that:

similar triangles satisfy this condition;
triangles that are similar in this proportionality sense are actually
similar triangles, according to our earlier definition.
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The SAS Similarity Criterion

Theorem

Given △ABC and △XYZ , assume that ∠X =∠A and that XY
AB = XZ

AC . Then
△ABC ∼△XYZ .

If XY =AB , then XZ =AC and the triangles are congruent by SAS.
Hence, they are, a fortiori similar.

Assume that XY <AB .
Choose point U on side AB of
△ABC so that AU = XY . Draw
UV parallel to BC with V on
side AC . Observe that △AUV ∼
△ABC by AA.

Then AV
AC = AU

AB = XY
AB = XZ

AC . Hence AV =XZ . By ASA,
△AUV ∼=△XYZ . Thus, ∠XYZ =∠AUV =∠ABC . It now follows by
AA that △ABC ∼△XYZ .
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Another Application of Similarity

Proposition

Point P lies outside of parallelogram ABCD and
∠PAB =∠PCB . Show that ∠APD =∠CPB .

Extend sides CD and AD of the given paral-
lelogram so that they meet lines PA and PC

at E and F , respectively, and draw segments
AC and EF .
Observe that ∠DEA = ∠BAP because these
are corresponding angles for the parallel lines
ED and AB . Also, we have ∠DFC = ∠BCP

by similar reasoning.
Since ∠BAP =∠BCP by hypothesis, we get that ∠DEA=∠DFC .
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Another Application of Similarity (Cont’d)

Note ∠ADE =∠CDF since these are vertical
angles. So △ADE ∼ △CDF by AA. Hence
AD
CD = ED

FD . Using algebra, AD
ED = CD

FD . Since we
know that ∠ADC =∠EDF , it follows via SAS
that △ADC ∼ △EDF . So ∠CAD = ∠FED.
Therefore, ∠FEP =∠FED+∠DEA=∠CAD+
∠BAP =∠ACB +∠BCP =∠ACP .

Since ∠EPF =∠CPA, we can now conclude that △EPF ∼△CPA by
AA. So we have PC

PE
= AC

FE
. We also have AC

FE
= AD

ED
because we know

that △ADC ∼△EDF . We now get PC
PE = AC

FE = AD
ED = CB

ED .

We finally get △PCB ∼△PED: ∠PED =∠PCB since each is equal to
∠PAB ; The similarity follows by SAS since we have PC

PE
= CB

ED
. We

conclude that ∠CPB =∠EPD.
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Secant Line to a Circle

Theorem

Given a circle and a point P not on the circle, choose an arbitrary line
through P , meeting the circle at points X and Y . Then PX ·PY depends
only on P and is independent of the choice of the line through P .

Draw a second line through P that also meets the circle in two points,
U and V . We must show that PX ·PY =PU ·PV .

Draw line segments UX and VY .
Observe that ∠U =∠Y , since these
inscribed angles subtend the same
arc.

Also ∠XPU =∠VPY , since these are vertical angles when P is inside
the circle, and identical when P is outside the circle. In either case we
have △PXU ∼△PVY by AA. Thus, PX

PV = PU
PY . Equivalently,

PX ·PY =PU ·PV .
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Pythagorean Theorem through Similarity

Lemma

Suppose △ABC is a right triangle with hypotenuse AB and let CP be the
altitude drawn to the hypotenuse. Then △ACP ∼△ABC ∼△CBP .

The first similarity follows by AA since
∠A=∠A and ∠APC = 90◦ =∠ACB .
The proof of the second similarity is
similar.

Alternative Proof of Pythagoras’ Theorem: In the situation of the
lemma, write as usual a=BC , b =AC and c =AB . Since
△ACP ∼△ABC , we have AP

AC = AC
AB . It follows that AP = b2

c . Similarly,

BP = a2

c . Since c =AB =AP +PB , we conclude that c = a2

c + b2

c .

Multiplication by c yields c2 = a2+b2.
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Areas of Similar Polygons

Suppose we have two similar polygons P and Q, where the distances
in Q are obtained from those in P by multiplication by some fixed
scale factor λ.

If P and Q are squares, with side lengths p and q, respectively, then
q =λp. Hence KQ = q2 =λ2p2 =λ2KP .

This rule “multiply by the square of the scale factor” works for arbitrary
polygons: Imagine that P is subdivided into a very large number of
very small squares with a little left over at the edges. If Q is
subdivided into corresponding squares, then each square in Q has area
equal to λ2 times the area of the corresponding square in P . Thus the
sum of the areas of the little squares that almost comprise Q is λ2

times the sum of the little squares in P . It follows that, with
vanishingly small error, we have KQ =λ2KP .

This non-rigorous argument can be transformed into a correct proof
using limits and other ideas from calculus.
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