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Triangles The Circumcircle

Circumcircle, Circumcenter and Circumradius

We showed that there exists a unique circle through any three
noncollinear points.

Each triangle, therefore, is inscribed in exactly one circle, called its
circumcircle.

The center is called the circumcenter;
The radius is called the circumradius.

The usual notation is O for the circumcenter and R for the
circumradius.

Theorem

The three perpendicular bisectors of the sides of a triangle are concurrent
at the circumcenter of the triangle.

Given △ABC , we know that its circumcenter O is equidistant from
vertices A and B . So it lies on the perpendicular bisector of side AB .
Similarly, O lies on the perpendicular bisectors of sides BC and AC .
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Triangles The Circumcircle

Relative Position of the Circumcenter

There are at least two possibilities concerning the circumcenter:

It may be an interior point
of △ABC ;

It may be outside of the
triangle.

On the left ∠A is acute while on the right it is obtuse.

If ∠A= 90◦, then ÙBC is a semicircle. So, the circumcenter O lies on
the hypotenuse BC . Thus, BC is a diameter of the circumcircle.

We conclude that, for a right triangle, the circumcenter is the
midpoint of the hypotenuse and the circumradius R = 1

2
BC .
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Triangles The Circumcircle

Perpendicular Bisectors of Sides and Circumference

Proposition

The perpendicular bisectors of the sides of a triangle meet the circumcircle
at the interior and exterior angle bisectors.

Consider the perpendicular bisector XY of side BC of △ABC .

Since Y lies on the perpendicular bisector of BC ,
Y is equidistant from B and C . Thus, chords
BY and CY are equal. It follows that ÙBY ⊜ ÙCY ,
whence ∠BAY =∠CAY . So Y is the point where
the bisector of ∠A meets the circumcircle.

Extend AB to D and draw AX . We show that ∠DAX =∠CAX . The
circumcenter of △ABC lies on the perpendicular bisector XY of BC .
So XY is a diameter of the circle. It follows that ∠XAY = 90◦. Thus,
∠DAX = 180◦−∠BAX = 180◦− (90◦+∠BAY )= 90◦−∠BAY =
90◦−∠CAY =∠XAY −∠CAY =∠CAX .
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Triangles The Circumcircle

Extended Law of Sines

Theorem (Extended Law of Sines)

Given △ABC with circumradius R , write as usual a,b and c to denote the
lengths of the sides opposite vertices A, B and C , respectively. Then

a

sin(A)
=

b

sin(B)
=

c

sin(C )
= 2R .

We show a
sin(A)

= 2R .

Draw the circumcircle of △ABC .
Let BP be the diameter through B .

There is also the possibility that P =C , which occurs if ∠A= 90◦.
Suppose ∠A< 90◦. BP is a diameter. So △PBC is a right triangle
with hypotenuse BP of length 2R . Thus, sin(P)= BC

BP
= a

2R . But
∠A=∠P because they subtend the same arc. Hence, sin(A)= a

2R .
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Triangles The Circumcircle

Extended Law of Sines (Cont’d)

Suppose ∠A= 90◦. Then △ABC is a right triangle and the
hypotenuse BC is a diameter of the circumcircle. Thus a=BC = 2R .
But sin(A)= 1. So a

sin(A)
= a= 2R .

Suppose ∠A> 90◦. Then △PBC is a right triangle. So sin(P)= a
2R .

In this case, A and P are opposite vertices of an inscribed
quadrilateral. Hence ∠A= 180◦−∠P . It follows that sin(A)= sin(P).
Thus, sin(A)= a

2R
.
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Triangles The Circumcircle

Application of the Extended Law of Sines

Proposition

Given isosceles △ABC , choose a point P on the base BC . Then △ABP

and △ACP have equal circumradii.

Apply the extended law of sines in
△ABP : The diameter of the circumcircle
of △ABP is AP

sin(B)
.

Apply the extended law of sines in
△ACP : The diameter of the circumcircle
of △ACP is AP

sin(C) .

Since △ABC is isosceles, by the pons asinorum, ∠B =∠C . Thus,
sin(B)= sin(C ) and the two diameters are equal.
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Triangles The Circumcircle

Area, Circumradius and Sides

Corollary

Let R and K denote the circumradius and area of △ABC , respectively, and
let a,b and c denote the side lengths. Then 4KR = abc .

We know 2K = ab sin(C ).

By the extended law of sines,

2R = c

sin(C )
.

Thus, 4KR = abc .
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Triangles The Circumcircle

Altitudes and Circumcircles

Proposition

Given acute angled △ABC , draw altitude AD and note
that point D must lie on line segment BC . Extend AD

beyond D to point X on the circumcircle. Observe that
AD >DX , and thus there is a point H on segment AD for
which HD =DX . Then line BH is perpendicular to AC .

Since ∠B and ∠C are acute, point D, lies between B and C . To see
that AD >DX , we consider BC and the perpendicular bisector of AX .
These are parallel lines that cut AX at point D and at the midpoint of
AX , respectively. So it is enough to show that BC is below the
perpendicular bisector. But the perpendicular bisector of AX goes
through the center of the circle. Thus, it suffices to observe that BC
is below the center. This is true because ∠A is acute, and hence it
subtends an arc that is less than a semicircle.

We have now justified that H lies inside the triangle.
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Triangles The Circumcircle

Altitudes and Circumcircles (Cont’d)

Let E and Y be the points where BH meets
side AC and where it meets the circle, re-
spectively. D is the midpoint of HX . So
BC is the perpendicular bisector of HX .
Thus BH = BX . Now BD is an altitude
of isosceles △HBX . So it is also an angle
bisector. We conclude ∠YBC =∠XBC . It
follows that ÙYC ⊜ ÙXC .

Now we have

90◦ =∠ADB ⊜
1

2
(ÙAB +ÙXC )⊜

1

2
(ÙAB +ÙYC )⊜∠AEB .

Thus, ∠AEB is a right angle.
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Triangles The Circumcircle

The Orthocenter

We showed that the altitude of △ABC from vertex B crosses altitude
AD at the specified point H.

Similarly, the altitude from vertex C also crosses AD at this same
point H.

Thus, the three altitudes are concurrent.

It is true for every triangle that the altitudes are concurrent at a point
called the orthocenter, but we have so far proved this only in the
case of acute angled triangles.

A point Q is the reflection of a point P in a given line if the line is
the perpendicular bisector of segment PQ.

The preceding proposition also shows that the three points that result
when the orthocenter of an acute angled triangle is reflected in the
sides of the triangle all lie on the circumcircle.
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Triangles The Circumcircle

A Uniqueness Property of the Orthocenter

Proposition

The only point whose reflections in the sides of the triangle all lie on the
circumcircle is the orthocenter.

Start with acute angled △ABC and reflect each of the vertices A,B

and C in the opposite side of the triangle to obtain points U ,V and
W , respectively.

Next, draw the circumcircles of △BCU ,
△CAV and △ABW . Observe that these ap-
pear to go through a common point. To
understand what is going on here, note that
△UBC is the reflection of △ABC in line BC .

Thus, the circumcircle of △UBC is just the reflection of the
circumcircle of △ABC in this line.
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Triangles The Circumcircle

A Uniqueness Property of the Orthocenter (Cont’d)

It follows that the circumcircle of △UBC is the locus of all points
whose reflection in line BC lies on the circumcircle of the original
triangle. In particular, we know that the orthocenter H of △ABC lies
on this circle. By similar reasoning, H lies on each of the other two
circles. Hence the three circles do indeed have a point in common.
We know the orthocenter H lies on all three circles. Since these circles
cannot have more than one common point, H is the only point all of
whose reflections in the sides of △ABC lie on the circumcircle of this
triangle.

The three circles through point H are clearly the circumcircles of
△HBC ,△AHB , and △ABH. Each of these circles is a reflection of
the circumcircle of △ABC . It follows that all four circumcircles have
equal radii.
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Triangles The Centroid

Subsection 2

The Centroid
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Triangles The Centroid

The Centroid

In every triangle, the three medians are concurrent and the point of
concurrence is called the centroid of the triangle, denoted G .

Theorem

The three medians of an arbitrary triangle are concurrent at a point that
lies two thirds of the way along each median from the vertex of the triangle
toward the midpoint of the opposite side.

Let G be the point where median AX crosses median BY .

We first show that G lies two thirds of
the way from A to X along AX , i.e., that
AG = 2GX . Draw segment XY that joins
the midpoints of two sides of △ABC .
We conclude that XY must be parallel to the third side, AB , and that
XY = 1

2
AB . Since XY ∥AB , we have equality of alternate interior

angles, and thus ∠BAG =∠YXG and ∠ABG =∠XYG . It follows that
△BAG ∼△YXG by AA, and, hence, AG

GX
= AB

XY
= 2.
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Triangles The Centroid

The Centroid (Cont’d)

Similarly, median CZ crosses AX at a point that lies two thirds of the
way from A to X . Since G is the only point on AX that has this
property, CZ goes through G . So the three medians are concurrent,
and we know that the point of concurrence lies two thirds of the way
along median AX . By similar reasoning, we deduce that the point of
concurrence lies two thirds of the way along each median.
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Triangles The Centroid

Medians and Isosceles Triangles

Proposition

Suppose that in △ABC , medians BY and CZ have equal lengths. Then
AB =AC .

Medians BY and CZ intersect at the centroid G . By the Theorem,
BG = 2

3
BY = 2

3
CZ =CG . Thus △BGC is isosceles. By the pons

asinorum, ∠GBC =∠GCB .

We are given that BY = CZ , and of course,
BC = BC . We now know that ∠YBC =
∠ZCB . By SAS, △BYC ∼= △CZB . Thus,
YC = ZB . We conclude that AB = 2ZB =
2YC =AC .
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Triangles The Centroid

The Medial Triangle

Assume that the mass is uniformly distributed along the sides of
△ABC and that the interior is massless.

In this case, we can assume that:

the total mass of side BC is a (the length of BC ), and we pretend that
it is concentrated at the midpoint X of BC ;
a mass of b units is at the midpoint Y of AC ;
a mass of c units is at the midpoint Z of AB.

We need to consider only △XYZ with point masses a,b and c at
vertices X ,Y and Z .

△XYZ , the triangle formed by the midpoints of the sides of △ABC , is
called the medial triangle of △ABC .

We know that XY = c
2
, XZ = b

2
and YZ = a

2
. By SSS,

△ABC ∼△XYZ .
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Triangles The Centroid

Center of Mass of Wire Triangle is at the Incenter

Replace the two point masses at
Y and Z by a single mass at the
center of mass P of side YZ .
Since the masses at Y and Z are
b and c , not necessarily equal, P
need not be the midpoint of YZ .

Let YP = u and ZP = v . Then bu = cv . Hence u
v
= c

b
= XY

XZ
. So P

divides side YZ of △XYZ into two pieces whose lengths are in the
same ratio as the lengths of the nearer sides of the triangle. We
conclude that the bisector of ∠X meets YZ at P . Thus the center of
mass of △XYZ , lies on the angle bisector XP .
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Triangles The Centroid

Center of Mass is at the Incenter (Cont’d)

Similarly, it also lies on the other two angle bisectors of △XYZ . So
the center of mass of △ABC lies at the point of concurrence of the
angle bisectors of △XYZ .

In general, the angle bisectors of an arbitrary triangle are concurrent
at a point called the incenter.

In general, it is not true that the incenter of the medial triangle is the
centroid of the original triangle.

In other words, the center of mass of a uniform wire triangle is not
always at the same location as the center of mass of the corresponding
uniform cardboard triangle.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Subsection 3

The Euler Line, Orthocenter and the Nine-Point Circle
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Circumcenter and Centroid

If a given triangle is equilateral, then each median is the perpendicular
bisector of the opposite side. So the circumcenter and the centroid are
actually the same point.

Lemma

If the circumcenter and the centroid of a triangle coincide, then the triangle
must be equilateral.

Suppose that the centroid of △ABC is also the circumcenter.

Let G be the centroid and let X be the midpoint
of side BC . Then X ,G and A are distinct points
on the median from A. Since these points are
collinear, A lies on line GX . But G is also the
circumcenter, and so it lies on the perpendicular
bisector of side BC .
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Circumcenter and Centroid (Cont’d)

The midpoint X of side BC also lies on the
perpendicular bisector of BC . It follows that
the line GX is the perpendicular bisector of BC .
Since A lies on GX , we have shown that A lies
on the perpendicular bisector of BC .

Thus, A is equidistant from B and C . We now have AB =AC .

Similar reasoning shows that BA=BC .

Therefore, all three sides of △ABC are equal and the triangle is
equilateral.

George Voutsadakis (LSSU) College Geometry June 2019 25 / 74



Triangles The Euler Line, Orthocenter and the Nine-Point Circle

The Euler Line and the Orthocenter

Given any non equilateral △ABC :

The circumcenter O and the centroid G are two distinct points.
These two points determine a unique line that is called the Euler line

of the triangle.
The three altitudes of a triangle are always concurrent at a point called
the orthocenter of the triangle.
We will show that the Euler line also goes through the orthocenter.

For equilateral triangles, there is no Euler line defined.

In this case, the altitudes are the medians, and we know that they are
concurrent at the centroid.
Since there is no Euler line for an equilateral triangle, there is nothing
to prove in this case.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Euler Line Contains the Orthocenter

Theorem

Assume that △ABC is not equilateral and let G and O be its centroid and
circumcenter, respectively. Let H be the point on the Euler line GO that
lies on the opposite side of G from O and such that HG = 2GO. Then all
three altitudes of △ABC pass through H.

We show that the altitude from A passes through H. If H coincides
with A, there is nothing to prove. So assume that H and A are
different. (H and A coincide when ∠A= 90◦.) It suffices to show that
line AH is perpendicular to BC .

Let M be the midpoint of side BC and ob-
serve that O and M are distinct points. Oth-
erwise, the median GM is the Euler line.
Since AG = 2GM, it would follow that A is
H, which we are assuming is not the case.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Euler Line Contains the Orthocenter (Cont’d)

Since both O and M lie on the perpendicular bisector of BC , line OM

is perpendicular to BC .
We will be done if we can show that OM is parallel to AH.

We prove the equality of the alternate interior angles, ∠H and ∠O.

We know that AG
MG

= 2 and that HG
OG

= 2, by the construction of the

point H. Since AG
MG

= HG
OG

and ∠AGH =∠MGO, we see that
△AGH ∼△MGO by SAS. It follows that ∠H =∠O.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

The Three Vertices and the Orthocenter

Given △ABC , let H be its orthocenter. If we start with a right
triangle, then clearly H coincides with the right angle. In all other
cases, A,B ,C and H are easily seen to be four distinct points.

Observe that the line determined by any
two of these four points is perpendicular
to the line determined by the other two.

For example, AH is perpendicular to
BC because line AH is the altitude
from A in △ABC .

We observe that each of the four points A,B ,C and H is the
orthocenter of the triangle formed by the other three.

That A is the orthocenter of △HBC , for example, is just another way
of saying that AH , AB and AC are perpendicular to BC , HC and HB,
respectively.

George Voutsadakis (LSSU) College Geometry June 2019 29 / 74



Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Orthic Quadruples

Given any four points with the property that each is the orthocenter of
the triangle formed by the other three, we say that the given set of
four points is an orthic quadruple.

Given an arbitrary set of three points A,B and C , there almost always
exists a fourth point H, such that the set {A,B ,C ,H} is an orthic
quadruple (take H to be the orthocenter of △ABC ).

The only exceptions are:

when △ABC is a right triangle;
when △ABC does not exist because the given three points are collinear.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Pedal or Orthic Triangle

Given △ABC , let D ,E and F be the points where the altitudes from
A,B and C meet lines BC ,AC and AB , respectively.

These points are called the feet of the altitudes, and they may not
actually lie on the line segments BC ,AC and AB .

If △ABC is not a right triangle, it is not hard to see that the feet D ,E

and F are distinct and form a triangle.

We refer to △DEF as the pedal or orthic triangle of △ABC .
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

The Pedal Triangle

With regards to pedal triangles two of the situations that can occur
are shown below:

The original triangle is drawn with heavy lines.

The pedal triangle and the altitudes are drawn with solid lighter lines.

The feet of the altitudes lie on the sides of the triangle for acute
angled triangles, but two of the feet lie outside of the triangle if there
is an obtuse angle.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Pedal Triangles of Triplets in Orthic Quadruples

The triangle on the left and the
one on the right happen to be two
of the four triangles that can be
formed using three of the four
points of an orthic quadruple.

We see that in both cases, we get exactly the same pedal triangle.

Theorem

The pedal triangles of each of the four triangles determined by an orthic
quadruple are all the same.

For each choice of two of our four given points, the line determined by
those two is perpendicular to the line determined by the other two.
Since there are exactly three ways to pair off four objects into two sets
of two, this gives three points that occur as the intersections of pairs
of perpendicular lines determined by our orthic quadruple. These must
be the vertices of the pedal triangle of each of the four triangles.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

The Euler Points of a Triangle

The circumcircle of the pedal triangle of △ABC , in addition to the feet
of the three altitudes, also contains the midpoints of the three sides.

Hence it is also the circumcircle of the medial triangle of △ABC .

The circle has the additional property that it bisects each of the line
segments AH,BH and CH, where H is the orthocenter of △ABC .

The midpoint X of segment AH is called the Euler point of △ABC

opposite to side BC .

Similarly, the midpoints Y and Z of BH and CH are the Euler points

of △ABC opposite to sides AC and AB , respectively.

The common circumcircle of the pedal and medial triangles contains
the three Euler points and more!
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

The Nine-Point Circle Theorem

Theorem

Given any triangle, all of the following points lie on a common circle:

the three feet of the altitudes;

the three midpoints of the sides;

the three Euler points.

Furthermore, each of the line segments joining an Euler point to the
midpoint of the opposite side is a diameter of this circle.

This remarkable circle is called the nine-point circle of the triangle.
However, the nine points referred to in the statement of the theorem
are not always distinct.

Points D ,E and F are the feet of the altitudes of △ABC . Points P ,Q

and R are the midpoints of the sides and X ,Y and Z are the Euler
points. We need to show that all nine of these points lie on a common
circle and that XP ,YQ and ZR are diameters of this circle.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

The Proof of the Nine-Point Circle Theorem

Draw line segment YQ and consider the
unique circle that has YQ as a diameter. We
show that points P and R lie on this circle.
To see that P lies on the circle with diameter
YQ , it suffices to show that ∠YPQ = 90◦.
We will do this by proving that YP ∥CF and PQ ∥AB . Since CF and
AB are perpendicular, it follows that YP and PQ are perpendicular.
Thus ∠YPQ = 90◦, as required. That PQ is parallel to AB follows
since P and Q are the midpoints of two sides of △ABC and AB is the
third side. Similarly, to prove that YP is parallel to CF , we work in
△BHC . P is the midpoint of side BC . The Euler point Y is the
midpoint of side BH. It follows that YP is parallel to the third side of
this triangle, which is CH. Thus YP ∥CF , as desired. We have shown
that ∠YPQ = 90◦. Thus, point P lies on the circle with diameter YQ.

George Voutsadakis (LSSU) College Geometry June 2019 36 / 74



Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Proof of the Nine-Point Circle Theorem (Cont’d)

We use similar reasoning to show that R

lies on this circle. It suffices to prove that
∠YRQ = 90◦. We accomplish this by show-
ing that YR ∥AD and QR ∥BC . Since alti-
tude AD is perpendicular to side BC , it will
follow that QR is perpendicular to YR .
That QR ∥BC follows by considering midpoints of sides in △ABC . To
prove that YR ∥AD, we consider △ABH.

We have shown that points P ,Q ,R and Y all lie on the same circle
and that YQ is a diameter of this circle.

Since this circle contains P ,Q and R , it is, of course, the circumcircle
of the medial triangle of △ABC .

We conclude that given an arbitrary △ABC , the circumcircle of its
medial triangle has line segment QY as a diameter, where Q is the
midpoint of side AC and Y is the opposite Euler point.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Concluding the Proof of the Nine-Point Circle Theorem

It follows similarly that the line seg-
ments PX and RZ are also diameters
of the medial circumcircle. In particu-
lar, the other two Euler points, X and
Z , lie on this circle.

Hence, six of the required nine points lie on the medial circumcircle
and each of XP , YQ and ZR is a diameter.

We observe that E lies on the circle with diameter YQ since
∠YEQ = 90◦. This shows that the altitude foot E lies on the medial
circumcircle of an arbitrary △ABC .

It follows similarly that the medial circumcircle contains the other two
altitude feet, D and F .
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Radius of the Nine-Point Circle

Proposition

Let R be the circumradius of △ABC . Then the distance from each Euler
point of △ABC to the midpoint of the opposite side is R , and the radius of
the nine-point circle of △ABC is R

2
.

Since the nine-point circle is, among other
things, the circumcircle of the medial triangle
of △ABC , we can solve this problem by fo-
cusing attention on △PQR , where P ,Q and
R are the midpoints of sides BC ,AC and AB .

We know that QP ∥AR and RP ∥AQ. Thus AQPR is a parallelogram,
and diagonal AP bisects diagonal RQ. In other words, median AP of
△ABC bisects side RQ of the medial triangle PQR . Hence, it
contains the median from P in triangle PQR . Similarly, the other two
medians of △ABC contain the other medians of △PQR . It follows
that the centroid G of △ABC is also the centroid of △PQR .
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Radius of the Nine-Point Circle: A Plane Transformation

Consider the following two-step transforma-
tion of the plane:

First, shrink the plane with a scale factor
λ= 1

2 in such a way that point G remains
fixed and every other point moves toward
G .

Next, rotate the plane 180◦ with a center of rotation at G .

Let T denote the net effect of these two operations. Observe that
T (A)=P , since AG = 2GP and ∠AGP = 180◦. Similarly, T (B)=Q

and T (C )=R .

We argue informally that the transformation T carries lines to lines,
triangles to triangles, and circles to circles. Furthermore, given a circle
centered at some point O, the image of that circle under T is a circle
centered at the point T (O) and having radius half that of the original
circle.
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Radius of the Nine-Point Circle (Conclusion)

Now consider the circumcircle of △ABC ,
which is centered at the circumcenter O

and has radius R . The transformation T

carries △ABC to △PQR . Hence it carries
the circumcircle of △ABC to the circum-
circle of △PQR . The latter is the nine-
point circle of △ABC .

Thus, the center of the nine-point circle, which we call N, is exactly
the point T (O). Moreover, the radius of the nine-point circle is R

2
.

Also, since XP , YQ, and ZR are diameters of the nine-point circle, it
follows that each of these segments has length R .
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Triangles The Euler Line, Orthocenter and the Nine-Point Circle

Circumradii of Triangles Formed by Orthic Quadruple

Corollary

Suppose △ABC is not a right triangle and let H be its orthocenter. Then
△ABC , △HBC , △AHC , and △ABH have equal circumradii.

We know that these four triangles share a common pedal triangle.

Since the nine-point circle of any trian-
gle is the circumcircle of its pedal tri-
angle, it follows that the four triangles
share a common nine-point circle.

We have just seen, however, that for an arbitrary triangle, the
circumradius is exactly twice the nine-point radius. Hence, our four
triangles have equal circumradii.
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The Center of the Nine-Point Circle

Proposition

The center of the nine-point circle of △ABC is the midpoint of the
segment joining the orthocenter H and the circumcenter O of the △ABC .

Let N be the nine-point center of △ABC . N must be the midpoint of
each of the segments PX , QY and RZ .

If △ABC is equilateral, N coincides with G and O and H .
We assume, therefore, that the given triangle is not equilateral, whence
it has an Euler line GO. We know that N =T (O). It follows from the
definition of T that N lies on the line through G and O, which is the
Euler line. Furthermore, N lies on the opposite side of G from O, and
we have NG = 1

2GO. Recall now that the orthocenter H also lies on the
Euler line on the opposite side of G from O and that HG = 2GO. It
follows that N lies on the segment GH and HN =HG −NG = 3

2GO.

Also, NO =NG +GO = 3
2GO. We deduce that HN =NO. In other

words, the nine-point center N is the midpoint of the segment HO.
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The Center of the Nine-Point Circle

Corollary

Suppose △ABC is not a right triangle and let H be its orthocenter. Then
the Euler lines of △ABC , △HBC , △AHC and △ABH are concurrent.
If any of these triangles is equilateral, then the Euler lines of the remaining
triangles are concurrent.

These four triangles share a nine-point circle. The center N of this
circle lies on all of the Euler lines, which are therefore concurrent.
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Subsection 4

Computations

George Voutsadakis (LSSU) College Geometry June 2019 45 / 74



Triangles Computations

The Law of Cosines

Theorem (Law of Cosines)

Given △ABC , let a,b and c denote, as usual, the lengths of sides BC ,AC

and AB , respectively. Then c2 = a2+b2−2ab cos(C ).

Given a,b and c , the equation of the law of cosines can easily be
solved to obtain cos(C )= a2+b2−c2

2ab
.

Similar formulas yield cos(A) and cos(B) in terms of a,b and c .

Since a triangle can have at most one angle that fails to be acute, we
can be sure that at least one of ∠A or ∠B is an acute angle. Assume
that ∠B < 90◦. Draw altitude AP from A to BC and write h=AP .
Note that there are three possibilities:

Either ∠C < 90◦ and P lies on segment BC or
∠C = 90◦ and point P coincides with point C , or
∠C > 90◦ and P lies on an extension of side BC .
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The Law of Cosines (Cont’d)

If ∠C < 90◦ and we write x =PC ,

△APC is a right triangle. So cos(C )= PC
AC

=
x
b

. Thus, x = b cos(C ). Two applications of
the Pythagorean theorem yield b2 = x2 + h2

and c2 = h2+ (a−x)2. This gives

c2 = (b2−x2)+ (a−x)2 = b2−x2+a2−2ax +x2 = a2+b2−2ax . Since
x = b cos(C ), we obtain the desired formula.

Assume that ∠C > 90◦ and write x =PC .

We have cos(C ) = − x
b and x = −b cos(C ).

Two applications of the Pythagorean Theorem
yield b2 = x2 +h2 and c2 = h2 + (a+ x)2. We
have c2 = (b2 −x2)+ (a+x)2 = b2 −x2 +a2 +
2ax +x2 = a2+b2+2ax .
Since x =−b cos(C ) in this case, the proof is complete.
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Heron’s Formula and Examples

Define s = 1
2
(a+b+c), called the semiperimeter.

Theorem (Heron’s Formula)

The area K of △ABC is given by the equation

K =
√
s(s −a)(s −b)(s −c),

where a,b and c are the lengths of the sides and s is the semiperimeter.

Note that if △ABC is a right triangle with arms of length 3 and 4 and
hypotenuse of length 5, we know that K = 1

2
bh= 1

2
(3)(4)= 6.

On the other hand, we have s = 1
2
(3+4+5)= 6. So Heron’s formula

gives K =
√
(6)(6−3)(6−4)(6−5) =

p
36= 6.

If △ABC is an equilateral triangle, each of whose sides has length 2,
we have K = 1

2
bh= 1

2
(2)(

p
3)=

p
3.

Heron’s formula gives K =
√
(3)(3−2)(3−2)(3−2) =

p
3.
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Proof of Heron’s Formula

We know that K = 1
2
ab sin(C ). So

4K 2 = a2b2 sin2 (C )= a2b2(1−cos2 (C )). The law of cosines gives

cos(C )= c2−a2−b2

2ab . Substituting, we obtain

4K 2 = a2b2

(
1−

(c2−a2−b2)2

4a2b2

)
= a2b2−

(c2−a2−b2)2

4
.

Thus 16K 2 = 4a2b2− (c2−a2−b2)2. The right side of this equation
factors as a difference of squares to yield 16K 2 =
[2ab+ (c2−a2−b2)][2ab− (c2−a2−b2)]= [c2− (a−b)2][(a+b)2−c2].
Each of the factors on the right of the previous equation factors as a
difference of squares, and we obtain
16K 2 = [c + (a−b)][c − (a−b)][(a+b)+c][(a+b)−c]. Observe that
c +a−b = (a+b+c)−2b = 2(s −b). Similarly, the second factor in our
formula for 16K 2 equals 2(s −a), and the third and fourth factors are
2s and 2(s −c), respectively. It follows that K 2 = s(s−a)(s −b)(s −c).
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Circumradius in terms of Lengths of Sides

Proposition

The circumradius R of triangle △ABC is given by

R = abc

4
√
s(s −a)(s −b)(s −c)

.

We know that 4KR = abc . Thus,

R =
abc

4K
,

whence, by Heron’s formula,

R =
abc

4
√
s(s −a)(s −b)(s −c)

.
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Stewart’s Theorem

Choose point P arbitrarily on side AB of
△ABC , dividing the side of length c , into
pieces with lengths x and y . Let t be the
length t =CP .

Theorem (Stewart)

ct2+xyc = xa2+yb2.

By the law of cosines, we have t2 = a2+y2−2ay cos(B) and
b2 = a2+c2−2ac cos(B). We can eliminate cos(B) if we multiply the
first equation by c and the second by y and then subtract. Using the
fact that c −y = x , we obtain

ct2−yb2 = (c −y)a2+cy2−yc2 = xa2+cy(y −c)= xa2−xyc .
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Lengths of Angle Bisectors

Proposition

If CP is the angle bisector in △ABC and t =CP , then t =
√
ab

[
1− c2

(a+b)2
]
.

Recall that bisector CP divides AB into
pieces proportional to the lengths of the
nearer sides, i.e., x

y = b
a . Since x+y = c , a

bit of algebra yields x = bc
a+b and y = ac

a+b .

To check the algebra, observe that the sum of these two fractions is c

and that the first divided by the second is equal to b
a . It follows that

xyc = abc3

(a+b)2 and xa2+yb2 = a2bc+b2ac
a+b = abc . We can substitute into

the Stewart’s Theorem equation to get ct2+ abc3

(a+b)2 = abc . A little

more algebra now yields t2 = ab− abc2

(a+b)2 = ab
[
1− c2

(a+b)2
]

.
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Equality of Angle Bisectors

Proposition

Let AX and BY be angle bisectors in △ABC and suppose that AX =BY .
Then AC =BC .

We compute that (AX )2 = bc[1− a2

(b+c)2 ] and

(BY )2 = ac[1− b2

(a+c)2 ]. By hypothesis, we know

that these two quantities are equal. Divide by
c : b[1− a2

(b+c)2 ]= a[1− b2

(a+c)2 ]. Therefore, we

get b−a= ba2

(b+c)2 −
ab2

(a+c)2 .

We need to show that a= b. Suppose that a and b are unequal, say
b > a. Then, the left side of the previous equation is positive. Thus,
the right side must also be positive. It follows that a

(b+c)2 > b
(a+c)2 .

But b > a, and so b
(a+c)2 > a

(a+c)2 > a
(b+c)2 . This contradicts the

previous inequality.
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Ptolemy’s Theorem

Theorem (Ptolemy)

Let a,b,c and d be the lengths of consecutive sides of a quadrilateral
inscribed in a circle and suppose x and y are the lengths of the diagonals.
Then ac+bd = xy .

Let r ,s ,u and v be the lengths of the four par-
tial diagonals, where r + s = x and u + v = y .
It is easy to see from the two pairs of similar
triangles that a

c
= u

s
= r

v
and b

d
= u

r
= s

v
. Thus,

we get as = uc , br = ud and uv = rs. It fol-
lows that sa2+rb2 = uac+ubd = u(ac+bd) and
xu2+xrs = xu2+xuv = xu(u+v)= xuy .

By Stewart’s theorem, the quantities on the left sides of these
equations are equal. Hence the right sides must also be equal. We
conclude by canceling u that ac +bd = xy .
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Subsection 5

The Incircle
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Triangles The Incircle

The Incircle of a Triangle

A circle is said to be inscribed in a triangle if its center is interior to
the triangle and all three sides of the triangle are tangent to the circle.

Given an arbitrary triangle, we will show there must exist a unique
inscribed circle, called the incircle.

Its center I is the incenter;
The length r of its radius is the inradius.

Informally, to see why the incircle must exist:

Start with a small circle placed inside the triangle.
Let it grow continuously, keeping it inside the triangle by letting its
center move freely as the circle grows.
Eventually, the circle will reach a maximum size, after which there is no
room for further growth.
The max circle will be touching (that is, tangent to) all three sides.
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Locus Property of Angle Bisectors

Lemma

The bisector of ∠ABC is the locus of points P in the interior of the angle
that are equidistant from the sides of the angle.

If P is in the interior of △ABC , drop perpendiculars PX and PY to
lines AB and CB .
P being equidistant from the sides of the angle
is the same as saying that PX =PY . We must
show that PX =PY if and only if P lies on the
angle bisector.
Suppose that PX =PY . △PXB and △PYB are right triangles with
right angles at X and Y . We have △PXB ∼=△PYB by HA. It follows
that ∠XBP =∠YBP .

Conversely, suppose that P lies on the angle bisector, i.e.,
∠XBP =∠YBP . Since ∠BXP = 90◦ =∠BYP and BP =BP ,
△PXB ∼=△PYB by SAA. We conclude that PX =PY .
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Angle Bisectors and Incircle

Theorem

The three angle bisectors of a triangle are concurrent at a point I ,
equidistant from the sides of the triangle. If we denote by r the distance
from I to each of the sides, then the circle of radius r centered at I is the
unique circle inscribed in the given triangle.

Let △ABC be the given triangle and let I

be the point where the bisectors of ∠B and
∠C meet. From I , drop perpendiculars IU , IV

and IW from I to sides BC , AC and AB ,
respectively.
By the lemma, we have IU = IW since I lies on the bisector of ∠B .
Similarly, since I also lies on the bisector of ∠C , we see that IU = IV .
We conclude that IW = IV . Thus point I must lie on the bisector of
∠A. Hence all three angle bisectors go through I .
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Angle Bisectors and Incircle

We can now write r = IU = IV = IW , and we see that I is equidistant
from sides BC ,AC and AB . Point U lies on the circle of radius r

centered at I . Since BC is a line through U perpendicular to radius
IU , it follows that BC is tangent to this circle at U . Similarly, AC is
tangent to this circle at point V , and AB is tangent at W .

To see that this is the only circle inscribed in this triangle, suppose
that we are given some inscribed circle. It suffices to show that its
center is I and that its radius is r .

Let P be its center and X , Y and Z be the points of tangency of this
circle with sides BC , AC and AB, respectively. Then radii PX and PY

are perpendicular to sides BC and AC . Since PX =PY , we see that P
must lie on the bisector of ∠C . Similarly, P lies on the bisector of ∠B,
and we conclude that P is the point I .
It follows that each of PX and IU is a perpendicular drawn from this
point to BC , and hence these are the same line segment. The radius
PX of the unknown circle is thus equal to IV = r .
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Inradius and Area

Proposition

Given a triangle with area K , semiperimeter s, and inradius r , rs =K .

Therefore r =
√

(s−a)(s−b)(s−c)
s

.

We draw the incircle of △ABC and the three
radii IU , IV and IW of length r joining the
center I to the three points of tangency of
the circle with the sides. These radii are thus
perpendicular to the corresponding sides.
We also draw segments IA, IB and IC , which bisect the angles of the
triangle. Consider △BIC . We have KIBC = 1

2
(IU)(BC )= 1

2
ra. Similarly,

KIAB = 1
2
rc and KICA = 1

2
rb. Adding these, we get

K =KIBC +KIAB +KICA = 1
2
r(a+b+c)= rs .

Since we know by Heron’s formula, K =
√
s(s −a)(s −b)(s −c), we

deduce that r = K
s
=

√
(s−a)(s−b)(s−c)

s
.
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Incircle and Lengths of Side Segments

Lemma

There is exactly one way to choose points U ,V and W on sides BC , AC
and AB , respectively, of △ABC so that AV =AW , BU =BW and
CU =CV . The only points that satisfy these equations are the points
where the sides of the triangle are tangent to the incircle. Furthermore, the
distances AV , BW and CU are equal to s −a, s −b and s −c , respectively.

The lengths of the two tangents to a circle
from an exterior point are equal. So
AV =AW . To see this directly, note that
△AVI ∼=△AWI by HA. Write x =AV =AW ,
y =BU =BW and z =CU =CV .
We have y +z =BC = a, x +z = b and x +y = c . The first gives
z = a−y . Substitute into the second x +a−y = b. Hence x −y = b−a.

Since x +y = c from the third equation, we deduce that
x = c+b−a

2
= s −a. Similarly, y = s −b and z = s −c .
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Tangents to Externally Tangent Circles

Proposition

Given three pairwise mutually externally tangent circles, show that the
three common tangent lines are concurrent.

Let U ,V and W be the three points where two
of the circles touch, and write A,B and C to
denote the centers of the three given circles.
Observe that radius BU is perpendicular to
the common tangent through U and that the
same is true of radius CU . So ∠BUC = 180◦.
Thus, U lies on the line segment BC . Similarly, V lies on AC and W

lies on AB . We see now that U ,V and W are points on the sides of
△ABC , and we have AV =AW since these two segments are radii of
the same circle. Similarly, BU =BW and CU =CV . Hence, points U ,
V and W are the points of tangency of the incircle of △ABC with the
sides of the triangle.
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Tangents to Externally Tangent Circles (Cont’d)

Points U , V and W are the points of tangency of the incircle of
△ABC with the sides of the triangle. It follows that radius IU of the
incircle is perpendicular to side BC at U . Since the common tangent
line for the circles centered at B and C is perpendicular to BC at U ,
the tangent must be line IU . Similarly, the other two common tangent
lines also go through the incenter I of △ABC . Hence the three
common tangents are concurrent at I .
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The Law of Tangents

Theorem (Law of Tangents)

In △ABC , let the quantities a,b,c and s have their usual meanings. Then

tan

(
C

2

)
=

√
(s −a)(s −b)

s(s −c)
.

Consider right △CUI .

We know that UI
UC

is the tangent of
∠UCI . Since CI bisects ∠C of the orig-
inal triangle, this gives tan(C

2
)= UI

UC =
r

s−c .

But we know that r =
√

(s−a)(s−b)(s−c)
s . The result follows.
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Coincidence of the Incenter and the Orthocenter

In the case of an equilateral triangle, the circumcenter, the centroid,
the orthocenter and the incenter coincide.

Conversely, if any two of these points coincide, then the triangle must
be equilateral:

Proposition

Suppose that the incenter and the circumcenter of △ABC are the same
point. Then the triangle must be equilateral.

Join O to vertices A and B . Note that △OAB is isosceles since we
know that OA=OB . By the pons asinorum, we have ∠OAB =∠OBA.
O is also the incenter. So OA and OB bisect angles A and B . We
conclude that ∠A= 2∠OAB and ∠B = 2∠OBA. It follows that
∠A=∠B . So by the converse of the pons asinorum, we see that
CA=CB . Similarly, it follows that all of the sides are equal.
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Intersection Point of Angle Bisector and Circumcircle

Lemma

Extend the bisector of one of the angles of a triangle to meet the
circumcircle at point P . Then the distance from P to each of the other
two vertices of the triangle is equal to the distance IP , where I is the
incenter of the given triangle.

Draw line AP bisecting ∠A of △ABC . I lies on
this line, and we must show IP = CP . It suf-
fices to show that ∠ICP = ∠CIP . Since ∠BCP

subtends the same arc as ∠BAP , we see that
∠BCP =∠BAP = 1

2
∠A. Also, IC bisects ∠C of

the original triangle. Thus ∠ICB = 1
2
∠C .

Hence ∠ICP = 1
2
(∠A+∠C ). To compute ∠CIP , we observe first that

∠P =∠B since these subtend the same arc. Thus, ∠ICP +∠CIP =
180◦−∠P = 180◦−∠B =∠A+∠C . Since ∠ICP = 1

2
(∠A+∠C ),

∠CIP = 1
2
(∠A+∠C ).
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Distance Between the Circumcenter and the Incenter

Theorem (Euler)

Let d =OI , the distance from the circumcenter to the incenter of an
arbitrary triangle. Then d2 =R(R −2r), where R and r are the
circumradius and inradius of the given triangle.

We extend line segment OI to a diameter XY of the circumcircle.

Since OI = d , XI =R−d and YI =R+d . Thus,
XI ·YI = R2 − d2. We know that the product
of the lengths of the two pieces of each chord
through I is a constant, independent of the par-
ticular chord. It follows that R2−d2 =XI ·YI =
AI · IP . Next, we try to compute the length IP ,
which we know is equal to PC .
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Proof of Euler’s Theorem (Cont’d)

We have R2−d2 =XI ·YI =AI · IP . We want
to compute the length IP =PC :
We use the extended law of sines in △APC .
Since ∠PAC = 1

2
∠A, we have PC

sin(A2 )
= 2R .

Hence

R2−d2 =AI · IP =AI ·PC =AI ·2R sin(
A

2
).

Finally, we compute AI · sin(A
2
) by working in right △AIF , where F is

the point of tangency of the incircle with side AC . Since IF = r , we
see that sin(A

2
)= r

AI
. Thus, AI · sin(A

2
)= r .

If we substitute this into our previous formula, we get R2−d2 = 2rR .
So d2 =R(R −2r).
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Comparing the Circumradius with the Inradius

Corollary

For any triangle, R ≥ 2r and equality holds if and only if the triangle is
equilateral.

Since d2 =R(R −2r), we see that R −2r can never be negative.

Furthermore, R = 2r if and only if d = 0; in other words, R = 2r if and
only if points I and O are identical. But I and O coincide if and only
if the triangle is equilateral.
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Subsection 6

Exscribed Circles
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Excircles

The incircle of a triangle is sometimes referred to as a tritangent

circle because it is tangent to all three sides of the triangle.

If we are willing to consider
circles tangent to extensions of
the sides, a triangle also has
three other tritangent circles.

The three tritangent circles
whose centers are exterior to the
given triangle are called the
exscribed circles or the
excircles of the triangle.
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Excenters and Exradii

The center of each of the exscribed circles lies at the intersection of
three angle bisectors.

For example, the center of the excir-
cle opposite vertex A, denoted Ia, lies
at the point of concurrence of the bi-
sector of ∠A and the bisectors of the
exterior angles at points B and C .

The centers of the excircles of △ABC are the excenters of △ABC .

The corresponding radii are denoted ra,rb and rc , and they are referred
to as the exradii of the triangle.

The three exradii, together with the inradius r , are collectively known
as the tritangent radii.
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Excenters and Exradii

Lemma

The length of the tangent from a vertex of a triangle to the opposite
exscribed circle is equal to the semiperimeter s.

Let Y , P and Q be the points of
tangency, as shown. Since the two
tangents to a circle from an exterior
point are equal, we know that
BP =BQ. We need to show that this
common length is s.

Since AP =AY , we have BP =BA+AP =BA+AY .

Similarly, BQ =BC +CY .

Adding, we get BP +BQ =BA+AY +BC +CY =BA+BC +AC = 2s .

But BP =BQ, whence we get BP =BQ = s.
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Relation Between the Tritangent Radii

Theorem

Given an arbitrary △ABC , we have 1
r =

1
ra
+ 1

rb
+ 1

rc
.

We have 1
ra
+ 1

rb
+ 1

rc
=

√
s−a

s(s−b)(s−c) +
√

s−b
s(s−a)(s−c) +

√
s−c

s(s−a)(s−b) =
(s−a)+(s−b)+(s−c)p
s(s−a)(s−b)(s−c)

= sp
s(s−a)(s−b)(s−c)

= s
K = 1

r .

Note that in the figure △BPIb is a right
triangle with arm BP of length s. Since
arm IbP has length rb, it follows that
tan(B

2
)= rb

s .

By the law of tangents, we obtain

rb = s · tan(B
2
)= s

√
(s−a)(s−c)
s(s−b) =

√
s(s−a)(s−c)

s−b .
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